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Survival law in a potential model
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The radial equation of a simple potential model has long been known to yield an exponential survival law in
a lowest-ordenBreit-Wignen approximation. We demonstrate that if the calculation is extended to fourth
order, the survival law exhibits a parabolic short-time behavior which leads to the quantum Zeno effect. This
model has further been studied numerically to characterize the extra exponential time parameter which com-
pliments the lifetime. We also investigate the inverse Zeno effect.
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I. INTRODUCTION |¢//(t)> — [1 —iHt - %HZtZ + O(t3)]|¢//0).

The exponential survival law is known to be an excellent he amolitude for nondecay is given. up to a possible phase
phenomenological fit to unstable phenomena. However, ther-é P yi1sg »up P P '
is no rigorous derivation of this law in quantum mechanics. y
Most textbook derivations are “classical” in nature since they (o (1)) = 1 =i H| o) — %<¢0|H2|l//o>t2 +0(t%)
refer only to decay probabilities. In quantum mechanics, one
would require an exponential time dependence for the sur- = 1-i(H)gt = 3(HA)ot?+ O(£%),
vival amplitude[1]. To achieve this one must make approxi-

mations. Standard procedure is to consider a tunneling prd?Nereé ()o stands for the average over the statg) from
cess, as we do in this paper. Some earlier importanf’hich the nondecay probability is

theoretical papers upon tunneling are given in R2[. P(t) = (| (D)2
\ : (ol (1))
Quantum mechanics allows us to say that the survival
probability P(t) is definitely not exponential for short and =1 -i((H=H"))o— 5((H)g + (H*?)g

long times. For short times it can be argued that a power B va2 3
expgansion int must lack a linear term—i.ge(.dP/dt)t_o:g. ~ AH)o(H7)ot"+ O(F").
This result when combined with the hypothesis of “frequent’Now, usingH=H"*, we find
measurements leads to what is known as the quantum Zeno B 51 5 3
effect (QZE) [3]. It was first named the quantum Zeno para- P(t) = 1 -t*((H%)o — (H)p) + O(t°).
dox by Misra and Sudarshad| precisely because it was e jinear term irt which corresponds to the linear term in
considered a false resyii]. Nowadays, the QZE is generally | pa5 canceled. Of course this derivation assumes the exis-
acknowledged as a real phenomenon and mdee.d. the're Arehce of(H?),, in addition to(H),. It is useful to observe at
number of experiments which claim to have verified it and hi int that if this d trati tended to all
others are plannefb]. Once accepted, it is even possible to IS point that It this demonstration were extended 1o a
predict the QZE within a classical calculatiof]. As for the ~POWers int, then not only would the linear term vanish, but
long-time behavior, this is predicted to be a power law be2!l 0dd powers oft would vanish. We shall return to this
havior int. This latter result can be derived even for a Breit-When we discuss some numerical calculations in Sec. IV.
Wigner spectrum by imposing a low-energy cutd] The QZE merits a namegeven if this choice is not quite
(which is expected on physical groundsThe long-time —appropriat¢ because it implies a potentially spectacular
property of P(t) will not be treated specifically in this paper Phenomenon—the prediction that “frequent” short-time tests
but it is referred to in the concluding sections. of the state of an unstable system will inhibit its decay. Much
Returning to the short-time behavior, the simplest demonhas been written upon this, in particular upon the question of
stration of the nonexponential behavior of the survival law iswhat may constitute an “observation” or test of the system.
based upon the Hermitian nature of the Hamiltonj®  We wish to add here only a comment upon this fascinating
(when all channels are consideye@onsider a statéy(t)) subject. A measurement of a system normally produces a
initially in a (quasibouny state represented By/(0))=|). collapse of the wave function. It is therefore perfectly rea-
It is assumed thatyy) can “decay” into another or other sonable to expect that observations should modify, for ex-
states. At timet the state will have evolved into ample, the survival law. However, the exponential cLeVe
- i is unique in this respect because it is not altered by measure-
|0} = expl=HO Yo, ments. This fact is connected to the mathematical feature that
where H is the Hamiltonian. Expanding in a power seriesthe average valué(t—ty)) from ty to = (lifetime) is inde-
of t, pendent of the lower limit. This is the reason one does not
need to know when the, otherwise identical, unstable par-
ticles in a “sample” were created in order to measure their
*Electronic address: deleo@ime.unicamp.br lifetime. Even if each had been created at a different time,
"Electronic address: rotelli@le.infn.it one can treat them as if “newly created” at the conventional
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time ty. In more colorful terms, a series of operations of “cut sophisticated level we predict the necessary conditions for
and paste{measuremeniss undetectable only if performed the QZE. Indeed, we speculate in the Conclusions that only
upon a single-exponential function. The QZE is thus a conthe lowest-order approximation loses this effect. In Sec. V,
sequence of a particular example of the nonexponential naye present the results of some numerical calculations and in
ture of P(t). What is somewhat peculiar is that the absence oparticular the dependence of an extra time constant upon the
the linear term irnt is more importan{because in principle parameters of the model. We will phenomenologically pa-
more easily verifiablpthan the absence of any other or in- rametrize these dependences. We conclude in Sec. VI with a
deed of all the other odd powers bf ) ) summary of our results, a discussion of the “inverse Zeno
In this paper we wish to examine the survival law with the gffe ot [12] (described in Sec. \ and some observations

aid of a particular potential modéSec. I), already used in o the significance of the extra time parameters.
the literature for a derivation of the exponential law, albeit as

an approximatiorj10]. In Sec. lll, we will repeat this deri-

vation _vvith_particular emphasis upon th_e assumptio_ns and Il. POTENTIAL MODEL
approximations that lead to the exponential law. We will then
go beyond the lowest-order calculati@Breit-Wigner formn) The starting point of our analysis is the three-dimensional

to a two-pole approximation. Recently a two-pole approxi-Schrodinger equation for a particle of massin a spheri-
mation in a quantum field model was introduced by Facchically symmetric potentiaV(r)—i.e., a function only of the
and Pascazifl1]. In Sec. IV, we shall show that at this more magnituder of r. Explicitly, we will use

Vi(r)
0 O<r<a,
Vo V(r)= |A a<r<hb,
REcION 1| REGION 2| REGION 3
E i, 0 b<r
r

While our subject matter is not a stationary-state problem, it Henceforth, we shall limit our attention t®wave solu-
can be conveniently analyzed with the use of the stationarytions (I=0) and, consequently, the previous equation reduces
state solutions, each of which has a sim@@hase time de- to

pendence. Due to the spherical symmetry of the potential

energy and its time independence, the Schrodinger equation 1/2 22
V2 3 {——<—2+‘—> +V(r)}RE(r):ER5(r), (3
-1V ) =i—r t 1 2m\arc ror
{ om (r)]w(r ) Imgb(r ) (1)
can be separated by using the energy eigenstates with Rg(0) which, in accordance with our previous discus-
#(r,t) =Re(r)Y(6, p)exp(— iEY), sion, is a constant. If we now put
where Y['(6, ¢) are the spherical harmonics. Thus Ed)
yields the well-known time-independent equation Re(r) = ug(r)/r,
1(# 20 [(1+1) m
“om\az o) T ome T VO [Re(DYI(6.¢) we obtain the equation for the modified radial wave function
ug(r):
=ERe(NY["(6,¢). (2
For a given value oE and angular momentum, there are two u(r) = 2 V(r) — EJug(r), (4)

linearly independent solutions of the above second-order

equation, which at the origin go liké or 1/r'*1. However,

those which behave like 1'/! must be rejected since it can where the prime stands fai/dr. The acceptable solution of
be shown thaty["(d, ¢)/r'*! is not a solution of the above Eg.(4) must go to zero at the origing(0)=0. The standard
eigenvalue equation far=0. This is because the Laplacian procedure for finding the stationary solutions can now be
of Y'(8, ¢)/r'"** involves thelth derivative of the Dirac delta applied. The general solutions fog(r) andany E<V, in the
function &(r) [1]. three regions are
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C;sin(kr)
Ug(r) = Ce” + De ™
C3eikr + D3e_ikr

The requirement of continuity ofi and ug at r=a,b (a
direct consequence of the differential equationdgrcan be
conveniently expressed in matrix form as

{ C, sin(ka) ]_( g2 g ){Cz}
“\pe” -pe/| D,

kC, cogka)
( glkb g kb )|:C3:| _( erb grb ){Cz]
ikek —ike ™ /| Dg | \pe® -per®/| D, |

Eliminating C, andD,, we obtainC; andD5 in terms ofC;:

and

—ikb _ ! _—ikb a1 _oa
EIE A A
D3 oikb i_eikb pe® - pe P oa _lepa
k P
{ sin(ka) }C/4 ®)
kcogka) | *

From this equation it is straightforward to show th&|
=|D4|. The solutions in region 3 involve waves “moving” in
both directions.

The normalization of theig(r) is determined by the stan-
dard condition for a continuous spectrum:

f “ar Ug(nug, (r) = SE-E'). )

0

We recall that the definition dRe(r)=ug(r)/r eliminates the
factorr? in the integration variableg®r =r2dr dQ2) while the

[k=+2mE]

PHYSICAL REVIEW A 70, 022101(2004

region1l: 0<r<a
[p=V2m(Vo-E)] region 2: a<r <b, (5)
region 3: b<r.
[
(ICqf* + |D3|2)J dr exi(k—k')r]
0
=mdk-K)/k (kk =0),
whence
|C4l* = [D4f* = m/(271k). (8)

With this condition we can calculate all the other coefficient
moduli. We shall need in what follows the explicit value of
|C4|2. From Eq.(6), after some manipulations, we find

1
= | extnto- e 117

+exr[—p<b—a>]a_(1+iﬁ)’|cl|, ©)

where
) k
a, = sin(ka) + —cogka).
p
whence, by using Eqg8) and(9),
2 8mk 2 2 2 2
|C[? = ——{[exp(2apw) o + exp(— 2apw) aZ](k* + p?)
7T

+2a,a (K- pA)y7t, (10

where
w=(b-a)la.

Now, exg2apw) can be considered to kevery large num-

ber for the purposes of this studyhis can always be guar-
anteed forE <V, by increasing the widtih—a of the poten-

tial. Under these conditions, in general the energy eigenstates
have small values offC,| because of the large value of the

47 from the angular integration is accounted for in the defi-first term in the square brackets above. There exist however,

nition of the spherical harmoni¢. The above normalization

quasistationary states defined by=0 when the opposite is

condition is dominated by region 3 since it has an infinitetrue. These quasistationary energy levels coincide with the

range and determines uniquelys|(=|D5])

V(r)

1A

REGION 1 REGION 2

discrete spectrum of an associated potential model:

0 O<r<a,
Vir)=

a<rT.
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The energy eigenvalues of this auxiliary potential, indicated 2

generically byE, in the following, are given by the solutions P(t) =
of the transcendental equatian=0—i.e.,

f i dr uy(r,0)u(r,t)

0
2

tan(aky) = — ko/po, (11) -

+0oo +o0 +o0
f dEgo(E)e‘iEtf dE’gg(E’)J dr ug, (rug(r)
0 0 0
wherek,=V2mEy and po=2m(Vo—Ey). The explicit values  which, after using the normalization condition, E@), be-
for a givenV, and well sizea can be calculated numerically comes

when needed. We shall name the eigenfunctions of this sec-

ond potentialug(r): 2

17

+o0
P(t) = ‘ J dE|go(E)| e ™
¢y sin(kqr), region 1: 0<r<a, °
o(r) = d, exp(— pof), region2: a<r. (12 The index uporgy(E) reminds us that we have chosen one of
the possible many quasistationary stakgs To determine
The continuity conditions fouy(r) andug(r) yield both the 9o(E) we use
transcendental equatiqal) and

f xdr Ug(r)ug(r,0) = f de’go(E’) f xdr ug(r)ug, (r)
0

¢y = d, exp(= pod) VK + pi/Ko. (13 0 0
Finally, from the normalization ofiy(r) we obtain =go(E).
The left-hand side of this equation can easily be calculated if
|c1f? = 2po/(1 +apy). (14)  one assumeb>a so thatuy(r,0) can be considered negli-

gible forr>h. This is the first of the approximations made.
Now, as we shall see, for suitable choices of parameters,
IIl. BREIT-WIGNER APPROXIMATION do(E) is highly peaked around the quasieneiy (second
approximation compatible with the fijstin these cases, the
In the previous section, we outlined the potential modekunction uz(r) does not, practically, differ fromiy(r,0) in
that of the auxiliary potential with bound stategir) whose  approximate the above integral to an integral over only re-
energy eigenvalues equal those of the quasistationary enejions 1 and 2 and use
gies of our potential. We begin here by assuming that ini-
tially our radial state isig(r). Since this is not an eigenstate Ug(r) = Cyuy(r,0)/c; (r <b),
of our potential but of the auxiliary potential, it will not
remain localized permanently but eventually leak into regionvhence forE aroundg,
3 through tunneling. To be more precisgr) already has a b
small tail outside the potential barrier; however, this can be go(E) = (Cllcl)f druB(r,O)uo(r,O)
safely neglected as we do in Ed.8) below. a
We now decomposely(r,t=0) into energy eigenstates

ug(r), ~ (Cllcl)f drug(r,0)ug(r,0) = Cy/c;, (18
0
Up(r,t=0) = ug(r) = J dE go(E)ug(r), otherwise
0
9o(E) = 0. (19
from which it follows that By using Eqgs.(10) and (14), we then obtain(for E around
o Eo)
uo(r,t):f dE go(E)ug(r)e . (15)
Amk(1 +app)
° I9o(B)? = % {[exp(2apw)a’ + expl~ 2apw)a’]

TPo
The spectrumgy(E) is explicitly derived in Egs(18) and X (K2 + p?) + 2a,a (K2 - p?)} 7t
Lo .

(19) below. At any timet>0, the amplitude for finding the

particle still in the quasistationary statg(r) is given by For convenience, we now make a change of variables ffom
andt, to o andt, by defining the dimensionless quantities
+0oo
f dr ug(r,0)ug(r. 1), (16) o=ak andT=t/(2ma).
0
Henceforth, we will indicate b¥g, the choseninitial quasis-
and hence the nondecay or survival probabik{y) is tationary eigenvalue. In these new variables,
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2 in this derivation. The theorem of residues then yields
P(t) = [4(1 +apg)/amp]?

20 J ) dz exp(—iz%)[(z- 20)(z— Z)]7* = (mlyo)exp(— iz,Y).

f ’ dofexp(-ia®)/f(0)]

0

where Taking the square of the modulus of this we finally obtain,
2 after some simple algebraic manipulations,
_ o, 2 . o COso
f(o) =1 | exp(2V2ma?V, - o2w)| sino + Ny 5
V2maVy - o P(t) = ex;(— XoYot) . (24)
mal
— J’ — 2 i
+exp- 2V2maVo- o W)<Sm(r The above expression is of the desired exponential form
___ ocoso )2} P(t) = exp(— t/7p), (29
V2matV, - o normalized (automatically to P(0)=1 and with predicted
y 2madV, . 2<sin2 o2 co2 o ) lifetime
o2 77 2maV,- o2 maf
T0= . (26)
y 2(0? - maVy) (21) 2XoYo
o? ' The narrow width of the Breit-Wigner assumed in the deri-

| d ith d o i vation is guaranteed ify<1l which corresponds to
n accordance with our second approximation, we wi as'exﬁZapow)>1. This is just the condition anticipated in the
sume that 1f(o) is peaked aboutr, corresponding to the

— 07 previous section. Thus, for the validity of the above deriva-
quasistationary energ¥q(op=av2mgy). We then expand tjon the choices oE,, V,, andb—a must be such as to satisfy
f(o) aroundoy and keep only up to quadratic termsAw  this condition. In all our subsequent numerical calculations
=o- 0y, The validity of the peaked form is not in question. It this is indeed the case.

can eventually be verified posteriori However, our as-

sumption neglects terms of ordeXo)® and higher. We shall

indicate this fact by a superscript 2 é(v): IV. HIGHER-ORDER CORRECTIONS

f12)( ) = exo(2a0-W)(1 +a, 2 4 212 (o — )2 The calculation in the previous section is a nonrelativistic
(o) A2apgwl( 0o (ko + po) (o= o) guantum mechanical derivation of the exponential law. It is
- (o= op) + Ylla®k3pg, (220 incompatible with the existence of an experimental QZE, and

if repeated for negativéas well as positivevalues oft, it
yields the nonanalytic expression

4akop5(k§ = po) _1k5+pp P(t) = exd - |t|/7].

, Y= S €.
(L+apg)(kg+pp)?" * 2k3—p
_ O_ ) i 0 ~ This satisfies the symmetry propeRy-t)=P(t) (time rever-
By convention we choosg to be positive. The linear term in - g5 invariancg consistent with the absence of all odd powers

Ao with coefficiente can be eliminated by a shift in vari- o ¢ (Sec. ), but it cannot be expressed as a power series
ables yielding a Breit-Wigner form for the (and hence .

ene.rgy spectrum. quever, we shall not do this here sinqe What is surprising, at first, is the following: IP(t) is
we intend to generalize the above formula to fourth order inc4icyated by evaluating the integral in E80) numerically
the next section, and then it is not in general possible Qg \arioust and, then, for small, fit with a polynomial, we
eliminate by a shift both of the odd powers Aw. find the odd powers of greatly suppressed. That is, the

The quadratic expression in square brackets in(®8  ymerical calculation is far nearer to what one may have
has two complex-conjugate zeros which appear as poles ifypecteda priori, on the basis of the arguments in our in-

where

€= exp(— 2apgw)

our integrand forP(t). These are at troduction. ThisP,,t) is practically an even function it
KR-p2  2kopo _ and in partipular the linear term ihis: almost zero. To un-
o=0pt 5yl 55 Y=XE 1Yo, (23 derstand this we recall the expression of the nondecay am-
Katpo Kotpp plitude [see Eq(17)]:
with Xy andy, the real and imaginary parts of respectively. 2

The integral in Eq(20) is thus proportional to P(t) =

+o0
J dE|gy(E) e E

0
2

f do exp— 107 (0— z0) (o~ )], =

0 ~ J dE|go(E)[[cogEt) +i sin(Et)]
with zy=Xy+iyo. Since by assumption this integral is sharply -

peaked aboutr, we can formally extend the lower limit of The terms in square brackets are bounded and by assump-
the integral from O to <e. This is the third approximation tions the|gy(E)|? is highly peaked arounB=E, and tends to
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zero at least likdE—Ey) ™2 whenE — . The odd terms in terms fall off far more rapidly than the leading exponential in

t lie in the sine term which is pure imaginary. Hence, ont. Thus, they are of interest only for small

taking the square of the modulus, all odd powers disap- The surprise heréat least for the authoyss that PL)(t)

pear and our numerical calculation simply reflects this. In-displays exactly the absence of a linear temmtwithstand-

deed the presence of the very small odd terntscian simply ~ ing that it is still an approximation, only a step above the

be attributed to rounding errors. Note that this result is deBreit-Wigner approximation. This is independent of the spe-

rived for aBreit-Wigner spectrugwhich is consequently not  cific expressions foz, , which would be far too complicated

in itself a sufficient condition for obtaining the exponential to be given algebraically in terms of the parameters. To see

law. Thus our numerical integral of the Breit-Wigner would this, we expandPl(t) as a power series T The coefficient

seem to be a better approximation to the cuA® than the  of the linear tern after a little algebra can be shown to be

analytically derived exponential law. The following higher- zero identically To avoid any misunderstandings, we empha-

order approximation confirms how difficult it is to derive a sjze that this fact has nothing to do with numerical integra-

simple exponential result. tions. We have used the theorem of residues to evaluate the
We now generalize the calculation of the previous sectionntegrals in the above. Anticipating one of our conclusions,

by expandingf(o) up to fourth order inAc. We evaluate one therefore sees that one must make a very precise set of

fl4l(o) as an improved approximation to the Breit-Wigner approximations to derive the exponential law.

case. The rest of the procedure remains the same. Up to

second order we obtained E@4). Now, we must evaluate V. NUMERICAL POLE CALCULATIONS AND INVERSE

ZENO EFFECT

+o0
dzexp— iz (z- 2)(z- Z)(z- 2)(z- Z)T ™,
J_w zexp-iZ0[(z-2)(2-2)(z-2)2-2)] So far we have not derived any numerical values for the

poles. In this section, we shall do so with the principle ob-
where in our subsequent plots the valueg,of with real and  jective of finding a phenomenological fit to one of the time
imaginary partsq , andy; ,, respectively, will be obtained constants that characterizes the improvement to the exponen-
numerically. However, even without these calculations wetjal curve. In the expression fd?l4l(t) three parameters ap-
expect, from the second-order approximation, that one of th@ear: X;Y1, XY, and B. The lifetime 7 is no longer suffi-
poles must correspond 1. Let this bez; (z,=2z). The other  cjent by itself to parametrizeP(t). One would like to
then provides a deviation from the exponential l@mall if  jnterpret these constants—or, more precisely, the related time

y2>Y). Indeed analytically parameters—in physical terms.
oo o In general the pole positions are complicated functions of
f , exp(*— iz7t) _ the input parameters, b, V,,, andE, of the model. The only
e (2=2)(z-2)(2-2) (2~ 2, one we give here is an approximate algebraic expression for
. . the PL2)(t) lifetime (7,) derived in Sec. IIl. By using Eq$23)
__m {exp(— iz,%%) .\ exp(— |222f)} and (26), we find
-7 Yi(z1-2) Yo(z1 - 2) kep .
_ 0
Defining To—maz[kg_pg(ZUof*'éz)} : (28)
explia) = (- )z~ 2), B=X-X3+Y5-Vi, Dropping the term proportional te?,
we find A4 v —E
=~ 1+av2m(Vy—-E
4] vi 7 T Vo B Vo B
PI(t) = Ny exp(— 4xy1h) + TSexp(— 4xoyat —
® A= ayi) + gexpl= 4oy.t) xexg 2(b - a)y2m(Vy - Eg)]. (29)
Vi - _ To study the other time parameters it is far easier to select the
+ ZZeXF{' 20x1y1 +Xp¥2)t jeoda + ) input values and solve numerically the equation for the pole
positions:
(27)
. . f*)(a) = 0. (30
where the normalization @t0, P(0)=1, fixes
It is convenient, as far as possible, to work with dimension-
yi Y1 -t less quantities. In Table I, we show for various valued/gf
N=[1+=+2=cos . : ;
B yg Vs @ the solution of the above equation fgrandz,. The multiple

of 7 (a convenient choice suggested by the transcendental
From EqQ.(27) we see that ag,/y,— 0 the single exponen- equation that appears in the header of each subtable corre-
tial is indeed recovered. This justifies our prediction that sponds to the number of quasistationary energies. For each
=z, in agreement also with our numerical derivationszpf  value of these energies we list, for selectedthe values of
Apart from the coefficients in front of the additional terms in x, ,,y; ,, and the dimensionless parameteys/ma? defined
Pl4l(t) we observe that fok,y,>x;y; (valid in all our nu-  below. The values of; coincide within numerical accuracy
merical solutions forz; and z,) the exponentials in these with those ofz, the pole position forfl?(¢)=0. Conse-
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TABLE I. Numerical values ok, ,, y; o, and 7y ,, for chosen values 0¥, Each block lists the parameters for all the quasistationary

eigenvalues,,.

PHYSICAL REVIEW A 70, 022101(2004

av"m: 21
a\2mE, w X1 V1 71/ ma? Xo Yo ol ma?
2.5 2.6978 2.4358 10713 7.6088x 101 3.1175 0.3309 0.4846
2.6978 5.0 2.6978 1.1608 10728 1.5974x 10?4 2.9059 0.1871 0.9198
7.5 2.6978 5.5268 10728 3.3534x 1076 2.8367 0.1297 1.3591
5.2841 2.5 5.2841 2.655310°8 3.5636x 10° 5.4394 0.1394 0.6594
5.0 5.2841 1.1018 10718 8.5884x 10'3 5.3543 0.0679 1.3933
7.5 5.2841 457181023 2.0698x 101 5.3295 0.0441 2.1283
a\*sm: 4
a\fﬁo w X1 V1 71/ ma? Xo Yo 7ol Ma?
2.9081 2.5 2.9081 5.322010°28 3.2313x 1078 3.6692 0.4995 0.2728
5.0 2.9081 1.510% 1078 1.1381x 10°® 3.2978 0.3251 0.4664
7.5 2.9081 4.2893 10781 4.0085x 107° 3.1724 0.2357 0.6688
5.8032 2.5 5.8032 3.854010728 2.2356x 1073 6.2194 0.3447 0.2333
5.0 5.8032 2.411% 10749 3.5725x 10% 5.9987 0.1830 0.4556
7.5 5.8032 1.5092 10°7° 5.7090x 107 5.9321 0.1240 0.6796
8.6640 2.5 8.6640 1.5442107%6 3.7371x 108 8.8913 0.2089 0.2692
5.0 8.6640 2.653% 10746 2.1752x 10°%8 8.7723 0.1049 0.5435
7.5 8.6640 455838 10766 1.2660x 1086 8.7354 0.0700 0.8181
11.4251 2.5 11.4251 1.114710°14 3.9261x 1012 11.5096 0.0807 0.5381
5.0 11.4251 4.835% 10726 9.0511% 1073 11.4690 0.0429 1.0157
7.5 11.4251 2.0978 10°% 2.0866x 10°%8 11.4547 0.0292 1.4933
av"m: 67
a2mE, w X1 V1 1/ ma? X5 Yo ol ma?
2.9827 2.5 2.9827 3.559510742 4.7095x 106 4.0762 0.5552 0.2210
5.0 2.9827 1.3673 10782 1.2261x 10%1 3.5428 0.4277 0.3300
7.5 2.9827 5.2518 107123 3.1919x 1021 3.3644 0.3226 0.4607
5.9614 2.5 5.9614 5.03951074° 1.6643x 10%8 6.6463 0.4778 0.1574
5.0 5.9614 7.4478 10°7° 1.1262x 1077 6.2670 0.2738 0.2914
7.5 5.9614 1.100% 107117 7.6201x 1015 6.1617 0.1884 0.4307
8.9312 2.5 8.9312 5.920810°%7 9.4562x 1034 9.3375 0.3468 0.1544
5.0 8.9312 5.3363 10778 1.0491x 107t 9.1210 0.1803 0.3040
7.5 8.9312 4.8099 107188 1.1639x 10197 9.0562 0.1215 0.4545
11.8842 2.5 11.8842 1.5186107%2 2.7705x 10°° 12.1473 0.2422 0.1700
5.0 11.8842 2.5718 1076 1.6360x 10°2 12.0100 0.1223 0.3405
7.5 11.8842 4.3554 10796 9.6600x 10% 11.9673 0.0817 0.5114
14.8046 2.5 14.8046 4.02K110°26 8.3990x 1073 14.9724 0.1597 0.2091
5.0 14.8046 1.8578 10761 1.8188x 10*6 14.8855 0.0794 0.4232
7.5 14.8046 8.575% 10777 3.9384x 10" 14.8580 0.5279 0.6375
17.6391 2.5 17.6391 1.40%510718 2.0226x 102 17.7222 0.0797 0.3539
5.0 17.6391 5.1898 10730 5.4624x 1077 17.6786 0.0387 0.7299
7.5 17.6391 1.9218 1074 1.4752x 10* 17.6650 0.0256 1.061
a\fmz 8w
a2mE, w X1 Vi 1/ ma? X5 Yo ol ma?
3.0211 2.5 3.0211 3.624210786 4.5667x 10°* 4.4512 0.4789 0.2346
5.0 3.0211 2.398% 107110 6.9010x 1008 3.7473 0.5022 0.2657
7.5 3.0211 1.5878 107164 1.0429x 10163 3.5163 0.3950 0.3600
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TABLE I. (Continued)

a\fm= 2
6.0405 2.5 6.0405 2.21351078 3.740% 1082 7.0617 0.5255 0.1347
5.0 6.0405 2.342% 107107 3.5333x 10108 6.4585 0.3540 0.2187
7.5 6.0405 2.479% 107160 3.3384x 10158 6.3109 0.2475 0.3201
9.0562 2.5 9.0562 5.345910782 1.0328x 10°° 9.6533 0.4551 0.1138
5.0 9.0562 6.593% 107163 8.3737x 1000 9.3223 0.2461 0.2179
7.5 9.0562 8.132% 107184 6.7893x 1081 9.2303 0.1670 0.3243
12.0656 2.5 12.0656 9.05%41074° 4.5753x 10 12.4657 0.3472 0.1155
5.0 12.0656 1.2088 10766 3.4281x 1074 12.2524 0.1788 0.2282
7.5 12.0656 1.6134 107144 2.5686x 1042 12.1886 0.1201 0.3416
15.0652 2.5 15.0652 1.81%710°% 1.8259x 10* 15.3500 0.2622 0.1242
5.0 15.0652 3.7668 10788 8.8115x 10%° 15.2013 0.1325 0.2483
75 15.0652 7.8048% 107132 4.2524x 10126 15.1551 0.0886 0.3725
18.0485 2.5 18.0485 9.90551073° 2.7968x 10°%6 18.2527 0.1939 0.1412
5.0 18.0485 1.0388 10778 2.6681x 10 18.1472 0.0970 0.2841
7.5 18.0485 1.0884 10114 2.5454x 1012 18.1138 0.0646 0.4270
21.0019 2.5 21.0019 8.284010731 2.8739x 1078 21.1404 0.1337 0.1769
5.0 21.0019 8.733% 10761 2.7261x 10°%8 21.0691 0.0663 0.3579
7.5 21.0019 9.206% 10791 2.5859x 1088 21.0463 0.0441 0.5390
23.8791 2.5 23.8791 2.96 %1078 7.0568x 108 23.9504 0.0690 0.3028
5.0 23.8791 2.8264 10735 7.4083x 10%? 23.9133 0.0336 0.6216
7.5 23.8791 2.6928 10752 7.7774< 107 23.9016 0.0222 0.9405

quently, to a good approximation, this pole still determinestotically adding another crossover point. The first crossover
the lifetime for the process: allows for the so-calledhverse Zeno effelZE) [12]. This

2 says that if a first-time measurement is made after this cross-
T~ T = m . (3D over point(bu'g logically before any second crossover ppint
2X1Y1 the system will have been found to decay at a rate greater

The other pole produces a modification from the simple ex—than “expected.”

ponential curve and determines a second exponential timt Flrsé,Eletthys analyze C”t'(t:a"y tt:|s definition. Ugr:;; for
parameterr, < 7, (XY <Xyys): e Q is measurement or these measuremghi-

peated at the appropriate time interyaddter the inverse
maé Zeno crossover only contradict oarpectationdased upon
= 2%y, (32 the use of an exp_onential curve v.vith. the experimentql life-
time. But the choice of exponential is somewhat arbitrary.
In Fig. 1 we display the dependencemfuponw for various  We can give at least two alternative proposals for the refer-
E, and an arbitarily chosen value ®f. In Fig. 2 we show ence exponential curve. The first, which is the most natural
the dependence af, upon2m(V,—E,) for different values phenomenologically, is to refer to an exponential best fit to
of w. From the above curves we see that, to a very goodP(t). This fit almost certainly willnot have the exact same
approximation,r, grows linearly withw and hence with the lifetime asP(t). The second possibility is that one may com-
barrier widthb—-a. It is also proportional approximately to pareP(t) with atheoreticalsingle exponentialpossibly from
[2m(Vo—EO0)]™Y2 This for the parameter ranges considered.a model calculation as in our cas&hese possibilities dis-
We defer an interpretation of these results to our conclusionsinguish themselves from the original because they do not
Fort—0, the exponential survival law must necessarily necessarilyhave a crossover point and hence need not imply
lie below the physical curv®(t) if this lacks a linear term the conditions for an 1ZE.
since both are normalized #(0)=1. The fact that the life- We have a natural choice of exponential in our model, the
time measures the mean time for decay means that an expBreit-Wigner exponential. We have thus looked for crossover
nential curve withsaid lifetime as inpumust eventually rise  points by confrontingPl(t) with P2(t). In all cases exam-
aboveP(t) to compensate for the short-time “shortfall”; i.e., ined they have been found. Thus, even with our choice of
there is a crossover point. As an aside, we note that thexponential the IZE is possible. We can see this more clearly
power law int predicted forP(t) at long times means that by observing that, in our tableg;/y,<1 andx;=X,; thus,
any exponentially falling curve must lie beloR(t) asymp-  we can approximate E@27) as follows:

2
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1.2

08 | .

T/ma’

04 -

o2
g a/2mV,=8n

FIG. 1. Dependence af, onw for several of the quasistationary

energiesE, of a fixed V.

PI(t) ~ exp(— 4x,yt)

X{l + 2%[exp(— 2%yt )coda + fBt) - COSa]}.
2
(33
Consequently,
PA() Y1
=~1+2=¢(1), 34
P[z](t) + y2<P( ) ( )
where

o(t) = exp(— Z%t)cos(a + mL;Zt) - CoSa.

Intersection points occur whep(t)=0—i.e, when

exp(Z%t) = cm(a + %t) / coSa. (35)

The trivial solution is, coursé=0. The condition for the IZE

PHYSICAL REVIEW A 70, 022101(2004
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FIG. 2. 7, vs 1/WVy—E, for various quasienergieg, and w
values. The lines drawn demonstrate excellent linear fits, for a
fixed w.

above equation at=0. The necessary and sufficient condi-
tion for a nontrivial intersection is

2x,¥, < — Btana. (36)

This is because, with this condition satisfied, the exponential
starts off with a flatter growth than the oscillating and
bounded right-hand side of E¢35), and hence they must
necessarily cross.

If x;=x, (O sina=0), we find only the trivial solutiort
=0. On the other hand, from an examination of Table I, we
see that

(O = X5+ Y5 = Ya) (X1 = Xo) (Y1 + Yo)
(X1 = X2)? = (y1 + Y2)?

27-1
Y2
~2 1-
ngz{ <X1 - Xz) ]

> 2XoY5.

- Btana=2

Hence a crossover occurs for all our tabulated cases. In Fig.
3 we show examples of this by plotting(t) againstt for
several quasistationary statEg of a fixed barrier height/,

can be determined from the relative value of the time derivaand an arbitrarily chosen value of The large dots identify
tive of the functions on the left- and right-hand sides of thethe crossover times.
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' ' ' ' ical loss of the QZE, it is the primary one. Indeed, if one
includes higher-order corrections, such as the fourth-order
terms inAc, then the resultarel*l(t) displays the absence of

a linear term int, however small the extra contributions
might be.

This result was somewhat of a surprise. One could have
reasonably supposed that only in the limit of an exact
calculation—i.e., when all orders dfo are included—is the
linear term absent. Indeed the authors only expected that to
fourth order the coefficient of the linear term would be re-
duced when compared to that of the exponential curve. In-
stead we have been able to show that itigorously null
already inPl(t). Note that to prove this we have applied
points (i) and (iii ). Point(ii) is also significant for another
reason. It is known to be the cause for the loss of the long-
time power law behavior, and this is independent of any
other approximation made. Our conclusions upon the ques-
tion of the theoretical prerequisite for the QZE is that it is
indeed a feature d®(t) and that one must make very specific
assumptions or approximations to avoid this effect. Only
with the explicit exclusion of short and long times can a
single-exponential curve be a good approximatiofP(d.

We have also considered in the previous section the ques-
tion of the existence or otherwise of the IZE. There is in our
opinion a measure of ambiguity in the condition for the ex-
istence of this effect because of a nonunique choice of the
exponential used as reference. Since any exponential is at
best an approximation to the physical curve, its definition is
subject to discussion. An exponential with the same lifetime

. . . . as the real curve is the conventional choice. However, there
01 0 1 > are other choices for which the possible existence of an IZE
is far from obvious. We have shown that one possibility, the
comparison ofP*l(t) with PL2l(t), does indeed allow for an
FIG. 3. The functionp(t) vst for the indicated values ofpand ~ 1ZE. Nevertheless, we do not consider the IZE and QZE

. The five curves are for different values Bf. For each of the cOmparable phenomena. The forntitE) refers to our “ex-

02

w(t)

01 Hi

t/ma’

curves the crossover points are indicated by the large dots. pectations,” and as we have argued our expectations are sub-
ject to some ambiguity. The lattéQZE) predicts a physical
VI. CONCLUSIONS suppression of decay through continuous observation and it

We have discussed in this paper the survival law and ités completely independent of the existence or otherwise of an
relevance to the QZE and IZE within the context of a simpleapproximate exponential curve.
potential model. We have shown that the general arguments Of particular interest in our results is the dependence of
that allow for the QZE based upon the Hermiticity of the the second exponential time parametgrThe first time pa-
Hamiltonian are indeed valid in this model unless one makesameterr; is essentially the lifetime of the system and has a
very specific assumptions and/or approximations. In particueharacteristic exponential rise with barrier width—a,
lar, the exponential law, which does not allow for the QZE, iswhereas this second time parameter can be phenomenologi-

obtained only if two approximations are made: cal represented by

(i) The denominatoff(o) in the spectral integral for the maw m(b— a)
amplitude of nondecay is so highly peaked about the initial Ty = — = — . (37)
quasistate that only the lowest—second-order—termsadn V2ma(Vo-Ey)  v2m(Vo - E)

need be considered.

(i) The integral in energi or equivalentlyo is extended
below the threshold tooe.

Point (ii) is made in order to apply the theorem of resi-
dues essential for deriving a single-potential survival law. It
is also the cause of loss of analyticity inalthough this is m(b - a)
normally ignored by arguing that only positive valueg afe = m (39
physically significant. ‘ 0

Our analysis has gone on to show that while pgintthe  This “mirrors” the expression fot, (except for the feature
Breit-Wigner spectrumis not the sole cause for the theoret- that E; has a discrete spectrynBoth tend to infinity if the

This form is very suggestive. Consider an energy eigenstate
above the barrier E>V,. In the barrier regiona<r<b)

the particle will have velocityv=+2m(E-Vy)/m. Conse-
quently the time taken in crossing the barrier will be
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particle energy and potential energy are set equal—a type dhe nondecay amplitude. It is therefore a wavelike property
consistency condition. Furthermore, both grow linearly withof the particle.
barrier width. This tempts us to speculgémd at this stage it

is no more than an hypothesithat 7, is a measure of the

time that the particle takes to tunnel free. Equivalently, we

may say thatr, is the time during which the particle is nei-  The authors wish to thank Giampaolo Co and Piergiulio
ther bound nor fre¢7]. However, since this infringes upon Tempesta for several comments during the preparation of this
the question of transit times and superluminal velociti€, = manuscript and Saverio Pascazio for helpful suggestions
which is a very topical, but also complex subject, we desisupon the revised version. One of the auth@sD.L.) also
from any further considerations at this point. There not  gratefully acknowledges the FAEBniversity of Campinas

the only time parameters iRl*(t): we also have 18 in the  INFN (Theoretical Group and MIUR (Department of Phys-
oscillatory term. Mathematically it is the natural conse-ics) for financial support during his stay at the University of
guence of the interference between the two exponentials dfecce where this paper was prepared.
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