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Why do we not see large macroscopic objects in entangled states? There are two ways to approach this
question. The first is dynamic. The coupling of a large object to its environment cause any entanglement to
decrease considerably. The second approach, which is discussed in this paper, puts the stress on the difficulty
of observeing a large-scale entanglement. As the number of panicdesws we need an ever more precise
knowledge of the state and an ever more carefully designed experiment, in order to recognize entanglement. To
develop this point we consider a family of observables, called withesses, which are designed to detect en-
tanglement. A witnesgV distinguishes all the separalilenentanglegistates from some entangled states. If we
normalize the witnes®V to satisfy|tr(Wp)| <1 for all separable statgs then the efficiency ofV depends on
the size of its maximal eigenvalue in absolute value; that is, its operator [Afnit is known that there are
witnesses on the space ofqubits for which|W| is exponential im. However, we conjecture that for a large
majority of n-qubit witnesseg§W||<O(vVnlogn). Thus, in a nonideal measurement, which includes errors, the
largest eigenvalue of a typical witness lies below the threshold of detection. We prove this conjecture for the
family of extremal witnesses introduced by Werner and VjBliys. Rev. A64, 032112(200D)].
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I. INTRODUCTION < O(ynlogn), more slowly than the growth of the measure-
ment error. We shall prove this with respect to a particular
Why do we not see large macroscopic objects in enfamily of witnesses and formulate it as a conjecture in the
tangled states? There are two ways to approach this questiogeneral case. This means that, unless the system has been
The first is dynamic. The coupling of a large object to itsvery carefully prepared in a specific state, there is a very
surroundings and its constant random bombardment from thiittle chance that we shall detect multiparticle entanglement,
environment cause any entanglement that ever existed to dieven if it is there.
entangle. The second approach—which does not in any way
conflict with the first—puts the stress on the wavd Even
if the particles composing the object were all entangled and
insulated from the environment, we would still find it hard to A. The two-particle case
observe the superposition. The reason is that, as the number
o e ST, e e a1 ever ore BrECse KIOW mensional Hiber spacel suh hatA'-B1-1. O
X : " 11 define the following operator:
ment in order to recognize the entangled character of the
state of the object. 1 1 1 1
In this paper | examine the second approach by consider- W= 5A0@Bo+ ZAc® By + ZA @ Bo= A ® B, (1)
ing entanglements of multi-particle systems. For simplicity,
the discussion concentrates mostly on two-level systems, thétis easy to see thatr(Wp)|<1 for any separable stateon
is, n-qubit systems whera is large. An observabl&/ that H® H. This is, in fact, the Clauser, Horne, Shimony, and
distinguishes all the unentangled states from some entangldtblt (CHSH) inequality[4]. Indeed, ifXy, X, Yy, Y, are any
states is called witness For our purpose it is convenient to four random variables taking the values +1 then
use the following definition: A witnessW satisfies
maxtr(Wp)|=1, Where the maximum is tal_<en over all sepa- 1< lXoYo + }XOYl + }leo_ leYl <1, (2
rable statesp; while |[W|>1, where||W| is the operator 2
norm, the maximum among the absolute values of the eige
values ofW. It is easy to see that this definition is equivalen
to the usual on¢l].
For eachn=2 there is a witnesyV, called the Mermin-
Klyshko operator 2], whose normW|=y2""? increases ex- 1 1
ponentially withn. The eigenvector at which this norm ob- ~1=7C0*5Coi+ SCi0~ SCuus1. ©)
tains is called the generalized Greenberger-Horne-Zeilinger
(GHZ) state; it represents a maximally entangled system of If p is a separable state dii@ H we can represent (A
qubits. However, we shall see that this large norm is the® B)) as correlations;; between suctx;'s andYj’s. In other
exception, not the rule. My aim is to show that the norm of awords, the correlations can be recovered in a local hidden
majority of the witnesses grows very slowly with, [W|  variables model.

II. WITNESSES AND QUANTUM CORRELATIONS

Let Ag,A;,Bq,B; be four Hermitian operators in a finite-

Ms can easily be verified by considering the 16 possible cases.
tHencecij:E(Xin), the correlations betweeX; and;, also
satisfy the inequalities

1050-2947/2004/1@)/0221036)/$22.50 70022103-1 ©2004 The American Physical Society



ITAMAR PITOWSKY

From Eq.(2) three other conditions of the form E¢B)
can be obtained by permuting the tWandices or the twor

indices. The resulting constraints on the correlations form a
necessary and sufficient condition for the existence of a local

hidden variables modgb,6]. One way to see this is to con-
sider the four-dimensional convex h@}, of the 16 real vec-
tors in R*:

(XoYo, XoY1, X1 Y0, X1 Y1), Xi= £1, Yj= 1, (4)
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In other words, to each choice of functidnthere corre-
sponds a choice of coefficienf. Since B; is the inverse
Fourier transform of on the grou’5, we have by Plancher-
el's theorem[14]

and prove that an arbitrary four-dimensional real vector

(Co0:Co1,C10,C12) IS an element ofC; if, and only if, theg;
satisfy —1<¢; <1 and all the conditions of the type E@®).
The inequalities, then, afacetsof the polytopeC,.

By contrast with the classical case letbe a pure en-
tangled state ol ® H. Then for a suitable choice @&f's and
Bj'sin Eqg.(1) we havdtr(Wp)| > 1 [7], so the operatord/ of

thIS type are sufficient as witnesses for all pure entangled
bipartite states. To obtain a geometric representation of th

quantum correlations, lgi be any state, denotg;=tr(pA;
®B;), and consider the s, of all four-dimensional vectors
(900,901,910, 911) Which obtain as we vary the Hilbert space
and the choice ofp, A;, and B;. The setQ, is convex,

Q,DC,, but it is not a polytope. The shape of this set has

been the focus of a great deal of inter@8t12. To get a
handle on its boundary we can check how the valufvdf
changes with the ch0|ce oA’s and By's. Cirel'son [8,9]
showed thafwi|< 2. This is a tight |nequaI|ty, and equality
obtains already for qubits. In this cadésC? andA=o(q),
Bj=o(b;) are spin operators, withy,a;,b,,b; four direc-
tlons in phxsmal space. There is a choice of directions suc
that||Wl|=2, and the eigenvectofg) e (?® (2 correspond-
ing to this value are the maximally entangled states.

B. The n-particle case: Werner-Wolf operators

Some of these results can be extended-fmarticle sys-

tems, provided that the operators are restricted to two binary

3 8P =53 lfe)=1 ®
S &

Using the analogy with the bipartite case let
A0 Al . .,Aj,A] be 2h arbitrary Hermitian operators in a
Hilbert spaceH sausfymg(A‘)2 1. The quantum operators
orresponding to the classical facets in E§) are the
erner-Wolf operatoren H®" given by

>

®AL.
S....5,€10,1} Asn

It is easy to see from Ed6) that|tr(pW;)| <1 for every
separable statp and all thef’'s. However, the inequalities
may be violated by entangled states. [(gtbe the set of all
vectors in R?' whose coordinates have the form
q(sy,...,Sy)= tr(pAsl® ®A%) for some choice of statp
and operatorg\ as above. The s€, is the range of possible
walues of quantum correlations, and it is not difficult to see
that Q, is convex andQ, D C,. To obtain information about
the boundary ofQ, we can examine hoWWV;|| varies as we
change theAls. In this case too it was showf8] that for
each fixedf the maximal value ofW|| is already obtained
when we choosél=(? and theAl’s to be spin operators.
Jherefore, without loss of generallty, consider

W; Bi(sy, ... 9

SIAL® -

measurements per particle. To account for classical correla-

tions consider & random variableX3, X3; X3,X2; ... ; X3, X!,

each taking the two possible values +1. We shall parametrize

the coordinates of a vector in thé@-8imensional real space
R?" by sequences=(si,...,s,) €{0,1}". Now, consider the
set of 2" real vectors inR2":

(a0, ...,0,...a(s, ... .Sy, ...,al, ...,D),
alsy, ...,s) = xlx2 XS (5)

Their convex hull inR2", denoted byC,, is the range of
values of all possible classical correlations figparticles and
two measurements per site. Werner and Wa8|f and inde-
pendently Zukowski and Brukngd 3], showed thaC, is a

>

Sp-- -5 ef0, 1}

Br(sy, ...

So(ag) ® -+ @ ofal),

(10)

whereaj,al, ... a],a] are 2 arbitrary directions. We can
calculate explicitly the eigenvalues ®¥; '[3,15_|. Let z; be
the direction orthogonal to the vectag,a), j=1, ... n. De-
note by|-1); and|1); the states “spin down” and “spin up”in
the z direction; so the vectors|wy, wy, ... ,wp), ®
=(wy,w,, ...,wy) €{-1,1}" form a basis for then -qubit
space. Letx; be orthogonal taz; and Ietel be the angle
betweenral, ande, s=0, 1. For eacli there are 2 eigenvec-
tors of W; which have the generalized GHZ form

hyperoctahedron and derived the inequalities of its facets.

These are 2 inequalities of the form

E ﬂf(slv s ,Sn)xélxgz .
S,..-87=0,1

— n
1< XSn 1,

,—op)),

11

1
|\Pf(ﬁ))> = Tz(ele(w)|w11w2, o)+ |_ W1,~ Wy, ...

\

where each inequality is determined by an arbitrary function

f: {0,3"—{-1, 1} with

and the corresponding eigenvalue
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)\f(w) = ei@(a)) E Bf(slv e 13’1)
S,...5,e{0,1}
xexpi(wibg + -+ +wnfl), (12)

where®(w) in Egs.(11) and(12) is chosen so that;(w) is
a real number. Hence

W = maxhs(w)]. (13

As in the CHSH case we can check how laffy¥;| can
become asl,a) range over all possible directions. Using
Egs.(12) and(13) we see that

>

St,---85n€10,1}

max|W| =
803

max
1,1 n n
05.67.- - 00,6

Br(sy, ... )

><expi(0§1+ e+ )| (14)
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The proof of this result is based on the theorem of Salem,
Zygmund, and Kahangl6] and is given in the Appendix.
This means that for the vast majority of tfie the violation
of the classical inequalities E¢) is small. Accordingly, the
boundary ofQ, is highly uneven about the facets 6f;; it
does not extend far above most of the facetgfbut oc-
casionally it has an extended exponential hump.

The expected growth di;| is even slower when the di-
rectionsal (or the anglesd)) are fixed. As a direct conse-
quence of Tchebychev’s inequalifl7], we get the follow-
ing.

Proposition 1 For \; in Eq. (12) we have for allM > 1:
P |\ >M}<1/M2

(See the Appendix for detai)sThis means that most of
the eigenvalues of th&Vy's are bounded within a small
sphere. The application of a randomly chods&nto any of
its eigenstates¥;(w)) in Eq. (12) is unlikely to reveal a
significant violation of Eq(6).

with the maximum on the left taken over all possible choices

of directionsa,aj, ... ,a3,a]. The Mermin-Klyshko opera-

tors [2], mentioned previously, correspond to a particular

choice offy: {0, 1}"—{-1,1 anda{),aj, with the result that
W |=+2""%. This is the maximal value of E¢14) possible.

B. The random witness conjecture

For appropriate choices of angles the Werner-Wolf opera-
tors Eq.(10) are, with very few exceptions, entanglement
witnesses on the space ofqubits. They are very special

The maximum value is attained by a small minority of theitnesses for two reasons. First, they are local operators.

operatorsW;; only those that are obtained fro\ildf0 by one
of the n!22" symmetry operations of the polytof®, [as

compared with the total of2 of facets in Eq(6)].
In any case, for most's there is a choice of angles such

This means that if we possess many copies of a system made
of n qubits, all in the same statd), we can measure the
expectation®|W;|®) by performing separate measurements
on each qubit of the system. Second, even as local observ-

thatW; is a witness. This means that, in addition to the factables the Werner-Wolf operators are special, because of the

that, |tr(pW;)| <1 for every separable state we also have

restriction to two measurements per particle. Indeed, one

[Wi|>1. The 2 exceptional cases are those in which thewould have liked to extend the results beyond this restric-

inequality in Eq.(6) degenerates into the trivial condition
1$X§1X§2---X2ns 1. All the otherW's are witnesses. The
reason is that all inequalities of type E@) are obtained
from the basic inequalities fa€, (including the trivial onep

tion, and obtain all the inequalities for any number of mea-
surements per site, but this problemN$ hard even fom
=2 (see[19)).

However, theW;’s are the most likely to be violated

by iteration[3]. If the iteration contains even one instance ofamong the local operators with two measurements per site,
the type Eq(2) the corresponding operator can be chosen tdecause they are derived from the facet€ofMoreover, we

violate the CHSH inequality.

IIl. RANDOM WITNESSES
A. Typical behavior of maxajo,ajl||Wf||
Although the norm of|\Wi|| can reach as high a@"* this

already noted that all the norm estimates are also valid for
the wider family given in Eq(9), with theAi's acting on any
finite-dimensional space, and satisfyi(}@j)zzl. Hence, the
estimate of Theorem 1 includes many more witnesses than
those given in Eq(10). To ann-qubit system we can add
auxiliary particles and use quantum and classical communi-

is not the rule but the exception. Our aim is to estimate theation protocols. As long as our overall measurement is in

typical behavior of mayovajl||wf|| as we letf range over all its
values(and the maximum is taken over all directiclg a)).
To do that, consider the set of alP"2functions f: {0, 1}"
—{-1,1} as a probability space with a uniform probability
distributionP?, which assigns probability“Zn to each one of
the f’s. Then, for each set of fixed directioas we can look
at [W;|| as a random variable defined on the space'sf
Likewise, may) o [We|| in Eq. (14) is also a random variable
on the space of’s, for which we have the following theo-
rem.

Theorem 1There is a universal consta@tsuch that

P{f;maxW{| > CVnlogn} — 0 asn— . (15

i
apay

the closed convex hull of operators of the form

Y By SAL® @A,
Sy, ..5€10,1}
with the Aj’s satisfying(A'j)Z: I, andk=<0(n), the estimate of
Theorem 1 holds.

Hence, there is a reason to suspect that the typical behav-
ior of the Werner-Wolf operators is also typical of general
random witnesses. A random witness is an observable drawn
from the set of all witnessad’ with uniform probability. It is
easy to give an abstract descriptionf Consider the space
of Hermitian operators on(C?)®"; it has dimensiond,
=2"1(2"+1). For a Hermitian operatoA define the norm
[[A]]l=sudlAlay) - ||| where the supremum ranges over

W= (16)
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all choices of unit vectorky;) € C2. Denote the unit sphere in If this is true for an idealized situation of an isolated sys-
this norm by/C;={A; [[A]]=1}. It is a hypersurface of di- temitis all the more true with respect to the “measurements”
mensiond,—1, which is equipped with the uniforniLe-  performed by our sensory organs on macroscopic objects.
besgug measure, and its total hyperarea is finite. Now, de-Arguably, one can associate with observation, in the every-
note bykC, the normal unit spher&,={A; [|A|=1}. Here, as day nontechnical sense, a quantum mechanical operator.
usual,||Al|=sup|A|®)|| is the operator norm, where the supre- However, it does not seem to be an entanglement witness,
mum is taken over all unit vectof®). The set of witnesses and even on the happy occasion that it is, it is not likely to
is W=IC1\C,. Note that ifA e W then necessarilyA|>1. 1t reveal anything. So even if a macroscopic quantum interfer-
is not difficult to see thatV is relatively open inkC;, and  ence(caf) state miraculously avoided decoherence and re-
therefore has a nonzero measurelin We consider the set mained in an entangled state, | would be unlikely to see
of all witnesses/V on (C?)®" and the normalized Lebesgue anything nonclassical about this state.
measureP on it. Note that this analysis is not meant as a solution to the
Conjecture 1 There is a universal consta@tsuch that measurement problem. The measurement problem is a di-
— lemma that concerns those realists who maintain that the
PiWe W; [W|>Cinlognj—0asn—=. (17 qantum state is a part of physical realignd not merely
our description of it. For these realists the fact that the cat
state can be in a dead-alive superposition is itself a problem,
regardless of whether we can actually detect such a state in
Assume the conjecture is valid and consider the followingpractice. The present discussion is agnostic with respect to
highly ideal situation. A macroscopic objget single copy of the reality of the quantum state, and strives to explain why
it) is prepared in a state unknown to us and is carefully keptarge things would hardly eveappearto us nonclassical
insulated from environmental decoherence. Since the state &ven if decoherence were turned off.
unknown we randomly choose a witnédsto examine it. All this does not mean, of course, that we cannot see
Now, suppose that we hit the jackpot and the system happenarge-scale entanglements. There are two cases in which this
to be in an eigenstate AdiV; in fact, the eigenstate corre- may happen. First, when a system has been carefully pre-
sponding to its maximum eigenvalu@ absolute valug  pared in a known, highly entangled stdsay, the general-
This means, in particular, that the state of the system is erized GHZ state Eq(11)] and its coherency has been main-
tangled; but can we detect this fact usM\ A measurement tained. Then we may be able to tailor an experiment to verify
of a witnesson a single copyis a very complicated affair this fact. Hopefully, this will happen when quantum comput-
[just think about any one of thé/’s in Eq. (10)]. Such a ers are developed. However, asgrows the task becomes
measurement invariably involves manipulations of the indi-exponentially more difficult. Second, a macroscopic en-
vidual particles. If we make the reasonable assumption thaanglement may be observed when the system is in a state for
each such manipulation introduces a small independent errahich some thermodynamic observable serves as a witness.
we obtain a total measurement error that grows exponentialliBy thermodynamic observable | mean an operator that can
with n. By the random witness conjecture E@.7), this  be measured without manipulating individual particles, but
means that we are unlikely to see a clear nonclassical effectather by observing some global feature of the object.
The typical witness is a poor witness. There is some analogy between the present approach to
A natural question to ask is why should we consider themultiparticle systems and the point made by Khinchin on the
uniform measure over witnesses as the correct probabilitfoundations of classical statistical mechanit8,2d. While
measure? In other words, why is a witness chosen at randothermodynamic equilibrium has its origins in the dynamics
according to the uniform measure typical? The answer i®f the molecules, many of thebservablequalities of multi-
implicit in the situation just described; we assume that weparticle systems can be explained on the basis of the law of
lack any knowledge of the state, and therefore have no redarge numbers. The tradition that began with Boltzmann
son to give a preference to one witness over another. Thiglentifies equilibrium with ergodicity. The condition of er-
point is that our choice is not going to wosgken if we are godicity ensures that every integrable function has identical
lucky. At any rate, cases in which very little is known about phase-space and long-time averages. However, Khinchine
the quantum state of a macroscopic object are not rare.  points out that this is an overkill, because most of the inte-
Moreover, there is a reason to believe that a result aboujrable functions do not correspond to macroscdfhat is,
the uniform distribution is also relevant to the case wherghermodynamig observables. If we concentrate on thermo-
partial information about the state is available. In this caselynamic observables, which involve averages over an enor-
we should modify the uniform distribution and condition it mous number of particles, weaker dynamical assumptions
on the additional available constraints. However, there is awill do the job.
exponential gap between the typical withess norm in(Ed). | believe that a similar answer can be given to our original
and the norm required for a successful measurement. Thiguestion, namely, why we do not see large macroscopic ob-
means that the additional information should be pretty accujects in entangled states. Since decoherence cannot be
rate to be of any help. Moreover, it is possible that we will “turned off” the multiparticle systems that we encounter are
not be able to withess the entanglement of mamcisely never maximally entangled. But even if the amount of en-
knownstates, because, quite likely, even the best witnessaanglement that remains in them is still significamg cannot
for such states have small norms. detect it, because the witnesses are simply too weak.

C. Discussion
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APPENDIX f
In the proof of Theorem 1 we shall rely on a theorem in = E(e” +eM =< N2, (A4)
Fourier analysis due to Salem, Zygmund, and Kahdi@g 2

Our aim is to consider random trigonometric polynomials. T4 gefine the trigonometric polynomials note that by Egs.
So let(€2,%,P) be a probability space, whefeis asetX a (7 and(A3)

o algebra of subsets d?, and P:% —[0,1] a probability ) .
measure. For a random variabfeon () denote by&(¢) > Bilsy, ... ,sn)exp|(tsl+ +t5n)

=[o&(w)dP(w) the expectation of. A real random variable ~ St-+-S=0.1
¢ is called subnormal if E(exp\é))<exp(\?/2) for all 1 P . 2
RN, = S 1) () ekpi( + Gk oo 4
A trigonometric polynomial i variables is a function on .
the torusT" given by 1 o L
| =2 f(e) ] 1 [expith + (- Dexpiti] = X £(f)g, (0
g(t) = g(t1!t21 e rtr) = E b(k11k21 e 1kr)el(k1tl+k2t2+.”+krtr)1 e 1=t e
(A1) (A5)
. . . with
where the sum is taken over all negative and nonnegative _ _
integersky,ky, ... k. which satisfy |kq|+|ky|+- - +|k|<N. g.(t) = 27"[ ] [expit} + (- 1)%iexpit}]. (AB)
The integem is calledthe degree of the polynomidbenote j
loll-=max, oty ta, .. t)]. _ The polynomialg,(t) do not depend offi, have 2 variables
Theorem 2 (Salem, Zygmund, Kahapelet ¢(«), ] th, t},j=1,2,... n, and their degree is. We shall prove that

=1,2,... ], be a finite sequence of real, independent, SUbES|gS(t)IZ:1 for all t. Indeed, |g.(t)[>=2"2"II[1
normal random variables o). Letgj(t), j=1,2,...J. bea L (“Iiexgig)]?, with ¢=ti-th But |1+expd?
sequence of trigonometric polynomialsrirvariables whose =4c0§(¢j/2) and |1_8Xp¢j|J2: sir?(d>j/2) and therefore
degree is less than or equal i and such thak;|g;(t)|2 S|0.(0)2=T1j[cof(¢;/ 2) +sir(¢; 1 2)]=1.

<1 forallt. Then From Egs.(14) and (A5) we get
J
el U max|Wi = | X £&(fg.(t)) - (A7)
P{w;HE &(w)g;(t)|l.. > Cvr log N} < N (A2) abal f . .
=1

Hence, we can apply the Salem-Zygmund-Kahane in-

for some universal constaqt o , equality Eq(A2) to the present case, with=n andr=2n, to
Note that the formulation here is slightly different from gpiain Theorem 1.

Q is the set of all fUnCtiong:{o,l}n—){—l s 1} with the uni- on the space of’s. By Eq (12) we get

form distribution which assigns each such functibna
weight 22" On this space consider thd8 eandom variables
£.(f) defined for eaclk=(gq, ... ,e,) €{0,1}" by (A8)

f=f(e). A3 o
&(f) =1(e) (A3) with t, =w; 6, . By Eq. (A5) we get|\{=[2.£.(f)g,(t)|. But
Now, note thatf e Q if and only if -f € Q; hence for each g(3_¢.g,)=0, and £(2,£,0.9=2,|g.?=1. Therefore, by
fixed & we get&(£,)=2"2"3f(e)=-2"2"3(f(e)=-€(£,), and  Tchebishev's inequality17] we haveP{f;|\;|>M}<1/M?2
therefore £(¢,)=0. Similarly, for &, ¢’ we have £(&.€,1) for all M>1.

M= 2 Bilsy . s)expilts + oo +1D)

Sy,...5,€10,1}
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