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The radial equation of a simple potential model has long been known to yield an exponential survival law in
a lowest-order(Breit-Wigner) approximation. We demonstrate that if the calculation is extended to fourth
order, the survival law exhibits a parabolic short-time behavior which leads to the quantum Zeno effect. This
model has further been studied numerically to characterize the extra exponential time parameter which com-
pliments the lifetime. We also investigate the inverse Zeno effect.
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I. INTRODUCTION

The exponential survival law is known to be an excellent
phenomenological fit to unstable phenomena. However, there
is no rigorous derivation of this law in quantum mechanics.
Most textbook derivations are “classical” in nature since they
refer only to decay probabilities. In quantum mechanics, one
would require an exponential time dependence for the sur-
vival amplitude[1]. To achieve this one must make approxi-
mations. Standard procedure is to consider a tunneling pro-
cess, as we do in this paper. Some earlier important
theoretical papers upon tunneling are given in Ref.[2].

Quantum mechanics allows us to say that the survival
probability Pstd is definitely not exponential for short and
long times. For short times it can be argued that a power
expansion int must lack a linear term—i.e.sdP/dtdt−0=0.
This result when combined with the hypothesis of “frequent”
measurements leads to what is known as the quantum Zeno
effect (QZE) [3]. It was first named the quantum Zeno para-
dox by Misra and Sudarshan[4] precisely because it was
considered a false result[5]. Nowadays, the QZE is generally
acknowledged as a real phenomenon and indeed there are a
number of experiments which claim to have verified it and
others are planned[6]. Once accepted, it is even possible to
predict the QZE within a classical calculation[7]. As for the
long-time behavior, this is predicted to be a power law be-
havior in t. This latter result can be derived even for a Breit-
Wigner spectrum by imposing a low-energy cutoff[8]
(which is expected on physical grounds). The long-time
property ofPstd will not be treated specifically in this paper
but it is referred to in the concluding sections.

Returning to the short-time behavior, the simplest demon-
stration of the nonexponential behavior of the survival law is
based upon the Hermitian nature of the Hamiltonian[9]
(when all channels are considered). Consider a stateucstdl
initially in a (quasibound) state represented byucs0dl= uc0l.
It is assumed thatuc0l can “decay” into another or other
states. At timet the state will have evolved into

ucstdl = exps− iHtduc0l,

where H is the Hamiltonian. Expanding in a power series
of t,

ucstdl = f1 − iHt − 1
2H2t2 + Ost3dguc0l.

The amplitude for nondecay is given, up to a possible phase,
by

kc0ucstdl = 1 − ikc0uHuc0l − 1
2kc0uH2uc0lt2 + Ost3d

; 1 − ikHl0t − 1
2kH2l0t

2 + Ost3d,

where k l0 stands for the average over the stateuc0l from
which the nondecay probability is

Pstd ; ukc0ucstdlu2

= 1 − iksH − H+dl0 − 1
2skH2l0 + kH+2l0

− 2kHl0kH+l0dt2 + Ost3d.

Now, usingH=H+, we find

Pstd = 1 − t2skH2l0 − kHl0
2d + Ost3d.

The linear term int which corresponds to the linear term in
H has canceled. Of course this derivation assumes the exis-
tence ofkH2l0, in addition tokHl0. It is useful to observe at
this point that if this demonstration were extended to all
powers int, then not only would the linear term vanish, but
all odd powers oft would vanish. We shall return to this
when we discuss some numerical calculations in Sec. IV.

The QZE merits a name(even if this choice is not quite
appropriate) because it implies a potentially spectacular
phenomenon—the prediction that “frequent” short-time tests
of the state of an unstable system will inhibit its decay. Much
has been written upon this, in particular upon the question of
what may constitute an “observation” or test of the system.
We wish to add here only a comment upon this fascinating
subject. A measurement of a system normally produces a
collapse of the wave function. It is therefore perfectly rea-
sonable to expect that observations should modify, for ex-
ample, the survival law. However, the exponential curvee−t/t

is unique in this respect because it is not altered by measure-
ments. This fact is connected to the mathematical feature that
the average valuekst− t0dl from t0 to ` (lifetime) is inde-
pendent of the lower limit. This is the reason one does not
need to know when the, otherwise identical, unstable par-
ticles in a “sample” were created in order to measure their
lifetime. Even if each had been created at a different time,
one can treat them as if “newly created” at the conventional
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time t0. In more colorful terms, a series of operations of “cut
and paste”(measurements) is undetectable only if performed
upon a single-exponential function. The QZE is thus a con-
sequence of a particular example of the nonexponential na-
ture ofPstd. What is somewhat peculiar is that the absence of
the linear term int is more important(because in principle
more easily verifiable) than the absence of any other or in-
deed of all the other odd powers oft.

In this paper we wish to examine the survival law with the
aid of a particular potential model(Sec. II), already used in
the literature for a derivation of the exponential law, albeit as
an approximation[10]. In Sec. III, we will repeat this deri-
vation with particular emphasis upon the assumptions and
approximations that lead to the exponential law. We will then
go beyond the lowest-order calculation(Breit-Wigner form)
to a two-pole approximation. Recently a two-pole approxi-
mation in a quantum field model was introduced by Facchi
and Pascazio[11]. In Sec. IV, we shall show that at this more

sophisticated level we predict the necessary conditions for
the QZE. Indeed, we speculate in the Conclusions that only
the lowest-order approximation loses this effect. In Sec. V,
we present the results of some numerical calculations and in
particular the dependence of an extra time constant upon the
parameters of the model. We will phenomenologically pa-
rametrize these dependences. We conclude in Sec. VI with a
summary of our results, a discussion of the “inverse Zeno
effect” [12] (described in Sec. V), and some observations
upon the significance of the extra time parameters.

II. POTENTIAL MODEL

The starting point of our analysis is the three-dimensional
Schrödinger equation for a particle of massm in a spheri-
cally symmetric potentialVsrd—i.e., a function only of the
magnituder of r . Explicitly, we will use

While our subject matter is not a stationary-state problem, it
can be conveniently analyzed with the use of the stationary-
state solutions, each of which has a simple(phase) time de-
pendence. Due to the spherical symmetry of the potential
energy and its time independence, the Schrödinger equation

F−
¹2

2m
+ VsrdGcsr ,td = i

]

]t
csr ,td s1d

can be separated by using the energy eigenstates

csr ,td = REsrdYl
msu,fdexps− iEtd,

where Yl
msu ,fd are the spherical harmonics. Thus Eq.(1)

yields the well-known time-independent equation

F−
1

2m
S ]2

]r2 +
2

r

]

]r
D +

lsl + 1d
2mr2

+ VsrdGREsrdYl
msu,fd

= EREsrdYl
msu,fd. s2d

For a given value ofE and angular momentum, there are two
linearly independent solutions of the above second-order
equation, which at the origin go liker l or 1/r l+1. However,
those which behave like 1/r l+1 must be rejected since it can
be shown thatYl

msu ,fd / r l+1 is not a solution of the above
eigenvalue equation forr =0. This is because the Laplacian
of Yl

msu ,fd / r l+1 involves thelth derivative of the Dirac delta
function dsr d [1].

Henceforth, we shall limit our attention tos-wave solu-
tions sl =0d and, consequently, the previous equation reduces
to

F−
1

2m
S ]2

]r2 +
2

r

]

]r
D + VsrdGREsrd = EREsrd, s3d

with REs0d which, in accordance with our previous discus-
sion, is a constant. If we now put

REsrd = uEsrd/r ,

we obtain the equation for the modified radial wave function
uEsrd:

uE9srd = 2mfVsrd − EguEsrd, s4d

where the prime stands ford/dr. The acceptable solution of
Eq. (4) must go to zero at the origin,uEs0d=0. The standard
procedure for finding the stationary solutions can now be
applied. The general solutions foruEsrd andany E,V0 in the
three regions are
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uEsrd = 5C1sinskrd fk = Î2mEg region 1: 0 , r , a

C2e
rr + D2e

−rr fr = Î2msV0 − Edg region 2: a , r , b,

C3e
ikr + D3e

−ikr region 3: b , r .

s5d

The requirement of continuity ofuE and uE8 at r =a,b (a
direct consequence of the differential equation foruE) can be
conveniently expressed in matrix form as

F C1 sinskad
kC1 cosskad G = S era e−ra

rera − re−raDFC2

D2
G

and

S eikb e−ikb

ikeikb − ike−ikbDFC3

D3
G = S erb e−rb

rerb − re−rbDFC2

D2
G .

EliminatingC2 andD2, we obtainC3 andD3 in terms ofC1:

FC3

D3
G =1e−ikb −

i

k
e−ikb

eikb i

k
eikb 2S erb e−rb

rerb − re−rbD1e−ra 1

r
e−ra

era −
1

r
era2

3F sinskad
k cosskad GC1/4. s6d

From this equation it is straightforward to show thatuC3u
= uD3u. The solutions in region 3 involve waves “moving” in
both directions.

The normalization of theuEsrd is determined by the stan-
dard condition for a continuous spectrum:

E
0

+`

dr uEsrduE8
* srd = dsE − E8d. s7d

We recall that the definition ofREsrd=uEsrd / r eliminates the
factorr2 in the integration variablessd3r =r2dr dVd while the
4p from the angular integration is accounted for in the defi-
nition of the spherical harmonicYo

0. The above normalization
condition is dominated by region 3 since it has an infinite
range and determines uniquelyuC3us=uD3ud

suC3u2 + uD3u2dE
0

+`

dr expfisk − k8drg

= mdsk − k8d/k sk,k8 ù 0d,

whence

uC3u2 = uD3u2 = m/s2pkd. s8d

With this condition we can calculate all the other coefficient
moduli. We shall need in what follows the explicit value of
uC1u2. From Eq.(6), after some manipulations, we find

uC3u =
1

4
Uexpfrsb − adga+S1 − i

r

k
D

+ expf− rsb − adga−S1 + i
r

k
DUuC1u, s9d

where

a± = sinskad ±
k

r
cosskad.

whence, by using Eqs.(8) and (9),

uC1u2 =
8mk

p
hfexps2arwda+

2 + exps− 2arwda−
2gsk2 + r2d

+ 2a+a−sk2 − r2dj−1, s10d

where

w = sb − ad/a.

Now, exps2arwd can be considered to bea very large num-
ber for the purposes of this study. This can always be guar-
anteed forE,V0 by increasing the widthb−a of the poten-
tial. Under these conditions, in general the energy eigenstates
have small values ofuC1u because of the large value of the
first term in the square brackets above. There exist however,
quasistationary states defined bya+=0 when the opposite is
true. These quasistationary energy levels coincide with the
discrete spectrum of an associated potential model:
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The energy eigenvalues of this auxiliary potential, indicated
generically byE0 in the following, are given by the solutions
of the transcendental equationa+=0—i.e.,

tansak0d = − k0/r0, s11d

wherek0=Î2mE0 andr0=Î2msV0−E0d. The explicit values
for a givenV0 and well sizea can be calculated numerically
when needed. We shall name the eigenfunctions of this sec-
ond potentialu0srd:

u0srd = Hc1 sinsk0rd, region 1: 0 , r , a,

d2 exps− r0rd, region 2: a , r .
s12d

The continuity conditions foru0srd andu08srd yield both the
transcendental equation(11) and

c1 = ±d2 exps− r0adÎk0
2 + r0

2/k0. s13d

Finally, from the normalization ofu0srd we obtain

uc1u2 = 2r0/s1 + ar0d. s14d

III. BREIT-WIGNER APPROXIMATION

In the previous section, we outlined the potential model
and introduced the variables and wave functions, including
that of the auxiliary potential with bound statesu0srd whose
energy eigenvalues equal those of the quasistationary ener-
gies of our potential. We begin here by assuming that ini-
tially our radial state isu0srd. Since this is not an eigenstate
of our potential but of the auxiliary potential, it will not
remain localized permanently but eventually leak into region
3 through tunneling. To be more preciseu0srd already has a
small tail outside the potential barrier; however, this can be
safely neglected as we do in Eq.(18) below.

We now decomposeu0sr ,t=0d into energy eigenstates
uEsrd,

u0sr,t = 0d ; u0srd =E
0

+`

dE g0sEduEsrd,

from which it follows that

u0sr,td =E
0

+`

dE g0sEduEsrde−iEt. s15d

The spectrumg0sEd is explicitly derived in Eqs.(18) and
(19) below. At any timet.0, the amplitude for finding the
particle still in the quasistationary stateu0srd is given by

E
0

+`

dr u0
*sr,0du0sr,td, s16d

and hence the nondecay or survival probabilityPstd is

Pstd = UE
0

+`

dr u0
*sr,0du0sr,tdU2

= UE
0

+`

dEg0sEde−iEtE
0

+`

dE8g0
*sE8dE

0

+`

dr uE8
* srduEsrdU2

,

which, after using the normalization condition, Eq.(7), be-
comes

Pstd = UE
0

+`

dEug0sEdu2e−iEtU2

. s17d

The index upong0sEd reminds us that we have chosen one of
the possible many quasistationary statesE0. To determine
g0sEd we use

E
0

+`

dr uE
* srdu0sr,0d =E

0

+`

dE8g0sE8dE
0

+`

dr uE
* srduE8

srd

= g0sEd.

The left-hand side of this equation can easily be calculated if
one assumesb@a so thatu0sr ,0d can be considered negli-
gible for r .b. This is the first of the approximations made.
Now, as we shall see, for suitable choices of parameters,
g0sEd is highly peaked around the quasienergyE0 (second
approximation compatible with the first). In these cases, the
function uEsrd does not, practically, differ fromu0sr ,0d in
regions 1 and 2 except for its normalization. We may then
approximate the above integral to an integral over only re-
gions 1 and 2 and use

uE
* srd < C1u0

*sr,0d/c1 sr , bd,

whence forE aroundE0

g0sEd < sC1/c1dE
a

b

dru0
*sr,0du0sr,0d

< sC1/c1dE
0

+`

dru0
*sr,0du0sr,0d = C1/c1, s18d

otherwise

g0sEd < 0. s19d

By using Eqs.(10) and (14), we then obtain(for E around
E0)

ug0sEdu2 <
4mks1 + ar0d

pr0
hfexps2arwda+

2 + exps− 2arwda−
2g

3sk2 + r2d + 2a+a−sk2 − r2dj−1.

For convenience, we now make a change of variables fromE
and t, to s and t̃, by defining the dimensionless quantities

s = ak and t̃ = t/s2ma2d.

Henceforth, we will indicate byE0 the choseninitial quasis-
tationary eigenvalue. In these new variables,
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Pstd = f4s1 + ar0d/apr0g2UE
0

+`

dsfexps− is2t̃ d/fssdgU2

,

s20d

where

fssd = HFexps2Î2ma2V0 − s 2wdSsins +
s coss

Î2ma2V0 − s 2D2

+ exps− 2Î2ma2V0 − s 2wdSsins

−
s coss

Î2ma2V0 − s 2D2G
3

2ma2V0

s 2 + 2Ssin2 s −
s 2 cos2 s

2ma2V0 − s 2D
3

2ss 2 − ma2V0d
s 2 J . s21d

In accordance with our second approximation, we will as-
sume that 1/fssd is peaked abouts0 corresponding to the

quasistationary energyE0ss0=aÎ2mE0d. We then expand
fssd arounds0 and keep only up to quadratic terms inDs
=s−s0. The validity of the peaked form is not in question. It
can eventually be verifieda posteriori. However, our as-
sumption neglects terms of ordersDsd3 and higher. We shall
indicate this fact by a superscript 2 onfssd:

f f2gssd = exps2ar0wdfs1 + ar0dsk0
2 + r0

2dg2fss − s0d2

− ess − s0d + g2g/a2k0
2r0

4, s22d

where

e = exps− 2ar0wd
4ak0r0

2sk0
2 − r0

2d
s1 + ar0dsk0

2 + r0
2d2 , g =

1

2

k0
2 + r0

2

k0
2 − r0

2e.

By convention we chooseg to be positive. The linear term in
Ds with coefficiente can be eliminated by a shift in vari-
ables yielding a Breit-Wigner form for thes (and hence
energy) spectrum. However, we shall not do this here since
we intend to generalize the above formula to fourth order in
the next section, and then it is not in general possible to
eliminate by a shift both of the odd powers inDs.

The quadratic expression in square brackets in Eq.(22)
has two complex-conjugate zeros which appear as poles in
our integrand forPstd. These are at

s = s0 +
k0

2 − r0
2

k0
2 + r0

2g ± i
2k0r0

k0
2 + r0

2g ; x0 ± iy0, s23d

with x0 andy0 the real and imaginary parts ofs, respectively.
The integral in Eq.(20) is thus proportional to

E
0

+`

ds exps− is2t̃ dfss − z0dss − z0
*dg−1,

with z0=x0+ iy0. Since by assumption this integral is sharply
peaked abouts0 we can formally extend the lower limit of
the integral from 0 to −̀ . This is the third approximation

in this derivation. The theorem of residues then yields

E
−`

+`

dzexps− iz2t̃ dfsz− z0dsz− z0
*dg−1 = sp/y0dexps− iz0

*2 t̃ d.

Taking the square of the modulus of this we finally obtain,
after some simple algebraic manipulations,

Pstd = expS−
2x0y0

ma2 tD . s24d

The above expression is of the desired exponential form

Pstd = exps− t/t0d, s25d

normalized (automatically) to Ps0d=1 and with predicted
lifetime

t0 =
ma2

2x0y0
. s26d

The narrow width of the Breit-Wigner assumed in the deri-
vation is guaranteed ifg!1 which corresponds to
exps2ar0wd@1. This is just the condition anticipated in the
previous section. Thus, for the validity of the above deriva-
tion the choices ofE0, V0, andb−a must be such as to satisfy
this condition. In all our subsequent numerical calculations
this is indeed the case.

IV. HIGHER-ORDER CORRECTIONS

The calculation in the previous section is a nonrelativistic
quantum mechanical derivation of the exponential law. It is
incompatible with the existence of an experimental QZE, and
if repeated for negative(as well as positive) values oft, it
yields the nonanalytic expression

Pstd = expf− utu/tg.

This satisfies the symmetry propertyPs−td=Pstd (time rever-
sal invariance) consistent with the absence of all odd powers
of t (Sec. I), but it cannot be expressed as a power series
in t.

What is surprising, at first, is the following: IfPstd is
calculated by evaluating the integral in Eq.(20) numerically
for varioust and, then, for smallt, fit with a polynomial, we
find the odd powers oft greatly suppressed. That is, the
numerical calculation is far nearer to what one may have
expected,a priori, on the basis of the arguments in our in-
troduction. ThisPnumstd is practically an even function int,
and in particular the linear term int is almost zero. To un-
derstand this we recall the expression of the nondecay am-
plitude [see Eq.(17)]:

Pstd = UE
0

+`

dEug0sEdu2e−iEtU2

< UE
−`

+`

dEug0sEdu2fcossEtd + i sinsEtdgU2

.

The terms in square brackets are bounded and by assump-
tions theug0sEdu2 is highly peaked aroundE=E0 and tends to

SURVIVAL LAW IN A POTENTIAL MODEL PHYSICAL REVIEW A 70, 022101(2004)

022101-5



zero at least likesE−E0d−2 whenE→ ±`. The odd terms in
t lie in the sine term which is pure imaginary. Hence, on
taking the square of the modulus, all odd powers oft disap-
pear and our numerical calculation simply reflects this. In-
deed the presence of the very small odd terms int can simply
be attributed to rounding errors. Note that this result is de-
rived for aBreit-Wigner spectrum, which is consequently not
in itself a sufficient condition for obtaining the exponential
law. Thus our numerical integral of the Breit-Wigner would
seem to be a better approximation to the curvePstd than the
analytically derived exponential law. The following higher-
order approximation confirms how difficult it is to derive a
simple exponential result.

We now generalize the calculation of the previous section
by expandingfssd up to fourth order inDs. We evaluate
f f4gssd as an improved approximation to the Breit-Wigner
case. The rest of the procedure remains the same. Up to
second order we obtained Eq.(24). Now, we must evaluate

E
−`

+`

dzexps− iz2t̃ dfsz− z1dsz− z1
*dsz− z2dsz− z2

*dg−1,

where in our subsequent plots the values ofz1,2, with real and
imaginary partsx1,2 and y1,2, respectively, will be obtained
numerically. However, even without these calculations we
expect, from the second-order approximation, that one of the
poles must correspond toz0. Let this bez1 sz1=z0d. The other
then provides a deviation from the exponential law(small if
y2@y1). Indeed analytically

E
−`

+`

dz
exps− iz2t̃ d

sz− z1dsz− z1
*dsz− z2dsz− z2

*d

=
p

z1
* − z2

*Hexps− iz1
*2 t̃ d

y1sz1
* − z2d

+
exps− iz2

*2 t̃ d
y2sz1 − z2

*d J .

Defining

expsiad = sz1
* − z2d/sz1 − z2

*d, b = x1
2 − x2

2 + y2
2 − y1

2,

we find

Pf4gstd = NHexps− 4x1y1t̃d +
y1

2

y2
2exps− 4x2y2t̃ d

+ 2
y1

y2
expf− 2sx1y1 + x2y2dt̃ gcossa + bt̃ dJ ,

s27d

where the normalization att=0, Ps0d=1, fixes

N = F1 +
y1

2

y2
2 + 2

y1

y2
cosaG−1

.

From Eq.(27) we see that asy1/y2→0 the single exponen-
tial is indeed recovered. This justifies our prediction thatz1
=z0, in agreement also with our numerical derivations ofz1.
Apart from the coefficients in front of the additional terms in
Pf4gstd we observe that forx2y2@x1y1 (valid in all our nu-
merical solutions forz1 and z2) the exponentials in these

terms fall off far more rapidly than the leading exponential in
t. Thus, they are of interest only for smallt.

The surprise here(at least for the authors) is that Pf4gstd
displays exactly the absence of a linear term, notwithstand-
ing that it is still an approximation, only a step above the
Breit-Wigner approximation. This is independent of the spe-
cific expressions forz1,2 which would be far too complicated
to be given algebraically in terms of the parameters. To see
this, we expandPf4gstd as a power series int̃. The coefficient
of the linear termt̃ after a little algebra can be shown to be
zero identically. To avoid any misunderstandings, we empha-
size that this fact has nothing to do with numerical integra-
tions. We have used the theorem of residues to evaluate the
integrals in the above. Anticipating one of our conclusions,
one therefore sees that one must make a very precise set of
approximations to derive the exponential law.

V. NUMERICAL POLE CALCULATIONS AND INVERSE
ZENO EFFECT

So far we have not derived any numerical values for the
poles. In this section, we shall do so with the principle ob-
jective of finding a phenomenological fit to one of the time
constants that characterizes the improvement to the exponen-
tial curve. In the expression forPf4gstd three parameters ap-
pear: x1y1, x2y2, and b. The lifetime t is no longer suffi-
cient by itself to parametrizePstd. One would like to
interpret these constants—or, more precisely, the related time
parameters—in physical terms.

In general the pole positions are complicated functions of
the input parametersa, b, V0, andE0 of the model. The only
one we give here is an approximate algebraic expression for
thePf2gstd lifetime st0d derived in Sec. III. By using Eqs.(23)
and (26), we find

t0 = ma2F k0r0

k0
2 − r0

2s2s0e + e2dG−1

. s28d

Dropping the term proportional toe2,

t0 <
V0

2

16fE0sV0 − E0dg3/2f1 + aÎ2msV0 − E0dg

3expf2sb − adÎ2msV0 − E0dg. s29d

To study the other time parameters it is far easier to select the
input values and solve numerically the equation for the pole
positions:

f f4gssd = 0. s30d

It is convenient, as far as possible, to work with dimension-
less quantities. In Table I, we show for various values ofV0
the solution of the above equation forz1 andz2. The multiple
of p (a convenient choice suggested by the transcendental
equation) that appears in the header of each subtable corre-
sponds to the number of quasistationary energies. For each
value of these energies we list, for selectedw, the values of
x1,2,y1,2, and the dimensionless parameterst1,2/ma2 defined
below. The values ofz1 coincide within numerical accuracy
with those of z0, the pole position forf f2gssd=0. Conse-

S. DE LEO AND P. P. ROTELLI PHYSICAL REVIEW A70, 022101(2004)

022101-6



TABLE I. Numerical values ofx1,2, y1,2, andt1,2, for chosen values ofV0. Each block lists the parameters for all the quasistationary
eigenvaluesE0.

aÎ2mV0=2p

aÎ2mE0 w x1 y1 t1/ma2 x2 y2 t2/ma2

2.6978

2.5 2.6978 2.4358310−13 7.608831011 3.1175 0.3309 0.4846

5.0 2.6978 1.1603310−28 1.597431024 2.9059 0.1871 0.9198

7.5 2.6978 5.5268310−28 3.353431026 2.8367 0.1297 1.3591

5.2841 2.5 5.2841 2.6553310−8 3.56363106 5.4394 0.1394 0.6594

5.0 5.2841 1.1018310−18 8.588431013 5.3543 0.0679 1.3933

7.5 5.2841 4.5716310−23 2.069831021 5.3295 0.0441 2.1283

aÎ2mV0=4p

aÎ2mE0 w x1 y1 t1/ma2 x2 y2 t2/ma2

2.9081 2.5 2.9081 5.3210310−28 3.231331026 3.6692 0.4995 0.2728

5.0 2.9081 1.5107310−84 1.138131053 3.2978 0.3251 0.4664

7.5 2.9081 4.2893310−81 4.008531075 3.1724 0.2357 0.6688

5.8032 2.5 5.8032 3.8540310−28 2.235631023 6.2194 0.3447 0.2333

5.0 5.8032 2.4117310−49 3.572531047 5.9987 0.1830 0.4556

7.5 5.8032 1.5092310−75 5.709031074 5.9321 0.1240 0.6796

8.6640 2.5 8.6640 1.5442310−26 3.737131018 8.8913 0.2089 0.2692

5.0 8.6640 2.6531310−46 2.175231038 8.7723 0.1049 0.5435

7.5 8.6640 4.5583310−66 1.266031086 8.7354 0.0700 0.8181

11.4251 2.5 11.4251 1.1147310−14 3.926131012 11.5096 0.0807 0.5381

5.0 11.4251 4.8351310−26 9.051131023 11.4690 0.0429 1.0157

7.5 11.4251 2.0973310−37 2.086631038 11.4547 0.0292 1.4933

aÎ2mV0=6p

aÎ2mE0 w x1 y1 t1/ma2 x2 y2 t2/ma2

2.9827 2.5 2.9827 3.5595310−42 4.709531046 4.0762 0.5552 0.2210

5.0 2.9827 1.3673310−82 1.226131081 3.5428 0.4277 0.3300

7.5 2.9827 5.2518310−123 3.1919310121 3.3644 0.3226 0.4607

5.9614 2.5 5.9614 5.0395310−40 1.664331038 6.6463 0.4778 0.1574

5.0 5.9614 7.4478310−79 1.126231077 6.2670 0.2738 0.2914

7.5 5.9614 1.1007310−117 7.6201310115 6.1617 0.1884 0.4307

8.9312 2.5 8.9312 5.9203310−37 9.456231034 9.3375 0.3468 0.1544

5.0 8.9312 5.3363310−78 1.049131071 9.1210 0.1803 0.3040

7.5 8.9312 4.8099310−188 1.1639310107 9.0562 0.1215 0.4545

11.8842 2.5 11.8842 1.5186310−92 2.770531030 12.1473 0.2422 0.1700

5.0 11.8842 2.5718310−64 1.636031062 12.0100 0.1223 0.3405

7.5 11.8842 4.3554310−96 9.660031093 11.9673 0.0817 0.5114

14.8046 2.5 14.8046 4.0211310−26 8.399031023 14.9724 0.1597 0.2091

5.0 14.8046 1.8570310−61 1.818831046 14.8855 0.0794 0.4232

7.5 14.8046 8.5755310−77 3.938431074 14.8580 0.5279 0.6375

17.6391 2.5 17.6391 1.4015310−18 2.022631013 17.7222 0.0797 0.3539

5.0 17.6391 5.1893310−30 5.462431027 17.6786 0.0387 0.7299

7.5 17.6391 1.9215310−44 1.475231042 17.6650 0.0256 1.061

aÎ2mV0=8p

aÎ2mE0 w x1 y1 t1/ma2 x2 y2 t2/ma2

3.0211 2.5 3.0211 3.6242310−86 4.566731054 4.4512 0.4789 0.2346

5.0 3.0211 2.3982310−110 6.9010310108 3.7473 0.5022 0.2657

7.5 3.0211 1.5870310−164 1.0429310163 3.5163 0.3950 0.3600
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quently, to a good approximation, this pole still determines
the lifetime for the process:

t < t1 =
ma2

2x1y1
. s31d

The other pole produces a modification from the simple ex-
ponential curve and determines a second exponential time
parametert2!t1 sx1y1!x2y2d:

t2 =
ma2

2x2y2
. s32d

In Fig. 1 we display the dependence oft2 uponw for various
E0 and an arbitarily chosen value ofV0. In Fig. 2 we show
the dependence oft2 uponÎ2msV0−E0d for different values
of w. From the above curves we see that, to a very good
approximation,t2 grows linearly withw and hence with the
barrier widthb−a. It is also proportional approximately to
f2msV0−E0dg−1/2. This for the parameter ranges considered.
We defer an interpretation of these results to our conclusions.

For t→0, the exponential survival law must necessarily
lie below the physical curvePstd if this lacks a linear term
since both are normalized toPs0d=1. The fact that the life-
time measures the mean time for decay means that an expo-
nential curve withsaid lifetime as inputmust eventually rise
abovePstd to compensate for the short-time “shortfall”; i.e.,
there is a crossover point. As an aside, we note that the
power law in t predicted forPstd at long times means that
any exponentially falling curve must lie belowPstd asymp-

totically adding another crossover point. The first crossover
allows for the so-calledinverse Zeno effect(IZE) [12]. This
says that if a first-time measurement is made after this cross-
over point(but logically before any second crossover point)
the system will have been found to decay at a rate greater
than “expected.”

First, let us analyze critically this definition. Unlike for
the QZE this measurement or these measurements(if re-
peated at the appropriate time intervals) after the inverse
Zeno crossover only contradict ourexpectationsbased upon
the use of an exponential curve with the experimental life-
time. But the choice of exponential is somewhat arbitrary.
We can give at least two alternative proposals for the refer-
ence exponential curve. The first, which is the most natural
phenomenologically, is to refer to an exponential best fit to
Pstd. This fit almost certainly willnot have the exact same
lifetime asPstd. The second possibility is that one may com-
parePstd with a theoreticalsingle exponential(possibly from
a model calculation as in our case). These possibilities dis-
tinguish themselves from the original because they do not
necessarilyhave a crossover point and hence need not imply
the conditions for an IZE.

We have a natural choice of exponential in our model, the
Breit-Wigner exponential. We have thus looked for crossover
points by confrontingPf4gstd with Pf2gstd. In all cases exam-
ined they have been found. Thus, even with our choice of
exponential the IZE is possible. We can see this more clearly
by observing that, in our tables,y1/y2!1 andx1<x2; thus,
we can approximate Eq.(27) as follows:

TABLE I. (Continued.)

aÎ2mV0=2p

6.0405 2.5 6.0405 2.2135310−84 3.74031082 7.0617 0.5255 0.1347

5.0 6.0405 2.3427310−107 3.5333310108 6.4585 0.3540 0.2187

7.5 6.0405 2.4795310−160 3.3384310158 6.3109 0.2475 0.3201

9.0562 2.5 9.0562 5.3459310−82 1.032831050 9.6533 0.4551 0.1138

5.0 9.0562 6.5934310−163 8.3737310100 9.3223 0.2461 0.2179

7.5 9.0562 8.1321310−184 6.7893310181 9.2303 0.1670 0.3243

12.0656 2.5 12.0656 9.0574310−49 4.575331046 12.4657 0.3472 0.1155

5.0 12.0656 1.2088310−66 3.428131064 12.2524 0.1788 0.2282

7.5 12.0656 1.6134310−144 2.5686310142 12.1886 0.1201 0.3416

15.0652 2.5 15.0652 1.8177310−44 1.825931042 15.3500 0.2622 0.1242

5.0 15.0652 3.7666310−88 8.811531085 15.2013 0.1325 0.2483

7.5 15.0652 7.80487310−132 4.2524310126 15.1551 0.0886 0.3725

18.0485 2.5 18.0485 9.9055310−39 2.796831036 18.2527 0.1939 0.1412

5.0 18.0485 1.0383310−78 2.668131074 18.1472 0.0970 0.2841

7.5 18.0485 1.0884310−114 2.5454310112 18.1138 0.0646 0.4270

21.0019 2.5 21.0019 8.2840310−31 2.873931028 21.1404 0.1337 0.1769

5.0 21.0019 8.7331310−61 2.726131088 21.0691 0.0663 0.3579

7.5 21.0019 9.2065310−91 2.585931088 21.0463 0.0441 0.5390

23.8791 2.5 23.8791 2.9672310−18 7.056831018 23.9504 0.0690 0.3028

5.0 23.8791 2.8264310−35 7.408331032 23.9133 0.0336 0.6216

7.5 23.8791 2.6923310−52 7.777431049 23.9016 0.0222 0.9405
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Pf4gstd < exps− 4x1y1t̃ d

3H1 + 2
y1

y2
fexps− 2x2y2t̃ dcossa + bt̃ d − cosagJ .

s33d

Consequently,

Pf4gstd
Pf2gstd

< 1 + 2
y1

y2
wstd, s34d

where

wstd = expS− 2
x2y2

ma2 tDcosSa +
b

ma2tD − cosa.

Intersection points occur whenwstd=0—i.e, when

expS2
x2y2

ma2 tD = cosSa +
b

ma2tDY cosa. s35d

The trivial solution is, course,t=0. The condition for the IZE
can be determined from the relative value of the time deriva-
tive of the functions on the left- and right-hand sides of the

above equation att=0. The necessary and sufficient condi-
tion for a nontrivial intersection is

2x2y2 , − b tana. s36d

This is because, with this condition satisfied, the exponential
starts off with a flatter growth than the oscillating and
bounded right-hand side of Eq.(35), and hence they must
necessarily cross.

If x1=x2 s⇒sina=0d, we find only the trivial solutiont
=0. On the other hand, from an examination of Table I, we
see that

− b tana = 2
sx1

2 − x2
2 + y2

2 − y1
2dsx1 − x2dsy1 + y2d

sx1 − x2d2 − sy1 + y2d2

< 2x2y2F1 −S y2

x1 − x2
D2G−1

@ 2x2y2.

Hence a crossover occurs for all our tabulated cases. In Fig.
3 we show examples of this by plottingwstd againstt for
several quasistationary statesE0 of a fixed barrier heightV0
and an arbitrarily chosen value ofw. The large dots identify
the crossover times.

FIG. 1. Dependence oft2 on w for several of the quasistationary
energiesE0 of a fixedV0.

FIG. 2. t2 vs 1/ÎV0−E0 for various quasienergiesE0 and w
values. The lines drawn demonstrate excellent linear fits, for a
fixed w.
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VI. CONCLUSIONS

We have discussed in this paper the survival law and its
relevance to the QZE and IZE within the context of a simple
potential model. We have shown that the general arguments
that allow for the QZE based upon the Hermiticity of the
Hamiltonian are indeed valid in this model unless one makes
very specific assumptions and/or approximations. In particu-
lar, the exponential law, which does not allow for the QZE, is
obtained only if two approximations are made:

(i) The denominatorfssd in the spectral integral for the
amplitude of nondecay is so highly peaked about the initial
quasistate that only the lowest—second-order—terms inDs
need be considered.

(ii ) The integral in energyE or equivalentlys is extended
below the threshold to −̀.

Point (ii ) is made in order to apply the theorem of resi-
dues essential for deriving a single-potential survival law. It
is also the cause of loss of analyticity int, although this is
normally ignored by arguing that only positive values oft are
physically significant.

Our analysis has gone on to show that while point(i) (the
Breit-Wigner spectrum) is not the sole cause for the theoret-

ical loss of the QZE, it is the primary one. Indeed, if one
includes higher-order corrections, such as the fourth-order
terms inDs, then the resultantPf4gstd displays the absence of
a linear term int, however small the extra contributions
might be.

This result was somewhat of a surprise. One could have
reasonably supposed that only in the limit of an exact
calculation—i.e., when all orders ofDs are included—is the
linear term absent. Indeed the authors only expected that to
fourth order the coefficient of the linear term would be re-
duced when compared to that of the exponential curve. In-
stead we have been able to show that it isrigorously null
already inPf4gstd. Note that to prove this we have applied
points (ii ) and (iii ). Point (ii ) is also significant for another
reason. It is known to be the cause for the loss of the long-
time power law behavior, and this is independent of any
other approximation made. Our conclusions upon the ques-
tion of the theoretical prerequisite for the QZE is that it is
indeed a feature ofPstd and that one must make very specific
assumptions or approximations to avoid this effect. Only
with the explicit exclusion of short and long times can a
single-exponential curve be a good approximation toPstd.

We have also considered in the previous section the ques-
tion of the existence or otherwise of the IZE. There is in our
opinion a measure of ambiguity in the condition for the ex-
istence of this effect because of a nonunique choice of the
exponential used as reference. Since any exponential is at
best an approximation to the physical curve, its definition is
subject to discussion. An exponential with the same lifetime
as the real curve is the conventional choice. However, there
are other choices for which the possible existence of an IZE
is far from obvious. We have shown that one possibility, the
comparison ofPf4gstd with Pf2gstd, does indeed allow for an
IZE. Nevertheless, we do not consider the IZE and QZE
comparable phenomena. The former(IZE) refers to our “ex-
pectations,” and as we have argued our expectations are sub-
ject to some ambiguity. The latter(QZE) predicts a physical
suppression of decay through continuous observation and it
is completely independent of the existence or otherwise of an
approximate exponential curve.

Of particular interest in our results is the dependence of
the second exponential time parametert2. The first time pa-
rametert1 is essentially the lifetime of the system and has a
characteristic exponential rise with barrier widthb−a,
whereas this second time parameter can be phenomenologi-
cal represented by

t2 <
ma2w

Î2ma2sV0 − E0d
=

msb − ad
Î2msV0 − E0d

. s37d

This form is very suggestive. Consider an energy eigenstate
above the barrier, E.V0. In the barrier regionsa, r ,bd
the particle will have velocityv=Î2msE−V0d /m. Conse-
quently the time taken in crossing the barrier will be

Dt =
msb − ad

Î2msE − V0d
. s38d

This “mirrors” the expression fort2 (except for the feature
that E0 has a discrete spectrum). Both tend to infinity if the

FIG. 3. The functionwstd vs t for the indicated values ofV0 and
v. The five curves are for different values ofE0. For each of the
curves the crossover points are indicated by the large dots.
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particle energy and potential energy are set equal—a type of
consistency condition. Furthermore, both grow linearly with
barrier width. This tempts us to speculate(and at this stage it
is no more than an hypothesis) that t2 is a measure of the
time that the particle takes to tunnel free. Equivalently, we
may say thatt2 is the time during which the particle is nei-
ther bound nor free[7]. However, since this infringes upon
the question of transit times and superluminal velocities[13],
which is a very topical, but also complex subject, we desist
from any further considerations at this point. Thet are not
the only time parameters inPf4gstd: we also have 1/b in the
oscillatory term. Mathematically it is the natural conse-
quence of the interference between the two exponentials of

the nondecay amplitude. It is therefore a wavelike property
of the particle.
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