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We study the dynamical response of cold interacting atoms in the Mott insulator phase to a static force. As
shown in the experiment by[M. Greineret al., Nature 415, 39 (2002)], this response has resonant character,
with the main resonance defined by coincidence of Stark energy and on-site interaction energy. We analyze the
dynamics of the atomic momentum distribution, which is the quantity measured in the experiment, for near
resonant forcing. The momentum distribution is shown to develop a recurring interference pattern, with a
recurrence time which we define in the paper.
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I. INTRODUCTION

Recently much attention has been paid to the properties of
Bose–Einstein condensates of cold atoms loaded into optical
lattices. In particular, the experimental observation of the
superfluid (SF) to Mott insulator (MI ) transition [1] has
caused a great deal of excitement in the field. Note, that
besides demonstrating the SF–MI quantum phase transition,
the same experiment also addressed the problem of the sys-
tem’s response to a static force(used in the experiment to
probe the system). Obviously, the response depends on
whether the atoms are initially prepared in the SF state or the
MI state. The former case was investigated theoretically in
recent papers[2,3] (see also experimental studies[4]). It was
found that, similar to the case of noninteracting atoms, the
static force induces Bloch oscillations of the atoms which,
however, may be affected rather dramatically by the presence
of atom–atom interactions. The latter case of MI initial state
was analyzed in Refs.[5,6], and is also the subject of the
present brief report. In particular, we address the evolution of
the atomic momentum distribution not discussed so far. We
show that, in formal analogy with usual Bloch oscillations, a
static force causes oscillations of the atomic momentum,
however, with a different characteristic frequency.

II. THE MODEL AND NUMERICAL APPROACH

As in our earlier studies[2], we model cold atoms loaded
into an optical lattice by the Bose-Hubbard Hamiltonian,
with an additional Stark term
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In Eq. (1) J is the hopping matrix element,W the on-site
interaction energy,d the lattice period, andF the magnitude
of the static force. Throughout the paper we consider a one-
dimensional lattice and assume, for simplicity, that the filling

factor (number of atoms per lattice site) equals unity. Then,
the assumption of a MI initial state impliesJ,0.17W. In
what follows, however, we shall be mainly interested in the
limiting caseJ!W. Under this condition, the excitation of
the system is only possible if the Stark energy is approxi-
mately equal to the interaction energy. Indeed, fordF>W
the atoms may resonantly tunnel in the neighboring well,
thus forming “dipole”(in the terminology of Ref.[6]) states
(see Fig. 1).

The first step of our analysis is to identify the resonant
subspace in the system’s Hilbert space(spanned by Fock
states), i.e., the manifold of states resonantly coupled to the
MI state. For example, for a finite lattice withL=8 and
F.0, the MI stateu11111111l is coupled to the one-dipole
statesu20111111l, u12011111l, etc., which are coupled to
two-dipole statesu20201111l, u20120111l, etc., which in turn
are coupled to three-dipole states, and so on. IfJ!W, one
actually can neglect the other(nonresonant) states when con-
sidering the excitation of the system. The validity of this
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FIG. 1. Schematic presentation of the dipole state. Provided the
Stark energy(mismatch between the “bold levels” in the figure) is
equal to the interaction energy(distance between the “bold” and
“thick” levels), the atom may resonantly tunnel in a neighboring
well, thus creating particle-hole excitations of the MI state.
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resonant approximation is illustrated in the upper panel of
Fig. 2, where we compare the time evolution of the mean
atomic momentum, calculated by using the complete basis
(for chosenL=8 the total dimension of Hilbert space isN
=6435), and restricted to the resonant manifold, respectively
sNR=47d. It is seen that the resonant approximation works
pretty well already forJ/W>0.05. It is also worth noting
that, in the resonant approximation and after scaling timet
→Jt/", the only relevant parameter of the system is the
dimensionless detuning

l = sW− dFd/J. s2d

Let us briefly comment on our choice of periodic(cyclic)
boundary conditions used throughout this paper. These are
imposed on Eq.(1) after a gauge transformation which leads
to the time-dependent Hamiltonian

Ĥstd = −
J
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† âl + h.c.D +

W

2 o
l

n̂lsn̂l − 1d, s3d

with vB=dF/" the Bloch frequency. Note that for periodic
boundary conditions the quasimomentum is a conserved
quantity and, hence, the dipole states can be excited only in
coherent superpositions, with the same quasimomentumk
=0 as for the initial MI state. In particular, for one-dipole
excitations this constraint defines the state

uDs1dl =
1
ÎL

o
l=1

L

Ŝlu2011 . . . 11l, s4d

where Ŝ denotes cyclic permutations:Ŝu2011. . .11l
= u1201. . .11l. It is worth noting that for two-dipole(three-

dipole, etc.) excitations there are many different states
uDs2dl, not related to each other by cyclic permutation. In
what follows, we refer to the statesuDsmdl as the translation-
ally invariant dipole states.

We conclude this section by a remark on the thermody-
namic limit L→`. Obviously, the dynamics of a system of
finite size differs from the one of an infinite system. How-
ever, this difference emerges only after a finite “correspon-
dence” time. This is illustrated in the lower panel of Fig. 2,
which shows the mean momentumpstd for different lattice
sizeL=8,12,16. It isseen that an increase of the system size
aboveL=12 does not change the result and, hence, for the
considered time intervaltøTJ convergence of thermody-
namic limit has been reached.

III. RESULTS OF NUMERICAL SIMULATIONS

This section reports the results of numerical simulations
the system dynamics obtained within resonant approxima-
tion. In our numerical simulations we followed the scheme
of present day laboratory experiments, where one measures
the momentum distribution of the atoms by using the “time-
of-flight” technique. Precisely, after preparation of the initial
state(cooling stage), the atoms are subject to a static force
for a given time intervalt (evolution stage). Then the static
field, as well as the optical potential, is abruptly switched off
and the atoms move in free space. Finally, the spatial distri-
bution of the atoms is measured, which carries information
about the momentum distribution at the end of the evolution
stage. Repeating the experiment for different time intervalst,
one recovers the time evolution of the momentum distribu-
tion Psp,td.

Figure 3 shows the time evolution of the atomic momen-
tum distribution for an optical potential depthv equal to 22
recoil energies, and a static force strengthF corresponding to
l=2.084. Note that thev uniquely defines the hopping ma-

FIG. 2. (Upper panel) Dynamics of the normalized mean mo-
mentum spstd→pstd /JNd for L=N=8, W=0.0324,dF=W, and J
=0.0019. The solid line shows the exact dynamics, dashed line
corresponds to the resonant approximation. Time axis is scaled with
respect toTJ=2p" /J, which is the characteristic time scale of the
system.(Lower panel) Dynamics of the mean momentum calcu-
lated within the resonant approximation for different system sizes
−L=8 (dot-dashed line), L=12 (dashed line), andL=16 (solid line).
It is seen that, for the considered time intervaltøTJ, convergence
towards the thermodynamic limit is reached already forL=12.

FIG. 3. Static force induced dynamics of the atomic momentum
distribution for cold atoms in a one-dimensional optical lattice. The
depth of the optical potential is 22 recoil energies, the dimension-
less detuningl=2.084. A periodic change of the distribution is
clearly observed. Feeble oscillations of the distribution are an arti-
fact, due to the finite system sizesL=16d.
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trix element J (J=0.0038 recoil energies, forv=22) and,
hence, the tunneling timeTJ=2p" /J. The amplitudev also
defines the explicit form of the Wannier statesclsxd=c0sx
−dld and, thus, the initial distributionP0spd=Psp,t=0d of
the atomic momenta. Indeed, since the initial state is MI
state,uCst=0dl= uDs0dl;u11. . .11l, the momentum distribu-
tion at t=0 is simply the squared Fourier transform of the
Wannier state, as can be easily derived from the definition of
the one-particle density matrix[7]

rsx,x8d = o
l,m

rl,mstdclsxdcmsx8d, s5d

rl,mstd = kCstduâl
†âmuCstdl. s6d

As time evolves, the momentum distribution repeatedly de-
velops a fringe-like interference pattern. More formally,
Psp,td=P0spdfsp,td, where fsp,td= fsp+pL ,td is a periodic
function of the momentum with the periodpL=2p" /d de-
fined by the inverse lattice period. For the currently consid-
ered casel=2.084, the functionfsp,td is also(almost) peri-
odic in time with the periodTl<0.33TJ. Note, however, that
fsp,td is in general not periodic(or quasiperiodic) in time,
although some characteristic time scale prevails. This state-
ment is illustrated by the upper panel of Fig. 4, where the
temporal behavior of the mean momentum is displayed for
different values of the detuningl. One clearly observes the
decaying oscillations of the mean momentum, where both
the period of oscillations and the decay rate increase as the
detuning is decreased.

IV. QUASIENERGY SPECTRUM APPROACH

From the point of view of quantum optics, momentum
oscillations of cold atoms is a process of subsequent excita-
tions of the translationally invariant dipole states
uDs0dl↔ uDs1dl↔ huDs2dlj↔ . . .. As an overall characteristic

of this process we consider the mean number of dipole states
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where theucm,jstdu2 are occupation probabilities for different
dipole states.(Note thatDstdø1, due to the chosen normal-
ization.) The dynamics ofDstd for three different values of
the detuningl is shown in the lower panel of Fig. 4. A strong
correlation between the number of excited dipole states and
oscillations of the mean momentum is clearly observed.

The above results of our numerical simulations can be
qualitatively understood by analyzing the quasienergy spec-
trum of the system. An explicit form of the effective Hamil-
tonian, who’s eigenvalues define the quasienergy spectrum,
immediately follows from Eq.(3) by employing the resonant
approximation and is given in Ref.[6]. Namely, using the

notion of dipole creation operatord̂l
†=s1/Î2dâl−1

† âl ( which
creates a “hole” at sitel and a “quasiparticle” at sitel −1) the
effective Hamiltonian reads

Ĥef f = lo
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with the constraint that neither can there be more than one
dipole at one sitesd̂l

†d̂l ø1d, nor two dipoles at neighboring
sites(hard core repulsion). As noticed in Ref.[6], the eigen-
value problem for the Hamiltonian Eq.(8) can be mapped to
the energy spectrum problem for a one dimensional chain of
interacting spins, where a number of analytical results is
known. In particular, there is an Ising quantum critical point
at lc=−1.850, with qualitatively different ground state of the
spin system below and above this value ofl. It should be
noted, however, that in the context of our present problem
(dynamical response of the system), the eigenvalue problem
for the effective Hamiltonian Eq.(8) defines thequasienergy
spectrum, where the notion of the ground state has no physi-
cal meaning.

To understand the characteristic structure of the quasien-
ergy spectrum it is convenient to discuss it first for finiteL.

The result of a direct numerical diagonalization ofĤef f for
L=16 is presented in Fig. 5. This figure shows the position of
the quasienergy levels as a function of the dimensionless
detuningl. To avoid possible confusion with a similar figure
in Ref. [6], we note that here only the states of the same
translational symmetry as the MI state(i.e., the states with
zero value of the quasimomentum) are shown. It is also
worth mentioning that the spectrum has reflection symmetry
and, hence, when discussing the dynamics(rather than ther-
modynamics), only the caselù0 needs to be considered.

Let us discuss the quasienergy spectrum in more detail. It
is convenient to start with large positivel. For a largel the
spectrum consists of separate levels(or bunches of levels),
which in the formal limitl→` can be associated with the
dipole states(or family of dipole states) uDsmdl with given
msmøL /2d. The lowest level in Fig. 5 is obviously the MI
state, the level above the one-dipole stateuDs1dl, followed by
the family of statesuDs2dl etc. (For negativel the situation
is reversed and the MI stateuDs0dl is associated with the

FIG. 4. Mean atomic momentum(upper panel) compared to the
average number of dipole states(lower panel), as the functions of
time, for different values of the detuningl=0 (solid line), 1.042
(dashed line), and 2.084(dot-dashed line).
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most upper level.) The key feature of the spectrum is the
finite gap D between the quasienergy leveluDs0dl and the
rest of the spectrum, exiting for arbitrary values ofl. It is
precisely this gap, that defines the characteristic frequency of
atomic oscillations seen in Fig. 4. In the thermodynamic
limit we haveD<1.43 forl=0 andD→ ulu for ulu→` [8].
Let us also note that in the thermodynamic limit and forl
<0 the remainder of the quasienergy spectrum is continuous
and gapless. This explains an irreversible decay of oscilla-
tions, although the decay rate(and itsl dependence) remains
an open problem.

V. CONCLUSION

We considered the response of the Mott-insulator phase of
cold atoms in an optical lattice to a “resonant” static force.
Here the term “resonant” means that the Stark energydF
approximately coincides with on-site interaction energyW.
Under this condition, the atoms can tunnel in the neighboring
wells of the optical potential, thus creating particle-hole ex-
citations of the MI state(the “dipole states”). This process
directly affects the atomic momentum distribution, which is
usually measured in laboratory experiments. Namely, the
momentum distribution repeatedly develops an interference
pattern with a characteristic periodTl. This period is
uniquely defined by the tunneling timeTJ=2p" /J (J is the
hopping matrix element) and the energy gap between two
lowest quasienergy levels which, in turn, is a unique function
of the dimensionless detuningl=sW−dFd /J. In particular,
for l=0, one hasTl<0.67TJ which, for e.g., rubidium atoms
sER/"=2p33.2 kHzd in optical potential of 22 recoil ener-
gies sJ/ER=0.0038d, corresponds to 60 ms(should be com-
pared with the duration of the evolution stage about 20 ms in
the experiment[1]).

When referring to a laboratory experiment, a remark on
the initial state of the atoms is required. Throughout the pa-
per we considered the idealized situation of an “infinite” MI
state. In practice, however, the atoms occupy a finite number
of wells of the optical lattice. Moreover, only the atoms in
the central part of the lattice are in the MI state, while the
atoms at the edges of the atomic cloud are superfluid[9].
When a static force is applied, these edge atoms may per-
form usual Bloch oscillations with the periodTB=2p" /dF
<2p" /W!TJ. Numerical simulations of the system dynam-
ics for the above specified initial conditions, indeed, show
the presence of this effect, which appears as fast oscillations
of the mean atomic momentum superimposed on slow
(dominant) oscillations depicted in the upper panel of Fig. 4.

[1] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
Bloch, Nature(London) 415, 39 (2002).

[2] A. R. Kolovsky, Phys. Rev. Lett.90, 213002 (2003); A.
Buchleitner and A. R. Kolovsky,ibid. 91, 253002(2003); A.
R. Kolovsky and A. Buchleitner, Phys. Rev. E68, 056213
(2003).

[3] K. Berg-Sorensen and K. Molmer, Phys. Rev. A58, 1480
(1998); D. I. Choi and Q. Niu, Phys. Rev. Lett.82, 2022
(1999); M. L. Chiofalo, M. Polini, and M. P. Tosi, Eur. Phys. J.
D 11, 371 (2000).

[4] M. Cristani et al., e-print cond-mat/0311160(2003); G. Roati
et al., e-print cond-mat/0402328(2004).

[5] K. Braun-Munzinger, J. A. Dunningham, and K. Burnett,
e-print cond-mat/0211701(2004).

[6] Subir Sachdev, K. Sengupta, and S. M. Girvin, Phys. Rev. B
66, 075128(2002).

[7] Note, in passing, that due to translational invariance of the
problem, the density matrixrl,mstd is a cyclic matrix(i.e., the
rows of the matrix are related to each other by cyclic permu-
tation).

[8] The limit of large ulu should be considered with precaution
because it can violate the resonant approximation.

[9] D. Jakschet al., Phys. Rev. Lett.81, 3108(1998); G. G. Ba-
trouni et al., ibid. 89, 117203(2002).

FIG. 5. Evolution of the spectrum of effective Hamiltonian
equation(8) under variation of the dimensionless detuningl (lattice
sizeL=16).

BRIEF REPORTS PHYSICAL REVIEW A70, 015604(2004)

015604-4


