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We investigate the quantum theory of closed systems based on the linear positivity decoherence condition of
Goldstein and Page. The objective of any quantum theory of a closed system, most generally the universe, is
the prediction of probabilities for the individual members of sets of alternative coarse-grained histories of the
system. Quantum interference between members of a set of alternative histories is an obstacle to assigning
probabilities that are consistent with the rules of probability theory. A quantum theory of closed systems
therefore requires two elementd) a condition specifying which sets of histories may be assigned probabili-
ties and(2) a rule for those probabilities. The linear positivity condition of Goldstein and Page is the weakest
of the general conditions proposed so far. Its general properties relating to exact probability sum rules, time
neutrality, and conservation laws are explored. Its inconsistency with the usual notion of independent sub-
systems in quantum mechanics is reviewed. Its relation to the stronger condition of medium decoherence
necessary for classicality is discussed. The linear positivity of histories in a number of simple model systems
is investigated with the aim of exhibiting linearly positive sets of histories that are not decoherent. The utility
of extending the notion of probability to include values outside the range of 0—1 is described. Alternatives with
such virtual probabilities cannot be measured or recorded, but can be used in the intermediate steps of
calculations of real probabilities. Extended probabilities give a simple and general way of formulating quantum
theory. The various decoherence conditions are compared in terms of their utility for characterizing classicality
and the role they might play in further generalizations of quantum mechanics.
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[. INTRODUCTION chanics of closed systems predicts these also. However, these
generalizations of Copenhagen quantum mechanics also pre-
The familiar “Copenhagen” quantum mechanics of meadict probabilities for histories of subsystems even when these
sured subsystems must be generalized to apply to closed sysre not receiving attention from observers. The history of the
tems such as the universe as a whole. That is because theregisrth’s motion in the first few billion years of its existence is
nothing outside a closed system to measure it. Rather mean example.
surement situations occur within a closed system containing Not every set of histories that can be described can be
both the subsystem observed and the observers, apparatassigned probabilities that are consistent with the rules of
etc., observing it. Consistexor decoherenthistories quan- probability theory, in particular with the rule that the prob-
tum theory provides such a generalizaﬁofﬁhis paper is ability of two exclusive alternatives is the sum of the prob-
concerned with the nature of the decoherence conditiongbilities of each. Quantum interference is the obstacle. In
which are central to these formulations of quantum theory. usual quantum mechanics, for instance, probabilities are the
The most general predictions of a quantum theory of sSguares of amplitudes and the square of a sum is not gener-
closed system are the probabilities of coarse-grained altern&!ly the sum of the squares. A quantum theory of closed
tive histories from the system’s initial quantum state and>YStems can therefore be based on two elemébtsan ex-

Hamiltonian. The probabilities for alternative orbits of the Pression for computing probabilities and) a consistency

Earth around the Sun are examples. An orbit might be gecondition that specifies which sets of alternative histories can

scribed by a series of center-of-mass position intervals at Qe consistently assigned probabilities.

sequence of times. That description is coarse grained becau FA variety of conditions enforcing consistency have been
it is specified only by the center-of-mass position and not aI%(Oposed and studiegee, e.g.[4] for a lisp. This paper is

! X » - oncerned with the weakest of these—linear positivity—
possible variables, because those positions are specified ONqquced in a seminal paper by Goldstein and Pie

at some times and not at all times, and because they aj§near positivity will be described in Secs. Il and Il in de-

specified only within intervals and not to arbitrary accuracy.5j pyt to introduce the idea let us first recall the medium
Such coarse graining is generally necessary to have prob..onherence condition.

abilities at all. Individual histories in an exhaustive set of exclusive al-

Copenhagen quantum mechanics predicts the probabilitigg ative histories are represented by opera®gscalled
of histories of measurement outcomes, and the quantum M@rass operatoravhere « labels the histories in the set. For

instance, the history in which the orbit of the Earth lies in a
sequence of ranges of position at a series of times would be

*Electronic address: hartle@physics.ucsb.edu represented by &, which is the time-ordered product of
ISee, e.g.[1-3 for extended descriptions from various points of projections onto these ranges at the different times. The class
view. operators for an exhaustive set of histories satisfy
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S C.=1 (exhaustive. (1.2) Hilbert spaces for the individual subsystems. States repre-
a senting statistically independent subsystems have the product

If |W) is the state of the closed system, the class operatof®m
E_an be used to construbtanch state vectorgV,) for each Y= [T e - ® W), (1.9
istory according to
W) = C,[W) (1.2 where the| ;) are the states of the individual subsystems.
of T el T ' The probability for the ensemble that the independent sub-
The probabilities of the individual histories are given by  systems have a sequence of properties should be the product
B 5 2 of the probabilities of the properties in the individual sub-
p(a) = [V lI* = [Cal " 1.3 systems. While medium decoherence guarantees this prop-
Medium decoherence is the condition that the branches berty, linear positivity does not, as Diosi showed and as we

orthogonal: review in Sec. Il D. For the author this is reason enough to
+ , reject linear positivity as a basis for the quantum mechanics
(W[ ¥ o) =(¥[C,Cu[¥)=0 all a#a of closed systems that contain isolated subsystems.
(medium decoherenge (1.4) However, usual quantum mechanics does not need to be

generalized for quantum cosmology only because the uni-

Medium decoherence is the precise representation of the aberse is a closed system. A generalization is needed to ac-

sence of interference between histories. It is sufficient for theommodate quantum gravity. That is because even the quan-
consistency of the probabilitied.3). However, it is not a tum framework alluded to above, and described more
necessary condition; weaker conditions are possible. carefully in the next section, relies on a fixed background
As a consequence of Eq4..1), (1.3), and(1.4), the prob-  space-time geometry, for example, to define the notion of
abilities of a medium decoherent set of histories can be retime employed. But in a quantum theory of gravity space-
expressed as time geometry is a quantum dynamical variable, generally
_ _ _ _ fluctuating and without definite value. The notion of an ex-

pla) = (W[ = Ea' (W[ W) = (W|W,) =(V|C W), actly isolated subsystem is problematical in a closed universe

(1.55  because the gravitational interaction cannot be screened. It is
N therefore just possible that linear positivity could be useful
The numbers(¥|C,|¥) are real and positive as a conse- for a generalization of quantum theory incorporating quan-

quence of medium decoherended). Goldstein and Pag®]  tum gravity. It is in this spirit that we explore linear positivity
proposed the weaker decoherence condition in this paper, although no gravitational issues will be ad-
Re(V|C,|W)=0, alla (inear positivity, (1.6  dressed explicitly. , o .

This paper explores linear positivity in a number of dif-

replacing Eq(1.4), and a new assignment of probability  ferent directions. General properties such as exact probability
— sum rules, time neutrality, conservation laws, the relation to

p(a) = Re (W|C,[¥), (€7 medium decoherence, and the inconsistency with the usual

replacing Eq.(1.3). This islinear positivity “Linear” refers  notion of statistically independent subsystems are discussed

to the linearity of the expression for probabilities, E#.7),  in Sec. Ill. Section IV exhibits examples of linear positivity
in the C,. “Positivity” characterizes the conditiofl.6). As  in a variety of simple, nonrelativistic quantum mechanical
we will review in Sec. lll, the linear positivity condition systems—the two-slit experiment, the three-box model, a
(1.6) is sufficient for the probabilities defined by Hd..7) to spin-1/2 system, a free particle, and alternatives extended
be consistent. over time. The aim is to begin a kind of phenomenology of

The reality and positivity of thgW|C,|W) that follow linear positivity. In general, a much wider range of histories
from Eq.(1.5) show that medium decoherence implies linearof this simple kind are found to be linearly positive than are
positivity but not the other way around. Linear positivity decoherent. Section V describes the utility of the numbers
thus extends the sets of histories that can be assigned prothefined by Eq(1.7) even when they are not positive or less
abilities beyond those which are medium decoherent. Thahan unity. We call these virtual probabilities. Alternatives
extension is not necessary to describe the outcomes of mewith virtual probabilities can neither be measured nor re-
surements. Sets of histories describing measurements are newrded but can be used as intermediate steps in calculations
dium decoherent, at least to an excellent approximation, asf real probabilities. We discuss the advantages and disad-
we discuss in Sec. Il A. vantages of formulating quantum theory in terms of both in

Linear positivity is the weakest of the general conditionsSec. VI.
for consistent probabilities of histories known to the author
at Fhe time of writing. However, mere consjstency with prob- QUANTUM MECHANICS OF CLOSED SYSTEMS
ability sum rules may not be the only requirement reasonably
imposed on quantum mechanical probabilities. For example, This section very briefly reviews the essentials of the
Diosi [6] pointed out that linear positivity is inconsistent quantum mechanics of closed systefii§ especially to fix
with the usual notion of statistically independent subsystemghe notation to be used in the rest of the paper.
in quantum mechanics. The Hilbert space of a closed system We consider a closed system, most generally the universe
of N noninteracting subsystems is the tensor product of th@s a whole, in the approximation that gross quantum fluctua-
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tions in the geometry of space-tiniee., quantum gravity 0<pla) =1, (2.49

can be neglected. The closed system can then be thought of ) ) o L

as a very large box of particles and fields containing bothvhich satlsf_y the basw_pr_obablllty sum rules_ _relatmg finer- to
observers and observad any). Fixed background space- Coarser-grained descriptions: The probability of a coarse-
time means that a notion of time is well defined and the usuadr@ineéd set is the sum of the probabilities of its finer-grained
apparatus of Hilbert space, states, and operators can be efi€mbpers. The probabilities of the coarser-grained descrip-
ployed in a quantum description of the box. The quantumt'ons_ are the_m:on_3|stenW|th those of the_ finer-grained ones.
state of this closed systef’) and the HamiltoniarH de-  APPlied to histories for a coarse graining of the fo@3)
scribing its quantum evolution are assumed to be given andiS IS the requirement

fixed. —

As mentioned in the Introduction, the most general objec- pla) = Efp(a), (2.4

tive of quantum theory for a closed system is the prediction aee B

of probabilities for the individual members of sets of coarse-where thep(a) are the probabilities of th€; andp(«) are
grained alternative histories. The simplest sets of alternativghe probabilities of theC,. The two conditiong2.4) are the
histories are specified by alternatives at one moment of timenathematical requirements for probabilities.

These can always be reduced to a set of yes or no alternatives The Introduction described how quantum interference is
represented by an exhaustive set of orthogonal projectiogn obstacle to consistency in the sense of (Bgtb) and the

operators {P,(t)}, @=1,2,... in the Heisenberg picture. need for a decoherence condition to restrict the sets to ones
These projections satisfy where it is satisfied. The next section describes the
Goldstein-Pag§5] linear positivity condition and some of its
Ea Pa(t) =1, Pa()P4(t) = 845Pu(1), (2.1 general properties.

showing that they represent an exhaustive set of exclusive

. L . I1l. LINEAR POSITIVITY
alternatives. The operatoR,(t) change with time according

to the Heisenberg equation of motion definedthyThe state The linear positivity condition concerns the numbers
|W) is unchanging in the Heisenberg picture.
A set of alternative histories may be specified by giving p(a) = Re (¥|C W) = =(¥|(C,+CH|w), (3.1
(23 2 a [a% 1 .

sets of aIternative{;Pil(tl)}, {Piz(tz)}, ... AP}, (to)} at & se-

ries of timest; <ty <--- <t,. The sets at distinct imes can yhich can be calculated for any set of historig,}. It's
differ and are distinguished by the superscript on B®  conyenient to call theseandidate probabilitiesand use the
The subscript distinguishes the alternatives within the set. AR qiationp(«) for candidate probabilities whether or not their
individual history in t.hIS set is represented_ by a partlcularrange is between 0 and 1. Because of E3), they auto-
sequence of alterr_latlve(&l_, ,an).Ea. and is represented matically and exactly satisfy the necessary sum (@b
by the corresponding chain of projections for the probabilities of a coarse graining of the set. However,
C,=P" (t,) -+ PL (ty). (2.2) candidate probabilities do not necessarily lie between 0 and 1
n 1 as Eq.(2.49 requires. Indeed, even for histories with just
Such a set of histories is coarse grained because alternativego times, with class operators of the for€,,,
are specified at some times and not at every time and becaus@iz(tz) Pil(tl), there is some state in which one of the his-
the specified alternatives are projections on subspaces Withries has a negativp(«). That is because the Hermitian
dimension larger than one and not projections on a completgroduct of two noncommuting projections always has at least
set of operators. one negative eigenvaluy@ppendix A).

The operations of coarse and fine graining relate different Homogeneous histories whose class operators are chains
sets of histories. A set of historieC,} may be coarse of projections as in Eq(2.2) have candidate probabilities
grained by partitioning it into an exhaustive set of exclusivethat are less than unity. That is because the action of a non-
classesc;,a=1,2,....Each class consists of some numbertrivial projection on a state always reduces its norm:
of histories in the finer-grained set and every finer-grained
history lies in some class. Fine graining is the inverse opera- Re (V[P (ty) -+~ P, (t)|W) < 1. (3.2
tion of dividing the histories up into mutually exclusive
smaller classes. The class opera{@g} for the histories in a
coarse graining of a set whose class operator§ @y are
related by summation

There is no guarantee that a coarse graining of a set of ho-

mogeneous histories that does not itself consist of homoge-

neous histories will havep(a) <1. Indeed, for any set of

homogeneous histories with at least one negaiive, there

C= Sc (2.3 is always a coarse graining in which at least one history has
@ @ p(@) = 1. However, if thep(a) are all positive or zero, then

_ they are also less than 1 because they must sum to 1 as a

where the sum defining the coarse-grained his@gys over  consequence of E@l.1). Genuine probabilities are therefore

aea

all the finer-grained histories contained within it. guaranteed by the linear positivity conditi¢h.6).
Probabilities for a set of histories are a set of numbers Section IV will illustrate the linear positivity condition for
p(a) lying between 0 and 1, simple systems. But first we consider some of its general
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properties and in particular its relation to medium decoher- B. Exact probabilities

ence. As stressed by Goldstein and Page, and as mentioned

above, the probabilities of a linearly positive set of histories

A. Connection with medium decoherence satisfy the defining probability sum rule®.4b exactly
A set of histories medium decoheres when Probabilities need to be defined by physical theory only up to
the accuracy they are used. For example, we consider a pre-
<\p|c2cﬂ|qr>:o, a# B (medium decoherenge diction of the frequency of outcomes of repeated experi-
3.3 ments to be securely tested, not if the probability of a sig-

nificant fluctuation in the frequency of expected outcomes is
exactly zero, but rather if it is sufficiently small. Two theo-
ries that predict probabilities whose difference is well below
the standard with which they are used are equivalent in pre-
pMP(a) = (W|CIC,| W) = C, | ¥)|7. (3.4)  dictive power. Therein lies the possibility of utilizing the
probabilities of realistic approximately medium decoherent

As here, we use superscripts MD and LP where necessary gets of histories that obey the sum rul@s4b only to an
distinguish medium decoherent and linear positivity prob-approximation secure beyond all test. However, the concep-
abilities. tual situation is considerably simplified if the predicted prob-

The identity=; Cz=1 [cf. Eq.(1.1)] can be used to derive abilities exactlyobey the sum rules as they do in the linearly
the following relation between the-P(a) given by Eq.(3.1)  positive case. We will return to the relation between these
and thepMP(a) given by Eq.(3.4): two cases in Sec. VI.

The probability of the individual histories in a medium de-
coherent set is

p-P(a) =p“P(a) + 2 Re(¥|CIC |¥). (3.5

B+a

C. Exact conservation laws

) ) - o ) Exact probability sum rules ensure that quantities that
Evidently, the two notions of probability coincide if the setis commute with the Hamiltonian are conserved with probabil-

exactly medium decoherent and the last term vanighes ity 1. The argument is essentially the same as th8jrbut
Eq. (3.39)]. Exact medium decoherence implies linear positiv- provide a sketch of it here.

ity. o o ) Consider a quantitA like total electric charge or total
However, many realistic coarse grainings are unlikely Ognergy that commutes with the Hamiltoni&h Let PA(t)
medium decohere exactly, but only to an excellent approXiyenote a set of projections onto disjoint rang]A§

mation. For example, a branch state vector defining coarse—1 5> 3 fA at timet. Orthogonality of these projec-
grained history of the motion of the Earth to an accuracy Oﬁions, ir1np,lies

1 cm every second is not exactly orthogonal to a branch-state
vector of a distinct history. Rather it is approximately or-
thogonal to an accuracy far beyond that to which the result-
ing probabilities can be checked or the physical situation ) ) o
modeled. Approximate medium decoherence does not neceBécausé commutes wittH. Now consider a set of histories
sarily imply linear positivity because the second term in Eq.0f the form
(3.5 may have any sign. If thg“P(a) are very small, R
p'P(@) could be negative(But then, approximate medium C.= P (t)CRPI(), (3.9
decoherence would imply approximate linear positiyity.

Medium decoherence can be alternatively characterized/herecbﬁ is a chain of projections at times in betweteand
by the existence akecordsof the histories. There are records t’ onto ranges of quantities not necessarily commuting with
of a set of histories if there is an exhaustive set of orthogonah\. Is the value of the conserved quantidy at t’ exactly
commuting projections{Rg} which are correlated with the correlated with the value atdespite the intervening projec-

PRUPN®=0, j*]', (3.7)

histories{C,} in the following strong sense: tions on quantities not necessarily commuting wWi# Lin-
ear positivity ensures that it is. Letj’,3,j) denote the can-
RsCo| W) = 85.Co| W) (3.6 didate probabilities of the historig8.8) computed according

. o i . to Eq.(3.1). The sum ruleg2.4b) ensure
Evidently Eq.(3.6) implies the medium decoherence condi-

tion (3.3), because of the orthogonality of thH&s. Con- oo L, .

versély,g)if the brancheblfa>:ca|\1gfl> are )é)rthogonal, there EB PGB, =P("1) = &p() (3.9
are generally many different sets of projectiofi®,} for

which Eq.(3.6) is satisfied—most simplR,=|¥ X¥,|. The  from Eq.(3.7). If the p's are all positive as linear positivity
{R,} are records only in the abstract sense specified of Eqequires, then Eq3.9) implies

(3.6) and need not correspond to anything like everyday

records such as history books. The creation and persistence p(j".B,j)=0, j" #], (3.10
of records is an important, indeed the defining, feature of
many realistic mechanisms of decoherence. which is exact conservation of the quantiy
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D. Statistical probabilities However, linear positivity does not yield the same notion
of statistical independence. That is becaleeEq. (3.1)]

ptP(at, ... aN) = Re[(W|C 1. .nW)]

The probabilities under discussion are probabilities for
particular histories of a single closed systerwhen the =Re[(W[Coa|W) -+ (V[Cn[W)].
closed system consists of an ensemble of identical sub- (3.15
systems, the probabilities of the closed system can be used to
discuss the statistics of the ensemble when the number of iB8ut the real part of a product is not generally the product of
members is large. For example, with high probability, thethe real parts unless the individual factors are all real. Thus
frequency of a particular history in the ensemble should
equal its probability in an individual subsystem. That is a p-Plat, ....aY) # pPlah) - pP(aY).  (3.16
standard result in usual quantum thediy)] in accordance The absence of general equality in E8.16 does not

with the law of large numbers. However, as observed bynean that linear positivity incorrectly predicts the frequen-
Diosi [6], linear positivity is generally inconsistent with the ¢jeg of the histories of the outcomes of measurements carried
usual notion of statistical independence in quantum theory, + on ensembles of idential subsystems of the universe. Ex-
on which such demonstrations are based. We offer a brielyy measured or exactly recorded alternatives are exactly
review of his result. o medium decoherent and then E8.16) becomes an equality
In familiar quantum theory, an ensemble Nfidentical, ¢t Eq.(3.14)]. However, for many realistic sets of alterna-
noninteracting subsystem is represented by a state tive histories, including those describing the quasiclassical
W)= - @ |¥) (3.11 realm of everyday experience, medium decoherence and
records are correlated with the alternatives they record only
on the tensor product dfi copies of the Hilbert spack of  to excellent approximations. In such cases Ej16) will
the individual subsystems. A closed system with a stat®nly be an equality to a related approximation.
(3.1) can be thought of as an approximate model for a re- There is a second reason that linear positivity does not
alistic ensemble of identical subsystems. Alternatively, evefincorrectly predict the frequencies of individual histories in
when|¥) refers to the universe, E¢3.11) can be thought of an ensemble of identical subsystems. Linear positivity fails
as describing a fictitious ensemble of universes whose frefor ensembles with a sufficiently large number of identical
quencies can be expected to coincide with the probabilitiegubsystems even if it is satisfied for the individual members
of the individual members in the limit of largy. unless thegW|C,|¥) are real and Eq3.16) satisfied as con-
Let{C,} denote the class operators actingZgrfor a set  sequence. To see this, consider a set of histories of the sub-
of alternative, coarse-grained histories of a subsystem. Theystem with just two member€; andC,=1-C; [so that Eq.
class operator foN different historiesa’, ... ,a" in the en-  (1.1) is satisfied. Write the expected value &, in terms of
semble is its magnitude and phase,

Co.. N=C1® -+ ® C,n. (3.12 (W|C,| W) = Ad?, (3.19

[We employ a superscript to distinguish histori€s ... e  with A real and positive ane real. Linear positivity requires
of different subsystems each of which may consist of a se9< ¢p< .

quence of alternatives—e.g., alz(ai, ,aﬁ), a? A given history of an ensemble ®f of these subsystems
:(ai, ,aﬁ), etc] Suppose that the set of historigs,} ofa  will have some numbenc (0=<nc=<N) of historiesC, and
subsystem is medium decohergBt3) so that in particular N-n¢ historiesC,=1-C,. The candidate probabilitigs(nc)

[cf. EqQ.(3.9)] for histories of the ensemble witly. individual historiesC,
are
pM° (@) = [[Co| WP (3.13

=Re[(Ad?)"c(1 - Ad?)N e
Then for the ensemble, evidently, P(nc) = Re[(Ae7)™e( el

=A"ccognc¢) — ANcogN¢). (3.19
MD/ 1 Ny — 2
pYP(ar, ... .a") =[|Cor.. N[ W), o . »
For the histories of the ensemble to be linearly positive these
=[Caa WP+ [Cn ), candidate probabilities must be positive &t nc between 0

_ MDs 1 MD, N andN. However, unless is identically zero, there is some

=P () - pTE(a). (3.14 largeN for which Eq.(3.18) will not be positive for some.

The subsystems are therefore statistically independent. Thignear positivity thus fails for sufficiently large ensembles

is the central fact in deriving the result that for a very largeunless thg¥|C,|¥) are real. The failure means probabilities

ensemble the frequency of an individual histoBy, ap- cannot be assigned to individual histories of the ensemble

proaches its probabilitp™P(a) in an individual subsystem. much less to values of the frequency of any history of its
individual subsystems.

ZSee, e.g.[9], Sec. l12, for a discussion of how these probabilities
are used and interpreted. The author thanks S. Goldstein for stressing this point.
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A decoherence .condition.that would ensure equality in (e, ... o) = Re<\If|P2n(tn) Pil(t1)|‘1’>
Eq. (3.16) and consistency with the usual notion of indepen-
dent subsystems is =Re(V¥|P; (t) -+ Py, (t)|W).
Im[(¥|CJ¥)]=0, alla, (3.199 (3.29
The ends of histories are treated symmetrically.
Re(V|CJW)=0, alla (real linear positivity. If the more general notion of linear positivity is funda-

mental in quantum theory, what is the origin of the time
asymmetry displayed by the medium decoherence expression
(3.2)? The answer is that the approximate equality of
pP(ay, ... ,aq) andpVP(ay,, ... ,a;) can be expected to hold
only for one ordering of the projections in E(B.21). Put
differently, the second term in E¢.5) is not time neutral. It

will generally be small only for one-time ordering of the
projections inC, and not both. Only in trivial cases—e.g.,
projections on conserved quantities—will the probabilities of
an ordering and the inverse ordering agree.

Records of history connect the quantum mechanical arrow
of time in Eq.(3.21) with the second law of thermodynamics
for sets of histories constituting the quasiclassical realm of
ensures that each term with# 3 vanishes separately. But as €Veryday experience. The histories of the quasiclassical

realm[12-15 consist of projections on ranges of the “hy-

with medium decoherence, E@.20) is likely to be satisfied T . .
only to an excellent approximation for realistic coarse grain-drodynamic” variables of classical physics. These generally

ings defining the quasiclassical realm. are integrals over suitably small volumes of densities of ap-

The conflict between the usual notion of independent supProximately conserved quantities such as energy, momen-

systems and linear positive probabilities is a serious obstacie!™: numbers of different species, etc. .
The entropy of a set of histories consisting of alternatives

to their interpretation when they are not associated with me- : o
dium decoherent sets of histories. For example, we canngf«(} at a single moment of time is

understand them as frequencies in an imaginary ensemble

identical copies of the closed system as described abov (Pa(O}) == 2 pletin plest) + X plertin TP, ()],
Indeed, it would not be unreasonable to impose(Bd.4) as (3.23

a condition for a construction of probabilities in quantum

mechanics thereby ruling out linear positivity. However, allwherep(a,t)=||P,(t)|¥)||?. This coincides with the usual en-
this does not mean linear positive probabilities cannot beropy of physical chemistry and physics when fgt) are

(3.19h

This is linear positivity(1.6) augmented by the reality re-
quirement(3.193. At the risk of introducing more confusing
terminology this might be calleckal linear positivity This is
weaker than medium decoherence because EgS) and
(1.2) show that it is equivalent to

Im>, [(W|C]C,[¥)]=0. (3.20
B

Only the vanishing of the imaginary part of this sum is re-
quired for equality in Eq(3.16), but medium decoherence

useful as we discuss in Sec. VI. projections on the hydrodynamic quasiclassical variables de-
scribed abovd15]. It is low initially for the state of our
E. Time symmetry and asymmetry universe and therefore has a tendency to increasetvéth

terward. That is the second law of thermodynamics.

Y i X Records of history in the quasiclassical realm are often
time.” Nowhere is that seen more clearly than in the standar@eateq in irreversibie processes where the entropy defined

formula(cf. Eq.(3.4)] for the probabilityp"®(ay, ... ,a1) of  gpy5ve increasdsAn impact crater on the Moon, an ancient
a history of alternativesy, ... ,a, at a sequence of times fissjon track in mica, a darkened photographic grain, and the
L<tp<--- <ty printing of ink on this paper are all examples. Consistent
VD ien 1 ) with the second law, records of events in history are more
P (e, ... wa)) =[[PG (t) - Po ()W), (3.2D  jikely to be at the end of history furthest from an initial
condition of low entropy rather than at the beginning.
The state occurs at one end of the histories; there is nothing The existence of records is another way of characterizing
at the other end. That is the quantum mechanical arrow ofedium decoherence as discussed in Sec. Il A. The second
time. It is a convention thgt¥) enters as amitial condition  law suggests that E¢3.6) holds in the form given and not
earlier than all the alternatives. Field theorydBTinvariant  with C,R; on the left-hand side. This leads to the medium
and utilizing aCPT transformation the time order of the decoherence of, but not the se{CZ} with the projections
operators could be inverted so tHdt) is a final condition.  in the inverse order. Both have the same linear positive prob-
However, noCPT transformation can alter the asymmetry apilities, but only one order is connected with medium deco-
between initial and final conditions in E¢B.21).
As discussed by Goldstein and Page, the linear positivity ——

formula for probabilitieqcf. Eq. (3.1)] is time neutral—viz SThere are time-neutral formulations of medium decoherence in-
" volving both initial and final condition—e.g[11]

- ®An increase in entropy is natecessanyto create a record as in
“See, e.g[11] for a fuller discussion in the notation of this paper. reversible computationgL6].

Quantum theory is usually formulated with an arrow of
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FIG. 1. The geometry of the two-slit experi-
ment. An electron gun at left emits an electron
traveling toward a screen with two slits, its
progress in space recapitulating its evolution in
E time. The electron is detected on the screen at

right at a positiony with a probability density
that exhibits an interference pattern. A coarse-
grained set of histories for the electron can be
L defined by specifying which slitJ or L) it went
through and ranges of detected positigns

o — ¢
b e

PP

herence. Irreversible creation of records is therefore one redarly, the amplitude to pass through the lower &liand ar-
son why the quantum mechanical arrow of time is consistentive aty is
with the thermodynamic arrow of time, at least for the qua- — AdkS.Y)
siclassical realm. Vily) =ae™ YIS (y), (4.3

IV. EXAMPLES OF LINEAR POSITIVITY with ) i
=[(d/l2+y)*+D . 4.4
This section calculates the candidate probabilif¢a) . Sm = N y)” ] 4.9
=Re(¥|C,|¥) for a number of simple examples of physical ~ The candidate probabilitgensitiesy(y,U) andp(y,L) to
systems, statelsl’), and sets of historiefC,}. The intent is ~ arrive aty having passed through the upper or lower slit are
not to be exhaustive but to illustrate linearly positive sets ofdiven by[cf. Eq.(3.1)]

histories that are not necessarily decoherent. It is not neces- o(y,U) = Re[V (y)Py(y)], (4.59
sary to study all of these examples to understand the general
discussion of quantum theory that follows. o(y,L) = Re[¥" (y) ¥ (y)], (4.5b)

A. Two-slit experiment where W (y)=W¥(y)+¥ (y). The first of these works out to

We begin with the classic two-slit experiment shown inbe

Fig. 1. Electrons from a sourc8 travel toward a vertical aP[1 1
screen with two horizontal slits each a distadcg from the o(y,U) ===+ —codk(S. - ). (4.6)
axis perpendicular to the screen througThe electrons are STHETIEST

later detected at a second screen, parallel to the first, a digy,o expression fop(y,L) is the same witl. and U inter-

]'Eanceta away. tA (t:r(])ordlnatte/frge?sut_res the vertical distance changed. The probability density to arriveyatrespective of
rom the axis o the point of detection. which slit is passed through is

We make the usual idealizations, in particular assuming

that the electrons are initially in narrow wave packets mov- PioilY) =g (y,U) + p(y,L) (4.79
ing in the horizontal directiorx, so that their progress irn

recapitulates their evolution in time. We assume that the ,] 1 1 _codk(S -S))]

source is far enough from the first screen that these wave =lal g + g + ZT (4.7b

packets can be analyzed into plane waves propagating in the
x direction with a distribution peaked about a wave number _ 2

k. Then, to a good approximation, we can calculate the am- =[Yuy) + Wyl (4.79
plitudes for detection by considering just the plane waveThe last equality of course follows directly from E@.1).

with peak wave numbek. That analysis follows. Figure 2 showsy(y,U), ¢(y,L), andp(y) for an apposite
At the detecting screen the amplitude that the electrorchoice ofD andd.
travels through the upper slii to arrive at a point on the A set of coarse-grained histories of the electrons can be
detecting screen is defined by whether the electron passed through the upper and
Wy (y) = adSuvs, (y), 4.2) lower slits and arrived in one or the other of an exhaustive

set of exclusive ranges of of size{A,}, « an integer. The
where candidate probabilities for these histories are the integrals of
the densitiep(y,U) andp(y,L) over the range$A,}, e.g.,
S,(y) = [(/2 —y)2+ D22 4.2 $(y,U) andp(y,L) ge$A.), €9

is the distance from the upper slit to the point on the detect- p(A,U) =f dy p(y,U). (4.8
ing screen labeled by anda is a constant amplitude. Simi- Ay
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FIG. 2. Candidate probability densities for the two-slit experi-
ment. The candidate probability densityy,U) to go through the
upper slit and arrive dtl is shown at top fokd=kD=60 wherek is
the wave number of the electrdef. Fig. 1]. The corresponding
candidate probability density(y,L) for going through the lower
slit is just below. The sunp,; is the probability density to arrive at

y irrespective of which slit is passed through is shown at bottom

The amplitudea has been assigned arbitrarily which is why the

PHYSICAL REVIEW A70, 022104(2004)

the set will be linearly positive and thgs will be probabili-
ties. Most importantly, however, the siz& necessary to
achieve positivity ismallerthan that needed to wash out the
interference pattern. Indeed, in the lirlit>d, the probabil-

ity densities are
2 d
la 1. @9

a[ {k
1+cog —

p(y,U) =p(y,L) ~ o2 D

Since these are both positive, arbitrarily smallleads to
positive probabilities.

The set of histories will be medium decoherent to a good
approximation wher is sufficiently large that the interfer-
ence term averages to zero:

L dy Re [} (y)¥(y)] = 0. (4.10

That requires &\ larger than the spacing between the inter-
ference fringes. As already mentioned, that is much larger
than theA required for linear positivity showing concretely
how linear positivity is a weaker condition than weak deco-
herence.

B. Spin 1/2

Consider a single free spin in a stdf). For simplicity,
assume that its Hamiltonian is zero. Consider histories speci-
fied by giving the value of the spin at one time along direc-
tion N; and at a later time along a directioi. Since the
Hamiltonian is zero, it is not necessary to specify the particu-
lar times, only the time ordering of the alternatives matters.

Let PZ denote the projections on the two orientations of
the spin along directiom wheres ranges over the possible
orientations(+,—). The branch state vectors are

(W) = PEPIW) (4.12)

and the candidate probabilities are
pls2,51) = Re(W|W, ) = Re(W|PEZPIW). (4.12)

To exhibit the candidate probabiliti€$.12) explicitly it is
convenient to introduce a rectangulary,z) coordinate sys-
tem with z oriented alongi, andy chosen so thaf;, lies in
they-z plane. The angle betweef andn, we denote bys.

In a general statg¥V), the spin points along some direction
which we take to be specified by polar angkeand ¢ with

respect to the axis. Thus in a basis in whics, is diagonal

we can take

scale of the vertical axis not indicated. When these probability den-

sities are integrated over rangesypthey give candidate probabili-

ties for the histories. The size of well-chosen ranges that yield posi-
tive probabilities is smaller than the size that would wash out the

interference pattern.

Consider for simplicity the candidate probabilities illus-
trated in Fig. 2 with all the ranges of equal sixeEvidently
if A is too small, the set of histories will not be linearly
positive because some of the candidate probabiliie8)
will be negative. Equally evidently, i is sufficiently large,

€%2coq 6/2)
e ' 2sin(6/2)

(4.13

ot}

It is then straightforward to calculate the four candidate
probabilities(4.12). We find

p(+,+)= CO§(§)C0§(§) + %COS({) sin 6 sin &,

(4.143
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p(+,-) = c0§<g>sir12(§> - %cos¢ sin #sin 8,
(4.14b

p(—,+)= sin2<g)sin2(§> + %cos¢ sin 6 sin &,

(4.140

(=]
X
N
w
X
N

p(—,—):sirlz(g)cos?(j) —%cos¢ sin 0 sin 6. 7 %
(4.149

Note that these correctly sum to unity and tipét)=p(+,
+)+p(+,-), etc.

Figure 3 shows the domain of states parametrized by
(0, ¢) that imply a linearly positive set of histories for vari-
ous values of the anglé. For eaché there is a significant
range of states giving linearly positive histories which
shrinks asé approaches 0 orr even though those limits
correspond to linear positivity and indeed exact medium de-
coherence for all states. Any state with the phdsen/2
leads to a linearly positive set of histories for afly

Almost none of these linearly positive sets of histories are 5 5
medium decoherent with orthogonal branches. The condi-
tions for medium decoherence that are not automatically sat- ¢
isfied are the vanishing of the following:

o

N

=
w
N
5

1
(V4| P, ) = Zsin 5[+ cosfsiné

+sin 6(cos 6 cos¢—i sin ¢)],
(4.153

1
(P__|W_,)= Zsin S[-cos@siné

o & r 3x a0
+sin 6(cos S cos ¢ +i sin ¢)]. 3 2 4
(4.15b FIG. 3. Candidate probabilities for two different spin directions

of a spin-1/2 particle. States of a spin-1/2 system can be labeled by

Both of these vanish only fo#=7/4 or 3w/4 and¢=0orm.  two angles(8, #) as in Eq.(4.13. These plots are concerned with
For example, as mentioned above, any state withm/2  the candidate probabilities for histories specified by values of the
leads to linearly positive histories. But none of these statespin along a directiom, followed (or precedeflimmediately by a
implies medium decoherence. Linear positivity is evidently avalue of the spin along a second direction making an angles
much weaker condition. with respect to the first. The plots show the states for which this set
of histories is linearly positivéwhite) and those for which some
candidate probabilities are negatidglack) for given 6. Only the
partial range 8< ¢ < 7 is shown because the rest can be determined

The three-box example introduced by Aharonov and Vaid-from the symmetries of Eq4.14). From top to bottom the values of
man[17] for other purposes has proved useful for illustratingé are #/2, /4, and=/8. For example, states with=/2 imply
the nature of quantum reality in consistent histories quantunthese sets are linear positive for any valuesdfut none is medium
mechanicg18,19. We use it here to illustrate the scope of decoherent.
the linear positivity condition.

C. Three-box example

Consider a particle that can be in one of three baxes, 1
and C in the corresponding orthogonal stafés, |B), and W) = T§(|A>+ B) +|C)). (4.1
|C). For simplicity, take the Hamiltonian to be zero and sup- '
pose the system to initially be in the state Consider further a state) defined by
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1 B giventhat it is in state® at the later time. These are
|®) = “‘_§(|A> +[B)-|C)) (4.17) @A (@.5)
V 1 L
. p(al®) =222 pele) =P 22 423
and denote the projection operators|dn, |A), |B), and|C) p(P) p(P)

by Py, Pa, Pg, andPc, respectively. Denote with the ne-  The symmetry betweeA andB in the definitions of %) and
gation of A (“not in box A”) represented by the projection |®) in Egs.(4.16) and(4.17) implies p(A| ®) andp(B|®) are
Pa=1—-Pa. The negationsb,B,andC and their projections equal. Calculation shows that they are both unity. But this
Ps,Pg, and P are similarly defined. We consider sets of would seem to be a contradiction because beind\ iand
histories, all of which specify whether the particle is in statebeing in B are exclusive alternative®?,Pg=0, implying
|®) or not at a final time and in various boxes at an interme(A,B)=p(A,B|®)=0 from Eq.(3.1). From that one would
diate time after the initial one. The exact values of thesdike to infer from p(A|®)=1 thatp(B|®)=0. In fact, this
times is unimportant sincel=0. Only the order matters— inference cannot be draw9] and there is no contradiction.
initial, intermediate, and final. Let us see how this is established in the present context.
An example is supplied by histories which specify  To calculatep(B|®) from p(A|®) andp(A,B|®)=0, we
whether the particle is in boA or not at the intermediate need the finer-grained set of histori@s21) referring both to
time. There are four alternative histories represented by thBox A andB and to®. In this set, it follows from Eq(2.4b)

class operators that
PoPa PoPa PaPa PoPa (4.18 p(AD) = p(ABID) +p(ABID),  (4.243
Their candidate probabilities are given by Eg.1)—e.g., - o L
p(®,A) = Re (W|PyPA|W). (4.19 P(A|P) = p(A,B|®) + p(A,B|®). (4.24b
A little calculation shows that Similarly,
p(®,A) =1/9, p(®,A)=2/9, p(B|®) = p(A,B|®) + p(A,B|D), (4.253
p(®,A) =0, p(®A) =2/3. (4.20 p(B|®) = p(AB®) + p(AB|®).  (4.25H

This is a linearly positive set of histories since all the num-If p(A|®)=1, thenp(A|®)=0. Were thep’s positive prob-
bers(4.20) are positive or zero. Indeed, this set of histories isabilities, equating Eq4.24b to zero would imply that both
medium decoherent because the branch state vectors OB(-KBM)) and p(K,a ®) were zero. Inserting the first of
tained by applying the class operatgds18) to |¥) [cf. Eq. these in Eq.(4.253 along with p(A,B|®)=0 from Eq.
(3.3)] are all orthogonal. The positivity of probabilities fol- (4.223 gives p(B|®)=0.
lows just from that.

Next consider the finer-grained set of histories which
specifies whether or not the particle is in b&xandwhether
or not it is in boxB at the intermediate time. The eight class

operators are p(A,B|®) =0, p(A,E|<I>) =1,
PgsPaPs, PyPaPg, PoPaPe, - .. ,etc. (4.2)

But the candidatep’s are not positive probabilities be-
cause the set of historigd.21) is not linearly positive and
the inference cannot be drawn. In particular from E422

This set of histories isot medium decoherent. The candidate PAB|®)=1, p(AB|P)=-1. (4.2
probabilities are The sum ruleg4.24) and (4.25 are exactly satisfied with
e _ p(A|®)=p(B|®)=1.
p(®lAl B) - p((byAy B) - Oi (4223
_ _ D. A Single particle
P(®.AB)=p(®.AB) =1/9, (4.22 The next example is more realistic. We consider a single
S free nonrelativistic particle of ma$d moving in one dimen-
p(®,AB)=-1/9, (4.220  sjon x. The Hamiltonian isH=p?/2M. For the initial state,
o L we choose a Gaussian wave packet of widthcentered
p(®,A,B) = p(P,A,B) =2/9, (4.229  about the origin with zero expected value for the momentum.
Specifically,
p(®,A,B) = 4/9. (4.22¢ W(x) = (2m0?) Vg 4o (4.27)

The one negative numbg(®,A,B)=-1/9 shows that this We consider histories defined by exhaustive sets of position
nondecoherent set of histories is also not linearly positive. intervals at the initial timeé=0 and at a later timé=r. For

A seeming contradiction occuf&8] when one calculates simplicity we take the set of intervafa .} (« an integey to
the conditional probabilities for the particle to be in béor  be the same at both times. A coarse-grained history is defined
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by the pair of position intervala , 1 andA, that the particle consisting of just two histories: the histoty in which the
passes through at the two times. The candldate probabilitiggarticle is localized in an interval centered on the origin at
for these histories are denoted Ipya,,a;) and are con-  poth timest; andt, and the historyL in which it is not.
structed by implementing E@3.1) as follows: The candidate probabilitp, (A) for the particle to be lo-

Let P,(t) denote the Heisenberg picture projection ontocalized at both times is given by E¢.34) with A =A,
the rangeA, of x at timet. The candidate probabilities for =A. The candidate probabilitg(A), which is not so Iocal-
the histories described above doé. Eq. (2.2)] ized, can be found from this and

plaz ar) =Re <\I,|Pa2(7) Pa1(0)|q’>- (4.28 p.(A) +p(A)=1. (4.35

For purposes of computation, it is convenient to express the Equation(4.34) can be organized to give a tractable ex-
right-hand side of Ec(4.28) in the Schrodinger picture. The pression forp, (A) by defining new integration variables
connection is made through
. X=(X1+X2)/2, §=X2_Xl, (436)
— AiHt/A —iHt/A
Pa(t) =€7P.e ' (4.29 and introducing a characteristic wavelength of oscillation

Whereﬁ’a denotes the Schrodinger picture projection onto the A\ |22 12(1g)\12
= 477(—) =1.1x 1orl3< S) ( ) cm

rangeA , of x. The result forp(ay, a;) is

M
Re f dXzf dxl\lf* (Xz, T)K(Xz,xl, T)"I}(Xl, 0) . (437)
A Ay Then, after some algebra,
(4.30 \/7 b
— = +X4I2 _
HereW(x,, 7) is the initial statg4.27) evolved to timer and pL(d) = Wazfo dxe JA-X), (4.389
K(x,,X;,7) is the free particle propagator given by
‘ where
KXz X1, 7) = (Xal&7" 7" |x)
2302 (2 a2 { (5)2 ﬂ_}
12 —X)? J2)=—| dée cod 2w = | ——
=< M ) eXp{—M(XZ.—Xl)]- (4.31) &= 0 ¢ "\ a
2mihT 2ihT
The evolved Gaussian wave packéi27) is = Re{Erf[ \e"7_r(1 —i)f]}. (4.38b
1 ihT
V(x,7) = 1+ i [ imaki
x,7) (27702)1/4< 202M) These expressions are quoted in the approximakieho

typically valid for large particles as E@4.37) shows. The
X2 i \71 general ones are not much more complicated.
xexp - 402 1 +202—M (4.32 As A becomes largep, (A) must approach unity and Eq.
(4.38) exhibits this explicitly[erf(«)=1]. But also from Eq.
The expression for the candidate probabiliti¢s30 simpli-  (4.28 and the general resu(8.2), pL(A)<1. For sufficiently
fies considerably if we restrict our attention to times Wh'ChIarge A this set of histories is therefore linearly positive.
are short compared to the wave packet spreading time:  Analysis of the situation fo < o requires numerical inte-
262M 2('M gration of Eq.(4.38. The following result emerges: At least
T< Topread™ T (2 X 10%s )( e ) (1—) for \/o~1/100,p,(A) is positive over the whole range af
cm 9 from 0 to . Figure 4 shows, (A) for this case. Taken to-
(4.339  gether withp_(A) <1, this means that this set is always posi-

There are many interesting situations in which this is a reallive: The quantitiesp (A) and p(A) are genuine probabili-

istic assumption. In this approximation, ties. _ o , L
Although linear positive, this set of histories is far from
( )= 1 )”2 vz dx dx decoherent. WitlC, =P,(7)P,(0) the off-diagonal elements
Plaga)=\5"2] \omhs 2 1 of the decoherence functional are
o p{ 0&+ xi)}co{ M (%, — X)? w} D(L,L) = (W|cfcw) = (w|cf (1 - c)|w)
xp| - -—1.
40® 2hr 4 = (V[PAs(0)PA(DPRO)|W), (4.39
(4.39

wherePy} is the projection on the range outsideatt=0. We
We now discuss the behavior of these candidate probabilitiesan think of Eq.(4.39 as the overlap of two statd¥,)
for a simple coarse graining of this set of histories. =P,(7)PA(0)|¥) and | V)= P,(7)P(0)|¥). When A> o,
The probabilities for the coarse graining we consider an{¥ ) will have negligible length becaude,(0)|¥) is negli-
swer the question, does the particle remain at the origin ogible. Consider thereforeA <o. The wave function of
does it move elsewhere? Specifically, we consider the se®,(0)| W) consists of those parts of the initial packét27)

022104-11



JAMES B. HARTLE PHYSICAL REVIEW A70, 022104(2004)

1 OP jection on the rangd , at timet. Matrix elements of the&C,
’ in the Heisenberg pictur@gHP) can be transformed into tran-
sition amplitudes in Schrédinger pictuf®P), and these tran-
0.75 sition amplitudes can be expressed as path integrals. The
result is
0.5 ~
(P|C,|¥)pp=(D(T)|C,[¥(0))sp
0z = f X" (x, TV (x0,0).
A fa
1 2 30 (4.40

FIG. 4. Candidate probabilities for a single free particle in aHere,
stationary Gaussian wave packet to remain in a position intéxval ~ CHTI
after a time short compared to the wave-packet spreading time. The C,=¢€ Cas (4.41

plot shows the candidate probabilipy(A) defined by Eq(4.3839 - . .
for N/o=1072. This is positive over the whole of the range and the path integral is over all path) in the classc,

indicating that the set consisting of the history in which the particleInCIUdIng an integral over the end points and xr. (More

remains localized and the history where it does not so remain igetails on estat_)lishing this rglgtion can be fountﬂZﬁ].and .
linearly positive. [22].) The candidate probabilities for the coarse-grained his-

tories are, from Eq(3.1),

outside of A. Because of the sharp interior edges, this - -
evolves rapidly to fill in the center around=0. After pro- p(a) = ReW(T)|Co¥(O)sp (4.42
jection of P,(7) there is significant overlap with the wave From now on we drop the SP’s and HP’s and rely on context
function of |, ) of order(A/o) and thus absence of deco- to distinguish the two pictures.
herence. The derivation sketched above of the conneciiér0

In general we expect the action of an environment to béetween matrix elements of class operators and path integrals
necessary to carry away the phases between such alternativ@er classes was for coarse grainings by ranges of position at
and make them decoherefetg., Eq.(1.4)). Despite the ab- a sequence of times. But the result motivates using path in-
sence of an environment and its consequent decoherence tiiggrals todefineclass operators for arbitrary partitions of the
set of histories is linearly positive in the approximations con-fine-grained historiex(t) into mutually exclusive classes, in-
sidered. cluding partitions defining alternatives extending over a
range of time. Equatiod.42) gives candidate probabilities
for these space-time coarse grainings.

A simple model illustrates the idg@0,23. Partition all

The familiar example of a coarse-grained history is a sepathsx(t) on the interval0,T] into the two classes:
quence of events at a series of definite times. But decoherent R: pathsx(t) that alwaysremain in the regiorx>0 be-
histories quantum theory permits more general coarse graifween times 0 and.
ings that extgnd continuous_ly_ Over ranges .Of tiiae, 21. R pathsx(t) that sometimesre in the regiorx<0 be-
Such space-time coarse grainings may provide more real's%veen times 0 and
models of measurement processes that extend over tim .
Analogous coarse grainings may be essential for a quantu
theory of gravity where there is no fixed notion of tirfeeg.,

E. A space-time alternative

Evidently, these classes are exhaustive and mutually exclu-
Qve.R here means “right,%> 0, andpg computed from Eq.
(4.42) is the probability that the particle remainsxat O for
[9D- . . . - the whole time interval and never crosses irtoO.

. To |IIustrat¢ the |dea. ofa space-time coarse graining, con-- a gm gver all paths of the forr@.40) that is restricted to
sider the motion of a single free particle of massmoving x>0 is the same as an unrestricted sum in the presence of an

) . . : P _
In one fd;_mens:conx \(I)VIEQ' '}'ﬁm'ltotn'ir}.H_p /?Md%\(e{ 2 infinite potential barrier at values of<0 [20]. Let Hg de-
range of imes from - IN€ set ol fine-graned NISIONes , 1o the Hamiltonian of the particle including this barrier.

of the particle’s mation Cons,iStS of the patj'<($) on.the 'in- The branch-state vector for the cld@san be written

terval [0,T]. Sets of alternative coarse-grained histories are

defined by partitions of these fine-grained histories into mu- |WR(T)) = Pre MRV PW(0)), (4.43

tually exclusive classex,,a=1,2,.... Each class is a . — .

coarse-grained history. whgre Pris the projection ontox>0. The candidate prob-
The class operator§, for these coarse-grained histories 2Pty Pr is [€f. EQ. (4.42)]

can be constructed from sums over their constituent fine- -

grained histories. To see how, first consider a partition of the Pr=Re (W(MWR(T)). (4.49

paths by an exhaustive set of position intervls,} at a It is not necessary to derive a separate expressiopgan

series of timeg; <--- <t,. The class operator in the Heisen- this simple example. From Eqg¢l.1), (4.41) and (4.42) it

berg picture isCa:Pan(tn)~--Pa1(t1) whereP,(t) is the pro-  follows that
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PR+ Pr=1 (4.45) Pr TR

(whether or not the set is linearly positiv€alculation ofpg ~
will therefore determingog. N
For explicit calculation it is convenient to rewrite Eg. \
(4.44) in terms of wave functions. Le¥(x,0) denote the N\
wave function of the initial state an#;(x, T) its unrestricted 7N

evolution underH. Let ®(x,0)=Pg¥(x,0), and denote by \
Dgr(x,T) anddy(x,T) its evolution undeHg andH, respec- N
tively. Evolution in the presence of an infinite barrierxat ~
=0 is especially simple and ~ -

-2 -1 1 2 3
DX, T) =Dy(%,T) = Py(=x,T), x>0. (4.4

X
o

FIG. 5. Candidate probabilities for a space-time coarse graining.

Thus, we can write A free particle moving in one dimension is initially in a Gaussian

» wave packet of widthr traveling toward negative with a momen-
Pr= Rej dxW (X, ) P(X,T) tum Ko=-20/0 in =1 units. The solid curve shows the candidate
0 probability pg for the particle to remain always at positixever a
% time T short compared to the wave-packet spreading time. This is
= Ref dx \IrL(x,T)[(I)U(x,T) -Oy(-xT)]. plotted as a function of the final position of the packet's cedter
0 that is connected to the initial positiofy andT by Eq.(4.54). The

(4.47) probability is positive over the entire range computed, showing that
the set consisting of the histofjr), where the particle remains at
This form allows both quantitative computation and qualita-positive x, and the history(R), where it does not, is linearly posi-
tive discussion. Since tive. The dashed curve shows the real part of the ovetag Vg)
which must vanish for this set of histories to be medium decoherent.

[P = [[P=0)] =[l[Pr¥ (), (4.48 Evidently there is a significant range of linearly positive sets which
an immediate consequence of £4.47) is are not medium decoherent.
< ||[Prl¥ (T PglP(0))]. 4.49
This showspg=<1 andpg=0.
We now evaluate Eq4.47) for a very simple initial wave (4.59

function W(x,0). We consider a Gaussian wave packet of
width o centered about an initial positiofy>0 and moving
toward negativex with a (negativeg momentumK,. Specifi-

cally, assume PR~ (2m0?) 12 f dx = X%207 1 — X coq 2K x)],
W(x,0) = (2mo?) WeKog X4 (4,50 °

To keep expressions simple, we use units whierd as we
will for the remainder of this section.

The following approximations make the evaluation of the
integral (4.47) for pg straightforward.

(1) We assume that

The integral(4.47) for pg is then

(4.56)

which is straightforward to evaluate numerically.
Assumption(4.51) means thak, must be large for the

center of the wave packet to reach the neighborhood of

=0 in the times limited by Eq4.53. Specifically,Kqo>1.

Xo> o (4.51) Otherwise, the wave packet remains to the righka0 and
~1.
so that the initial wave function is negligible far<0—i.e. PR Figure 5 shows from Eq. (4.56) as a function of the
®(x,0) = Pr¥(x,0) = ¥(x,0). (4.52  position of the centeK at time T for Ko=-20/c. Only val-

ues of X=-2¢ are shown for whichXy=30 in a time T
(2) We assume that the time is short compared to the about 1/10 of the spreading time in E@.53. For smaller
time over which the wave packet spreads significantly—values ofX, the approximatiori4.55 would be inaccurate.
specifically, For large values oK, the wave packet is localized some
T < 26°M. (4.53 place inX>0 over the whole_ o_f the time interval. We _might
therefore expecpg=1, and it is. For smalleKX, there is a
With these two approximations, the shape of the wave packefignificant probability of crossingk=0 at least once in the
remains approximately unchanged under evolution over théime interval 0 toT. The important point is that, over the
time T. Only the center shifts to the value whole of the calculated rangpg, lies between 0 and 1. Like-
_ wise for pg from Eq. (4.45. The set of alternatives is thus
X=Xo+ KoT/M. (4.59 linearly positive with genuine probabilities. We now turn to
Specifically, the question of whether this set of alternatives decoheres.
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when[cf. Eq. (1.4)] section we refer to the candidate probabilitjggr) defined
B by Eq.(3.1) as “probabilities” whether or not they are real or
D(RR) = (Vx(T)|[WR(T)) = 0. (4.57)  virtual.

. ) To understand what virtual probabilities might mean, first
The branch state vectdi¥s) was exhibited in Eq(4.43.  consider what they cannot mean. Evidently, virtual probabili-

Relations(1.1) and(4.41) imply that ties cannot coincide with the relative frequencies of repeated
VT = [W(T)) = [Wo(T)) 4. events such as the probabilities of the outcomes of identical
WRT) = [W(T)) = [¥=(T)) (4.58 measurements on an ensemble of identical subsystems. More
In terms of wave functions, generally, alternatives with virtual probabilities cannot be ex-
" actly recorded or measured. The exact correlation between
D(R ﬁ) = J dxD(x, [V (X,T) = Dr(x,T)] alternative values of records representecpljections{R}
’ 0 R U RS and histories represented by class operaf{@s} would
(4.59 mean][cf. Eq. (3.6)]
where®x(x, T) can be taken to be given by E@.46). In the P(B, @) = Re(V|RC, V) = 8,4p(c). (5.

approximation where Eq4.52 holds, this is ) ) _ )
Sum both sides of this relation ovgrusing>; Rz=1. Sum

both sides overr using =, C,=I. The resulting relations
imply the identity

]

D(RR) = f A WL, T) =Py %] ¥y(-xT).
0

(4.60 p(a) = Re(¥[C W) =Re(¥R,[¥), (5.2

Figure 5 shows R®(R,R) cz'al'culated from 'Eq(4.6@ plot- showing that the probabilities of the records are the same as
ted againsX. For large positiveX, the particle remains on o probabilities of the histories. Since tfe,} are projec-

the right. There is thus essentially only one history with Sig'tions their .
o " N N ) , probabilities must be between 0 and 1. Sets of
nificant probability| W) = W), |¥g) ~0, and decoherence is histories with virtual probabilities therefore cannot be ex-

automatic. For large negativ¥, almost all of the wave .y recorded. Since recording outcomes is usually taken to
packety(x, T) will have crosseck=0. That is outside the o 3 essential part of a measurement protess,can say
range where Eq4.60) is necessarily a good approximation, a¢ sets of histories with virtual probabilities cannot de-
but the first term will vanish an@¥g|Wg)~~1. Thatis far  geripe the outcomes of measurements. Extending the notion
from decoherence. _ o of probability to include virtual values thus does not risk
Figure 5 shows that over a wide range of situations forassigning a virtual value to the probability of anything mea-
which this set of histories is linearly positive, it is not deco- syred or recorded exactly. Of course, the records of realistic
herent. That is consistent with linear positivity being ameasurements are typically correlated with the measured his-

weaker condition for probabilities. tory, not exactly, but rather to an excellent approximation.
Virtual probabilities can in principle be employed in the
V. VIRTUAL PROBABILITIES calculation of real ones as the following example illustrates.

S . ... Consider the probabilitie of some future alterna-
What about sets of histories that are not linearly positive? P p(y|pd

. oy ! tives {y} given present datpd. It may be more efficient to
Can the candidate probabilitigga) defined by Eq(3.1) be S , . )
put to use even if they are outside the range 0-1? This Secalculate these probabilities by first determining the prob

tion will show that they can. In particulap(«) outside the %b”'tles P(B|pd) O.f alternatives{f} in the past and the-n.,.
) ; ) ith these, and with present data, calculate the probabilities
range 0—1 can be employed as intermediate steps in the ¢

culation of probabilities that do lie between 0 and 1. That ise;ﬁt::nzl{[gjrcealsggp a('[|v|e$d7)/}];r(l)\/ln?rtiec?;;rtie;ﬁly, it may be

because probability sum rules like EQ.4b) are satisfied by PP

the p(a) defined by Eq(3.1) whether or not they lie between

0 and 1 as a consequence of ER.3). For this reason, if p(y|pd):EB p(¥lpd. B)p(Blpd). (5.3

somep(a) in a set are outside the range 0-1, we say the set

hasvirtual probabilities When a contrasting term is needed For example, if a current manuscrigtd) records that Caesar

for the case when all the(«) are between 0 or 1, we say the invaded Britain in 55 BC, we might predict that other manu-

set hasreal probabilities’ “Real” in this context is thus a scripts yet to be discoveref{y}) would record the same

synonym for linearly positive. Extending sets of probabilitiesdate. However, the most direct route to that prediction would

to include virtual values provides a simple and unified ap-be to first infer that Caesar did invade Britain in 55 Bihe

proach to the quantum mechanics of closed systems as wi the alternativeg) and from that calculate the probabilities
of what other manuscripts might say. We reconstruct the past

. _ to help explain the future.
To maintain the usual contrast between virtual and real, we ac-

cept the risk that “real” can be taken to be a contrast with “imagi-
nary.” 83ee, e.g.[24].
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Our purpose here is not to discuss the utility of recon- VI. COMPARING DECOHERENCE CONDITIONS
structing the pastRather, it is to point out that E@5.3) is a
consequence of Eqg2.1) and (3.1) which hold whether or
not the probabilitiep(B|pd) are between 0 and 1. In prin-

_ciple, virtual p(B_I pd) could be used in the intermediate _s_tep order of increased restrictiofroughly inverse to the order
in Eq. (5.3 provided the resulp(y|pd) were real probabili- presentefithey are the following.

ties. (i) Extended probabilitie§EP). Assign probabilities to all

_ The three-box example discussed in Sec. IV C provides &gt of alternative coarse-grained histories according to
simple, if artificial, example. Suppose we are interested in

predicting probabilities for whether the particle will be either p(a) = Re(¥|C, V), (6.2

|'n bOX_A or else not inA (i.e., in boxB o'r C)at somEffuture whether they are redbetween 0 and)lor virtual. This is no
time givend. We denote these alternativesAyandA". The  restriction at all. Calculate the probabilities of exactly re-

Four decoherence conditions restricting the sets of alter-
native coarse-grained histories to which quantum mechanics
predicts probabilities have been considered in this paper. In

probability p(A’|®), for instance, is given by corded alternatives or the frequencies of repeated indepen-
- dent alternatives, secure in the knowledge that these will be
Sy < PAL®) _ Re(¥|(Pg + Po)Py|¥) between O and 1. ,
p(A'|®) = @) Re (W[Py|¥) (5.4 (i) Linear positivity (LP). Assign probabilities only to
P ¢ sets of alternative coarse-grained histories for which all can-
From Eqs.(4.16 and(4.17) we find didate probabilities in the set given by E@.1) lie in the
range 0-1 of real probabilities.
£l _ Fa (i) Real linear positivity (RLP). Assign probabilities
PA|®)=1, p(A[®)=0, 5.5 only to sets of alternative coarse grained histories which are
a set of real probabilities. linearly positive and for which
But we could calculate these probabilities by first calcu- Im[(¥|C,[¥)]~0, al a (6.2)

lating thep's for the alternativeg\?,BP,andCP that the par- _
ticle was in boxA, B, or C in the past giverd and then using e|_ther e_xactly or ap_proxmatel;_/_yvell beyond the standard
Eq. (5.3 to calculate the future probabilities f&' andA’, ~ With which the resulting probabilities are used.

The probabilities for the past alternatives®, B, andCP (iv) Medium decoherencgMD). Assign probabilities
givend can be negative—for example only to sets of alternative coarse-grained histories for which

the branch state vectors for all histories in the set are mutu-
p(®,CP)  Re(¥|PuP¥) L. 56 ally orthogonal,
p(d) Re(V|Py|¥) ' '

p(CPlP) = (W ¥,)=0, a#d (6.3

Similarly, p(AP|®)=p(BP|®) = 1. Despite this the reader may €ither exactly or to an approximation well beyond the stan-
easily verify that employing Eg. (5.3 with {y} dard with which the resulting probabilities are used. Calcu-

:{Af,Kf},{B}z{Ap’Bp,cp}, andpd=® gives the correct an- late probabilities either by Ed6.1) or by

swer displayed in Eq(5.5). p(a) =[P = |C W), (6.4
Feynman[26] explored the uses of negative probabilities | ) . ) )

in intermediate steps in a variety of circumstances in physicsVnich are equivalent if medium decoherence is exact. Prob-

These included the probabilities for position and momentunfibilities defined by Eq(6.4) necessarily lie between 0 and 1.
defined by the Wigner distribution, for the emission of vir-  1hiS concluding section compares these different decoher-

tual nontransverse photons in electrodynamics, in two-statgNce conditions. _ o ,
systems, and in the two-slit experiment. He concluded that AS information gathering and utilizing systeri&US’s),
extending the notion of probability to negative values wasV® €mploy almost exclusively coarse grainings of the usual
useful provided these negative values are interpreted to me&iyasiclassical realm. By the usual quasiclassical realm, we

that the situation is “unattainable or unverifiable.” We takeM&an roughly histories of coarse-grained alternatives defined
the same viewpoint here. by ranges of values of averages of densities of approximately

The quantum mechanics of a closed system then can HgPnserved quantitiesuch as energy, momentum, gtover
formulated as followsAssign probabilities to all sets of al- suitable volumes. With the initial condition and Hamiltonian

ternative coarse-grained histories by(qp=Re (W|C,|W). of our universe, the volumes can be chosen large enough that
The probabilities pa) may be real or virtual. Virtual prob- the histories are med"_Jm dec_oherent an_d yet small enqugh to
abilities can be employed in the calculation of real ones_supply a_reasonably f|_ne-gra|neq| description of th_e_ universe
Probabilities predicted for exactly recorded histories are al- over a wide range of time and distance scale. Individual his-

ways real This is a simple and general formulation th)Setories of this realm_exhibit patterns of. correlation§ in .time
utility we describe in the next section. Linear positivity and governed by effective classical equations of motion inter-

medium decoherence are special cases. rgpted by_ frequent small quantum fluctuations and occa-
sional major ones.

For practical purposes it might be possible to restrict the

°For that sed25]. predictions of quantum theory to the usual quasiclassical
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realm. Indeed, in some loose sense, this was the view aé a general characterization of medium decoherence as we
founders of the subject such as Bohr and Heisenberg. But #aw in Sec. Il A. The restriction to medium decoherence is
so far has been difficult to give the usual quasiclassical realrthus consistent with the usual quasiclassical realm.

a precise definition despite the considerable steps that have Imposing restrictive decoherence conditions like medium
been taken in that directiof27]. For reasons of generality, and strong decoheren¢28] are useful first steps in defining
convenience, and completeness it has proved useful to folassicality. But the weaker conditiortsP) and (EP) also
mulate quantum theory with weaker, less anthropocentridhave their uses. _ _

but more precise conditions that allow many more sets of AN €xample is approximate medium decoherence. As

histories that are nothing like the usual quasiclassical realfnéntioned above, the branch-state vectors of the usual qua-
The three conditions discussed in this paper are examples siclassical realm are not expected to be exactly orthogonal,

Moving between EP, LP, RLP, and MD in the direction of but only to an approximation good well beyond the standard

: : C . ._....to which the resulting approximate probabilities can be used.
Increasing restriction Is movmg_toward the l.J.Sl.JaI OluaSICIaSSome are uneasy about basing a fundamental formulation of
sical realm. For example, the virtual probabilities of EP for

) ; . ~ gquantum mechanics ompproximatemedium decoherence
nonequal values of a quantity commuting with the Ham|l-q pp

. i ! b it oth : [37]. Is there a formulation of the quantum mechanics of
tonian at two different imes may not be zero It other alter-¢|oseq systems free from any approximate notion of decoher-

natives intervene as in E(3.8). But they are zero under the ¢nce for realistic coarse grainings? There is; consider the
more restrictive LP conditions as the discussion in Sec. llI Cfollowing possibility: Regard linear positivityor EP) as the
shows. fundamental rule determining the probabilities of histories in
The conditions RLP and MD are consistent with the usualyuantum mechanics. The resulting probabilities satisfy the
notions of statistical independence of identical subsystemssum rules exactly as discussed in Sec. Il B. Medium deco-
EP and LP are not. herence then becomes an approximate notion, useful in char-
The conditions EP, LP, and RLP are time neutral, but theacterizing classicality, giving through E¢6.4) an approxi-
more restrictive MD incorporates an arrow of time as dis-mation to the fundamental probabilitiés.1). The degree of
cussed in Sec. Il C. This arrow allows individual histories to approximation can be calculated from E8.5). No practical
be described as a narrative in which one event is followed bgalculation of the probabilities of the quasiclassical realm or
another, then another, etc. Quantum theory then can be foits coarse grainings is likely to be affected by adopting this
mulated in terms of an evolving state and prediction distin-viewpoint. A consequence, however, is that many more sets
guished from retrodiction. For example, consider a mediun®f coarse-grained alternative histories nothing like the quasi-

decoherent set of histories defined by alternatitfels (t,)}, cllass(ijca: realm arg inCﬁrporgtgd into the thteory g_eyonéal the
2 n . . already large number allowed by approximate medium deco-
{PWz(tZ)}’ ’{Pan(t”)} ata series of timefy <ty <--- <t Al herence. A further consequence is that connection between

any int_e_rmediate time,, we can calculate the condit_ional probabilities and the frequencies of even imaginary en-
probability p(ay, ... .| ak, ... @) for future alternatives  semples of independent subsystems is lost in general as dis-
@1, -+ @ Given thatey, ... ,a have already happened by cussed in Sec. Ill D. Precision is achieved at the consequence
" of extending the complementary descriptions of the world
plan, ... st .. 1) = ||P2n(tn) Pl;kil(tkﬂ)wbvk'“a1>”2' and possibl?/ at the ex%ense of );ny genre):ral frequency inter-
(6.5) pretation of the resulting probabilities.
A more important reason for considering linear positivity
where or extended probabilities as a fundamental bases for quantum
K 1 theory lies in their potential for further generalization. The
v y= Patd -~ P, (t)[ ) (6.6 guantum theory of closed systems summarized in Sec. II
R ||p'; (DEE p}‘Y (t) ||| may need to be further generalized to incorporate quantum
« ! gravity. That is because the framework in Sec. Il relies on a
Events to the future o can be predicted just from the state notion of time supplied by a fixed background space-time
|\Ifak‘..al> representing the present. In the Heisenberg picturgeometry. But in general relativity, space-time geometry is a
used here, that state is constant in time except when intedynamical variable that generally will fluctuate and be with-
rupted by the action of projectioriéreductions’) represent- out a definite value in a quantum theory of gravity. A gener-
ing the alternatives. alization of the usual quantum framework is required.

The past cannot be retrodicted just from a state in the Generalized quantum theorj24,4,9,38,39 provides a
present, but requires in addition the stalg. A similar state-  natural framework for constructing generalizations of usual
ment holds for the future in the context of LP or EP in gen-quantum theory that incorporates medium decoherence. Gen-
eral (see, e.g[12,25). It could not be otherwise since these eralizations suitable for quantum gravity have been consid-
formulations are time-neutral. ered by a number of authore.g.,[9,40)). But generaliza-

Histories of the usual quasiclassical realm are mediuntions based upon extended probabilities would provide even
decoherent because of physical mechanisms which dissipaggeater scope. Indeed a general quantum mechanical theory
phases between branch@&2—-34 that result from the inter- could be specified just by giving a real-valued function for
action between the variables followed in the usual quasiclassandidate probabilities on the sets of fine-grained histories.
sical coarse graining and ones ignored constituting an envi- “Cheshire Pusgsaid Alicg...would you tell me please,
ronment or bath in simple models. These interactions createhich way should | go from here? That depends a good deal
records of the historief35,3§ and the existence of records on where you want to get to, said the cat.”
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(V|G[W) = 2[(W1|Py| W) + Re(Wy|P|¥p)].  (A3)

APPENDIX: EIGENVALUES OF A PRODUCT OF For given|¥,), Py|¥;) cannot be orthogonal to every vector
PROJECTIONS in P,, or P, would commute withP, contrary to assumption.
The Hermitian part of the product of two noncommuting Therefore pickWo) so that Re(W4|Py| W) is nonvanishing.

projections has at least one negative eigenvalue. This appel- Re (V1|Py|¥o)>0, replace Vo) by —|¥g) so that
dix gives a proof of this undoubtedly well-known fact that Re (¥ 4|Py|¥) <0. Now make|V¥,) large enough that the

the author learned from G.T. Horowitz. negative second term in EGA3) is larger than the positive
Let P, and P, be the two noncommuting projections and first term. The result is &) such thatW|G|¥)<0.
let G=P,P,+P,P, denote their Hermitian product. Let The case of two one-dimensional projections
and |i) denote the eigenvalues and eigenvector$ofThe
expectation value in a staf®) is Pa=la)Xal, Py=[bXb|, (A4)
(W|GIW) = > N[ W) 2. (A1)  butwith(a|b)#0, gives a concrete illustration of the above
I

result. The the eigenvectors & lie in the two-dimensional

. . . . space spanned bg) and|b) and are easily calculated. The
If there is one vectof¥) for which (¥|G|¥) is negative, two eigenvalues are

then G must have one negative eigenvalue since otherwise

Eq. (A1) is positive. We now construct such a vector. A, =c?+c, wherec= [(a|b)|. (A5)
Any vector |[¥) can be divided into orthogonal vectors

[¥,) and|W¥y) that lie in the subspacB, and the subspace Sincec<1, \_is evidently negative unless=0 orc=1. In

orthogonal to it—viz. either of these cases the projectors commute.
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