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Bloch oscillations in the Mott-insulator regime
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We study the dynamical response of cold interacting atoms in the Mott insulator phase to a static force. As
shown in the experiment bjM. Greineret al,, Nature 415 39 (2002)], this response has resonant character,
with the main resonance defined by coincidence of Stark energy and on-site interaction energy. We analyze the
dynamics of the atomic momentum distribution, which is the quantity measured in the experiment, for near
resonant forcing. The momentum distribution is shown to develop a recurring interference pattern, with a
recurrence time which we define in the paper.
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[. INTRODUCTION factor (number of atoms per lattice sjtequals unity. Then,
. . . the assumption of a Ml initial state implies<0.1AN. In

Recently much attention has been paid to the properties Qf o+ fo|1ows, however, we shall be mainly interested in the
Bose-Einstein condensates of cold atoms loaded into opticg iting case,J<W. Un’der this condition, the excitation of
lattices. In particular, the experimental observation of they,, system is only possible if the Stark energy is approxi-
superfluid (SPH to Mott insul_ator(MI)_ transit?on [1] has mately equal to the interaction energy. Indeed, dé=W
caused a great deal of excitement in the field. Note, thafe atoms may resonantly tunnel in the neighboring well,
besides demonstrating the SF-MI quantum phase transitiog, o forming “dipole”(in the terminology of Ref[6]) states
the same experiment also addressed the problem of the SYSee Fig. 1
tem's response to a static for¢esed in the experiment 10— g First step of our analysis is to identify the resonant
probe the system Obviously, the response depends ONsyhspace in the system’s Hilbert spaspanned by Fock
whether the atoms are initially prepared in the SF state or theaieg j ., the manifold of states resonantly coupled to the
MI state. The former case was investigated theoretically in,| state. For example, for a finite lattice with=8 and
recent paperf2,3] (see also experimental studig). ltwas £~ g the M state1111111} is coupled to the one-dipole
found that, similar to the case of noninteracting atoms, th%tates|20111111, 11201111}, etc., which are coupled to
static force induces Bloch oscillations of the atoms WhiCh’two-dipoIe state$2020111}, [2012011}, etc., which in turn
however, may be affected rather dramatically by the presencg,o coupled to three-dipole states, and so od.<\W, one
of atom—atom interactions. The latter case of Ml initial Stateactually can neglect the otharonresonantstates when con-

was analyzed in Refd5,6], and is also the subject of the ?idering the excitation of the system. The validity of this
present brief report. In particular, we address the evolution o

the atomic momentum distribution not discussed so far. We 2 ' :
show that, in formal analogy with usual Bloch oscillations, a
static force causes oscillations of the atomic momentum,
however, with a different characteristic frequency.

II. THE MODEL AND NUMERICAL APPROACH

As in our earlier studief?], we model cold atoms loaded | f i
into an optical lattice by the Bose-Hubbard Hamiltonian, \/

with an additional Stark term \ L v
e we ) \/ |
H=- 5(2 al.a -+ H.c.) + EE A (A — 1) + dFY, I,
I |

|
(1)

In Eq. (1) J is the hopping matrix elementyV the on-site -2, 1 0 1 >
interaction energyd the lattice period, an& the magnitude x/d

of the static force. Throughout the paper we consider a one-
dimensional lattice and assume, for simplicity, that the fillingSt

V(x)+Fx
(=]

FIG. 1. Schematic presentation of the dipole state. Provided the
ark energy(mismatch between the “bold levels” in the figuie
equal to the interaction energgistance between the “bold” and
“thick” levels), the atom may resonantly tunnel in a neighboring
*Email address: kolovsky@mpipks-dresden.mpg.de well, thus creating particle-hole excitations of the Ml state.
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FIG. 3. Static force induced dynamics of the atomic momentum
distribution for cold atoms in a one-dimensional optical lattice. The

FIG. 2. (Upper panel Dynamics of the normalized mean mo- depth of the optical potential is 22 recoil energies, the dimension-
mentum (p(t) — p(t)/IN) for L=N=8, W=0.0324,dF=W, and J less detuningh=2.084. A periodic change of the distribution is
=0.0019. The solid line shows the exact dynamics, dashed linelearly observed. Feeble oscillations of the distribution are an arti-
corresponds to the resonant approximation. Time axis is scaled witfact, due to the finite system size=16).
respect tol;=27#/J, which is the characteristic time scale of the
system.(Lower paneJ Dynamics of the mean momentum calcu- dipole, etc) excitations there are many different states
lated within the resonant approximation for different system 5i295’1D(2)> not related to each other by cyclic permutation. In
~L.=8 (dot-dashed ling L =12 (dashed ling andL=16(solid line). ¢ follows, we refer to the staté®(m)) as the translation-
It is seen that, for the considered time intervad T;, convergence . . .

ally invariant dipole states.

he th ic limit i h | Lferl2. - -
towards the thermodynamic fimit is reached alreadylfe We conclude this section by a remark on the thermody-

resonant approximation is illustrated in the upper panel oftamic limit L—c. Obviously, the dynamics of a system of
F|g 2, where we compare the time evolution of the mearﬁnite size differs from the one of an infinite system. How-
atomic momentum, calculated by using the complete basi€Vver, this difference emerges only after a finite “correspon-
(for chosenL=8 the total dimension of Hilbert space i§  dence” time. This is illustrated in the lower panel of Fig. 2,
=6435, and restricted to the resonant manifold, respectivelyvhich shows the mean momentup(t) for different lattice
(Ng=47). It is seen that the resonant approximation workssizeL=8,12,16. It isseen that an increase of the system size
pretty well already forJ/W=0.05. It is also worth noting aboveL=12 does not change the result and, hence, for the
that, in the resonant approximation and after scaling time considered time interval<T, convergence of thermody-

— Jt/#, the only relevant parameter of the system is thehamic limit has been reached.

dimensionless detuning

A=(W-dF)/J. (2 Ill. RESULTS OF NUMERICAL SIMULATIONS

Let us briefly comment on our choice of periodgyclic) This section reports the results of numerical simulations

boundary conditions used throughout this paper. _These aifie system dynamics obtained within resonant approxima-
imposed on Eq(l) after a gauge transformation which leads jo | our numerical simulations we followed the scheme

to the time-dependent Hamiltonian of present day laboratory experiments, where one measures
~ I/ 10t At A W . . the momentum distribution of the atoms by using the “time-
H(t) =- E(elws a4+ h-C-> + 52 M =1, (3  of-flight” technique. Precisely, after preparation of the initial
' ! state(cooling stagg the atoms are subject to a static force
with wg=dF/#4 the Bloch frequency. Note that for periodic for a given time intervat (evolution stage Then the static
boundary conditions the quasimomentum is a conservetield, as well as the optical potential, is abruptly switched off
quantity and, hence, the dipole states can be excited only ind the atoms move in free space. Finally, the spatial distri-

coherent superpositions, with the same quasimomentum bution of the atoms is measured, which carries information
=0 as for the initial Ml state. In particular, for one-dipole about the momentum distribution at the end of the evolution

excitations this constraint defines the state stage. Repeating the experiment for different time interyals
L one recovers the time evolution of the momentum distribu-
1o tion P(p,t)
D(1))=—=2, S|2011... 13}, 4 AR . . .
P@) \[z | 3 @) Figure 3 shows the time evolution of the atomic momen-

R R tum distribution for an optical potential depthequal to 22
where S denotes cyclic permutations:§2011..11) recoil energies, and a static force strengtborresponding to
=|1201...1D. It is worth noting that for two-dipoléthree-  A=2.084. Note that the uniquely defines the hopping ma-

015604-2



BRIEF REPORTS PHYSICAL REVIEW A70, 015604(2004)

05 \ \ ' ‘ of this process we consider the mean number of dipole states
5 L/2
D(®)=- -2 2 mlew, (0, (7
m=0 j

where the|cm,j(t)|2 are occupation probabilities for different
dipole states(Note thatD(t)<1, due to the chosen normal-
ization) The dynamics oD(t) for three different values of
the detuning\ is shown in the lower panel of Fig. 4. A strong
correlation between the number of excited dipole states and
oscillations of the mean momentum is clearly observed.
The above results of our numerical simulations can be
qualitatively understood by analyzing the quasienergy spec-
trum of the system. An explicit form of the effective Hamil-
tonian, who's eigenvalues define the quasienergy spectrum,
immediately follows from Eq(3) by employing the resonant
approximation and is given in Ref6]. Namely, using the

FIG. 4. Mean atomic momentugupper panelcompared to the notion of dipole creation operatati =(1/y2)al ;3 ( which
average number of dipole statdewer pane), as the functions of ~ Creates a “hole” at siteand a “quasiparticle” at site- 1) the
time, for different values of the detuning=0 (solid line), 1.042  €effective Hamiltonian reads
(dashed ling and 2.084(dot-dashed ling

. P
Henr=A2 d/d - =2 (d/+d)), 8)
trix elementJ (J=0.0038 recoil energies, for=22) and, ! Vel

hence, the tunneling tim&,=2=#/J. The amplitudev also  with the constraint that neither can there be more than one
defines the explicit form of the Wannier statggx)=#s(X  dipole at one sitédd;=<1), nor two dipoles at neighboring
—dl) and, thus, the initial distributioPy(p)=P(p,t=0) of  sjtes(hard core repulsionAs noticed in Ref[6], the eigen-

the atomic momenta. Indeed, since the initial state is MhgJye problem for the Hamiltonian E¢) can be mapped to
state,|W(t=0))=|D(0))=|11...12, the momentum distribu- the energy spectrum problem for a one dimensional chain of

tion att=0 is simply the squared Fourier transform of theinteracting spins, where a number of analytical results is
Wannier state, as can be easily derived from the definition oknown. In particular, there is an Ising quantum critical point

the one-particle density matr{x] at\.=-1.850, with qualitatively different ground state of the
) , spin system below and above this value)oflt should be
p(x,x )ZIE P1m( D) () n(X"), () noted, however, that in the context of our present problem
,m

(dynamical response of the systgrthe eigenvalue problem
At for the effective Hamiltonian Eq8) defines thejuasienergy
pLm(t) = (P ()& an| V(1)) (6)  spectrum, where the notion of the ground state has no physi-
As time evolves, the momentum distribution repeatedly de€a meaning. o ,
velops a fringe-like interference pattern. More formally, 10 understand the characteristic structure of the quasien-
P(p,t)=Py(p)f(p,t), wheref(p,t)=f(p+p,,t) is a periodic €'Y spectrum it is convenient to discuss it first fpr finite
function of the momentum with the perige =2#7/d de-  The result of a direct numerical diagonalization kf;; for
fined by the inverse lattice period. For the currently consid-L =16 is presented in Fig. 5. This figure shows the position of
ered case =2.084, the functiorf(p,t) is also(almosy peri-  the quasienergy levels as a function of the dimensionless
odic in time with the period')\go_:ggr‘]_ Note, however, that detuning)\. To avoid pOSSibIe confusion with a similar figure
f(p,t) is in general not periodi¢or quasiperiodigin time,  in Ref. [6], we note that here only the states of the same
although some characteristic time scale prevails. This statdl@nslational symmetry as the Ml stafiee., the states with
ment is illustrated by the upper panel of Fig. 4, where theZ€r0 value of the quasimomentyirare shown. It is also
temporal behavior of the mean momentum is displayed folVorth mentioning that the spectrum has reflection symmetry
different values of the detuning. One clearly observes the and, hence, when discussing the dynantresher than ther-
decaying oscillations of the mean momentum, where botfnodynamicg only the case\=0 needs to be considered.

the period of oscillations and the decay rate increase as the L€t us discuss the quasienergy spectrum in more detail. It
detuning is decreased. is convenient to start with large positiwe For a largex the

spectrum consists of separate levas bunches of leve)s
which in the formal limit\ — oo can be associated with the
dipole stategor family of dipole states|D(m)) with given
From the point of view of quantum optics, momentum m(m=L/2). The lowest level in Fig. 5 is obviously the MI
oscillations of cold atoms is a process of subsequent excitastate, the level above the one-dipole st&xel)), followed by
tions of the translationally invariant dipole statesthe family of stategD(2)) etc.(For negativex the situation
|D(0)) <~ |D(1)) «+{|D(2))} «-.... As an overall characteristic is reversed and the Ml stai®(0)) is associated with the

IV. QUASIENERGY SPECTRUM APPROACH
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30 . . w w T V. CONCLUSION

We considered the response of the Mott-insulator phase of
cold atoms in an optical lattice to a “resonant” static force.
Here the term “resonant” means that the Stark enelgy
approximately coincides with on-site interaction eney
Under this condition, the atoms can tunnel in the neighboring
wells of the optical potential, thus creating particle-hole ex-
citations of the MI statdthe “dipole stateg. This process
directly affects the atomic momentum distribution, which is
usually measured in laboratory experiments. Namely, the
momentum distribution repeatedly develops an interference
pattern with a characteristic period,. This period is
uniquely defined by the tunneling tinlg=27%/J (J is the
hopping matrix elememtand the energy gap between two
lowest quasienergy levels which, in turn, is a unique function
-39 ' : 1 P 3 of the dimensionless detuning=(W-dF)/J. In particular,
for \=0, one hag, = 0.67T; which, for e.g., rubidium atoms

_ ) . (Erlh=2mx3.2 kH2 in optical potential of 22 recoil ener-

FIQ. 5. Evolutlon_ o_f the spec_trum pf effective Hamllt_onlan gies (J/Ex=0.0038, corresponds to 60 mshould be com-
equation(8) under variation of the dimensionless detuningattice 46 with the duration of the evolution stage about 20 ms in
sizeL=16). the experimenf1]).

When referring to a laboratory experiment, a remark on
the initial state of the atoms is required. Throughout the pa-
most upper level. The key feature of the spectrum is the per we considered the idealized situation of an “infinite” Ml

finite gapA between the quasienergy leVi&(0)) and the State. In practice, however, the atoms occupy a finite number
rest of the spectrum, exiting for arbitrary valuesoflt is of wells of the optical lattice. Moreover, only the atoms in

: . , o e central part of the lattice are in the MI state, while the
prem_sely th_|s gap, that def_mes_the characteristic frequency_ éﬁoms at the edges of the atomic cloud are superf@jd
atomic oscillations seen in Fig. 4. In the thermodynami

e “When a static force is applied, these edge atoms may per-
limit we haveA=~1.43 forA\=0 andA —[\| for [\| =< [8]. " form ysual Bloch oscillations with the perioty =274 /dF

Let us also note that in the thermodynamic limit and Xor <~ 2,4/ W< T;. Numerical simulations of the system dynam-

~ 0 the remainder of the quasienergy spectrum is continuouigs for the above specified initial conditions, indeed, show

and gapless. This explains an irreversible decay of oscillathe presence of this effect, which appears as fast oscillations
tions, although the decay ratend its\ dependencgemains  of the mean atomic momentum superimposed on slow
an open problem. (dominanj oscillations depicted in the upper panel of Fig. 4.
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