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Why do we not see large macroscopic objects in entangled states? There are two ways to approach this
question. The first is dynamic. The coupling of a large object to its environment cause any entanglement to
decrease considerably. The second approach, which is discussed in this paper, puts the stress on the difficulty
of observeing a large-scale entanglement. As the number of particlesn grows we need an ever more precise
knowledge of the state and an ever more carefully designed experiment, in order to recognize entanglement. To
develop this point we consider a family of observables, called witnesses, which are designed to detect en-
tanglement. A witnessW distinguishes all the separable(unentangled) states from some entangled states. If we
normalize the witnessW to satisfyutrsWrduø1 for all separable statesr, then the efficiency ofW depends on
the size of its maximal eigenvalue in absolute value; that is, its operator normiWi. It is known that there are
witnesses on the space ofn qubits for whichiWi is exponential inn. However, we conjecture that for a large
majority of n-qubit witnessesiWiøOsÎn log nd. Thus, in a nonideal measurement, which includes errors, the
largest eigenvalue of a typical witness lies below the threshold of detection. We prove this conjecture for the
family of extremal witnesses introduced by Werner and Wolf[Phys. Rev. A64, 032112(2001)].
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I. INTRODUCTION

Why do we not see large macroscopic objects in en-
tangled states? There are two ways to approach this question.
The first is dynamic. The coupling of a large object to its
surroundings and its constant random bombardment from the
environment cause any entanglement that ever existed to dis-
entangle. The second approach—which does not in any way
conflict with the first—puts the stress on the wordwe. Even
if the particles composing the object were all entangled and
insulated from the environment, we would still find it hard to
observe the superposition. The reason is that, as the number
of particlesn grows, we need an ever more precise knowl-
edge of the state and an ever more carefully designed experi-
ment in order to recognize the entangled character of the
state of the object.

In this paper I examine the second approach by consider-
ing entanglements of multi-particle systems. For simplicity,
the discussion concentrates mostly on two-level systems, that
is, n-qubit systems wheren is large. An observableW that
distinguishes all the unentangled states from some entangled
states is called awitness. For our purpose it is convenient to
use the following definition: A witnessW satisfies
maxutrsWrdu=1, where the maximum is taken over all sepa-
rable statesr; while iWi.1, where iWi is the operator
norm, the maximum among the absolute values of the eigen-
values ofW. It is easy to see that this definition is equivalent
to the usual one[1].

For eachnù2 there is a witnessW, called the Mermin-
Klyshko operator[2], whose normiWi=Î2n−1 increases ex-
ponentially withn. The eigenvector at which this norm ob-
tains is called the generalized Greenberger-Horne-Zeilinger
(GHZ) state; it represents a maximally entangled system ofn
qubits. However, we shall see that this large norm is the
exception, not the rule. My aim is to show that the norm of a
majority of the witnesses grows very slowly withn, iWi

øOsÎn log nd, more slowly than the growth of the measure-
ment error. We shall prove this with respect to a particular
family of witnesses and formulate it as a conjecture in the
general case. This means that, unless the system has been
very carefully prepared in a specific state, there is a very
little chance that we shall detect multiparticle entanglement,
even if it is there.

II. WITNESSES AND QUANTUM CORRELATIONS

A. The two-particle case

Let A0,A1,B0,B1 be four Hermitian operators in a finite-
dimensional Hilbert spaceH such that Ai

2=Bj
2=1. On

H ^ H define the following operator:

W=
1

2
A0 ^ B0 +

1

2
A0 ^ B1 +

1

2
A1 ^ B0 −

1

2
A1 ^ B1. s1d

It is easy to see thatutrsWrduø1 for any separable stater on
H ^ H. This is, in fact, the Clauser, Horne, Shimony, and
Holt (CHSH) inequality[4]. Indeed, ifX0,X1,Y0,Y1 are any
four random variables taking the values ±1 then

− 1 ø
1

2
X0Y0 +

1

2
X0Y1 +

1

2
X1Y0 −

1

2
X1Y1 ø 1, s2d

as can easily be verified by considering the 16 possible cases.
Hencecij =EsXiYjd, the correlations betweenXi andYj, also
satisfy the inequalities

− 1 ø
1

2
c00 +

1

2
c01 +

1

2
c10 −

1

2
c11 ø 1. s3d

If r is a separable state onH ^ H we can represent trsrAi

^ Bjd as correlationscij between suchXi’s andYj’s. In other
words, the correlations can be recovered in a local hidden
variables model.
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From Eq.(2) three other conditions of the form Eq.(3)
can be obtained by permuting the twoX indices or the twoY
indices. The resulting constraints on the correlations form a
necessary and sufficient condition for the existence of a local
hidden variables model[5,6]. One way to see this is to con-
sider the four-dimensional convex hullC2 of the 16 real vec-
tors in R4:

sX0Y0,X0Y1,X1Y0,X1Y1d, Xi = ± 1, Yj = ± 1, s4d

and prove that an arbitrary four-dimensional real vector
sc00,c01,c10,c11d is an element ofC2 if, and only if, thecij

satisfy −1øcij ø1 and all the conditions of the type Eq.(3).
The inequalities, then, arefacetsof the polytopeC2.

By contrast with the classical case letr be a pure en-
tangled state onH ^ H. Then for a suitable choice ofAi’s and
Bj’s in Eq. (1) we haveutrsWrdu.1 [7], so the operatorsW of
this type are sufficient as witnesses for all pure entangled
bipartite states. To obtain a geometric representation of the
quantum correlations, letr be any state, denoteqij =trsrAi

^ Bjd, and consider the setQ2 of all four-dimensional vectors
sq00,q01,q10,q11d which obtain as we vary the Hilbert space
and the choice ofr, Ai, and Bj. The setQ2 is convex,
Q2.C2, but it is not a polytope. The shape of this set has
been the focus of a great deal of interest[8–12]. To get a
handle on its boundary we can check how the value ofiWi
changes with the choice ofAi’s and Bj’s. Cirel’son [8,9]
showed thatiWiøÎ2. This is a tight inequality, and equality
obtains already for qubits. In this case,H=C2 andAi =ssaid,
Bj =ssb jd are spin operators, witha0,a1,b0,b1 four direc-
tions in physical space. There is a choice of directions such
that iWi=Î2, and the eigenvectorsuflPC2 ^ C2 correspond-
ing to this value are the maximally entangled states.

B. The n-particle case: Werner-Wolf operators

Some of these results can be extended ton-particle sys-
tems, provided that the operators are restricted to two binary
measurements per particle. To account for classical correla-
tions consider 2n random variablesX0

1,X1
1;X0

2,X1
2; . . . ;X0

n,X1
n,

each taking the two possible values ±1. We shall parametrize
the coordinates of a vector in the 2n-dimensional real space
R2n

by sequencess=ss1, . . . ,sndP h0,1jn. Now, consider the

set of 22n real vectors inR2n
:

„as0, . . . ,0d, . . . ,ass1, . . . ,snd, . . . ,as1, . . . ,1d…,

ass1, . . . ,snd = Xs1

1 Xs2

2
¯ Xsn

n . s5d

Their convex hull inR2n
, denoted byCn, is the range of

values of all possible classical correlations forn particles and
two measurements per site. Werner and Wolf[3], and inde-
pendently Zukowski and Brukner[13], showed thatCn is a
hyperoctahedron and derived the inequalities of its facets.
These are 22

n
inequalities of the form

− 1 ø o
s1,. . .,sn=0,1

b fss1, . . . ,sndXs1

1 Xs2

2
¯ Xsn

n ø 1, s6d

where each inequality is determined by an arbitrary function
f: h0,1jn→ h−1,1j with

b fss1, . . . ,snd =
1

2n o
«1,. . .,«n=0,1

s− 1d«1s1+¯+«nsnfs«1, . . . ,«nd.

s7d

In other words, to each choice of functionf there corre-
sponds a choice of coefficientsb f. Sinceb f is the inverse
Fourier transform off on the groupZ2

n, we have by Plancher-
el’s theorem[14]

o
s

ub fssdu2 =
1

2no
«

ufs«du2 = 1 s8d

Using the analogy with the bipartite case let
A0

1,A1
1, . . . ,A0

n,A1
n be 2n arbitrary Hermitian operators in a

Hilbert spaceH, satisfyingsAi
jd2=1. The quantum operators

corresponding to the classical facets in Eq.(6) are the
Werner-Wolf operatorson H^n given by

Wf = o
s1,. . .,snPh0,1j

b fss1, . . . ,sndAs1

1
^ ¯ ^ Asn

n . s9d

It is easy to see from Eq.(6) that utrsrWfduø1 for every
separable stater and all the f ’s. However, the inequalities
may be violated by entangled states. LetQn be the set of all
vectors in R2n

whose coordinates have the form
qss1, . . . ,snd=trsrAs1

1
^ ¯ ^ Asn

n d for some choice of stater
and operatorsAi

j as above. The setQn is the range of possible
values of quantum correlations, and it is not difficult to see
that Qn is convex andQn.Cn. To obtain information about
the boundary ofQn we can examine howiWfi varies as we
change theAi

j’s. In this case too it was shown[3] that for
each fixedf the maximal value ofiWfi is already obtained
when we chooseH=C2 and theAi

j’s to be spin operators.
Therefore, without loss of generality, consider

Wf = o
s1,. . .,snPh0,1j

b fss1, . . . ,sndssas1

1 d ^ ¯ ^ ssasn

n d,

s10d

where a0
1,a1

1, . . . ,a0
n,a1

n are 2n arbitrary directions. We can
calculate explicitly the eigenvalues ofWf [3,15]. Let zj be
the direction orthogonal to the vectorsa0

j ,a1
j , j =1, . . . ,n. De-

note byu−1l j andu1l j the states “spin down” and “spin up” in
the zj direction; so the vectorsuv1,v2, . . . ,vnl, v
=sv1,v2, . . . ,vndP h−1,1jn form a basis for then-qubit
space. Letx j be orthogonal tozj and let us

j be the angle
betweenas

j andx j, s=0, 1. For eachf there are 2n eigenvec-
tors of Wf which have the generalized GHZ form

uC fsvdl =
1
Î2

seiQsvduv1,v2, . . . ,vnl + u− v1,− v2, . . . ,−vnld,

s11d

and the corresponding eigenvalue
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l fsvd = eiQsvd o
s1,. . .,snPh0,1j

b fss1, . . . ,snd

3expisv1us1

1 + ¯ + vnusn

n d, s12d

whereQsvd in Eqs.(11) and (12) is chosen so thatl fsvd is
a real number. Hence

iWfi = max
v

ul fsvdu. s13d

As in the CHSH case we can check how largeiWfi can
become asa0

j ,a1
j range over all possible directions. Using

Eqs.(12) and (13) we see that

max
a0

j ,a1
j
iWfi = max

u0
1,u1

1,. . .,u0
n,u1

n
U o

s1,. . .,snPh0,1j
b fss1, . . . ,snd

3expisus1

1 + ¯ + usn

n dU , s14d

with the maximum on the left taken over all possible choices
of directionsa0

1,a1
1, . . . ,a0

n,a1
n. The Mermin-Klyshko opera-

tors [2], mentioned previously, correspond to a particular
choice of f0: h0,1jn→ h−1,1j anda0

j ,a1
j , with the result that

iWf0
i=Î2n−1. This is the maximal value of Eq.(14) possible.

The maximum value is attained by a small minority of the
operatorsWf; only those that are obtained fromWf0

by one
of the n!22n+1 symmetry operations of the polytopeCn [as
compared with the total of 22

n
of facets in Eq.(6)].

In any case, for mostf ’s there is a choice of angles such
that Wf is a witness. This means that, in addition to the fact
that, utrsrWfduø1 for every separable stater, we also have
iWfi.1. The 2n exceptional cases are those in which the
inequality in Eq.(6) degenerates into the trivial condition
1øXs1

1 Xs2

2
¯Xsn

n ø1. All the other Wf’s are witnesses. The
reason is that all inequalities of type Eq.(6) are obtained
from the basic inequalities forC2 (including the trivial ones)
by iteration[3]. If the iteration contains even one instance of
the type Eq.(2) the corresponding operator can be chosen to
violate the CHSH inequality.

III. RANDOM WITNESSES

A. Typical behavior of maxa0
j ,a1

j‖Wf‖
Although the norm ofiWfi can reach as high asÎ2n−1 this

is not the rule but the exception. Our aim is to estimate the
typical behavior of maxa0

j ,a1
j iWfi as we letf range over all its

values(and the maximum is taken over all directionsa0
j ,a1

j ).
To do that, consider the set of all 22n

functions f: h0,1jn

→ h−1,1j as a probability space with a uniform probability
distributionP, which assigns probability 2−2n

to each one of
the f ’s. Then, for each set of fixed directionsai

j, we can look
at iWfi as a random variable defined on the space off ’s.
Likewise, maxa0

j ,a1
j iWfi in Eq. (14) is also a random variable

on the space off ’s, for which we have the following theo-
rem.

Theorem 1. There is a universal constantC such that

Phf ;max
a0

j ,a1
j
iWfi . CÎn log nj → 0 asn → `. s15d

The proof of this result is based on the theorem of Salem,
Zygmund, and Kahane[16] and is given in the Appendix.
This means that for the vast majority of thef ’s the violation
of the classical inequalities Eq.(6) is small. Accordingly, the
boundary ofQn is highly uneven about the facets ofCn; it
does not extend far above most of the facets ofCn, but oc-
casionally it has an extended exponential hump.

The expected growth oful fu is even slower when the di-
rectionsai

j (or the anglesui
j) are fixed. As a direct conse-

quence of Tchebychev’s inequality[17], we get the follow-
ing.

Proposition 1. For l f in Eq. (12) we have for allM .1:
Phf ; ul fu.Mjø1/M2.

(See the Appendix for details.) This means that most of
the eigenvalues of theWf’s are bounded within a small
sphere. The application of a randomly chosenWf to any of
its eigenstatesuC fsvdl in Eq. (12) is unlikely to reveal a
significant violation of Eq.(6).

B. The random witness conjecture

For appropriate choices of angles the Werner-Wolf opera-
tors Eq. (10) are, with very few exceptions, entanglement
witnesses on the space ofn qubits. They are very special
witnesses for two reasons. First, they are local operators.
This means that if we possess many copies of a system made
of n qubits, all in the same stateuFl, we can measure the
expectationkFuWfuFl by performing separate measurements
on each qubit of the system. Second, even as local observ-
ables the Werner-Wolf operators are special, because of the
restriction to two measurements per particle. Indeed, one
would have liked to extend the results beyond this restric-
tion, and obtain all the inequalities for any number of mea-
surements per site, but this problem isNP hard even forn
=2 (see[18]).

However, theWf’s are the most likely to be violated
among the local operators with two measurements per site,
because they are derived from the facets ofCn. Moreover, we
already noted that all the norm estimates are also valid for
the wider family given in Eq.(9), with theAj

i ’s acting on any
finite-dimensional space, and satisfyingsAj

i d2= I. Hence, the
estimate of Theorem 1 includes many more witnesses than
those given in Eq.(10). To an n-qubit system we can add
auxiliary particles and use quantum and classical communi-
cation protocols. As long as our overall measurement is in
the closed convex hull of operators of the form

W= o
s1,. . .,skPh0,1j

b fss1, . . . ,skdAs1

1
^ ¯ ^ Ask

k , s16d

with theAj
i ’s satisfyingsAj

i d2= I, andkøOsnd, the estimate of
Theorem 1 holds.

Hence, there is a reason to suspect that the typical behav-
ior of the Werner-Wolf operators is also typical of general
random witnesses. A random witness is an observable drawn
from the set of all witnessesW with uniform probability. It is
easy to give an abstract description ofW. Consider the space
of Hermitian operators onsC2d^n; it has dimensiondn

=2n−1s2n+1d. For a Hermitian operatorA define the norm
ffAgg=supiAua1l¯ uanli where the supremum ranges over
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all choices of unit vectorsuailPC2. Denote the unit sphere in
this norm byK1=hA; ffAgg=1j. It is a hypersurface of di-
mensiondn−1, which is equipped with the uniform(Le-
besgue) measure, and its total hyperarea is finite. Now, de-
note byK2 the normal unit sphereK2=hA; iAi=1j. Here, as
usual,iAi=supiAuFli is the operator norm, where the supre-
mum is taken over all unit vectorsuFl. The set of witnesses
is W=K1\K2. Note that ifAPW then necessarilyiAi.1. It
is not difficult to see thatW is relatively open inK1, and
therefore has a nonzero measure inK1. We consider the set
of all witnessesW on sC2d^n and the normalized Lebesgue
measureP on it.

Conjecture 1. There is a universal constantC such that

PhWP W; iWi . CÎn log nj → 0 asn → `. s17d

C. Discussion

Assume the conjecture is valid and consider the following
highly ideal situation. A macroscopic object(a single copy of
it) is prepared in a state unknown to us and is carefully kept
insulated from environmental decoherence. Since the state is
unknown we randomly choose a witnessW to examine it.
Now, suppose that we hit the jackpot and the system happens
to be in an eigenstate ofW; in fact, the eigenstate corre-
sponding to its maximum eigenvalue(in absolute value).
This means, in particular, that the state of the system is en-
tangled; but can we detect this fact usingW? A measurement
of a witnesson a single copyis a very complicated affair
[just think about any one of theWf’s in Eq. (10)]. Such a
measurement invariably involves manipulations of the indi-
vidual particles. If we make the reasonable assumption that
each such manipulation introduces a small independent error,
we obtain a total measurement error that grows exponentially
with n. By the random witness conjecture Eq.(17), this
means that we are unlikely to see a clear nonclassical effect.
The typical witness is a poor witness.

A natural question to ask is why should we consider the
uniform measure over witnesses as the correct probability
measure? In other words, why is a witness chosen at random
according to the uniform measure typical? The answer is
implicit in the situation just described; we assume that we
lack any knowledge of the state, and therefore have no rea-
son to give a preference to one witness over another. The
point is that our choice is not going to workeven if we are
lucky. At any rate, cases in which very little is known about
the quantum state of a macroscopic object are not rare.

Moreover, there is a reason to believe that a result about
the uniform distribution is also relevant to the case where
partial information about the state is available. In this case
we should modify the uniform distribution and condition it
on the additional available constraints. However, there is an
exponential gap between the typical witness norm in Eq.(17)
and the norm required for a successful measurement. This
means that the additional information should be pretty accu-
rate to be of any help. Moreover, it is possible that we will
not be able to witness the entanglement of manyprecisely
knownstates, because, quite likely, even the best witnesses
for such states have small norms.

If this is true for an idealized situation of an isolated sys-
tem it is all the more true with respect to the “measurements”
performed by our sensory organs on macroscopic objects.
Arguably, one can associate with observation, in the every-
day nontechnical sense, a quantum mechanical operator.
However, it does not seem to be an entanglement witness,
and even on the happy occasion that it is, it is not likely to
reveal anything. So even if a macroscopic quantum interfer-
ence (cat) state miraculously avoided decoherence and re-
mained in an entangled state, I would be unlikely to see
anything nonclassical about this state.

Note that this analysis is not meant as a solution to the
measurement problem. The measurement problem is a di-
lemma that concerns those realists who maintain that the
quantum state is a part of physical reality(and not merely
our description of it). For these realists the fact that the cat
state can be in a dead-alive superposition is itself a problem,
regardless of whether we can actually detect such a state in
practice. The present discussion is agnostic with respect to
the reality of the quantum state, and strives to explain why
large things would hardly everappear to us nonclassical
even if decoherence were turned off.

All this does not mean, of course, that we cannot see
large-scale entanglements. There are two cases in which this
may happen. First, when a system has been carefully pre-
pared in a known, highly entangled state[say, the general-
ized GHZ state Eq.(11)] and its coherency has been main-
tained. Then we may be able to tailor an experiment to verify
this fact. Hopefully, this will happen when quantum comput-
ers are developed. However, asn grows the task becomes
exponentially more difficult. Second, a macroscopic en-
tanglement may be observed when the system is in a state for
which some thermodynamic observable serves as a witness.
By thermodynamic observable I mean an operator that can
be measured without manipulating individual particles, but
rather by observing some global feature of the object.

There is some analogy between the present approach to
multiparticle systems and the point made by Khinchin on the
foundations of classical statistical mechanics[19,20]. While
thermodynamic equilibrium has its origins in the dynamics
of the molecules, many of theobservablequalities of multi-
particle systems can be explained on the basis of the law of
large numbers. The tradition that began with Boltzmann
identifies equilibrium with ergodicity. The condition of er-
godicity ensures that every integrable function has identical
phase-space and long-time averages. However, Khinchine
points out that this is an overkill, because most of the inte-
grable functions do not correspond to macroscopic(that is,
thermodynamic) observables. If we concentrate on thermo-
dynamic observables, which involve averages over an enor-
mous number of particles, weaker dynamical assumptions
will do the job.

I believe that a similar answer can be given to our original
question, namely, why we do not see large macroscopic ob-
jects in entangled states. Since decoherence cannot be
“turned off” the multiparticle systems that we encounter are
never maximally entangled. But even if the amount of en-
tanglement that remains in them is still significant,wecannot
detect it, because the witnesses are simply too weak.
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APPENDIX

In the proof of Theorem 1 we shall rely on a theorem in
Fourier analysis due to Salem, Zygmund, and Kahane[16].
Our aim is to consider random trigonometric polynomials.
So letsV ,S ,Pd be a probability space, whereV is a set,S a
s algebra of subsets ofV, and P :S→ f0,1g a probability
measure. For a random variablej on V denote byEsjd
=eVjsvddPsvd the expectation ofj. A real random variable
j is called subnormal if E(expsljd)øexpsl2/2d for all
−`,l,`.

A trigonometric polynomial inr variables is a function on
the torusTr given by

gstd = gst1,t2, . . . ,trd = o bsk1,k2, . . . ,krdeisk1t1+k2t2+¯+krtrd,

sA1d

where the sum is taken over all negative and nonnegative
integers k1,k2, . . . ,kr which satisfy uk1u+ uk2u+¯ + ukruøN.
The integerN is calledthe degree of the polynomial. Denote
igi`=maxt1,. . .,tr

ugst1,t2, . . . ,trdu.
Theorem 2. (Salem, Zygmund, Kahane) Let j jsvd, j

=1,2, . . . ,J, be a finite sequence of real, independent, sub-
normal random variables onV. Let gjstd, j =1,2, . . . ,J, be a
sequence of trigonometric polynomials inr variables whose
degree is less than or equal toN, and such thato jugjstdu2
ø1 for all t. Then

PHv;io
j=1

J

j jsvdgjstdi` . CÎr log NJ ø
1

N2er sA2d

for some universal constantC.
Note that the formulation here is slightly different from

that in [16], but the proof is identical. Our probability space
V is the set of all functionsf : h0,1jn→ h−1,1j with the uni-
form distribution which assigns each such functionf a
weight 2−2n

. On this space consider the 2n random variables
j«sfd defined for each«=s«1, . . . ,«ndP h0,1jn by

j«sfd = fs«d. sA3d

Now, note thatf PV if and only if −f PV; hence for each
fixed « we getEsj«d=2−2n

o f fs«d=−2−2n
o f fs«d=−Esj«d, and

thereforeEsj«d=0. Similarly, for «, «8 we haveEsj«j«8d

=ds« ,«8d and so on; the 2n random variablesj«sfd are inde-
pendent. Now, by a similar argument

E„expslj«d… = 2−2no
f

expflfs«dg

= 2−2no
f

1

2
hexpflfs«dg + expf− lfs«dgj

=
1

2
sel + e−ld ø el2/2. sA4d

To define the trigonometric polynomials note that by Eqs.
(7) and (A3)

o
s1,. . .,snPh0,1j

b fss1, . . . ,sndexpists1

1 + ¯ + tsn

n d

=
1

2no
«

fs«do
s

s− 1d«1s1+¯+«nsnexpists1

1 + ts2

2 + ¯ + tsn

n d

= o
«

fs«d
1

2np
j=1

n

fexpit0
j + s− 1d« jexpit1

j g = o
«

j«sfdg«std

sA5d

with

g«std = 2−np
j

fexpit0
j + s− 1d« jexpit1

j g. sA6d

The polynomialsg«std do not depend onf, have 2n variables
t0
j , t1

j , j =1,2, . . . ,n, and their degree isn. We shall prove that
o«ug«stdu2=1 for all t. Indeed, ug«stdu2=2−2nup jf1
+s−1d« jexpsif jdgu2, with f j = t1

j − t0
j . But u1+expif ju2

=4cos2sf j /2d and u1−expif ju2=4sin2sf j /2d and therefore
o«ug«stdu2=p jfcos2sf j /2d+sin2sf j /2dg=1.

From Eqs.(14) and (A5) we get

max
a0

j ,a1
j
iWfi = Io

«

j«sfdg«stdI
`

. sA7d

Hence, we can apply the Salem-Zygmund-Kahane in-
equality Eq.(A2) to the present case, withN=n andr =2n, to
obtain Theorem 1.

To prove Proposition 1 considerul fu as a random variable
on the space off ’s. By Eq. (12) we get

ul fu = U o
s1,. . .,snPh0,1j

b fss1, . . . ,sndexpists1

1 + ¯ + tsn

n dU
sA8d

with tsj

j =v jusj

j . By Eq. (A5) we get ul fu= uo«j«sfdg«stdu. But
Eso«j«g«d=0, and Esuo«j«g«u2d=o«ug«u2=1. Therefore, by
Tchebishev’s inequality[17] we havePhf ; ul fu.Mjø1/M2

for all M .1.
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