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We show theoretically that concurrent interactions in a second-order nonlinear medium placed inside an
optical resonator can generate multipartite entanglement between the resonator modes. We show that there is a
mathematical connection between this system and van Loock and Braunstein’s proposal for entanglingN
continuous quantum optical variables by interfering with the outputs ofN degenerate optical parametric
amplifiers(OPA) at aN-port beam splitter. Our configuration, however, requires only one nondegenerate OPA
and no interferometer. In a preliminary experimental study, we observe the concurrence of the appropriate
interactions in periodically poled RbTiOAsO4.
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A crucial direction of effort in quantum information is the
entanglement of(many) more than two systems. The current
record number of entangled qbits is four[1]. Continuous
variables(CV) are a fascinating alternative to discrete ones
and lend themselves well to quantum optical implementation
[2]. Multipartite entanglement of CVs was proposed by van
Loock and Braunstein[3,4] and experimentally demonstated
in two different regimes[5,6]. A CV multipartite entangled
state is an inseparable multimode squeezed state that tends
toward a Greenberger-Horne-Zeilinger(GHZ) state in the
limit of infinite squeezing. In van Loock and Braunstein’s
method, such states are generated fromN squeezed modes of
the field emitted by optical parametric oscillators below
threshold [i.e., optical parametric amplifiers(OPAs)] and
combined by appropriately balanced beam splitters. The
quantum interference at the beam splitters requires interfero-
metric stabilization of the optical paths and indistinguishabil-
ity, i.e., frequency and polarization degeneracy, of allN
modes. In this paper, we show that multipartite entanglement
is obtainable by the use of a single OPA and no beam split-
ters. The OPA nonlinear medium must simultaneously phase
match several second-order nonlinearities that create two-
mode squeezing betweenN cavity field modes. The advan-
tage of this scheme for experimental purposes is that it can
be made very compact in a single periodically poled ferro-
electric nonlinear crystal, with no interferometer to lock.
Moreover, there is no degeneracy constraint on the frequen-
cies. In the next section of this paper, we expose the theoret-
ical arguments that prove our assertion. We then detail how a
concurrence of three nonlinearities, suitable for entangling
four modes, can be created in periodically poled ferroelec-
trics and we present preliminary observations in periodically
poled RbTiOAsO4 (PPRTA).

It is well known that a two-mode squeezer such as a non-
degenerate OPA can generate an Einstein-Podolsky-Rosen
(EPR) state out of a vacuum or coherent input[7,8]. The
Hamiltonian in the interaction picture is

H1 = i"bxsa1
†a2

† − a1a2d, s1d

where x is the nonlinear coupling coefficient andb is the
real, assumed undepleted, coherent pump field amplitude.
Solving the Heisenberg equations for the fields gives the
squeezed joint quadratures

P1std + P2std = sP1 + P2de−bxt, s2d

X1std − X2std = sX1 − X2de−bxt, s3d

whereX=sa+a†d /Î2, P= isa†−ad /Î2, andast=0d=a. These
EPR operators commute and admit maximally entangled
common eigenstates such as

E uxl1uxl2dx=E upl1u− pl2dp= o
n=0

`

unl1unl2 s4d

in the limit of infinite squeezingbxt→` [9,10]. We now ask
whether concurrent interactions involving three modes
would yield a tripartite CV entangled state, e.g.,euxxxldx. It
is simple to check that the Hamiltonian

H2 = i"bxasa1
†a2

† − a1a2d + i"bxbsa2
†a3

† − a2a3d, s5d

does not create such CV tripartite entanglement. The solu-
tions of the Heisenberg system yield only two squeezed joint
modes out of three, the third one being a constant of motion
initially subject to vacuum fluctuations. More interesting is
the symmetrized three-mode Hamiltonian(we now take the
interaction strengths equal, for the sake of simplicity and
symmetry)

H3 = i"bxsa1
†a2

† + a2
†a3

† + a3
†a1

†d + H.c., s6d

whose system of Heisenberg equations isȦ=MA†, where
AT=sa1,a2,a3d. M has only zeroes on the diagonal,bx ev-
erywhere else, and eigenvaluess2bx ,−bx ,−bxd. The eigen-
modes are joint operators

P1std + P2std + P3std = sP1 + P2 + P3de−2bxt, s7d

X1std − X2std = sX1 − X2de−bxt, s8d*Corresponding author. Email address: opfister@virginia.edu
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X1std − X3std = sX1 − X3de−bxt, s9d

whose common eigenstate is a multipartite entangled state
that tends towards the GHZ stateeuxxxldx whenbxt→`. It
is straightforward to generalize to

HN = i"bxo
i=1

N

o
j.i

N

ai
†aj

† + H.c., s10d

which gives the set of multipartite entangled modes

o
i=1

N

Pistd = e−sN−1dbxto
i=1

N

Pi s11d

Xistd − Xjstd = e−bxtsXi − Xjd, ∀ i Þ j . s12d

(Note that the phase sum squeezing is higher than for the
other GHZ modes.) It would therefore seem that we have
found a procedure for entangling an arbitrary number of
modes: One just needs to have every one of them interacting
equally strongly with all the others. Before we turn to the
experimental feasibility of this scheme, we examine its rela-
tion to that of van Loock and Braunstein.

A connection is already known for bipartite entanglement.
Indeed,H1 [Eq. (1)] can also be viewed as the result of the
transformation of the Hamiltonian of two single-mode
squeezers,H18= is" /2dbxf−sa1

2†−a1
2d+sa2

2†−a2
2dg, by a loss-

less balanced beam splitter:H19=UBSH18UBS
† =H1 [11]. Both

possibilities have been used experimentally:H1 in the first
CV EPR experiment[8] and subsequent ones[12,13], andH19
in quantum teleportation experiments[14,15].

We now show that the same kind of relationship exists for
CV multipartite entangled beams. The original proposal of
CV multipartite entanglement uses three single-mode
squeezed beams, produced byH38= is" /2dbxs−a1

2†+a2
2†

+a3
2†d+H.c. and mixed by a “tritter”, i.e., the combination of

a 2:1 and a 1:1 beamsplitter[3,4]. The transformation ofH38
by the tritter is

H39 =
1

3
Fi

"bx

2
sb1

2† + b2
2† + b3

2†d + H.c. − 2H3G . s13d

i.e., a combination of ourH3 [Eq. (6)] and symmetrized
single-mode squeezers. The two-mode dependence ofH39 and
H3 is therefore identical.

The correspondingN-mode entangling Hamiltonian is

HN9 = i"bxFN − 2

2N
o
i=1

N

bi
2†G + H.c. −

2

N
HN, s14d

whereHN is our entangling Hamiltonian[Eq. (10)]. The sys-

tem of Heisenberg equations forHN9 is Ḃ=MB†, whereBT

=sb1, . . . ,bNd. All of M’s diagonal elements equalsN
−2dbx /N and all off-diagonal elementsequal −2bx /N. The
eigenvalues ares−bx ,bx , . . . ,bxd and eigenvectors of the
form of Eqs.(11) and(12), with X andP swapped and equal
squeezing rates exps−bxtd. Our HamiltonianHN (or H3)
leads to the same matrix, but with zero diagonal, and asym-
metric squeezing rates[Eqs.(11) and(12)]. The advantage is
that no control is required over the phases of the input

squeezed states, i.e. over the signs of the different terms in
H1,3,N8 . This greatly simplifies the experimental setup, as one
passes from the interference ofN OPA’s to the output of a
single OPA.

The experimental principle is to use the simultaneous
nonlinear interaction of different eigenmodes of an optical
resonator. The presence of the resonator here simplifies the
situation by selecting a discrete comb of resonant modes out
of the quantum field continuum. Moreover, because the as-
sembly of the optical resonator with the nonlinear medium
constitutes a parametric oscillator, it provides us with the
option of operating either in the spontaneous emission re-
gime (below oscillation threshold) or in the stimulated emis-
sion regime(above oscillation threshold). We plan to inves-
tigate the latter case in subsequent work but we restrict the
scope of this paper to vacuum-seeded OPA.

In general, a nonlinear second-order medium pumped at
frequencyvp will optimally couple pairs of modesv1,2 such
that v1+v2=vp (from the phase-matching condition). The
phase-matching bandwidth can be broad enough(e.g.,
100 GHz) for several pairs of modes, separated by a free
spectral range(FSR), say,Dø1 GHz, to have approximately
the same coupling strength. It is also well known that the
resonance condition depends on the frequency, via disper-
sion, but these effects are small enough to be negligible over
a few free spectral ranges. Still, asingly pumpedOPA cannot
realize multipartite entanglement. The two possible cases
are:

(i) vp coincides with twice a cavity resonance frequency
2v0. Then the Hamiltonian is

i"bxS1

2
a0

2† + a1
†a−1

† + a2
†a−2

† + ¯D + H.c., s15d

wherea0 has frequencyv0 anda±k, v±k=v0+ ±kD.
(ii ) v08 coincides with the sum of two consecutive cavity

resonance frequencies, e.g.v08=v0+v1. The Hamiltonian is

i"bxsa0
†a1

† + a−1
† a2

† + a−2
† a3

† + ¯d + H.c. s16d

In neither case is a multipartite entangling Hamiltonian
realized because we never have a given set of more than two
modes all connected together by the interaction. This prob-
lem can be easily solved by having several pump beams at
different frequencies, more precisely one-half a FSR apart.
This amounts to adding both Hamiltonians(15) and (16).
However, an additional difficulty stems from the fact that the
degenerate interaction in(15) has the same sign as the other
nondegenerate interactions, contrary to what is required by
Eq. (14). In fact, it is impossible to have a different interac-
tion phase for two different downconversion terms that share
the same pump such as in

i"bxS−
1

2
a0

2† + a1
†a−1

† + a2
†a−2

† + . . .D + H.c., s17d

to be compared with Eq.(15). This makes theexactrealiza-
tion of van Loock and Braunstein’s HamiltonianHN9 impos-
sible with concurrent interactions, as it requires opposite
signs for the degenerate and nondegenerate interactions[Eq.
(14)]. Thus, one must go back to the other side of the mul-
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tiport splitter, where the individually tunable optical paths
provide the necessary degrees of freedom. However, it is
possible to use concurrent interactions to realize our alter-
nate, nondegenerate HamiltonianHN [Eq. (10)].

In practice, the implementation ofHN requires obtaining
all possible nondegenerate coupling terms without a degen-
erate one, for a given set of modes. We now show how this
can be achieved for sets of three or four modes. Several
equivalent possibilities exist. Without tediously enumerating
them all, we focus, without loss of generality, on the simplest
ones that are experimentally realizable. These are the only
ways we have found to fulfill the two requirements stated
above(which does not, obviously, constitute a proof of unic-
ity). We assume propagation along the principal axisx of a
nonlinear crystal and use the polarizationsy,zd and fre-
quency degrees of freedom to label the modes. Graphical
representations of the interactions are given in Fig. 1. Three-
mode entanglement is realized by simultaneously phase-
matching zzz and yzy parametric down-conversion[Fig.
1(a)]:

H3 = i"fbys2v0dxyzyay
†sv0daz

†sv0d

+ bysv0 + v1dxyzyay
†sv0daz

†sv1d

+ bzsv0 + v1dxzzzaz
†sv0daz

†sv1dg + H.c. s18d

No other interaction occurs inside the set of modes
haysv0d ,azsv0d ,azsv1dj [in particular, yyy is not phase
matched and there is nobzs2v0d]. The pump amplitudes can
be adjusted to make up for residual differences in the non-
linear coefficientsxi jk so that the interaction strengths are all
equal. Under these conditions, this nondegenerate OPA
should amplify vacuum inputs into tripartite entangled
modes of the form(7). The four-field entanglement Hamil-
tonianH4 necessitates additional phase matching of theyyy
interaction, which can be done by using azzzcrystal rotated
by 90o. Neglecting the FSR difference between the two po-
larizations(which, for practical purposes, can be made arbi-
trarily small using two crystals), we can design an entangling
interaction between four equally spaced cavity modes[Fig.
1(b)]:

H4 = i"hbysv0 + v1dxyzyay
†sv0daz

†sv1d

+ bys2v1dxyyyay
†sv0day

†sv2d

+ bysv1 + v2dxyzyfaz
†sv1day

†sv2d + ay
†sv0daz

†sv3dg

+ bzs2v2dxzzzaz
†sv1daz

†sv3d

+ bysv2 + v3dxyzyay
†sv2daz

†sv3dj + H.c. s19d

Again, these are all the possible pair couplings inside the set
of modes haysv0d ,azsv1d ,aysv2d ,azsv3dj and these should
thus all be entangled byH4. Note that the absence ofyzzand
zyy prevents degenerate terms from appearing. The equidis-
tant pump frequencies can easily be obtained by acousto-
optic or electro-optic modulation. This scheme does not scale
easily to N.4, unfortunately, because this requires phase
matchingzyy/yzz and it then becomes impossible to avoid
degenerate interactions with the wrong sign, which, we have
found, always dramatically reduce the number of entangled
modes(detailed calculations will be published elsewhere).
This is a consequence of the freezing of the optical phases in
our scheme; however, this very limitation is precisely what
makes possible the experimental simplicity of our approach,
which could lead to extremely compact and low-loss CV
multipartite entanglers.

As we have seen, realizingH3,4 in a nonlinear optical
material necessitates the concurrence of two different inter-
actions. Using two different nonlinear crystals is a possibility
but it is costly in terms of optical losses, especially inside an
optical resonator. It is therefore desirable, in line with the
rationale of this paper, to obtain all interactions in the same
crystal. While such coincidences are extremely rare in bire-
fringent phase matching, they are very easy to engineer in
quasi-phase-matched materials. Quasi-phase-matching
(QPM) is as old as nonlinear optics[16]. It relies on spatial
modulation of the nonlinear coefficient, here by periodically
poling a ferroelectric crystal, to make up for the phase mis-
match of a particular nonlinear interaction[17]. QPM allows
practically any interaction to be phase matched in the same
material by simply changing the poling period. Poling the
same crystal with two different periods therefore yields the
desired coincidence. Even simpler designs are possible: One
can find two interactions sharing the same period[18]. More-
over, since the spatial modulation of the nonlinear coefficient
is a square wave, one can also find coincidences between
different poling harmonics. We have observed one instance
of these in PPRTA. RTA is an isomer of KTP with lower
residual absorption losses and equivalent nonlinear coeffi-
cients. Like KTP, RTA is nonhygroscopic, has a very high
optical damage threshold, and presents neither photorefrac-
tive damage nor blue-induced infrared absorption. We con-
sider the particular set of Nd-doped laser wavelengths of
532 nm for the pump fields, and 1064 nm for the parametri-
cally amplified fields. The poling periods required to quasi-
phase-match the second-harmonic generation(SHG) of
1064 nm at room temperature are 43mm for yzy and
8.37mm for zzz. The interaction is tunable by varying the
refractive indices via the wavelength, incidence angle, or
temperature. The goal is to obtain simultaneous QPM of both
yzy and zzz interactions at the same temperature. The

FIG. 1. Cascaded entangling interactions(dashed lines) for (a)
three and(b) four OPA modes(top arrows). Bottom arrows repre-
sent the pump fields.
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8.37mm period is the fifth harmonic of 41.85mm, close to
43 mm. We must therefore find an intermediate poling period
for which both interactions occur at the same temperature.
The temperature dependence of RTA indices not being per-
fectly known yet, we have tried a 41.95mm crystal. The
results of SHG measurements are plotted in Fig. 2. The input
beam at 1064 nm and the output beam at 532 nm are, respec-
tively, polarized and analyzed with polarizers. Even though

the two main QPM peaks are still separated by about 40°C,
we already have coincidences of each main peak of one in-
teraction with a secondary one of the other interaction. The
ratio of the two maxima givessdyzy

eff /dzzz
effd2=7, for a theoreti-

cal value ofs5d24/d33d2.1.8. We attribute the discrepancy to
high-frequency irregularities in the crystal’s poling, which
would affect the fifth harmonic of the period more than its
fundamental. We are currently refining measurements of
temperature tuning for RTA in order to improve the period
design.

In conclusion, we have demonstrated that cascaded non-
linearities in a single OPA can entangle four modes, and
possibly more. The current technology makes such an OPA
quite feasible and we are now preparing an experimental
realization. The compactness and simplicity of such a source
of entangled beams should make it very attractive for CV
quantum information implementations, such as teleportation
networks, controlled dense coding, and quantum error cor-
rection via telecloning.

Note added in proof.Recently we have become aware of
related work on tripartite photon-number entanglement[19].
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