
Conditional production of superpositions of coherent states with inefficient photon detection

A. P. Lund,1 H. Jeong,1 T. C. Ralph,1 and M. S. Kim2

1Center for Quantum Computer Technology, Department of Physics, University of Queensland, St Lucia, Qld 4072, Australia
2School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN, United Kingdom

(Received 3 January 2004; revised manuscript received 26 March 2004; published 17 August 2004)

It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be
generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon,
beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are
enough to generate a coherent state superposition in a free propagating optical field with a large coherent
amplitudesa.2d and high fidelitysF.0.99d. In contrast to all previous schemes to generate such a state, our
scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Further-
more, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.
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Since Schrödinger suggested his famous cat paradox[1],
there has been great interest in generating and observing a
quantum superposition of a macroscopic system. The com-
ponent states composing such a superposition state should be
macroscopically distinguishable, i.e., they should give mac-
roscopically distinct measurement outcomes[2]. Two coher-
ent states can be discriminated by a homodyne measurement,
which can be considered a macroscopic measurement, when
they are well separated in the phase space. Therefore, a su-
perposition of two optical coherent states with sufficiently
large amplitudes and with ap phase difference between
these amplitudes is considered a realization of such a mac-
roscopic superposition.

Recently, the coherent state superposition(CSS) in a free
propagating optical field has been studied for application to
quantum information processing including quantum telepor-
tation [3,4], quantum computation[5–7], entanglement puri-
fication [8] and error correction[9]. In particular, it was
found that quantum computation can be realized using only
linear optics and photon counting, given pre-arranged CSSs
[6,7]. In this framework, initial CSSs of amplitudeaù2 are
required for efficient quantum computation with simple op-
tical networks[7].

Unfortunately, it is extremely demanding to generate a
free propagating CSS using current technology. It is well
known that the CSS can be generated from a coherent state
by a nonlinear interaction in a Kerr medium[10]. However,
Kerr nonlinearity of currently available nonlinear media is
extremely small and attenuation is not negligible compared
with the required level to generate a CSS[11].

Some alternative methods have been studied to generate a
superposition of macroscopically distinguishable states based
upon conditional measurements[12,13]. A crucial drawback
of these schemes is that a highly efficient detector which can
discriminate photon numbers is necessary. Cavity quantum
electrodynamics has been studied to enhance nonlinearity
[14]. Some success has been reported in creating such super-
position states within highQ cavities in the microwave[15]
and optical [16] domains. However, all the suggested
schemes for quantum information processing with coherent
states[3–9] require afree propagatingCSS.

In this letter, we show that a free propagating optical CSS
can be generated with a single photon source and simple

optical operations. A CSS with a small coherent amplitude
saø1.2d and high fidelitysF.0.99d can be deterministically
generated by squeezing a single photon. A large CSSsa.2d
with high fidelity sF.0.99d can be obtained in a non-
deterministic way from small CSSs. Weak squeezing, beam
mixing with an auxiliary coherent field and photon detecting
with threshold detectors are enough to generate such large
CSSs given a single photon source. Remarkably, neither dis-
crimination of photon numbers norxs3d nonlinear interac-
tions are required in our scheme. Furthermore, our scheme is
robust to detection inefficiency and somewhat resilient to
photon production inefficiency. In a more general sense, our
examples reveal some previously unrealized relations be-
tween the quantum states of harmonic oscillators: we learn
that the first excited energy eigenstates can be converted to
superpositions of large coherent states by linear operations
and projections.

A CSS can be defined asuCSSwsadl=Nwsadsual
+eiwu−ald, whereNwsad is a normalization factor,ual is a
coherent state of amplitudea, and w is a real local phase
factor. The amplitudea is assumed to be real for simplicity
without loss of generality. In this paper we refer to the mag-
nitude of a as the size of the CSS. Note that CSSs such as
uCSS±sadl=N±sadsual± u−ald are called even and odd CSSs,
respectively, because the even(odd) CSS, uCSS+sadl
suCSS−sadld, always contains an even(odd) number of pho-
tons.

An arbitrarily large CSS can be produced out of arbi-
trarily small CSSs using the simple experimental setup de-
picted in Fig. 1.Let us first illustrate this procedure with a
simple example. Suppose that one has a collection of identi-
cal small odd CSSs with known amplitudeai. Two of the
small CSSs are selected and incident onto a 50:50 beam
splitter BS1 as

uCSS−saidlauCSS−saidlb→
BS1

u0l fsuÎ2ailg + u− Î2ailgd

− suÎ2ail f + u− Î2ail fdu0lg,

s1d

where the normalization factor is omitted on the right-hand
side. One can then say that if one could condition on detect-
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ing u0lg, a larger CSS with amplitudeÎ2ai would be ob-
tained at modef. An additional step is therefore needed to
unambiguously discriminate between the vacuum and coher-
ent statesu±Î2ailg with inefficient detectors. Another 50:50
beam splitter, BS2, mixes the field at modeg and an auxil-
iary coherent stateuÎ2ailc as

uBS1l f,guÎ2ailc→
BS2

u0l fsu2ailt1u0lt2 + u0lt1u2ailt2d − suÎ2ail f

+ u− Î2ail fduailt1u− ailt2, s2d

whereuBS1l f,g represents the right-hand side of Eq.(1) and
the normalization factor is omitted. Finally, photodetectorsA
and B are set to detect photons at modest1 and t2. The
remaining state at modef is selected only when both the
detectors detect any photon(s) at the same time. In this case,
it is obvious that the right-hand side of Eq.(2) is reduced to
larger CSSs. If either of the detectors fails to click, the re-
sulting state is discarded. This process can be recursively
applied until a sufficiently large CSS is obtained. Suppose
that an even CSS with amplitudeaù2 is required while the
initial amplitude of small odd CSSs isai =1/Î2. After a suf-
ficient number of CSSs of the amplitudeÎ2ai are obtained,
the second step will be taken with the same experimental

setup and another auxiliary coherent stateu2ail. In this sec-
ond stage, larger even CSSs of amplitude 2ai will be gained
from pairs of even CSSs ofÎ2ai. Eventually, the amplitude
will reach the required value by four recursive applications
of the process, i.e.,a=4ai <2.83.

The process described above can be generalized for arbi-
trarily small CSSs with known amplitudes as shown in Fig.
1. Suppose two small CSSs,uCSSwsadl and uCSSfsbdl, with
amplitudesa andb. The reflectivityr and transmitivityt of
BS1 are set tor =b /Îa2+b2 and t=a /Îa2+b2, where the
action of the beam splitter is represented by

B̂a,bsr ,tdualaublb= uta+rbl fu−ra+ tblg. The other beam split-
ter BS2 is a 50:50 beam splittersr = t=1/Î2d regardless of
the conditions and the amplitudeg of the auxiliary coherent
field is determined asg=2ab /Îa2+b2. The resulting state
for mode f then becomesuCSSw+fsAdl~ uAl+eisw+fdu−Al,
whose coherent amplitudeA=Îa2+b2 is larger than botha
andb. The relative phase of the resulting CSS is the sum of
the relative phases of the input CSSs. The success probability
Pw,fsa ,bd for a single iteration is

Pw,fsa,bd =
e−4a2b2/sa2+b2dse2a2b2/sa2+b2d − 1d2f1 + cossw + fde−2sa2+b2dg

2s1 + coswe−2a2
ds1 + cosfe−2b2

d
,

which is plotted for a number of different combinations in
Fig. 2. The success probability approaches 1/2 as the ampli-
tudes of initial CSSs become large. Note that the probabili-
ties depend on the type of CSSs(odd or even) used. The
effect of detector inefficiency is just to decrease this success
probability.

We now show that a small odd CSS withaø1.2 is sur-
prisingly well approximated by a squeezed single photon.
The single mode squeezing operator isŜsrd=e−sr/2dsâ2−â†2d,
wherer is the squeezing parameter andâ is the annihilation
operator. This operator reduces quantum noise of a vacuum

state in the phase quadrature by a factor ofe−2r. When the
squeezing operator is applied to a single photon the resultant
state can be expanded in terms of photon number states as

Ŝsrdu1l = o
n=0

`
stanhrdn

scoshrd3/2

Îs2n + 1d!
2nn!

u2n + 1l. s3d

The state contains only odd photon numbers and has coeffi-
cients decaying exponentially asn increases in a similar
fashion to an odd CSS. The fidelity of this state with an odd
CSS is

FIG. 2. The success probabilities of the CSS-amplifying process
in Fig. 1 for the input fields of two identical odd CSSs(solid line),
two identical even CSSs(dashed line), and even and odd CSSs
(dotted line).

FIG. 1. A schematic of the non-deterministic CSS-amplification
process. See the text for details.
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Fsr,ad = ukCSS−saduSsrdu1lu2 =
2a2 expfa2stanhr − 1dg

scoshrd3s1 − expf− 2a2gd
.

Figure 3 shows the maximized fidelity on they axis plotted
against a range of possible values fora for the desired odd
CSS. Some example values are:F=0.999 99 for amplitude
a=1/2, F=0.9998 for a=1/Î2, and F=0.997 for a=1,
where the maximizing squeezing parameters arer =0.083,r
=0.164, andr =0.313, respectively. First note that fora very
close to zero the fidelity approaches unity. Whena→0, r

→0 and hence the squeezing operatorŜsrd approaches the
identity transformation. An odd CSS witha very close to
zero has a significant contribution from a single photon and
very little from higher odd photon numbers. This is the rea-
son for the high fidelity asa tends to zero. The fidelity re-
mains high fora near zero as one can match the three photon
contribution to the CSS by the squeezing operator whilst still
being able to neglect higher order photon number terms.
Eventually asa increases, higher photon numbers cannot be
matched and so asa tends to infinity, the fidelity tends to
zero.

As the fidelity between a squeezed single photon and an
ideal small CSS is extremely high, it can be conjectured that
a large CSS distilled from squeezed single photons by our
scheme will also be very close to an ideal large CSS. In what
follows, we will show that this conjecture is true fora
ø2.5.

In order to calculate multiple iterations we need to use
numerical techniques. We are using coherent states of some
bounded coherent amplitude and superpositions there of.
Provided the coherent amplitudes are not too large, the most
significant contributions to these states are Fock states of low
number. For computations here the lowest thirty Fock states
were used. This provides a very good approximation for co-
herent states withaø2.5. All 29 possible “click” events are
included for all detectors.

If one wished to create a CSS with a particulara with n
CSS-amplification steps, then initial CSSs withai =a /Î2n

are required. As the number of steps increases the requiredai
decreases. When generating a large CSS out of the squeezed
single photon states the fidelity maximizes for a particular

number of iterations. Figure 4 shows the maximum possible
fidelity using this process in(a) and the number of steps in
(b) against the desireda in the CSSs. For example, four
iterations starting from the initial amplitudeai =1/2 are re-
quired to gain the maximum fidelityF=0.995 fora=2. It is
evident from Fig. 4 that high fidelity,F.0.99, can be ob-
tained up toa=2.5. The error rate for discrimination be-
tween coherent states witha= ±2.5 via a classical measure-
ment (homodyne detection) is only 3310−7.

Current technology does not produce pure single photon
states; the single photon is always in a mixture with the
vacuum aspu0lk0u+s1−pdu1lk1u, wherep is the inefficiency
of the photon production. Hence the squeezed single photon
state will also be a mixture with a squeezed vacuum. How-
ever, an interesting aspect of our scheme is that it may be
somewhat resilient to the photon production inefficiency be-
cause its first iteration purifies the mixed CSSs while ampli-
fying them. The initial input states for the CSS amplification
process from the imperfect single photon source are

ra,b,c = fs1 − pd2uS1lkS1u ^ uS1lkS1u + p2uS0lkS0u ^ uS0lkS0u

+ ps1 − pdsuS0lkS0u ^ uS1lkS1u + uS1lkS1u ^ uS0lkS0udga,b

^ suglkgudc, s4d

whereuS0l=Ŝsrdu0l anduS1l=Ŝsrdu1l. Here, the terms withp2

andps1−pd are undesired error terms where either(or both)
of the single photons is missing. Note that the initial ampli-
tude is required to be small to produce a large CSS with high
fidelity. Provided such a small amplitude, input states inci-
dent onto the beam splitters in our experimental setup con-
tain approximately only two(or slightly more than two) pho-
tons. In such cases the probability of simultaneous clicks at
detectorsA andB in Fig. 1 will significantly decrease when
any of the single photons is missing. In other words, the
undesired cases will rarely be selected for the next iteration
of the amplification process. We have obtained numerical
results for the initial amplitudeai =1/2 asfollows by the

FIG. 4. (a) The maximum fidelity obtained in our scheme vs the
coherent amplitude.(b) The number of iterations which gives the
maximum fidelity vs the coherent amplitude.

FIG. 3. The fidelity between an odd CSS and squeezed single
photon. The odd CSS is extremely well approximated by the
squeezed single photon for a small coherent amplitude,aø1.2.

CONDITIONAL PRODUCTION OF SUPERPOSITIONS OF… PHYSICAL REVIEW A 70, 020101(R) (2004)

RAPID COMMUNICATIONS

020101-3



methods that we have already explained. Ifp=0.4, the fidel-
ity of the initial CSS, which is a mixture with a squeezed
vacuum, isF=0.60 but it will becomeF=0.89 by the first
iteration. Thus a larger CSS of significantly high fidelity is
produced. Ifp=0.25sp=0.05d, the fidelity of the initial CSS
is F=0.750sF=0.950d but becomesF=0.941sF=0.990d by
the first iteration. Such purification effects for multiple itera-
tions are beyond the scope of this letter but deserve further
investigations.

In the CSS amplification process, the zero amplitude co-
herent states that occur in the detection modes in Eq.(2) may
be slightly different from zero because of imperfect mode
matching at beam splitters. This will lead to a small prob-
ability of accepting the wrong state. Good mode matching is
a requirement in any linear optical network where one
wishes to measure manifestly quantum mechanical effects.
Highly efficient mode matching of a single photon from
parametric down conversion and a weak coherent state from
an attenuated laser beam at a beam splitter has been experi-
mentally demonstrated using optical fibers[19]. Such tech-
niques could be employed for the implementation of our
scheme.

The dark count rate of photodetectors will affect the fidel-
ity of the CSSs. Currently, highly efficient detectors have
relatively high dark count rates while less efficient detectors
have very low dark count rates[18]. We emphasize again
that our scheme does not require highly efficient detectors
because the inefficiency of the detectors does not affect the
quality of CSSs even though it decreases the success prob-
ability. Silicon avalanche photodiodes operating at the visible
wavelength have relatively high efficiency and a small dark
count rate, which is preferred in our proposal.

The single photons required for our scheme could be gen-

erated conditionally from a down-converter[17]. This is a
xs2d process(like squeezing) and does not require photon
number resolving detection. Once free propagating CSSs are
generated, they can be detected by homodyne measurements,
which can be highly efficient in quantum optics experiments.

Our scheme non-deterministically generates large CSSs.
However, a non-deterministic CSS source is useful enough
for quantum information processing[6,7]. Efficient gate op-
erations for coherent-state quantum computation[7] are
based on teleportation via an entangled coherent state[3,4].
Entangled coherent states can be simply generated from
CSSs using a beam splitter and can be used as off-line re-
sources for quantum computation. We note that such en-
tanglement of macroscopically distinguishable states is per-
haps more closely aligned with Schrödinger’s original
concept[1].

In conclusion, we have proposed a simple all-optical
scheme to generate a linear superposition of macroscopically
distinguishable coherent states in a propagating optical field.
We have found a previously unrealized connection between
squeezed number states and superpositions of coherent states
as well as the interesting additive properties of the latter. In
stark contrast to all previous schemes our scheme requires
neitherxs3d nonlinearity nor photon number resolving detec-
tion to generate a macroscopic superposition state.

Note added.The first two authors contributed equally to
this work.
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