
Relativistic effects in two valence-electron atoms and ions and the search for variation
of the fine-structure constant

E. J. Angstmann, V. A. Dzuba,* and V. V. Flambaum†

School of Physics, University of New South Wales, Sydney 2052, Australia
(Received 8 April 2004; published 9 July 2004)

We perform accurate calculations of the dependence of transition frequencies in two-valence-electron atoms
and ions on a variation of the fine-structure constant,a=e2/"c. The relativistic Hartree-Fock method is used
with many-body perturbation theory and configuration interaction methods to calculate transition frequencies.
The results are to be used in atomic-clock-type laboratory experiments designed to test whethera varies in
time.

DOI: 10.1103/PhysRevA.70.014102 PACS number(s): 06.20.Jr, 31.30.Jv, 95.30.Dr

I. INTRODUCTION

Theories unifying gravity with other interactions allow for
the possible variation of physical constants(see, e.g.,[1–3]).
A recent analysis of quasar absorption spectra suggests that
the fine-structure constanta might vary in space-time[4–6].
There is an intensive search for alternative ways to test
whethera is varying. One of the very promising methods to
study the local present-day variation of fundamental con-
stants in time involves the use of atomic clocks. In particular,
optical atomic clock transitions are suitable to study the pos-
sible variation of the fine-structure constant. This is because
the ratio of the frequencies of the optical transitions depend
on a alone, while the frequencies of the hyperfine transitions
also depend on the nuclear magnetic moments and the
electron-proton mass ratio.

Laboratory measurements involve measuring how the dif-
ference between two frequencies changes with time. To re-
late a measurement of the change between two frequencies to
a change ina, the relativistic energy shifts are needed. The
relativistic energy shift describes how a level moves asa
varies. Two transition frequencies with very different relativ-
istic energy shifts are the most desirable candidates for pre-
cision experiments as they will have the largest relative fre-
quency shift between them.

The best limit on the local present-day variation of the
fine-structure constant published to date was obtained by
comparing cesium and rubidium atomic fountain clocks[7].
Experiments have also been carried out comparing cesium
and magnesium[8] and a H-maser compared with a HgII

clock [9]. There are many proposals for the search of the
variation of a in atomic optical transitions, some of which
were analyzed previously in[10–12]. In the present work we
perform relativistic many-body calculations to find the rela-
tivistic energy shift for many two-valence-electron atoms
and ions. Two-valence-electron atoms and ions were chosen
since many new optical clocks experiments, some of which
are currently under construction and some still under consid-
eration, utilize these atoms and ions(e.g., Al II [13], CaI

[14], Sr I [15–17], In II [18–20], Yb I, and HgI [21,22]).

II. THEORY

In the present work we perform calculations for closed-
shell atoms and ions which can also be considered as atoms
or ions with two valence electrons above closed shells. We
start our calculations from the relativistic Hartree-Fock
(RHF) (also known as the Dirac-Hartree-Fock) method in the
VN approximation. This means that RHF calculations are
done for the ground state of the corresponding atom or ion
with all electrons included in the self-consistent field. The
use of theVN RHF approximation ensures good convergence
of the consequent configuration interaction(CI) calculations
for the ground state. Good accuracy for excited states is
achieved by using a large set of single-electron states. Note
that there is an alternative approach which uses theVN−2

starting approximation(with two valence electrons removed
from the RHF calculations). This approach has some
advantages: it is simpler, and ground and excited states are
treated equally. However, the convergence with respect to the
size of the basis is not as good and the final results are better
in theVN approximation. We use theVN−2 approximation as a
test of the accuracy of calculations of the relativistic energy
shifts, while presenting all results in theVN approximation.

We use a form of the single-electron wave function that
explicitly includes a dependence ona:

csr dnjlm =
1

r
S fsrdnVsr /rd jlm

iagsrdnṼsr /rd jlm
D . s1d

This leads to the following form of the RHF equations(in
atomic units):

fn8srd +
kn

r
fnsrd − f2 + a2sen − V̂HFdggnsrd = 0,

gn8srd +
kn

r
gnsrd + sen − V̂HFdfnsrd = 0, s2d

where k=s−1dl+j+1/2s j +1/2d, n is the principle quantum

number, andV̂HF is the Hartree-Fock potential. The nonrela-
tivistic limit corresponds to settinga=0.

We then use the combination of the CI method with the
many-body perturbation theory(MBPT) [23,24]. Interactions
between valence electrons are treated using the CI method
while correlations between the valence electrons and the core
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electrons are included by means of the MBPT. We can write
the effective CI Hamiltonian for two valence electrons as

ĤCI = ĥ1 + ĥ2 + ĥ12. s3d

Here ĥi si =1 or 2d is an effective single-electron Hamil-
tonian given by

hi = ca 3 p + sb − 1dmc2 −
Ze2

r i
+ V̂core+ Ŝ1, s4d

and V̂core is the Hartree-Fock potential created by the core

electrons; it differs fromV̂HF in Eq. (2) by the contribution of

the valence electrons.Ŝ1 is the one-electron operator that
describes the correlation interaction between a valence elec-
tron and the core. The third term in Eq.(3) describes the
interaction of the valence electrons with each other and can
be written as

ĥ12 =
e2

r12
+ Ŝ2, s5d

whereŜ2 is a two-particle operator that describes the effects
of screening of the Coulomb interaction between the valence
electrons by the core electrons. The operatorsŜ1 andŜ2 are
calculated using the second order of MBPT.

We use the same set of single-electron basis states to con-
struct two-electron wave functions for the CI calculations
and to calculateŜ. The set is based on theB-spline technique
developed by Johnsonet al. [25–27]. We use 40B splines in
a cavity of radiusR=40aB (aB is Bohr radius). The single-
electron basis functions are linear combinations of 40B
splines and are also eigenstates of the Hartree-Fock Hamil-
tonian (in the VN potential). Therefore, we have 40 basis
functions in each partial wave including theB-spline ap-
proximations to the atomic core states. We use a different
number of basis states for the CI wave functions and for the

calculations ofŜ. Saturation comes much faster for the CI
calculations. In these calculations we use 14 states above the
core in each partial wave up tolmax=3. Inclusion of states of
higher principal quantum number or angular momentum

does not change the result. To calculateŜ we use 30 out of
40 states in each partial wave up tolmax=4.

The results for the energies are presented in Table I. We
present the energies of thensnp configuration of two-
electron atoms or ions with respect to their ground state
1S0 ns2. The states considered for atomic clock experiments
are 3P0 and 3P1. However, we present the result for other
states as well for completeness; these also make it easier to
analyze the accuracy of the calculations. Also, transitions
associated with some of these states are observed in quasar
absorption spectra(e.g., the1S0-

1P1 transition in Ca).
To demonstrate the importance of the core-valence corre-

lations we include results of pure CI calculations(with no Ŝ)
as well as the results in which onlyŜ1 is included butŜ2 is
not. One can see that the accuracy of pure CI calculations is
about 10% while inclusion of core-valence correlations im-
proves it significantly to the level of about 1%. The deviation
from experiment of the final theoretical energies for the trip-
let states of all atoms except Yb is not more than 1%. For Yb
it is 2%. The accuracy of the singlet states is about 1% for
the ions, 3%–4% for CaI, SrI, and HgI and 6% for YbI. The
accuracy of the fine-structure intervals ranges from 2% to
7%. The accuracy of calculations for Yb is not as good as for
other atoms because the two-electron approximation is a
poor approximation for this atom. Electrons from the 4f sub-
shell, which are kept frozen in the present calculations, are
relatively easy to excite and corresponding configurations
give a substantial contribution to the energy. Note that we do

include these excitations perturbatively in theŜ operator.
However, due to their large contribution, the second-order
treatment of the excitations from the 4f subshell is not very
accurate. On the other hand, the CI+MBPT results for Yb
are still much better than pure CI values.

Note also that the CI+MBPT results presented in Table I
are in good agreement with similar calculations in Refs.
[28,29].

TABLE I. Energies of thensnp configuration of two-electron

atoms calculated usingHCI, HCI+Ŝ1, andHCI+Ŝ1+Ŝ2; comparison
with experimentscm−1d

Atom or
ion State

Experi-
ment
[30]

Theory

ĤCI ĤCI+Ŝ1 ĤCI+Ŝ1,2

Al II 3P0 37393 36403 36987 37328
3P1 37454 36466 37053 37393
3P2 37578 36592 37185 37524

1P1 59852 59794 60647 60090

CaI 3P0 15158 13701 14823 15011
3P1 15210 13750 14881 15066
3P2 15316 13851 14997 15179
1P1 23652 23212 24968 24378

Sr1
3P0 14318 12489 13897 14169
3P1 14504 12661 14107 14367
3P2 14899 13021 14545 14786
1P1 21698 20833 23012 22305

In II 3P0 42276 37825 39238 42304
3P1 43349 38867 40394 43383
3P2 45827 41168 42974 45904
1P1 63034 62181 64930 62325

Yb I 3P0 17288 14377 16352 16950
3P1 17992 15039 17189 17705
3P2 19710 16550 19137 19553
1P1 25068 24231 27413 26654

Hg I 3P0 37645 31864 32692 37420
3P1 39412 33751 34778 39299
3P2 44043 38155 39781 44158
1P1 54069 50247 52994 56219

Tl II 3P0 49451 43831 43911 49865
3P1 52393 47091 47350 52687
3P2 61725 55988 56891 62263
1P1 75660 74291 76049 74717
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III. RESULTS AND DISCUSSION

In the vicinity of thea0, the present-day value ofa, the
frequency of a transition,v, can be written as

v = v0 + qx, s6d

where x=sa /a0d2−1, v0 is the present-day experimental
value of the frequency, and theq coefficient is the relativistic
energy shift that determines the frequency dependence ona.
It is clear from the above expression thatq coefficients can
be described by

q = Udv

dx
U

x=0
.

Thus, in order to calculateq coefficients the atomic energy
levels of the atoms and ions of interest at different values of
x need to be calculated. The relativistic energy shiftq is then
calculated using the formulas

q =
vsDxd − vs− Dxd

2Dx
s7d

and

q =
16fvsDxd − vs− Dxdg − 2fvs2Dxd − vs− 2Dxdg

24Dx
. s8d

The second formula is needed to check for nonlinear contri-
butions todv /dx. We useDx=0.1 andDx=0.125. The re-
sults are presented in Table II.

As for the energies, we use three different approximations
to calculate relativistic energy shifts:(1) a pure CI approxi-

mation for two valence electrons,(2) a CI with Ŝ1, and(3) a

CI+MBPT approximation with bothŜ1 and Ŝ2 included.
Inclusion of core-valence correlations leads to increased val-
ues of theq coefficients. This is because the correlation in-
teraction of a valence electron with the core introduces an
additional attraction which increase the density of the va-

TABLE II. Calculated q coefficients, for transitions from the

ground state, usingHCI, HCI+Ŝ1, andHCI+Ŝ1+Ŝ2.

Atom or ion State ĤCI ĤCI+Ŝ1 HCI+Ŝ1,2 Other

Al II 3P0 138 142 146
3P1 200 207 211
3P2 325 340 343
1P1 266 276 278

CaI 3P0 108 115 125
3P1 158 173 180 230[10]
3P2 260 291 294
1P1 228 238 250 300[10]

Sr I 3P0 384 396 443
3P1 560 609 642 667[31]
3P2 939 1072 1084
1P1 834 865 924 1058[31]

In II 3P0 3230 2932 3787 4414[12]
3P1 4325 4125 4860 5323[12]
3P2 6976 7066 7767 7801[12]
1P1 6147 6103 6467

Yb I 3P0 2339 2299 2714
3P1 3076 3238 3527
3P2 4935 5707 5883
1P1 4176 4674 4951

Hg I 3P0 13231 9513 15299
3P1 15922 12167 17584
3P2 22994 19515 24908
1P1 20536 16622 22789

Tl II 3P0 14535 11101 16267 19745[12]
3P1 18476 14955 18845 23213[12]
3P2 32287 28903 33268 31645[12]
1P1 28681 25160 29418

TABLE III. Experimental energies and calculatedq-coefficients
scm−1d for transitions from the ground statens2 to the nsnpcon-
figurations of two-electron atoms or ions.

Atom or ion Z State Energy[30] q

Al II 13 3s3p 3P0 37393.03 146

3s3p 3P1 37453.91 211

3s3p 3P2 37577.79 343

3s3p 1P1 59852.02 278

CaI 20 4s4p 3P0 15157.90 125

4s4p 3P1 15210.06 180

4s4p 3P2 15315.94 294

4s4p 1P1 23652.30 250

Sr I 38 5s5p 3P0 14317.52 443

5s5p 3P1 14504.35 642

5s5p 3P2 14898.56 1084

5s5p 1P1 21698.48 924

In II 49 5s5p 3P0 42275 3787

5s5p 3P1 43349 4860

5s5p 3P2 45827 7767

5s5p 1P1 63033.81 6467

Yb I 70 6s6p 3P0 17288.44 2714

6s6p 3P1 17992.01 3527

6s6p 3P2 19710.39 5883

6s6p 1P1 25068.22 4951

Hg I 80 6s6p 3P0 37645.08 15299

6s6p 3P1 39412.30 17584

6s6p 3P2 44042.98 24908

6s6p 1P1 54068.78 22789

Tl II 81 6s6p 3P0 49451 16267

6s6p 3P1 53393 18845

6s6p 3P2 61725 33268

6s6p 1P1 75600 29418
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lence electron in the vicinity of the nucleus and thus empha-
size the importance of the relativistic effects.

Note thatŜ1 andŜ2 are of the same order and need to be
included simultaneously to obtain reliable results.S1 is much
easier to calculate and inclusion ofŜ1 alone often leads to
significant improvements of the results for the energies(see
Table I). However, the results for theq coefficients show that
neglectingŜ2 may lead to significant loss in accuracy. In-
deed, the results forq’s with Ŝ1 alone are often smaller than
those obtained in pure CI and CI+MBPT approximations
and differ from final values by up to 50%. Since neglecting
Ŝ2 cannot be justified, we present results withoutŜ2 for il-
lustration purposes only.

The accuracy of the calculation of theq coefficients can
be estimated by comparing the CI and CI+MBPT results
calculated in theVN and VN−2 approximations and also by
comparing the final results for the energies(including fine-
structure intervals) with experimental values. As one can see
from Table II inclusion of the core-valence correlations can
change the values of theq coefficients by more than 15%.
However, the accuracy of the energies improves significantly

when core-valence correlations are included. It is natural to
expect that the final accuracy for theq coefficients is also
higher when core-valence correlations are included. Com-
parison with our previous results also shows some deviation
on approximately the same level(the largest relative discrep-
ancy is for Ca where relativistic effects are small and high
accuracy is not needed). Most of this discrepancy can be
attributed to the inaccuracy of our old, less complete calcu-
lations. Comparison between the energies calculated in the
VN and VN−2 approximations and the experimental values
suggests that 10% is a reasonable estimate of the accuracy of
the present calculations of the relativistic energy shifts for
Al II, CaI, and SrI, 15%for InII, 25% for YbI, and 20% for
Hg I and TlII.

In Table III we present final values of the relativistic en-
ergy shifts together with the experimental energies.
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