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We investigate the quantum theory of closed systems based on the linear positivity decoherence condition of
Goldstein and Page. The objective of any quantum theory of a closed system, most generally the universe, is
the prediction of probabilities for the individual members of sets of alternative coarse-grained histories of the
system. Quantum interference between members of a set of alternative histories is an obstacle to assigning
probabilities that are consistent with the rules of probability theory. A quantum theory of closed systems
therefore requires two elements:(1) a condition specifying which sets of histories may be assigned probabili-
ties and(2) a rule for those probabilities. The linear positivity condition of Goldstein and Page is the weakest
of the general conditions proposed so far. Its general properties relating to exact probability sum rules, time
neutrality, and conservation laws are explored. Its inconsistency with the usual notion of independent sub-
systems in quantum mechanics is reviewed. Its relation to the stronger condition of medium decoherence
necessary for classicality is discussed. The linear positivity of histories in a number of simple model systems
is investigated with the aim of exhibiting linearly positive sets of histories that are not decoherent. The utility
of extending the notion of probability to include values outside the range of 0–1 is described. Alternatives with
such virtual probabilities cannot be measured or recorded, but can be used in the intermediate steps of
calculations of real probabilities. Extended probabilities give a simple and general way of formulating quantum
theory. The various decoherence conditions are compared in terms of their utility for characterizing classicality
and the role they might play in further generalizations of quantum mechanics.
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I. INTRODUCTION

The familiar “Copenhagen” quantum mechanics of mea-
sured subsystems must be generalized to apply to closed sys-
tems such as the universe as a whole. That is because there is
nothing outside a closed system to measure it. Rather mea-
surement situations occur within a closed system containing
both the subsystem observed and the observers, apparatus,
etc., observing it. Consistent(or decoherent) histories quan-
tum theory provides such a generalization.1 This paper is
concerned with the nature of the decoherence conditions
which are central to these formulations of quantum theory.

The most general predictions of a quantum theory of a
closed system are the probabilities of coarse-grained alterna-
tive histories from the system’s initial quantum state and
Hamiltonian. The probabilities for alternative orbits of the
Earth around the Sun are examples. An orbit might be de-
scribed by a series of center-of-mass position intervals at a
sequence of times. That description is coarse grained because
it is specified only by the center-of-mass position and not all
possible variables, because those positions are specified only
at some times and not at all times, and because they are
specified only within intervals and not to arbitrary accuracy.
Such coarse graining is generally necessary to have prob-
abilities at all.

Copenhagen quantum mechanics predicts the probabilities
of histories of measurement outcomes, and the quantum me-

chanics of closed systems predicts these also. However, these
generalizations of Copenhagen quantum mechanics also pre-
dict probabilities for histories of subsystems even when these
are not receiving attention from observers. The history of the
Earth’s motion in the first few billion years of its existence is
an example.

Not every set of histories that can be described can be
assigned probabilities that are consistent with the rules of
probability theory, in particular with the rule that the prob-
ability of two exclusive alternatives is the sum of the prob-
abilities of each. Quantum interference is the obstacle. In
usual quantum mechanics, for instance, probabilities are the
squares of amplitudes and the square of a sum is not gener-
ally the sum of the squares. A quantum theory of closed
systems can therefore be based on two elements:(1) an ex-
pression for computing probabilities and(2) a consistency
condition that specifies which sets of alternative histories can
be consistently assigned probabilities.

A variety of conditions enforcing consistency have been
proposed and studied(see, e.g.,[4] for a list). This paper is
concerned with the weakest of these—linear positivity—
introduced in a seminal paper by Goldstein and Page[5].
Linear positivity will be described in Secs. II and III in de-
tail, but to introduce the idea let us first recall the medium
decoherence condition.

Individual histories in an exhaustive set of exclusive al-
ternative histories are represented by operatorsCa called
class operatorswherea labels the histories in the set. For
instance, the history in which the orbit of the Earth lies in a
sequence of ranges of position at a series of times would be
represented by aCa which is the time-ordered product of
projections onto these ranges at the different times. The class
operators for an exhaustive set of histories satisfy
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oa
Ca = I sexhaustived. s1.1d

If uCl is the state of the closed system, the class operators
can be used to constructbranch state vectorsuCal for each
history according to

uCal ; CauCl. s1.2d

The probabilities of the individual histories are given by

psad = iuCali2 = iCauCli2. s1.3d

Medium decoherence is the condition that the branches be
orthogonal:

kCauCa8l = kCuCa
†Ca8uCl = 0 all a Þ a8

smedium decoherenced. s1.4d

Medium decoherence is the precise representation of the ab-
sence of interference between histories. It is sufficient for the
consistency of the probabilities(1.3). However, it is not a
necessary condition; weaker conditions are possible.

As a consequence of Eqs.(1.1), (1.3), and(1.4), the prob-
abilities of a medium decoherent set of histories can be re-
expressed as

psad ; kCauCal = oa8
kCa8uCal = kCuCal = kCuCauCl.

s1.5d

The numberskCuCauCl are real and positive as a conse-
quence of medium decoherence(1.4). Goldstein and Page[5]
proposed the weaker decoherence condition

Re kCuCauCl ù 0, all a slinear positivityd, s1.6d

replacing Eq.(1.4), and a new assignment of probability

psad ; Re kCuCauCl, s1.7d

replacing Eq.(1.3). This is linear positivity. “Linear” refers
to the linearity of the expression for probabilities, Eq.(1.7),
in the Ca. “Positivity” characterizes the condition(1.6). As
we will review in Sec. III, the linear positivity condition
(1.6) is sufficient for the probabilities defined by Eq.(1.7) to
be consistent.

The reality and positivity of thekCuCauCl that follow
from Eq.(1.5) show that medium decoherence implies linear
positivity but not the other way around. Linear positivity
thus extends the sets of histories that can be assigned prob-
abilities beyond those which are medium decoherent. That
extension is not necessary to describe the outcomes of mea-
surements. Sets of histories describing measurements are me-
dium decoherent, at least to an excellent approximation, as
we discuss in Sec. III A.

Linear positivity is the weakest of the general conditions
for consistent probabilities of histories known to the author
at the time of writing. However, mere consistency with prob-
ability sum rules may not be the only requirement reasonably
imposed on quantum mechanical probabilities. For example,
Diosi [6] pointed out that linear positivity is inconsistent
with the usual notion of statistically independent subsystems
in quantum mechanics. The Hilbert space of a closed system
of N noninteracting subsystems is the tensor product of the

Hilbert spaces for the individual subsystems. States repre-
senting statistically independent subsystems have the product
form

uCl = uC1l ^ ¯ ^ uCNl, s1.8d

where theuCil are the states of the individual subsystems.
The probability for the ensemble that the independent sub-
systems have a sequence of properties should be the product
of the probabilities of the properties in the individual sub-
systems. While medium decoherence guarantees this prop-
erty, linear positivity does not, as Diosi showed and as we
review in Sec. III D. For the author this is reason enough to
reject linear positivity as a basis for the quantum mechanics
of closed systems that contain isolated subsystems.

However, usual quantum mechanics does not need to be
generalized for quantum cosmology only because the uni-
verse is a closed system. A generalization is needed to ac-
commodate quantum gravity. That is because even the quan-
tum framework alluded to above, and described more
carefully in the next section, relies on a fixed background
space-time geometry, for example, to define the notion of
time employed. But in a quantum theory of gravity space-
time geometry is a quantum dynamical variable, generally
fluctuating and without definite value. The notion of an ex-
actly isolated subsystem is problematical in a closed universe
because the gravitational interaction cannot be screened. It is
therefore just possible that linear positivity could be useful
for a generalization of quantum theory incorporating quan-
tum gravity. It is in this spirit that we explore linear positivity
in this paper, although no gravitational issues will be ad-
dressed explicitly.

This paper explores linear positivity in a number of dif-
ferent directions. General properties such as exact probability
sum rules, time neutrality, conservation laws, the relation to
medium decoherence, and the inconsistency with the usual
notion of statistically independent subsystems are discussed
in Sec. III. Section IV exhibits examples of linear positivity
in a variety of simple, nonrelativistic quantum mechanical
systems—the two-slit experiment, the three-box model, a
spin-1/2 system, a free particle, and alternatives extended
over time. The aim is to begin a kind of phenomenology of
linear positivity. In general, a much wider range of histories
of this simple kind are found to be linearly positive than are
decoherent. Section V describes the utility of the numbers
defined by Eq.(1.7) even when they are not positive or less
than unity. We call these virtual probabilities. Alternatives
with virtual probabilities can neither be measured nor re-
corded but can be used as intermediate steps in calculations
of real probabilities. We discuss the advantages and disad-
vantages of formulating quantum theory in terms of both in
Sec. VI.

II. QUANTUM MECHANICS OF CLOSED SYSTEMS

This section very briefly reviews the essentials of the
quantum mechanics of closed systems[7] especially to fix
the notation to be used in the rest of the paper.

We consider a closed system, most generally the universe
as a whole, in the approximation that gross quantum fluctua-
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tions in the geometry of space-time(i.e., quantum gravity)
can be neglected. The closed system can then be thought of
as a very large box of particles and fields containing both
observers and observed(if any). Fixed background space-
time means that a notion of time is well defined and the usual
apparatus of Hilbert space, states, and operators can be em-
ployed in a quantum description of the box. The quantum
state of this closed systemuCl and the HamiltonianH de-
scribing its quantum evolution are assumed to be given and
fixed.

As mentioned in the Introduction, the most general objec-
tive of quantum theory for a closed system is the prediction
of probabilities for the individual members of sets of coarse-
grained alternative histories. The simplest sets of alternative
histories are specified by alternatives at one moment of time.
These can always be reduced to a set of yes or no alternatives
represented by an exhaustive set of orthogonal projection
operators hPastdj, a=1,2, . . . in the Heisenberg picture.
These projections satisfy

oa
Pastd = I, PastdPbstd = dabPastd, s2.1d

showing that they represent an exhaustive set of exclusive
alternatives. The operatorsPastd change with time according
to the Heisenberg equation of motion defined byH. The state
uCl is unchanging in the Heisenberg picture.

A set of alternative histories may be specified by giving
sets of alternativeshPa1

1 st1dj, hPa2

2 st2dj , . . . ,hPan

n stndj at a se-
ries of timest1, t2, ¯ , tn. The sets at distinct times can
differ and are distinguished by the superscript on theP’s.
The subscript distinguishes the alternatives within the set. An
individual history in this set is represented by a particular
sequence of alternativessa1, . . . ,and;a and is represented
by the corresponding chain of projections

Ca = Pan

n stnd ¯ Pa1

1 st1d. s2.2d

Such a set of histories is coarse grained because alternatives
are specified at some times and not at every time and because
the specified alternatives are projections on subspaces with
dimension larger than one and not projections on a complete
set of operators.

The operations of coarse and fine graining relate different
sets of histories. A set of historieshCaj may be coarse
grained by partitioning it into an exhaustive set of exclusive
classesc̄ā ,ā=1,2, . . ..Each class consists of some number
of histories in the finer-grained set and every finer-grained
history lies in some class. Fine graining is the inverse opera-
tion of dividing the histories up into mutually exclusive

smaller classes. The class operatorshC̄āj for the histories in a
coarse graining of a set whose class operators arehCaj are
related by summation

C̄ā = o
aPā

Ca, s2.3d

where the sum defining the coarse-grained historyC̄ā is over
all the finer-grained histories contained within it.

Probabilities for a set of histories are a set of numbers
psad lying between 0 and 1,

0 ø psad ø 1, s2.4ad

which satisfy the basic probability sum rules relating finer- to
coarser-grained descriptions: The probability of a coarse-
grained set is the sum of the probabilities of its finer-grained
members. The probabilities of the coarser-grained descrip-
tions are thenconsistentwith those of the finer-grained ones.
Applied to histories for a coarse graining of the form(2.3)
this is the requirement

p̄sād = o
aPā

psad, s2.4bd

where thep̄sād are the probabilities of theC̄ā, andpsad are
the probabilities of theCa. The two conditions(2.4) are the
mathematical requirements for probabilities.

The Introduction described how quantum interference is
an obstacle to consistency in the sense of Eq.(2.4b) and the
need for a decoherence condition to restrict the sets to ones
where it is satisfied. The next section describes the
Goldstein-Page[5] linear positivity condition and some of its
general properties.

III. LINEAR POSITIVITY

The linear positivity condition concerns the numbers

psad ; Re kCuCauCl =
1

2
kCusCa + Ca

†duCl, s3.1d

which can be calculated for any set of historieshCaj. It’s
convenient to call thesecandidate probabilitiesand use the
notationpsad for candidate probabilities whether or not their
range is between 0 and 1. Because of Eq.(2.3), they auto-
matically and exactly satisfy the necessary sum rules(2.4b)
for the probabilities of a coarse graining of the set. However,
candidate probabilities do not necessarily lie between 0 and 1
as Eq.(2.4a) requires. Indeed, even for histories with just
two times, with class operators of the formCa2a1
=Pa2

2 st2dPa1

1 st1d, there is some state in which one of the his-
tories has a negativepsad. That is because the Hermitian
product of two noncommuting projections always has at least
one negative eigenvalue(Appendix A).

Homogeneous histories whose class operators are chains
of projections as in Eq.(2.2) have candidate probabilities
that are less than unity. That is because the action of a non-
trivial projection on a state always reduces its norm:

Re kCuPan

n stnd ¯ Pa1

1 st1duCl ø 1. s3.2d

There is no guarantee that a coarse graining of a set of ho-
mogeneous histories that does not itself consist of homoge-
neous histories will havepsad,1. Indeed, for any set of
homogeneous histories with at least one negativepsad, there
is always a coarse graining in which at least one history has
p̄sādù1. However, if thepsad are all positive or zero, then
they are also less than 1 because they must sum to 1 as a
consequence of Eq.(1.1). Genuine probabilities are therefore
guaranteed by the linear positivity condition(1.6).

Section IV will illustrate the linear positivity condition for
simple systems. But first we consider some of its general
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properties and in particular its relation to medium decoher-
ence.

A. Connection with medium decoherence

A set of histories medium decoheres when

kCuCa
†CbuCl = 0, a Þ b smedium decoherenced.

s3.3d

The probability of the individual histories in a medium de-
coherent set is

pMDsad = kCuCa
†CauCl = iCauCli2. s3.4d

As here, we use superscripts MD and LP where necessary to
distinguish medium decoherent and linear positivity prob-
abilities.

The identityob Cb= I [cf. Eq. (1.1)] can be used to derive
the following relation between thepLPsad given by Eq.(3.1)
and thepMDsad given by Eq.(3.4):

pLPsad = pMDsad + o
bÞa

Re kCuCb
†CauCl. s3.5d

Evidently, the two notions of probability coincide if the set is
exactly medium decoherent and the last term vanishes[cf.
Eq. (3.3)]. Exact medium decoherence implies linear positiv-
ity.

However, many realistic coarse grainings are unlikely to
medium decohere exactly, but only to an excellent approxi-
mation. For example, a branch state vector defining coarse-
grained history of the motion of the Earth to an accuracy of
1 cm every second is not exactly orthogonal to a branch-state
vector of a distinct history. Rather it is approximately or-
thogonal to an accuracy far beyond that to which the result-
ing probabilities can be checked or the physical situation
modeled. Approximate medium decoherence does not neces-
sarily imply linear positivity because the second term in Eq.
(3.5) may have any sign. If thepMDsad are very small,
pLPsad could be negative.(But then, approximate medium
decoherence would imply approximate linear positivity.)

Medium decoherence can be alternatively characterized
by the existence ofrecordsof the histories. There are records
of a set of histories if there is an exhaustive set of orthogonal
commutingprojections hRbj which are correlated with the
historieshCaj in the following strong sense:

RbCauCl = dbaCauCl. s3.6d

Evidently Eq.(3.6) implies the medium decoherence condi-
tion (3.3), because of the orthogonality of theR’s. Con-
versely, if the branchesuCal=CauCl are orthogonal, there
are generally many different sets of projectionshRaj for
which Eq.(3.6) is satisfied—most simplyRa= uCalkCau. The
hRaj are records only in the abstract sense specified of Eq.
(3.6) and need not correspond to anything like everyday
records such as history books. The creation and persistence
of records is an important, indeed the defining, feature of
many realistic mechanisms of decoherence.

B. Exact probabilities

As stressed by Goldstein and Page, and as mentioned
above, the probabilities of a linearly positive set of histories
satisfy the defining probability sum rules(2.4b) exactly.
Probabilities need to be defined by physical theory only up to
the accuracy they are used. For example, we consider a pre-
diction of the frequency of outcomes of repeated experi-
ments to be securely tested, not if the probability of a sig-
nificant fluctuation in the frequency of expected outcomes is
exactly zero, but rather if it is sufficiently small. Two theo-
ries that predict probabilities whose difference is well below
the standard with which they are used are equivalent in pre-
dictive power. Therein lies the possibility of utilizing the
probabilities of realistic approximately medium decoherent
sets of histories that obey the sum rules(2.4b) only to an
approximation secure beyond all test. However, the concep-
tual situation is considerably simplified if the predicted prob-
abilitiesexactlyobey the sum rules as they do in the linearly
positive case. We will return to the relation between these
two cases in Sec. VI.

C. Exact conservation laws

Exact probability sum rules ensure that quantities that
commute with the Hamiltonian are conserved with probabil-
ity 1. The argument is essentially the same as that in[8] but
we provide a sketch of it here.

Consider a quantityA like total electric charge or total
energy that commutes with the HamiltonianH. Let Pj

Astd
denote a set of projections onto disjoint rangesD j ,
j =1,2,3, . . . ofA at time t. Orthogonality of these projec-
tions implies

Pj8
A st8dPj

Astd = 0, j Þ j8, s3.7d

becauseA commutes withH. Now consider a set of histories
of the form

Ca = Pj8
A st8dCb

bPj
Astd, s3.8d

whereCb
b is a chain of projections at times in betweent and

t8 onto ranges of quantities not necessarily commuting with
A. Is the value of the conserved quantityA at t8 exactly
correlated with the value att despite the intervening projec-
tions on quantities not necessarily commuting withH? Lin-
ear positivity ensures that it is. Letps j8 ,b , jd denote the can-
didate probabilities of the histories(3.8) computed according
to Eq. (3.1). The sum rules(2.4b) ensure

ob
ps j8,b, jd = ps j8, jd = d j8 jps jd s3.9d

from Eq. (3.7). If the p’s are all positive as linear positivity
requires, then Eq.(3.9) implies

ps j8,b, jd = 0, j8 Þ j , s3.10d

which is exact conservation of the quantityA.
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D. Statistical probabilities

The probabilities under discussion are probabilities for
particular histories of a single closed system.2 When the
closed system consists of an ensemble of identical sub-
systems, the probabilities of the closed system can be used to
discuss the statistics of the ensemble when the number of its
members is large. For example, with high probability, the
frequency of a particular history in the ensemble should
equal its probability in an individual subsystem. That is a
standard result in usual quantum theory[10] in accordance
with the law of large numbers. However, as observed by
Diosi [6], linear positivity is generally inconsistent with the
usual notion of statistical independence in quantum theory
on which such demonstrations are based. We offer a brief
review of his result.

In familiar quantum theory, an ensemble ofN identical,
noninteracting subsystem is represented by a state

uCl = uCl ^ ¯ ^ uCl s3.11d

on the tensor product ofN copies of the Hilbert spaceH of
the individual subsystems. A closed system with a state
(3.11) can be thought of as an approximate model for a re-
alistic ensemble of identical subsystems. Alternatively, even
whenuCl refers to the universe, Eq.(3.11) can be thought of
as describing a fictitious ensemble of universes whose fre-
quencies can be expected to coincide with the probabilities
of the individual members in the limit of largeN.

Let hCaj denote the class operators acting onH for a set
of alternative, coarse-grained histories of a subsystem. The
class operator forN different historiesa1, . . . ,aN in the en-
semble is

Ca1
¯aN = Ca1 ^ ¯ ^ CaN. s3.12d

[We employ a superscript to distinguish historiesa1, . . . ,aN

of different subsystems each of which may consist of a se-
quence of alternatives—e.g., a1=sa1

1, . . . ,an
1d, a2

=sa1
2, . . . ,an

2d, etc.] Suppose that the set of historieshCaj of a
subsystem is medium decoherent(3.3) so that in particular
[cf. Eq. (3.4)]

pMDsad = iCauCli2. s3.13d

Then for the ensemble, evidently,

pMDsa1, . . . ,aNd = iCa1
¯aNuCli2,

=iCa1uCli2
¯ iCaNuCli2,

=pMDsa1d ¯ pMDsaNd. s3.14d

The subsystems are therefore statistically independent. This
is the central fact in deriving the result that for a very large
ensemble the frequency of an individual historyCa ap-
proaches its probabilitypMDsad in an individual subsystem.

However, linear positivity does not yield the same notion
of statistical independence. That is because[cf. Eq. (3.1)]

pLPsa1, . . . ,aNd = Re fkCuCa1
¯aNuClg

=Re fkCuCa1uCl ¯ kCuCaNuClg.

s3.15d

But the real part of a product is not generally the product of

the real parts unless the individual factors are all real. Thus

pLPsa1, . . . ,aNd Þ pLPsa1d ¯ pLPsaNd. s3.16d

The absence of general equality in Eq.(3.16) does not
mean that linear positivity incorrectly predicts the frequen-
cies of the histories of the outcomes of measurements carried
out on ensembles of idential subsystems of the universe. Ex-
actly measured or exactly recorded alternatives are exactly
medium decoherent and then Eq.(3.16) becomes an equality
[cf. Eq. (3.14)]. However, for many realistic sets of alterna-
tive histories, including those describing the quasiclassical
realm of everyday experience, medium decoherence and
records are correlated with the alternatives they record only
to excellent approximations. In such cases Eq.(3.16) will
only be an equality to a related approximation.

There is a second reason that linear positivity does not
incorrectly predict the frequencies of individual histories in
an ensemble of identical subsystems. Linear positivity fails
for ensembles with a sufficiently large number of identical
subsystems even if it is satisfied for the individual members
unless thekCuCauCl are real and Eq.(3.16) satisfied as con-
sequence. To see this, consider a set of histories of the sub-
system with just two members:C1 andC2= I −C1 [so that Eq.
(1.1) is satisfied]. Write the expected value ofC1 in terms of
its magnitude and phase,

kCuC1uCl ; Aeif, s3.17d

with A real and positive andf real. Linear positivity requires
0,f,p.

A given history of an ensemble ofN of these subsystems
will have some numbernC s0ønCøNd of historiesC1 and
N−nC historiesC2= I −C1. The candidate probabilitiespsnCd
for histories of the ensemble withnC individual historiesC1
are

psnCd = Re fsAeifdnCs1 − AeifdN−nCg

=AnCcossnCfd − ANcossNfd. s3.18d

For the histories of the ensemble to be linearly positive these
candidate probabilities must be positive forall nC between 0
andN. However, unlessf is identically zero, there is some
largeN for which Eq.(3.18) will not be positive for somenC.
Linear positivity thus fails for sufficiently large ensembles
unless thekCuCauCl are real. The failure means probabilities
cannot be assigned to individual histories of the ensemble
much less to values of the frequency of any history of its
individual subsystems.3

2See, e.g.,[9], Sec. II2, for a discussion of how these probabilities
are used and interpreted. 3The author thanks S. Goldstein for stressing this point.
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A decoherence condition that would ensure equality in
Eq. (3.16) and consistency with the usual notion of indepen-
dent subsystems is

ImfkCuCauClg = 0, all a, s3.19ad

Re kCuCauCl ù 0, all a sreal linear positivityd.

s3.19bd

This is linear positivity(1.6) augmented by the reality re-
quirement(3.19a). At the risk of introducing more confusing
terminology this might be calledreal linear positivity. This is
weaker than medium decoherence because Eqs.(1.5) and
(1.2) show that it is equivalent to

Imo
b

fkCuCb
†CauClg = 0. s3.20d

Only the vanishing of the imaginary part of this sum is re-
quired for equality in Eq.(3.16), but medium decoherence
ensures that each term withaÞb vanishes separately. But as
with medium decoherence, Eq.(3.20) is likely to be satisfied
only to an excellent approximation for realistic coarse grain-
ings defining the quasiclassical realm.

The conflict between the usual notion of independent sub-
systems and linear positive probabilities is a serious obstacle
to their interpretation when they are not associated with me-
dium decoherent sets of histories. For example, we cannot
understand them as frequencies in an imaginary ensemble
identical copies of the closed system as described above.
Indeed, it would not be unreasonable to impose Eq.(3.14) as
a condition for a construction of probabilities in quantum
mechanics thereby ruling out linear positivity. However, all
this does not mean linear positive probabilities cannot be
useful as we discuss in Sec. VI.

E. Time symmetry and asymmetry

Quantum theory is usually formulated with an arrow of
time.4 Nowhere is that seen more clearly than in the standard
formula [cf. Eq. (3.4)] for the probabilitypMDsan, . . . ,a1d of
a history of alternativesa1, . . . ,an at a sequence of times
t1, t2, ¯ , tn:

pMDsan, . . . ,a1d = iPan

n stnd ¯ Pa1

1 st1duCli2. s3.21d

The state occurs at one end of the histories; there is nothing
at the other end. That is the quantum mechanical arrow of
time. It is a convention thatuCl enters as aninitial condition
earlier than all the alternatives. Field theory isCPT invariant
and utilizing a CPT transformation the time order of the
operators could be inverted so thatuCl is a final condition.
However, noCPT transformation can alter the asymmetry
between initial and final conditions in Eq.(3.21).

As discussed by Goldstein and Page, the linear positivity
formula for probabilities[cf. Eq. (3.1)] is time neutral—viz,

pLPsan, . . . ,a1d = Re kCuPan

n stnd ¯ Pa1

1 st1duCl

=Re kCuPa1

1 st1d ¯ Pan

n stnduCl.

s3.22d

The ends of histories are treated symmetrically.5

If the more general notion of linear positivity is funda-
mental in quantum theory, what is the origin of the time
asymmetry displayed by the medium decoherence expression
(3.21)? The answer is that the approximate equality of
pLPsan, . . . ,a1d andpMDsan, . . . ,a1d can be expected to hold
only for one ordering of the projections in Eq.(3.21). Put
differently, the second term in Eq.(3.5) is not time neutral. It
will generally be small only for one-time ordering of the
projections inCa and not both. Only in trivial cases—e.g.,
projections on conserved quantities—will the probabilities of
an ordering and the inverse ordering agree.

Records of history connect the quantum mechanical arrow
of time in Eq.(3.21) with the second law of thermodynamics
for sets of histories constituting the quasiclassical realm of
everyday experience. The histories of the quasiclassical
realm [12–15] consist of projections on ranges of the “hy-
drodynamic” variables of classical physics. These generally
are integrals over suitably small volumes of densities of ap-
proximately conserved quantities such as energy, momen-
tum, numbers of different species, etc.

The entropy of a set of histories consisting of alternatives
hPastdj at a single moment of time is

SshPastdjd = − oa
psa,tdln psa,td + oa

psa,tdln TrfPastdg,

s3.23d

wherepsa ,td=iPastd uCli2. This coincides with the usual en-
tropy of physical chemistry and physics when thePastd are
projections on the hydrodynamic quasiclassical variables de-
scribed above[15]. It is low initially for the state of our
universe and therefore has a tendency to increase witht af-
terward. That is the second law of thermodynamics.

Records of history in the quasiclassical realm are often
created in irreversible processes where the entropy defined
above increases.6 An impact crater on the Moon, an ancient
fission track in mica, a darkened photographic grain, and the
printing of ink on this paper are all examples. Consistent
with the second law, records of events in history are more
likely to be at the end of history furthest from an initial
condition of low entropy rather than at the beginning.

The existence of records is another way of characterizing
medium decoherence as discussed in Sec. III A. The second
law suggests that Eq.(3.6) holds in the form given and not
with CaRb on the left-hand side. This leads to the medium
decoherence ofCa but not the sethCa

†j with the projections
in the inverse order. Both have the same linear positive prob-
abilities, but only one order is connected with medium deco-

4See, e.g,[11] for a fuller discussion in the notation of this paper.

5There are time-neutral formulations of medium decoherence in-
volving both initial and final condition—e.g.,[11]

6An increase in entropy is notnecessaryto create a record as in
reversible computations[16].
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herence. Irreversible creation of records is therefore one rea-
son why the quantum mechanical arrow of time is consistent
with the thermodynamic arrow of time, at least for the qua-
siclassical realm.

IV. EXAMPLES OF LINEAR POSITIVITY

This section calculates the candidate probabilitiespsad
=Re kCuCauCl for a number of simple examples of physical
systems, statesuCl, and sets of historieshCaj. The intent is
not to be exhaustive but to illustrate linearly positive sets of
histories that are not necessarily decoherent. It is not neces-
sary to study all of these examples to understand the general
discussion of quantum theory that follows.

A. Two-slit experiment

We begin with the classic two-slit experiment shown in
Fig. 1. Electrons from a sourceS travel toward a vertical
screen with two horizontal slits each a distanced/2 from the
axis perpendicular to the screen throughS. The electrons are
later detected at a second screen, parallel to the first, a dis-
tanceD away. A coordinatey measures the vertical distance
from the axis to the point of detection.

We make the usual idealizations, in particular assuming
that the electrons are initially in narrow wave packets mov-
ing in the horizontal directionx, so that their progress inx
recapitulates their evolution in time. We assume that the
source is far enough from the first screen that these wave
packets can be analyzed into plane waves propagating in the
x direction with a distribution peaked about a wave number
k. Then, to a good approximation, we can calculate the am-
plitudes for detection by considering just the plane wave
with peak wave numberk. That analysis follows.

At the detecting screen the amplitude that the electron
travels through the upper slitU to arrive at a pointy on the
detecting screen is

CUsyd ; aeikSUsyd/SUsyd, s4.1d

where

SUsyd ; fsd/2 − yd2 + D2g1/2 s4.2d

is the distance from the upper slit to the point on the detect-
ing screen labeled byy anda is a constant amplitude. Simi-

larly, the amplitude to pass through the lower slitL and ar-
rive at y is

CLsyd ; aeikSLsyd/SLsyd, s4.3d

with

SLsyd ; fsd/2 + yd2 + D2g1/2. s4.4d

The candidate probabilitydensities̀ sy,Ud and`sy,Ld to
arrive aty having passed through the upper or lower slit are
given by [cf. Eq. (3.1)]

`sy,Ud = Re fC*sydCUsydg, s4.5ad

`sy,Ld = Re fC*sydCLsydg, s4.5bd

whereCsyd=CUsyd+CLsyd. The first of these works out to
be

`sy,Ud =
uau2

SU
H 1

SU
+

1

SL
cosfksSL − SUdgJ . s4.6d

The expression for̀ sy,Ld is the same withL and U inter-
changed. The probability density to arrive aty irrespective of
which slit is passed through is

`totsyd = `sy,Ud + `sy,Ld s4.7ad

=uau2H 1

SU
2 +

1

SL
2 + 2

cosfksSL − SUdg
SUSL

J s4.7bd

=uCUsyd + CLsydu2. s4.7cd

The last equality of course follows directly from Eq.(3.1).
Figure 2 shows̀ sy,Ud, `sy,Ld, and`totsyd for an apposite
choice ofD andd.

A set of coarse-grained histories of the electrons can be
defined by whether the electron passed through the upper and
lower slits and arrived in one or the other of an exhaustive
set of exclusive ranges ofy of size hDaj, a an integer. The
candidate probabilities for these histories are the integrals of
the densities̀ sy,Ud and`sy,Ld over the rangeshDaj, e.g.,

psDa,Ud =E
Da

dy `sy,Ud. s4.8d

FIG. 1. The geometry of the two-slit experi-
ment. An electron gun at left emits an electron
traveling toward a screen with two slits, its
progress in space recapitulating its evolution in
time. The electron is detected on the screen at
right at a positiony with a probability density
that exhibits an interference pattern. A coarse-
grained set of histories for the electron can be
defined by specifying which slit(U or L) it went
through and ranges of detected positionsy.
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Consider for simplicity the candidate probabilities illus-
trated in Fig. 2 with all the ranges of equal sizeD. Evidently
if D is too small, the set of histories will not be linearly
positive because some of the candidate probabilities(4.8)
will be negative. Equally evidently, ifD is sufficiently large,

the set will be linearly positive and thep’s will be probabili-
ties. Most importantly, however, the sizeD necessary to
achieve positivity issmallerthan that needed to wash out the
interference pattern. Indeed, in the limitD@d, the probabil-
ity densities are

`sy,Ud = `sy,Ld ,
uau2

D2 F1 + cosSkyd

D
DG . s4.9d

Since these are both positive, arbitrarily smallD leads to
positive probabilities.

The set of histories will be medium decoherent to a good
approximation whenD is sufficiently large that the interfer-
ence term averages to zero:

E
D

dy Re fCL
* sydCUsydg < 0. s4.10d

That requires aD larger than the spacing between the inter-
ference fringes. As already mentioned, that is much larger
than theD required for linear positivity showing concretely
how linear positivity is a weaker condition than weak deco-
herence.

B. Spin 1/2

Consider a single free spin in a stateuCl. For simplicity,
assume that its Hamiltonian is zero. Consider histories speci-
fied by giving the value of the spin at one time along direc-
tion nW1 and at a later time along a directionnW2. Since the
Hamiltonian is zero, it is not necessary to specify the particu-
lar times, only the time ordering of the alternatives matters.

Let Ps
nW denote the projections on the two orientations of

the spin along directionnW wheres ranges over the possible
orientationss+,−d. The branch state vectors are

uCs2s1
l = Ps2

nW2Ps1

nW1uCl s4.11d

and the candidate probabilities are

pss2,s1d = Re kCuCs2s1
l = Re kCuPs2

nW2Ps1

nW1uCl. s4.12d

To exhibit the candidate probabilities(4.12) explicitly it is
convenient to introduce a rectangularsx,y,zd coordinate sys-
tem with z oriented alongnW2 andy chosen so thatnW1 lies in
the y-z plane. The angle betweennW1 andnW2 we denote byd.
In a general stateuCl, the spin points along some direction
which we take to be specified by polar anglesu andf with
respect to thez axis. Thus in a basis in whichsz is diagonal
we can take

C = S eif/2cossu/2d
e−if/2sinsu/2d

D . s4.13d

It is then straightforward to calculate the four candidate
probabilities(4.12). We find

ps+ , + d = cos2Su

2
Dcos2Sd

2
D +

1

4
cosf sin u sin d,

s4.14ad

FIG. 2. Candidate probability densities for the two-slit experi-
ment. The candidate probability densitỳsy,Ud to go through the
upper slit and arrive atU is shown at top forkd=kD=60 wherek is
the wave number of the electron[cf. Fig. 1]. The corresponding
candidate probability densitỳsy,Ld for going through the lower
slit is just below. The sum̀ tot is the probability density to arrive at
y irrespective of which slit is passed through is shown at bottom.
The amplitudea has been assigned arbitrarily which is why the
scale of the vertical axis not indicated. When these probability den-
sities are integrated over ranges ofy, they give candidate probabili-
ties for the histories. The size of well-chosen ranges that yield posi-
tive probabilities is smaller than the size that would wash out the
interference pattern.
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ps+ ,− d = cos2Su

2
Dsin2Sd

2
D −

1

4
cosf sin u sin d,

s4.14bd

ps− , + d = sin2Su

2
Dsin2Sd

2
D +

1

4
cosf sin u sin d,

s4.14cd

ps− ,− d = sin2Su

2
Dcos2Sd

2
D −

1

4
cosf sin u sin d.

s4.14dd

Note that these correctly sum to unity and thatps+d=ps+,
+d+ps+,−d, etc.

Figure 3 shows the domain of states parametrized by
su ,fd that imply a linearly positive set of histories for vari-
ous values of the angled. For eachd there is a significant
range of states giving linearly positive histories which
shrinks asd approaches 0 orp even though those limits
correspond to linear positivity and indeed exact medium de-
coherence for all states. Any state with the phasef=p /2
leads to a linearly positive set of histories for anyd.

Almost none of these linearly positive sets of histories are
medium decoherent with orthogonal branches. The condi-
tions for medium decoherence that are not automatically sat-
isfied are the vanishing of the following:

kC++uC+−l =
1

4
sin d f+ cosu sin d

+ sin uscosd cosf − i sin fdg,

s4.15ad

kC−−uC−+l =
1

4
sin d f− cosu sin d

+ sin uscosd cosf + i sin fdg.

s4.15bd

Both of these vanish only foru=p /4 or 3p /4 andf=0 orp.
For example, as mentioned above, any state withf=p /2
leads to linearly positive histories. But none of these states
implies medium decoherence. Linear positivity is evidently a
much weaker condition.

C. Three-box example

The three-box example introduced by Aharonov and Vaid-
man[17] for other purposes has proved useful for illustrating
the nature of quantum reality in consistent histories quantum
mechanics[18,19]. We use it here to illustrate the scope of
the linear positivity condition.

Consider a particle that can be in one of three boxesA, B,
and C in the corresponding orthogonal statesuAl, uBl, and
uCl. For simplicity, take the Hamiltonian to be zero and sup-
pose the system to initially be in the state

uCl ;
1
Î3

suAl + uBl + uCld. s4.16d

Consider further a stateuFl defined by

FIG. 3. Candidate probabilities for two different spin directions
of a spin-1/2 particle. States of a spin-1/2 system can be labeled by
two anglessu ,fd as in Eq.(4.13). These plots are concerned with
the candidate probabilities for histories specified by values of the
spin along a directionnW1 followed (or preceded) immediately by a
value of the spin along a second directionnW2 making an angled
with respect to the first. The plots show the states for which this set
of histories is linearly positive(white) and those for which some
candidate probabilities are negative(black) for given d. Only the
partial range 0,f,p is shown because the rest can be determined
from the symmetries of Eq.(4.14). From top to bottom the values of
d arep /2, p /4, andp /8. For example, states withf=p /2 imply
these sets are linear positive for any value ofd but none is medium
decoherent.
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uFl ;
1
Î3

suAl + uBl − uCld s4.17d

and denote the projection operators onuFl, uAl, uBl, anduCl
by PF, PA, PB, andPC, respectively. Denote withĀ the ne-
gation of A (“not in box A” ) represented by the projection

PĀ= I −PA. The negationsF̄ ,B̄,andC̄ and their projections
PF̄ ,PB̄, and PC̄ are similarly defined. We consider sets of
histories, all of which specify whether the particle is in state
uFl or not at a final time and in various boxes at an interme-
diate time after the initial one. The exact values of these
times is unimportant sinceH=0. Only the order matters—
initial, intermediate, and final.

An example is supplied by histories which specify
whether the particle is in boxA or not at the intermediate
time. There are four alternative histories represented by the
class operators

PFPA, PFPĀ, PF̄PA, PF̄PĀ. s4.18d

Their candidate probabilities are given by Eq.(3.1)—e.g.,

psF,Ad = Re kCuPFPAuCl. s4.19d

A little calculation shows that

psF,Ad = 1/9, psF̄,Ad = 2/9,

psF,Ād = 0, psF̄,Ad = 2/3. s4.20d

This is a linearly positive set of histories since all the num-
bers(4.20) are positive or zero. Indeed, this set of histories is
medium decoherent because the branch state vectors ob-
tained by applying the class operators(4.18) to uCl [cf. Eq.
(3.3)] are all orthogonal. The positivity of probabilities fol-
lows just from that.

Next consider the finer-grained set of histories which
specifies whether or not the particle is in boxA andwhether
or not it is in boxB at the intermediate time. The eight class
operators are

PFPAPB, PFPAPB̄, PFPĀPB, . . . ,etc. s4.21d

This set of histories isnot medium decoherent. The candidate
probabilities are

psF,A,Bd = psF̄,A,Bd = 0, s4.22ad

psF,A,B̄d = psF,Ā,Bd = 1/9, s4.22bd

psF,Ā,B̄d = − 1/9, s4.22cd

psF̄,A,B̄d = psF̄,Ā,Bd = 2/9, s4.22dd

psF̄,Ā,B̄d = 4/9. s4.22ed

The one negative numberpsF ,Ā,B̄d=−1/9 shows that this
nondecoherent set of histories is also not linearly positive.

A seeming contradiction occurs[18] when one calculates
the conditional probabilities for the particle to be in boxA or

B giventhat it is in stateF at the later time. These are

psAuFd =
psF,Ad
psFd

, psBuFd =
psF,Bd
psFd

. s4.23d

The symmetry betweenA andB in the definitions ofuCl and
uFl in Eqs.(4.16) and(4.17) impliespsAuFd andpsBuFd are
equal. Calculation shows that they are both unity. But this
would seem to be a contradiction because being inA and
being in B are exclusive alternatives:PAPB;0, implying
psA,Bd=psA,BuFd=0 from Eq.(3.1). From that one would
like to infer from psAuFd=1 that psBuFd=0. In fact, this
inference cannot be drawn[19] and there is no contradiction.
Let us see how this is established in the present context.

To calculatepsBuFd from psAuFd andpsA,BuFd=0, we
need the finer-grained set of histories(4.21) referring both to
box A andB and toF. In this set, it follows from Eq.(2.4b)
that

psAuFd = psA,BuFd + psA,B̄uFd, s4.24ad

psĀuFd = psĀ,BuFd + psĀ,B̄uFd. s4.24bd

Similarly,

psBuFd = psA,BuFd + psĀ,BuFd, s4.25ad

psB̄uFd = psA,B̄uFd + psĀ,B̄uFd. s4.25bd

If psAuFd=1, thenpsĀuFd=0. Were thep’s positive prob-
abilities, equating Eq.(4.24b) to zero would imply that both

psĀ,BuFd and psĀ,B̄uFd were zero. Inserting the first of
these in Eq.(4.25a) along with psA,BuFd=0 from Eq.
(4.22a) givespsBuFd=0.

But the candidatep’s are not positive probabilities be-
cause the set of histories(4.21) is not linearly positive and
the inference cannot be drawn. In particular from Eq.(4.22)

psA,BuFd = 0, psA,B̄uFd = 1,

psĀ,BuFd = 1, psĀ,B̄uFd = − 1. s4.26d

The sum rules(4.24) and (4.25) are exactly satisfied with
psAuFd=psBuFd=1.

D. A Single particle

The next example is more realistic. We consider a single
free nonrelativistic particle of massM moving in one dimen-
sion x. The Hamiltonian isH=p2/2M. For the initial state,
we choose a Gaussian wave packet of widths centered
about the origin with zero expected value for the momentum.
Specifically,

Csxd = s2ps2d−1/4e−x2/4s2
. s4.27d

We consider histories defined by exhaustive sets of position
intervals at the initial timet=0 and at a later timet=t. For
simplicity we take the set of intervalshDaj (a an integer) to
be the same at both times. A coarse-grained history is defined
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by the pair of position intervalsDa1
andDa2

that the particle
passes through at the two times. The candidate probabilities
for these histories are denoted bypsa2,a1d and are con-
structed by implementing Eq.(3.1) as follows:

Let Pastd denote the Heisenberg picture projection onto
the rangeDa of x at time t. The candidate probabilities for
the histories described above are[cf. Eq. (2.2)]

psa2,a1d = Re kCuPa2
stdPa1

s0duCl. s4.28d

For purposes of computation, it is convenient to express the
right-hand side of Eq.(4.28) in the Schrödinger picture. The
connection is made through

Pastd = eiHt/"P̂ae−iHt/", s4.29d

whereP̂a denotes the Schrödinger picture projection onto the
rangeDa of x. The result forpsa2,a1d is

ReE
Da2

dx2E
Da1

dx1C*sx2,tdKsx2,x1,tdCsx1,0d.

s4.30d

HereCsx2,td is the initial state(4.27) evolved to timet and
Ksx2,x1,td is the free particle propagator given by

Ksx2,x1,td ; kx2ue−iHt/"ux1l

= S M

2pi"t
D1/2

expF−
Msx2 − x1d2

2i"t
G . s4.31d

The evolved Gaussian wave packet(4.27) is

Csx,td =
1

s2ps2d1/4S1 +
i"t

2s2M
D

3expF−
x2

4s2S1 +
i"t

2s2M
D−1G . s4.32d

The expression for the candidate probabilities(4.30) simpli-
fies considerably if we restrict our attention to times which
are short compared to the wave packet spreading time:

t ! tspread;
2s2M

"
< s2 3 1027sdS s

1cm
D2S M

1g
D .

s4.33d

There are many interesting situations in which this is a real-
istic assumption. In this approximation,

psa2,a1d = S 1

2ps2D1/2S M

2p"t
D1/2E

Da2

dx2E
Da1

dx1

3expF−
sx2

2 + x1
2d

4s2 GcosFMsx2 − x1d2

2"t
−

p

4
G .

s4.34d

We now discuss the behavior of these candidate probabilities
for a simple coarse graining of this set of histories.

The probabilities for the coarse graining we consider an-
swer the question, does the particle remain at the origin or
does it move elsewhere? Specifically, we consider the set

consisting of just two histories: the historyL in which the
particle is localized in an intervalD centered on the origin at

both timest1 and t2 and the historyL̄ in which it is not.
The candidate probabilitypLsDd for the particle to be lo-

calized at both times is given by Eq.(4.34) with Da1
=Da2

;D. The candidate probabilitypL̄sDd, which is not so local-
ized, can be found from this and

pLsDd + pL̄sDd = 1. s4.35d

Equation(4.34) can be organized to give a tractable ex-
pression forpLsDd by defining new integration variables

X = sx1 + x2d/2, j = x2 − x1, s4.36d

and introducing a characteristic wavelength of oscillation

l ; F4pS"t

M
DG1/2

= 1.13 10−13S t

1s
D1/2S1g

M
D1/2

cm.

s4.37d

Then, after some algebra,

pLsDd =Î 2

ps2E
0

D

dXe−X2/2s2
JsD − Xd, s4.38ad

where

Jszd ;
23/2

l
E

0

z

dj e−j2/8s2
cosF2pS j

l
D2

−
p

4
G

= ReHErfFÎps1 − id
z

l
GJ . s4.38bd

These expressions are quoted in the approximationl!s
typically valid for large particles as Eq.(4.37) shows. The
general ones are not much more complicated.

As D becomes large,pLsDd must approach unity and Eq.
(4.38) exhibits this explicitlyferfs`d=1g. But also from Eq.
(4.28) and the general result(3.2), pLsDdø1. For sufficiently
large D this set of histories is therefore linearly positive.
Analysis of the situation forD&s requires numerical inte-
gration of Eq.(4.38). The following result emerges: At least
for l /s,1/100,pLsDd is positive over the whole range ofD
from 0 to `. Figure 4 showspLsDd for this case. Taken to-
gether withpLsDdø1, this means that this set is always posi-
tive. The quantitiespLsDd and pL̄sDd are genuine probabili-
ties.

Although linear positive, this set of histories is far from
decoherent. WithCL; PDstdPDs0d the off-diagonal elements
of the decoherence functional are

DsL,L̄d ; kCuCL
†CL̄uCl = kCuCL

†sI − CLduCl

= kCuPDs0dPDstdPD̄s0duCl, s4.39d

wherePD̄ is the projection on the range outsideD at t=0. We
can think of Eq.(4.39) as the overlap of two statesuCLl
; PDstdPDs0duCl and uCL̄l; PDstdPD̄s0duCl. When D@s,
uCL̄l will have negligible length becausePD̄s0duCl is negli-
gible. Consider thereforeD!s. The wave function of
PD̄s0duCl consists of those parts of the initial packet(4.27)
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outside of D. Because of the sharp interior edges, this
evolves rapidly to fill in the center aroundx=0. After pro-
jection of PDstd there is significant overlap with the wave
function of uCLl of order sD /sd and thus absence of deco-
herence.

In general we expect the action of an environment to be
necessary to carry away the phases between such alternatives
and make them decoherent(e.g., Eq.(1.4)). Despite the ab-
sence of an environment and its consequent decoherence this
set of histories is linearly positive in the approximations con-
sidered.

E. A space-time alternative

The familiar example of a coarse-grained history is a se-
quence of events at a series of definite times. But decoherent
histories quantum theory permits more general coarse grain-
ings that extend continuously over ranges of time[20,21].
Such space-time coarse grainings may provide more realistic
models of measurement processes that extend over time.
Analogous coarse grainings may be essential for a quantum
theory of gravity where there is no fixed notion of time(e.g.,
[9]).

To illustrate the idea of a space-time coarse graining, con-
sider the motion of a single free particle of massM moving
in one dimensionx with Hamiltonian H=p2/2M over a
range of times from 0 toT. The set of fine-grained histories
of the particle’s motion consists of the pathsxstd on the in-
terval f0,Tg. Sets of alternative coarse-grained histories are
defined by partitions of these fine-grained histories into mu-
tually exclusive classesca ,a=1,2, . . .. Each class is a
coarse-grained history.

The class operatorsCa for these coarse-grained histories
can be constructed from sums over their constituent fine-
grained histories. To see how, first consider a partition of the
paths by an exhaustive set of position intervalshDaj at a
series of timest1, ¯ , tn. The class operator in the Heisen-
berg picture isCa=Pan

stnd¯Pa1
st1d wherePastd is the pro-

jection on the rangeDa at time t. Matrix elements of theCa

in the Heisenberg picture(HP) can be transformed into tran-
sition amplitudes in Schrödinger picture(SP), and these tran-
sition amplitudes can be expressed as path integrals. The
result is

kFuCauClHP = kFsTduĈauCs0dlSP,

=E
ca

dxF*sxT,TdeiSfxstdg/"Csx0,0d.

s4.40d

Here,

Ĉa ; e−iHT/"Ca, s4.41d

and the path integral is over all pathsxstd in the classca

including an integral over the end pointsx0 and xT. (More
details on establishing this relation can be found in[20] and
[22].) The candidate probabilities for the coarse-grained his-
tories are, from Eq.(3.1),

psad = RekCsTduĈauCs0dlSP. s4.42d

From now on we drop the SP’s and HP’s and rely on context
to distinguish the two pictures.

The derivation sketched above of the connection(4.40)
between matrix elements of class operators and path integrals
over classes was for coarse grainings by ranges of position at
a sequence of times. But the result motivates using path in-
tegrals todefineclass operators for arbitrary partitions of the
fine-grained historiesxstd into mutually exclusive classes, in-
cluding partitions defining alternatives extending over a
range of time. Equation(4.42) gives candidate probabilities
for these space-time coarse grainings.

A simple model illustrates the idea[20,23]. Partition all
pathsxstd on the intervalf0,Tg into the two classes:

R: pathsxstd that always remain in the regionx.0 be-
tween times 0 andT.

R̄: pathsxstd that sometimesare in the regionx,0 be-
tween times 0 andT.
Evidently, these classes are exhaustive and mutually exclu-
sive.R here means “right,”x.0, andpR computed from Eq.
(4.42) is the probability that the particle remains atx.0 for
the whole time interval and never crosses intox,0.

A sum over all paths of the form(4.40) that is restricted to
x.0 is the same as an unrestricted sum in the presence of an
infinite potential barrier at values ofx,0 [20]. Let HR de-
note the Hamiltonian of the particle including this barrier.
The branch-state vector for the classR can be written

uCRsTdl = PRe−iHRT/"PRuCs0dl, s4.43d

wherePR is the projection ontox.0. The candidate prob-
ability pR is [cf. Eq. (4.42)]

pR = Re kCsTduCRsTdl. s4.44d

It is not necessary to derive a separate expression forpR̄ in
this simple example. From Eqs.(1.1), (4.41) and (4.42) it
follows that

FIG. 4. Candidate probabilities for a single free particle in a
stationary Gaussian wave packet to remain in a position intervalD
after a time short compared to the wave-packet spreading time. The
plot shows the candidate probabilitypLsDd defined by Eq.(4.38a)
for l /s=10−2. This is positive over the whole of the rangeD,
indicating that the set consisting of the history in which the particle
remains localized and the history where it does not so remain is
linearly positive.
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pR + pR̄ = 1 s4.45d

(whether or not the set is linearly positive). Calculation ofpR
will therefore determinepR̄.

For explicit calculation it is convenient to rewrite Eq.
(4.44) in terms of wave functions. LetCsx,0d denote the
wave function of the initial state andCUsx,Td its unrestricted
evolution underH. Let Fsx,0d; PRCsx,0d, and denote by
FRsx,Td andFUsx,Td its evolution underHR andH, respec-
tively. Evolution in the presence of an infinite barrier atx
=0 is especially simple and

FRsx,Td = FUsx,Td − FUs− x,Td, x . 0. s4.46d

Thus, we can write

pR = ReE
0

`

dxCU
* sx,TdFRsx,Td

= ReE
0

`

dx CU
* sx,TdfFUsx,Td − FUs− x,Tdg.

s4.47d

This form allows both quantitative computation and qualita-
tive discussion. Since

iuFRsTdli = iuFRs0dli = iuPRCs0dli, s4.48d

an immediate consequence of Eq.(4.47) is

pR ø iPRuCUsTdli iPRuCs0dli. s4.49d

This showspRø1 andpR̄ù0.
We now evaluate Eq.(4.47) for a very simple initial wave

function Csx,0d. We consider a Gaussian wave packet of
width s centered about an initial positionX0.0 and moving
toward negativex with a (negative) momentumK0. Specifi-
cally, assume

Csx,0d = s2ps2d−1/4eiK0xe−sx − X0d2/s4s2d. s4.50d

To keep expressions simple, we use units where"=1 as we
will for the remainder of this section.

The following approximations make the evaluation of the
integral (4.47) for pR straightforward.

(1) We assume that

X0 @ s s4.51d

so that the initial wave function is negligible forx,0—i.e.

Fsx,0d ; PRCsx,0d < Csx,0d. s4.52d

(2) We assume that the timeT is short compared to the
time over which the wave packet spreads significantly—
specifically,

T ! 2s2M . s4.53d

With these two approximations, the shape of the wave packet
remains approximately unchanged under evolution over the
time T. Only the center shifts to the value

X = X0 + K0T/M . s4.54d

Specifically,

FUsx,Td < CUsx,Td < s2ps2d−1/4eiK0xe−sx − Xd2/4s2
e−isK0

2/2MdT.

s4.55d

The integrals4.47d for pR is then

pR < s2ps2d−1/2E
0

`

dx e−sx − Xd2/2s2
f1 − e−xX/s2

coss2K0xdg,

s4.56d

which is straightforward to evaluate numerically.
Assumption(4.51) means thatK0 must be large for the

center of the wave packet to reach the neighborhood ofx
=0 in the times limited by Eq.(4.53). Specifically,K0s@1.
Otherwise, the wave packet remains to the right ofx=0 and
pR<1.

Figure 5 showspR from Eq. (4.56) as a function of the
position of the centerX at timeT for K0=−20/s. Only val-
ues of X*−2s are shown for whichX0*3s in a time T
about 1/10 of the spreading time in Eq.(4.53). For smaller
values ofX, the approximation(4.55) would be inaccurate.

For large values ofX, the wave packet is localized some
place inX.0 over the whole of the time interval. We might
therefore expectpR<1, and it is. For smallerX, there is a
significant probability of crossingX=0 at least once in the
time interval 0 toT. The important point is that, over the
whole of the calculated range,pR lies between 0 and 1. Like-
wise for pR̄ from Eq. (4.45). The set of alternatives is thus
linearly positive with genuine probabilities. We now turn to
the question of whether this set of alternatives decoheres.

FIG. 5. Candidate probabilities for a space-time coarse graining.
A free particle moving in one dimension is initially in a Gaussian
wave packet of widths traveling toward negativex with a momen-
tum K0=−20/s in "=1 units. The solid curve shows the candidate
probability pR for the particle to remain always at positivex over a
time T short compared to the wave-packet spreading time. This is
plotted as a function of the final position of the packet’s centerX
that is connected to the initial positionX0 andT by Eq. (4.54). The
probability is positive over the entire range computed, showing that
the set consisting of the historysRd, where the particle remains at

positivex, and the historysR̄d, where it does not, is linearly posi-
tive. The dashed curve shows the real part of the overlapkCRuCR̄l
which must vanish for this set of histories to be medium decoherent.
Evidently there is a significant range of linearly positive sets which
are not medium decoherent.
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The set of coarse-grained historiesR and R̄ decoheres
when [cf. Eq. (1.4)]

DsR,R̄d ; kCRsTduCR̄sTdl < 0. s4.57d

The branch state vectoruCRl was exhibited in Eq.(4.43).
Relations(1.1) and (4.41) imply that

uCR̄sTdl = uCsTdl − uCRsTdl. s4.58d

In terms of wave functions,

DsR,R̄d =E
0

`

dxFR
* sx,TdfCUsx,Td − FRsx,Tdg,

s4.59d

whereFRsx,Td can be taken to be given by Eq.(4.46). In the
approximation where Eq.(4.52) holds, this is

DsR,R̄d < E
0

`

dxfCU
* sx,Td − CU

* s− x,Tdg CUs− x,Td.

s4.60d

Figure 5 shows ReDsR,R̄d calculated from Eq.(4.60) plot-
ted againstX. For large positiveX, the particle remains on
the right. There is thus essentially only one history with sig-
nificant probability,uCRl<uCl, uCR̄l<0, and decoherence is
automatic. For large negativeX, almost all of the wave
packetCUsx,Td will have crossedx=0. That is outside the
range where Eq.(4.60) is necessarily a good approximation,
but the first term will vanish andkCRuCR̄l<−1. That is far
from decoherence.

Figure 5 shows that over a wide range of situations for
which this set of histories is linearly positive, it is not deco-
herent. That is consistent with linear positivity being a
weaker condition for probabilities.

V. VIRTUAL PROBABILITIES

What about sets of histories that are not linearly positive?
Can the candidate probabilitiespsad defined by Eq.(3.1) be
put to use even if they are outside the range 0–1? This sec-
tion will show that they can. In particular,psad outside the
range 0–1 can be employed as intermediate steps in the cal-
culation of probabilities that do lie between 0 and 1. That is
because probability sum rules like Eq.(2.4b) are satisfied by
thepsad defined by Eq.(3.1) whether or not they lie between
0 and 1 as a consequence of Eq.(2.3). For this reason, if
somepsad in a set are outside the range 0–1, we say the set
hasvirtual probabilities. When a contrasting term is needed
for the case when all thepsad are between 0 or 1, we say the
set hasreal probabilities.7 “Real” in this context is thus a
synonym for linearly positive. Extending sets of probabilities
to include virtual values provides a simple and unified ap-
proach to the quantum mechanics of closed systems as we

shall describe in Sec. VI. Anticipating this extension, in this
section we refer to the candidate probabilitiespsad defined
by Eq.(3.1) as “probabilities” whether or not they are real or
virtual.

To understand what virtual probabilities might mean, first
consider what they cannot mean. Evidently, virtual probabili-
ties cannot coincide with the relative frequencies of repeated
events such as the probabilities of the outcomes of identical
measurements on an ensemble of identical subsystems. More
generally, alternatives with virtual probabilities cannot be ex-
actly recorded or measured. The exact correlation between
alternative values of records represented byprojectionshRbj
and histories represented by class operatorshCaj would
mean[cf. Eq. (3.6)]

psb,ad ; Re kCuRbCauCl = dabpsad. s5.1d

Sum both sides of this relation overb usingob Rb= I. Sum
both sides overa using oa Ca= I. The resulting relations
imply the identity

psad ; Re kCuCauCl = Re kCuRauCl, s5.2d

showing that the probabilities of the records are the same as
the probabilities of the histories. Since thehRaj are projec-
tions, their probabilities must be between 0 and 1. Sets of
histories with virtual probabilities therefore cannot be ex-
actly recorded. Since recording outcomes is usually taken to
be an essential part of a measurement process,8 we can say
that sets of histories with virtual probabilities cannot de-
scribe the outcomes of measurements. Extending the notion
of probability to include virtual values thus does not risk
assigning a virtual value to the probability of anything mea-
sured or recorded exactly. Of course, the records of realistic
measurements are typically correlated with the measured his-
tory, not exactly, but rather to an excellent approximation.

Virtual probabilities can in principle be employed in the
calculation of real ones as the following example illustrates.
Consider the probabilitiespsg updd of some future alterna-
tives hgj given present datapd. It may be more efficient to
calculate these probabilities by first determining the prob-
abilities psb updd of alternativeshbj in the past and then,
with these, and with present data, calculate the probabilities
of the future alternativeshgj. More concretely, it may be
efficient to calculatepsg updd from the relation

psgupdd = ob
psgupd,bdpsbupdd. s5.3d

For example, if a current manuscriptspdd records that Caesar
invaded Britain in 55 BC, we might predict that other manu-
scripts yet to be discoveredshgjd would record the same
date. However, the most direct route to that prediction would
be to first infer that Caesar did invade Britain in 55 BC(one
of the alternativesb) and from that calculate the probabilities
of what other manuscripts might say. We reconstruct the past
to help explain the future.7To maintain the usual contrast between virtual and real, we ac-

cept the risk that “real” can be taken to be a contrast with “imagi-
nary.” 8See, e.g.,[24].
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Our purpose here is not to discuss the utility of recon-
structing the past.9 Rather, it is to point out that Eq.(5.3) is a
consequence of Eqs.(2.1) and (3.1) which hold whether or
not the probabilitiespsb updd are between 0 and 1. In prin-
ciple, virtualpsb updd could be used in the intermediate step
in Eq. (5.3) provided the resultpsg updd were real probabili-
ties.

The three-box example discussed in Sec. IV C provides a
simple, if artificial, example. Suppose we are interested in
predicting probabilities for whether the particle will be either
in box A or else not inA (i.e., in boxB or C) at some future

time givenF. We denote these alternatives byAf andĀf. The

probability psĀf uFd, for instance, is given by

psĀfuFd =
psĀf,Fd

psFd
=

Re kCusPB + PCdPFuCl
Re kCuPFuCl

. s5.4d

From Eqs.(4.16) and (4.17) we find

psAfuFd = 1, psĀfuFd = 0, s5.5d

a set of real probabilities.
But we could calculate these probabilities by first calcu-

lating thep’s for the alternativesAp,Bp,andCp that the par-
ticle was in boxA, B, or C in the past givenF and then using

Eq. (5.3) to calculate the future probabilities forAf and Āf.
The probabilities for the past alternativesAp,Bp,andCp

given F can be negative—for example,

psCpuFd =
psF,Cpd

psFd
=

Re kCuPFPCuCl
Re kCuPFuCl

= − 1. s5.6d

Similarly, psApuFd=psBpuFd=1. Despite this the reader may
easily verify that employing Eq. (5.3) with hgj
=hAf ,Āfj ,hbj=hAp,Bp,Cpj, andpd=F gives the correct an-
swer displayed in Eq.(5.5).

Feynman[26] explored the uses of negative probabilities
in intermediate steps in a variety of circumstances in physics.
These included the probabilities for position and momentum
defined by the Wigner distribution, for the emission of vir-
tual nontransverse photons in electrodynamics, in two-state
systems, and in the two-slit experiment. He concluded that
extending the notion of probability to negative values was
useful provided these negative values are interpreted to mean
that the situation is “unattainable or unverifiable.” We take
the same viewpoint here.

The quantum mechanics of a closed system then can be
formulated as follows:Assign probabilities to all sets of al-
ternative coarse-grained histories by psad=Re kCuCauCl.
The probabilities psad may be real or virtual. Virtual prob-
abilities can be employed in the calculation of real ones.
Probabilities predicted for exactly recorded histories are al-
ways real. This is a simple and general formulation whose
utility we describe in the next section. Linear positivity and
medium decoherence are special cases.

VI. COMPARING DECOHERENCE CONDITIONS

Four decoherence conditions restricting the sets of alter-
native coarse-grained histories to which quantum mechanics
predicts probabilities have been considered in this paper. In
order of increased restriction(roughly inverse to the order
presented) they are the following.

(i) Extended probabilities(EP). Assign probabilities to all
sets of alternative coarse-grained histories according to

psad = Re kCuCauCl, s6.1d

whether they are realsbetween 0 and 1d or virtual. This is no
restriction at all. Calculate the probabilities of exactly re-
corded alternatives or the frequencies of repeated indepen-
dent alternatives, secure in the knowledge that these will be
between 0 and 1.

(ii ) Linear positivity (LP). Assign probabilities only to
sets of alternative coarse-grained histories for which all can-
didate probabilities in the set given by Eq.(6.1) lie in the
range 0–1 of real probabilities.

(iii ) Real linear positivity (RLP). Assign probabilities
only to sets of alternative coarse grained histories which are
linearly positive and for which

ImfkCuCauClg < 0, all a, s6.2d

either exactly or approximately well beyond the standard
with which the resulting probabilities are used.

(iv) Medium decoherence(MD). Assign probabilities
only to sets of alternative coarse-grained histories for which
the branch state vectors for all histories in the set are mutu-
ally orthogonal,

kCauCa8l < 0, a Þ a8 s6.3d

either exactly or to an approximation well beyond the stan-
dard with which the resulting probabilities are used. Calcu-
late probabilities either by Eq.s6.1d or by

psad = iuCali2 = iCauCli2, s6.4d

which are equivalent if medium decoherence is exact. Prob-
abilities defined by Eq.s6.4d necessarily lie between 0 and 1.

This concluding section compares these different decoher-
ence conditions.

As information gathering and utilizing systems(IGUS’s),
we employ almost exclusively coarse grainings of the usual
quasiclassical realm. By the usual quasiclassical realm, we
mean roughly histories of coarse-grained alternatives defined
by ranges of values of averages of densities of approximately
conserved quantities(such as energy, momentum, etc.) over
suitable volumes. With the initial condition and Hamiltonian
of our universe, the volumes can be chosen large enough that
the histories are medium decoherent and yet small enough to
supply a reasonably fine-grained description of the universe
over a wide range of time and distance scale. Individual his-
tories of this realm exhibit patterns of correlations in time
governed by effective classical equations of motion inter-
rupted by frequent small quantum fluctuations and occa-
sional major ones.

For practical purposes it might be possible to restrict the
predictions of quantum theory to the usual quasiclassical9For that see[25].
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realm. Indeed, in some loose sense, this was the view of
founders of the subject such as Bohr and Heisenberg. But it
so far has been difficult to give the usual quasiclassical realm
a precise definition despite the considerable steps that have
been taken in that direction[27]. For reasons of generality,
convenience, and completeness it has proved useful to for-
mulate quantum theory with weaker, less anthropocentric,
but more precise conditions that allow many more sets of
histories that are nothing like the usual quasiclassical realm.
The three conditions discussed in this paper are examples.

Moving between EP, LP, RLP, and MD in the direction of
increasing restriction is moving toward the usual quasiclas-
sical realm. For example, the virtual probabilities of EP for
nonequal values of a quantity commuting with the Hamil-
tonian at two different times may not be zero if other alter-
natives intervene as in Eq.(3.8). But they are zero under the
more restrictive LP conditions as the discussion in Sec. III C
shows.

The conditions RLP and MD are consistent with the usual
notions of statistical independence of identical subsystems;
EP and LP are not.

The conditions EP, LP, and RLP are time neutral, but the
more restrictive MD incorporates an arrow of time as dis-
cussed in Sec. III C. This arrow allows individual histories to
be described as a narrative in which one event is followed by
another, then another, etc. Quantum theory then can be for-
mulated in terms of an evolving state and prediction distin-
guished from retrodiction. For example, consider a medium
decoherent set of histories defined by alternativeshPa1

1 st1dj,
hPa2

2 st2dj , ... ,hPan

n stndj at a series of timest1, t2, ¯ , tn. At
any intermediate timetk, we can calculate the conditional
probability psan, ... ,ak+1uak, . . . ,a1d for future alternatives
ak+1, ... ,an given thata1, ... ,ak have already happened by

psan, . . . ,ak+1uak, . . . ,akd = iPan

n stnd ¯ Pak+1

k+1 stk+1duCak¯a1
li2,

s6.5d

where

uCak¯a1
l =

Pak

k stkd ¯ Pa1

1 st1duCl

iPak

k stkd ¯ Pa1

1 st1duCli
. s6.6d

Events to the future oftk can be predicted just from the state
uCak¯a1

l representing the present. In the Heisenberg picture
used here, that state is constant in time except when inter-
rupted by the action of projections(“reductions”) represent-
ing the alternatives.

The past cannot be retrodicted just from a state in the
present, but requires in addition the stateuCl. A similar state-
ment holds for the future in the context of LP or EP in gen-
eral (see, e.g.[12,25]). It could not be otherwise since these
formulations are time-neutral.

Histories of the usual quasiclassical realm are medium
decoherent because of physical mechanisms which dissipate
phases between branches[32–34] that result from the inter-
action between the variables followed in the usual quasiclas-
sical coarse graining and ones ignored constituting an envi-
ronment or bath in simple models. These interactions create
records of the histories[35,36] and the existence of records

is a general characterization of medium decoherence as we
saw in Sec. III A. The restriction to medium decoherence is
thus consistent with the usual quasiclassical realm.

Imposing restrictive decoherence conditions like medium
and strong decoherence[28] are useful first steps in defining
classicality. But the weaker conditions(LP) and (EP) also
have their uses.

An example is approximate medium decoherence. As
mentioned above, the branch-state vectors of the usual qua-
siclassical realm are not expected to be exactly orthogonal,
but only to an approximation good well beyond the standard
to which the resulting approximate probabilities can be used.
Some are uneasy about basing a fundamental formulation of
quantum mechanics onapproximatemedium decoherence
[37]. Is there a formulation of the quantum mechanics of
closed systems free from any approximate notion of decoher-
ence for realistic coarse grainings? There is; consider the
following possibility: Regard linear positivity(or EP) as the
fundamental rule determining the probabilities of histories in
quantum mechanics. The resulting probabilities satisfy the
sum rules exactly as discussed in Sec. III B. Medium deco-
herence then becomes an approximate notion, useful in char-
acterizing classicality, giving through Eq.(6.4) an approxi-
mation to the fundamental probabilities(6.1). The degree of
approximation can be calculated from Eq.(3.5). No practical
calculation of the probabilities of the quasiclassical realm or
its coarse grainings is likely to be affected by adopting this
viewpoint. A consequence, however, is that many more sets
of coarse-grained alternative histories nothing like the quasi-
classical realm are incorporated into the theory beyond the
already large number allowed by approximate medium deco-
herence. A further consequence is that connection between
probabilities and the frequencies of even imaginary en-
sembles of independent subsystems is lost in general as dis-
cussed in Sec. III D. Precision is achieved at the consequence
of extending the complementary descriptions of the world
and possibly at the expense of any general frequency inter-
pretation of the resulting probabilities.

A more important reason for considering linear positivity
or extended probabilities as a fundamental bases for quantum
theory lies in their potential for further generalization. The
quantum theory of closed systems summarized in Sec. II
may need to be further generalized to incorporate quantum
gravity. That is because the framework in Sec. II relies on a
notion of time supplied by a fixed background space-time
geometry. But in general relativity, space-time geometry is a
dynamical variable that generally will fluctuate and be with-
out a definite value in a quantum theory of gravity. A gener-
alization of the usual quantum framework is required.

Generalized quantum theory[24,4,9,38,39] provides a
natural framework for constructing generalizations of usual
quantum theory that incorporates medium decoherence. Gen-
eralizations suitable for quantum gravity have been consid-
ered by a number of authors(e.g., [9,40]). But generaliza-
tions based upon extended probabilities would provide even
greater scope. Indeed a general quantum mechanical theory
could be specified just by giving a real-valued function for
candidate probabilities on the sets of fine-grained histories.

“Cheshire Puss[said Alice]…would you tell me please,
which way should I go from here? That depends a good deal
on where you want to get to, said the cat.”

JAMES B. HARTLE PHYSICAL REVIEW A70, 022104(2004)

022104-16



ACKNOWLEDGMENTS

Conversations with Murray Gell-Mann over a long period
of time were helpful. Thanks are due to Todd Brun, Shelly
Goldstein, Jonathan Halliwell, Mark Srednicki, and Gary
Horowitz for useful discussions. The work was supported in
part by the National Science Foundation under Grant No.
PHY00-70895.

APPENDIX: EIGENVALUES OF A PRODUCT OF
PROJECTIONS

The Hermitian part of the product of two noncommuting
projections has at least one negative eigenvalue. This appen-
dix gives a proof of this undoubtedly well-known fact that
the author learned from G.T. Horowitz.

Let Pa andPb be the two noncommuting projections and
let G; PaPb+PbPa denote their Hermitian product. Letli
and uil denote the eigenvalues and eigenvectors ofG. The
expectation value in a stateuCl is

kCuGuCl = o
i

liuki uClu2. sA1d

If there is one vectoruCl for which kCuGuCl is negative,
then G must have one negative eigenvalue since otherwise
Eq. (A1) is positive. We now construct such a vector.

Any vector uCl can be divided into orthogonal vectors
uC1l and uC0l that lie in the subspacePa and the subspace
orthogonal to it—viz.

uCl = uC1l + uC0l, PauC0l = 0, PauC1l = uC1l.

sA2d

We now show how to pickuC0l and uC1l to makekCuGuCl
negative.

With the decomposition(A2),

kCuGuCl = 2fkC1uPbuC1l + Re kC1uPbuC0lg. sA3d

For givenuC1l, PbuC1l cannot be orthogonal to every vector
in Pa, or Pb would commute withPa contrary to assumption.
Therefore pickuC0l so that RekC1uPbuC0l is nonvanishing.
If Re kC1uPbuC0l.0, replace uC0l by −uC0l so that
Re kC1uPbuC0l,0. Now makeuC0l large enough that the
negative second term in Eq.(A3) is larger than the positive
first term. The result is auCl such thatkCuGuClø0.

The case of two one-dimensional projections

Pa = ualkau, Pb = ublkbu, sA4d

but with kaublÞ0, gives a concrete illustration of the above
result. The the eigenvectors ofG lie in the two-dimensional
space spanned byual and ubl and are easily calculated. The
two eigenvalues are

l± = c2 ± c, wherec ; ukaublu. sA5d

Sincecø1, l− is evidently negative unlessc=0 or c=1. In
either of these cases the projectors commute.
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