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The quantization of the electromagnetic field in a three-dimensional inhomogeneous dielectric medium with
losses is carried out in the framework of a damped-polariton model with an arbitrary spatial dependence of its
parameters. The equations of motion for the canonical variables are solved explicitly by means of Laplace
transformations for both positive and negative time. The dielectric susceptibility and the quantum noise-current
density are identified in terms of the dynamical variables and parameters of the model. The operators that
diagonalize the Hamiltonian are found as linear combinations of the canonical variables, with coefficients
depending on the electric susceptibility and the dielectric Green function. The complete time dependence of the
electromagnetic field and of the dielectric polarization is determined. Our results provide a microscopic justi-
fication of the phenomenological quantization scheme for the electromagnetic field in inhomogeneous
dielectrics.

DOI: 10.1103/PhysRevA.70.013816 PACS nuni®er42.50.Nn, 42.50-p, 41.20.Jb

I. INTRODUCTION erning the dynamics of the inhomogeneous model, although
The quantization of the electromagnetic field in a linear® COMPlete diagonalization was not attempted in that case.
dielectric medium has been the subject of many investiga; AS Stated above, the treatment in R¢89) is confined to
tions since the first treatment by Jauch and Wafdgnin a  (h€ homogeneous damped-polariton model. For such sys-

homogeneous and nondispersive medium the photon is assigMs: & systematic use of spatial Fourier transforms greatly
ciated with the transverse part of the field, which can neath€!PS in carrying out the diagonalization of the Hamiltonian.

be distinguished from its longitudinal part. In contrast, in ano°mewhat later it was realiz¢d7-29 that the quantization
inhomogeneous nondispersive medium the transverse arfj tN€ fields in inhomogeneous media could be achieved in
the longitudinal degrees of freedom get coupled, which renPOSItioN space by adding a noise term to the Maxwell equa-

ders the generalization of the quantization scheme to th

tions in a phenomenological way. In agreement with the

. o Jluctuation-dissipation theorem, one then postulates suitable
case less straightforward. However, the quantization can sti
be accomplished by employing a generalized transvers

ommutation relations for this noise term. Accounting for the
! ; ) Rramers-Kronig relations of the dielectric media is found to
gauge, which depends on the dielectric cons[aa?]. ~  pg egsential in defining field operators with standard commu-
For a dielectric medium with dispersion the quantizationiation relations. An alternative formulatiq@4] of the quan-
procedure described above runs into problems. In fact, sincg;ation procedure by means of auxiliary fields has been
dispersion in a dielectric medium is inextricably connectedshown to be completely equivalefgs).
to extinction, one should account for the effect of losses in  The phenomenological quantization scheme has been ex-
the quantization procedure. Huttner and Bari{] were  tended to magnetic and to anisotropic media, and to finite
the first to use the Hopfield polariton modglO] for the  media with gain(see the reviewg26,27 and references
description of a dielectric with losses. To incorporate lossesherein. The scheme has been applied to atomic decay
they coupled the dielectric polarization to a bath of oscilla-[28—-31], to energy transfef32], and to resonant dipole in-
tors, which causes a damping of the polaritons. Subseeractiong33]. The phenomenological scheme has also been
quently, upon assuming the medium to be homogeneousised to study the properties of electromagnetic field opera-
they were able to diagonalize the Hamiltonian of thistors in systems with optical cavities or beam spliti@4,35,
damped-polariton system, and to establish explicit formulagind with dielectric slab§36]. For these optical components
for the electromagnetic field and the dielectric polarization ininput-output relations have been derived. It was found that
terms of the diagonalizing operators. As a direct applicatiorextinction usually has adverse effects on nonclassical prop-
of the model they evaluated the change in the atomic decagrties of light, such as squeezing, nonclassical correlations
due to a dielectric environmeftl]. Later on, their work has and entanglemerj7,3§.
been reformulated and extended in various ways. In Refs. Although the phenomenological quantization of the elec-
[12,13 a simplified expression for the dielectric constant oftromagnetic field in absorptive dielectrics has been very suc-
the model was found. An alternative description of the modetessful, its connection to the damped-polariton model has
in terms of path integrals was given in RgE4]. In Ref.[15] been established only for the special case of a homogeneous
Laplace transformations were employed to simplify the di-dielectric medium. In fact, one would like to see whether the
agonalization process considerably. Finally, in RE6] crucial properties of the noise term, which are postulated in
these transforms were used to formulate the equations gothe phenomenological approach, could be derived from the
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polariton model in the general inhomogeneous case, as hasr potential is purely transverse, so thatA =0. The dielec-
been noted on various occasidid®,33,39. Since the model tric degrees of freedom are described by a space-dependent
furnishes a precise Hamiltonian description of the interactiorharmonic variableX(r), with an associated eigenfrequency
between the damped dielectric and the electromagnetic fieldyy(r) and a density(r). The polarization density is given by
one would have obtained in this way a microscopic justifi-—aX, with a(r) a space-dependent proportionality constant.
cation of the phenomenological quantization scheme. To atn the Coulomb gauge the scalar potential is a material vari-
rive at this goal, one has to express the noise term in th@ple that is given as the solution of the Poisson equation
canonical variables of the model, so that its properties can bgcp:_galv -(aX), with suitable boundary conditions at in-
determined. Once the noise term has been found, it can hity. The electromagnetic potentials, A and the dielectric
used for the Complete diagonalization of the Hamiltonian. Invariab|ex are Coup|ed in the usual way, Wllﬁ(aX) the

:ahrﬁpflzgl(i)r;’\sns Lve\ige)|asgj-ltlrzsggrrzorégﬁésiqﬁinagiﬁéfgI.eved bybound chargg density andaX the bound current density.
The paper is organized as follows. In Sec. Il the model iSHence,a(r) gives the strength of t_he coupling betwegn the

defined and the equations of motion for the canonical Vari__elgctromagne_nc fieldéor the potenUal}san(_jX(r). Damping .

ables are derived. The Laplace transforms of these are deté§_|r1_troduced n the model through a continuum of harmonic-

mined in Sec. lll. As we shall see, it is essential to introduceos'cIllator t_)ath vanablgsfw(r), Iapeled by the frequencgo._

forward and backward Laplace transforms for positive and! € coupling toX(r) is determined by the bath coupling

negative time, respectively. Subsequently, in Sec. IV, thdarametew,(r). A schematic representation of the system

Green functions of the inhomogeneous dielectric are em@nd its independent parameters is

ployed to determine a space- and frequency-dependent .

source density, which is the analog of the noise-current den- electromagnetic field

sity in the phenomenological quantization scheme. The ex-

plicit form for this source density as a function of the canoni- a(r)

cal variables is derived in Sec. V. Once identified in terms of

the canonical variables, some important properties of the

source density can be derived, as presented in Sec. VI. In dielectric m p(r), wo(r)
particular, we shall demonstrate that the damped-polariton
model can be diagonalized in terms of the source density. v (r)

The full time dependence of the electromagnetic field and of
the dielectric polarization density can thus be established.
The paper ends with a discussion and with some conclusions. oscillator bath p(r)

Here,II, P, andQ, are canonical momenta, which will be
II. EQUATIONS OF MOTION defined below.

As a model for an absorptive dielectric interacting with  In writing Eq. (1) we have used the same conventions as
the electromagnetic field we adopt the inhomogeneoud! Ref.[9]. In particular, we have refrained from a rescaling
damped-polariton system. In this model the polarization denof the physical variables. As is clear from K@), the density
sity is a continuous space-dependent variable. The dampingcould have been scaled away by redefini@ndy . In
is provided through the coupling to a bath of harmonic osihis way we would have been left with the independeet
cillators with a continuous range of eigenfrequencies. Thécaled coupling parameters and v, (and the frequency
bath coupling constant depends both on the frequency and opp)- Turning the argument the other way around, we could as
the position. The electromagnetic field is coupled to the poWell have chosen different density paramejgrand py mul-
larization according to the standard minimal-couplingltiPlying the contributions withX and Y. In that way a

scheme. model would have been introduced that seems more general,
The Lagrangian density of the damped-polariton system i®ut it is not. _
[9] Introducing the canonical momenta
1 1 1., 1 1" IL_
L== EZ__ —lBZ+_ XZ__ 2X2+_ f d Y2 H:__ZSOA, (Za)
280 2#0 ZP 2P‘Uo 2P o w Y, A
1L OOdcooz)ZYZ—CI)V-(aX)—ozA-)'( aL :
2°), g P=—=pX -aA, (2b)
ax
-] douv,X-Y,. 1
fo 0V, XY, (1) e
Qu=""=pY," v, X, (20
The electromagnetic field is described by the scalar potential Yy,

®(r) and the vector potentiah(r), with E=-V®-A and  with § a functional derivative in the variable, we find the
B=V X A. We choose the Coulomb gauge in which the vec-Hamiltonian as
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1 1 1 1. o1
H=fdr —II2+ —(V X A)?>+ —P?+ =pag X2 Yo=—(Qu+v, X), (6e)
2¢eg 20 2p 2 p
1 (" 1 (” 2 :
+—| do Qi+—pJ do w? Y2+ ZA P+ A2 Qu=-p?Y,, (6)
2pJo 2" Jo P 2p

. o, In the second equation the subscript T denotes the transverse
1 V- (@X)V" - (a'X") part of the vector, which is obtained by a convolution with
+ dov, X-Q, |+ | drdr . . . . : .
p 8meglr — | the transverse delta function. Likewise, the subscript L in the

0
fourth equation indicates the longitudinal part, obtained by

) convolving with the longitudinal delta functiord, (r)=
We introduced the notatioX’=X(r’), and likewisea’ and  ~V V(4ar)™%

V'. The renormalized frequencipy(r) is defined by o3 From Egs.(6a)—6c) one gets

=wi+p 2[5 do v2, where the integral is assumed to be finite } o )

at all positionsr. AA-C?A= MO[—(P + aA)} = o [aX]y. (7)

To quantize the model we impose the usual commutation p T

relations This equation is equivalent to Maxwell's equation
[H(r)1A(r,)]:_lﬁ 5T(r_r’)1 (43) — V X B+C_2E:M0 a).(, (8)
[P(r),X(t")]==ifi | &r —r") (4b) since the Poisson equation fér can be rewritten as

[aX] ==gVD. (9)

[Qu(r). Y ()] = =1h Slw=a)l & =1), (40 The equations of motiofEqgs.(6c) and(6d)] for the vari-
while all other commutators of the canonical variables van-ables of the dielectric medium yield a second-order differen-
ish. Here, | is the three-dimensional unit tensor, while tial equation forX:

Sr(r)=1 8(r)+V V(4xr)~L is the transverse delta function. ) o 1(”
With these “primary” canonical commutation relations pX + pagX = aA - —[aX], - —f do v, Q,, (10

and the relations between the potentials and field operators, €o pPJo

;)igﬁscan derive the following “secondary” commutation rela—or alternatively, with the use of Eg6e),

e . a *° .
o if ) X + pwiX = aA — —[aX], - J dov,Y,. (11
[E(0).AG)]= (1 =1"), (5a) S s g
0
The change fromo, to wg should be noted here. The first
) i ) ) two terms on the right-hand sides of Eq$0) and (11) are
[Ej(r),B(r")]= g Visr-r'), (5b)  equal to «E, as follows from Eq(9).

Finally, the second-order equation of motion for the bath
where we used Eq2a). Notice that these commutation re- follows from Eq.(6€) and(6f) as

lations are medium independent, because in(Bgwe took . 5 .

the electromagnetic field to be canonically independent from pY ot p oY, =0v,X. (12)

the material variablex andp. . _ The second-order equatiofi®), (11), and(12) determine the
In the Heisenberg picture the equations of motion for the;me eyolution of the basic physical variablas X, andY
canonical variables follow by evaluating the commutators hich represent the vector potential, the dielectric polariza-

with the Hamiltonian: tion density and the harmonic-oscillator displacement den-

.1 sity of the bath. If the initial conditions ok, X, andY ., and
A=—II, (6a) their first time derivatives are given &0, these operators
€o are known at any value df either positive or negative.
. 1
M= ——AA — [Q(P + aA)} ' (6b) I1l. LAPLACE TRANSFORMS
Mo p T Our goal for the remainder of this paper is twofold. First,
we would like to determine the dynamics of the model and to
1 ' ' i i-
X==(P+aA), 60) find the complete time dependence of the canonical vari

_,; ables. Second, we want to show how the phenomenological

theory emerges from our model. To that end, we must iden-
_ 1(* tify the elements of the phenomenological thegdielectric
P=-p z;,g X — ﬁ[ax]L - -f dwv,Q, (6d function, Green function, and noise-current densityterms
€0 pPJo of the variables from the model. Then, after their identifica-
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tion we must show that these quantities have all the desired b~ 1( w2 vi —

properties that are merely postulated in the phenomenologi- Pt wy— > do—— [X(p)
p~Jo prtow

cal approach.

The equations of motion of the previous section constitute al — 1 — 1
a set of linear differential equations. In this section, we solve == PA(p) - S_[CYX(D)]L +pX(0) + —P(0)
them in terms of their initial conditions, by introducing P 0 P
Laplace transforms. This technigue has been used before in 1(” Uy 5 p
the analysis of the damped-polariton mofteb,16. In par- +; . dwp2+w2 oY ,(0) = ;Qw(o) R )

ticular, we will derive an equation for the Laplace transform
of the electric fieldE, while taking care to eliminate the The first few terms at the right-hand side are related to the
Laplace-transformed variables describing the dielectric metaplace transform of the electric field, which reads

dium. To that end we shall first solve the Laplace-

transformed equations for the bath variables. Subsequently, — — 1 —

these will be used to obtain an identity that relates the E(p):—pA(p)+8—[aX(p)]L+A(O). (18)
Laplace transforms of the polarization density and the elec- 0

tric field. While establishing that relationship, we shall iden- From Egs.(17) and (18) it follows that the Laplace-
tify the electric susceptibility in Laplace language. Finally, transformed polarization densityaX(p) is proportional to
wave equations for the Laplace transforms of the electrighe Laplace-transformed electric field, apart from terms de-
field will be deduced. All equations will be valid for an ar- pending on the initial conditions. We identify the proportion-

bitrary spatial dependence of the variables of the model.  ality constant as the electric susceptibility in Laplace lan-
For any time-dependent operatrthe (forward) Laplace  guage:
transform is defined as
[ T = : (19
Qp) = f dt e Pt Q(t). (13) A= E '
p 0 Eop p2+a')%_p—2f d(l) (1)2 vi/(p2+ (1)2)
0

Obviously, the Laplace transform contains all information on

the time evolution ofQ) for positivet. In the following we  All parameters at the right-hand side depend on position, so

wish to determine the time evolution of the relevant operathat the susceptibility is a space-dependent quantity. In this

tors of our model for any time, either positive or negative.respect it is a generalization of the definitions in Refs.

Hence, we also introduce the backward Laplace transform:[8,9,12,13, which are valid for homogeneous dielectrics.
o The susceptibility is an analytic function pffor all p with

Q(p) :f dt ePLQ(-t). (14) Re p>0. Indeed, one can prove that the denominator in Eq.

0 (19) cannot vanish for any in the right half-plane. As a

. . consequence of its analyticity properties, the susceptibility

Both transforms are defined for glwith Rep>0_. satisfies the standard Kramers-Kronig relations which con-

Carrying out thefforward) Laplace transformation of Egs. nect the real and imaginary parts gip).
(6e) and(6f), and eliminatingY ,(p) we find After introduction of the susceptibility(p) the linear re-

— 2 — 1 lationshi betweeh?( ) andE(p) gets the form:
QulP =~ X(r+ 7l Qu0) = p o Y011 P P anaEpr

= Eo— ., Eo—
(19 X(p=-—"XPEMP* ;;’x(p){ a A(0) + pp X(0) + P(0)
with Q,(0) andY ,(0) the initial conditions at=0. Alterna- .
tively, we could have used E(l2) as a starting point. Upon f Vo 2 b
performing its Laplace transformation, we may eliminate the ¥ 0 dwp2+w2 @ YulO) pQ“’(O) G
initial condition forY ,, with the help of Eq(6e). The initial

condition of X is then found to drop out as well, so that Eq This Identlty, which relates the Laplace transforms of the
(15) is recovered. polarization density and the electric field, will be crucial in

From Eqgs.(6c) and(6d) we find analogously, after elimi- €liminating the dielectric variables, as we shall see presently.
nation ofE(p)' As expected, the relationship still depends on the initial val-

5 U
p2+w2 w

ues of all canonical variablgsvith the exception ofI(0)].
2~y ¥ 1 Having succeeded in expressing the polarization density
(p™+ @)X (p) = p{pA(p) SO[aX(p)]L} in terms of the electric field, we would like to establish a
- wave equation for the electric field in Laplace language. All
_if dow vwaw(p)+px(0)+ip(0). Laplace-transformed equations, which we derived above,
p

p’Jo contain terms depending on the initial conditions. Hence, we
(16) expect that the wave equation will contain such terms as
well. In fact, we shall show that owing to the presence of
Insertion of Eq.(15) in the integral yields: these terms, the wave equation will be inhomogeneous.
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To derive the wave equation in Laplace language, wean expression for the electric field at any later time after
have to use the remaining field-dependent equations in the0. However, as noted above, we also need the electric field
set(6). However, instead of Eq$6a) and(6b) we prefer to  (and the other variables of the mogébr all times prior to
employ their corollary Eq(8), or, better still, the equation t=0. To find that information we have to derive the corre-
which follows by taking the time derivative of E¢g8) and  sponding wave equation for the backward Laplace transform

using the induction law: of the electric field. We shall proceed along the same lines as
. . above.
V X (V X E) + ¢ %E = ygaX. (21) The backward Laplace transforms of E¢6e) and (6f)

After a (forward) Laplace transformation we get yield on a par with Eq(15):

~ wz

_ _ _ . 1
V X[V X E(p)]+c2p?E(p) — poap®X(p) Q.(p) =~ mvwx(p)+ m[p Q,(0) +p w? Y ,(0)],
=C?E(0) + ¢ %p E(0) - 00X (0) = poap X(0). 29)

(22 where the change of sign in the last term should be noted.

As before, the introduction of Laplace transforms has led tdJsing this equation and following the same steps as above,
terms depending on the initial conditions. We wish to expresve find the counterpart of E¢20) as

these in terms of the canonical variables=0. At the right- . .
hand side we use Eg6c) for t=0 to rewrite X(0): X(p)=- —Oy(p)E(p)+ —gY(p) - a A(0) + pp X(0) - P(0)
(63 o
X(0) = 2A(0) + =P(0) 23 -
= — — ) v,
p p _f do— 2[“’2 Y ,(0) + EQw(O):| : (29
0 p™+ o p

Upon inserting this relation in Eq8) for t=0 we find

) The susceptibility is given by Eq19), as before. The back-

E(O) =2 V X[V X A(O)]JriA(o) n iP(O) ward Laplace transform of the electric field is slightly differ-
£op gp ent from Eq.(18):
(24) . . 1. .
Furthermore, we use Eq6a) and (9) to write the electric Ep) =pA(p) + ;[aX(p)]L ~A©). (30)
field att=0 as

Here, as in Eq(29), several terms have changed sign. Fi-
1 1 nally, turning to the field equation, we obtain from Eg1)
E(0)=- 8—01'1(0) + S—O[ax(o)]L- (29 after a backward Laplace transformation:
Substituting Eqs(23)«25) on the right-hand side of Eq. V X[V X E(p)]+ ¢ 2p?E(p) - moap®X (p)
(22), and using the expressi@@0) for X(p) in the last term o i :
at the left-hand side, we finally arrive at the Laplace- == CE(0) + ¢ °p E(0) + uoaX(0) = uoap X(0).
transformed wave equation for the electric field in the form: (3D

V X[V X E(p)]+ ¢ 2p%e(p)E(p) = - uopd(p), (26) Sztgbstitution of Eqs(23)<25) yields as the analog of Eq.
with e(p)=1+x(p) the (relative) electric permeability in (29 5 3 3
Laplace language. V X [V X E(p)]+ ¢ 2p%(p)E(p) = uopd(p). (32

The differential equatior§26) in Laplace language is an ) o o
inhomogeneous wave equation. The source term at the righf-ne source term in this inhomogeneous wave equation is:
hand side depends on the initial conditions at tim®: . 1
_ 1 o J(p)=——V X[V X A(0)] - gopx(p)A(0) - TI(0)
J(p)==——V X[V X A0)] - egpx(PA(0) + L1(0) HoP
MoP £0P o g0 —
Eop , . —a|l- 2P X(p) | X(0) +[aX(0)]. - ;DX(P)P(O)
+all- 2P x(p) | X(0) —[aX(0)] - ;IOX(IO)P(O)

vw
P2+ w2

_g o [ g le | 2 P
apX(p)fo dwp2+(,02|:w Yw(0)+pQw(O) "

- ﬂ)pY(p)f do {wz Y., -2Q, 0 |.
@ 0 p

(33
(27) .
As expected, several terms have changed sign as compared
In principle, the electric field in the inhomogeneous waveto Eq.(27). For future convenience we have chosen the sign
equation(26) can be solved in terms of its source. Upon on the right-hand side of E¢32) to be the opposite of that in
performing the inverse Laplace transformation, one then get&d. (26).

013816-5



L. G. SUTTORP AND M. WUBS PHYSICAL REVIEW A70, 013816(2004

The main results in this section are the expressi@Ts

and(33) forJ_(p) andj(p). These are the source terms of the E(r,p)=- '“Opf dr'G(r,r’,p) - J(r’,p). (38)
Laplace-transformed wave equatiq2$) and(32). It should ) .

be noted that these source terms aot defined as the for- 1€ two integral representatiofsgs.(37) and(38)] for the
ward and backward Laplace transforms of some operatJPrward and the backward Laplace transform of the electric
J(r 1), although their notation might suggest otherwise. As di€ld contain all information that is needed to express the

consequence, their properties differ from other pairs of c)p_electric field at time in terms of the initial conditions of the

. - . canonical variables. The latter show up explicitly when the
SL?;?S' likeE(p) andE(p). In Sec. VI we shall return to this expressiong27) and(33) are substituted in the integrals.

The time-dependent electric field is obtained from the in-
tegral representations by an inverse Laplace transformation.

IV. GREEN EUNCTIONS AND SOLUTIONS From EQ(37) we get the electric field for>0:

OF WAVE EQUATIONS ; %
— X0 —lwt
E(rit)=—— do €' o

In Sec. lll we have seen that both the forward and the 2m ) _.

backward Laplace transform of the electric field satisfy a
wave equation with a source term. To solve these equations XJ dr'G(r,r',—iw+0)-J(r',—iw+0),
we introduce tensorial Green functions in Laplace language.
The Green function associated to the wave equat{@es (39)

and(32) is defined as the solution of the differential equation ) _ )
[22,23,26 where we changed the integration variable frpnon the

right half-plane to +w+ %, with a small but positivep. We
_ [ formally replacer by 0, so that +w+ 7 becomes +w+0.
-V X[V XG(r,r',p)]-—Z&lr,pG(r,r',p)=l &r-r"), The electric field fort<0 is obtained from the inverse
¢ Laplace transform of Eq.38):

(34) -
- _ Iﬂ) —iwt
where for clarity we reintroduced the spatial argument of the E(r.0= 27 f_m doe™ o
permeability. The functioi&(r,r’,p) is the forward Laplace o
transform of the standard retarded Green function of macro- XJ dr'G(r,r',iw+0) -j(r’,iw+ 0). (40
scopic electrodynamics. It is also equal to the backward

Laplace transfo_rm of th_e advanc_ed Green function_. The The w-dependent integrand in EEB9) is analytic for all
Green function is analytic for alp in the half-plane with iy the upper half-plane. Hence, the integral ouewan-
Rep=>0, as is the susceptibilitx(r,p) [23]. The defining  shes for negative, since thew-contour can be closed in the
equation(34) can be read as the statement that the Greefypper half-plane fot<0. Likewise, the right-hand side of
fun_gtuz)ﬂ is the inverse of the operator[¥X(VX)]  gq (40)is zero for positivet. As a consequence, one may
—¢ p°s(r,p)(I-), which is a symmetric differential operator combine the two expressions into a single one, which is valid
in the space of square-integrable vector functions. Owing t@gr all t:

the symmetry the Green function satisfies the reciprocity .
relation E(r.t)= f do €' EX(r,0) +He., (41
0

[Glr.r'.ply =[G(".r.p)];. (35 with the positive-frequency Fourier component:

The adjoint equation of34) reads

EM(r,w)=- i'uowj dr'[G(r,r',—iw+0)-J(r',—iw+0)
— - - 2 _ T
_[G(r’r,'p)XVI]XV,_%S(r,’p)G(r’r,’p)zl or=r’), +G(r,r'iw+0)-J(r' iw+0)]. (42

(36)  Alternatively, one may write

where the spatial derivatives operate to the left. EN(r,w) = i[E(r,— iw+0)+E(rio+ 0], (43
In terms of the Green function, the solution of E26) for 2w

the Laplace transform of the electric field is as follows by going back to Eqs37) and (38).

We have succeeded now in obtaining the full time depen-
E(r,p):ﬂopfdrfg(r,r/'p) A0, p). (37)  dence of the electric-field operator. As the representation
Eqg. (41) shows, the field is a linear superposition of contri-
butions, each with its own time dependence, and with a
Likewise, the backward Laplace transform of the field fol- weight that is determined by the positive-frequency Fourier
lows from Eq.(32) as component Eq(42). The latter is itself a linear combination
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of the canonical variables &t0, as follows from Eqs(27) It turns out that the operatdi(r , ) has a more complicated

and(33). structure than the positive-frequency Fourier compo#Bjt
The representatiofd]) is valid for all t. Hence, consis- of the electric field. Whereas the first two terms on the right-

tency demands that the right-hand side of E4fl) should  hand side have the expected form, an additional contribution

reduce to the electric fiel®5) in the limitt—0. In Appen-  shows up, which has arisen from the second term of &2).

dix A we show that this is m_deed the case. It turns out thajp, fact, the operator acting on the electric field in E4g) is

the proof depends on the validity of several sum rules for th . ., . =, ]

Green function. The latter hold true as a consequence of tt:itge inverse ofG(r,r’, -iw+0), but not of“G(r i+ 0): .

analyticity of the Green function and of its asymptotic be- e frequency arguments of the permeability do not match in

havior for large frequencies. _the Igtter case. The addltlon_all .tgrm is proportional to the
Having determined the positive-frequency Fourier com-imaginary part of the susceptibility(r ,~iw+0).

ponent of the electric-field operator, we may try and find the The operatorld(r,») will play an important role in the

differential equation which it satisfies. Of course, one ex-following. Before evaluating it explicitly in terms of the ca-

pects this equation to be of similar form as in Eg6) and  nonical variables, we will show that it can also be obtained

(32), with a frequencyw instead of the Laplace variabfe in a different way. Let us consider, on a par with E43), the

Therefore, we introduce the permeability in the frequencypositive-frequency Fourier component ¥f As one might

domain ase(r,w)=e(r,-iw+0), for real w. Likewise, we  suppose that it is proportional 8™, with a proportionality

will write x(r,—iw+0) asx(r, ). In terms of the permeabil- constant determined by the susceptibility, we will focus on

ity e(r,m) we may define the differential operato{ ¥V  the combination

X (V X)]+c2w?e(r,w)(1-). The positive-frequency Fourier

component of the electric field satisfies a differential equa- = aX™(r,w) = eox(r, @ EM(r,w)

tion containing this operator:

o2 == o [X(r,—iw+0) + X(r,iw+0)]
-V X[V XED(r,w)]+ ?s(r,w)E(”(r,w) 2m
g0— . - . v
=—ipew J(r,w). (44) —ﬁx(r,—lw+0)[E(r,—|w+0)+E(r,|w+0)].
As expected, the differential equation is inhomogeneous, like (46)

Eq. (26) and(32). Apart from a trivial factor, the right-hand

side contains a source terd(r,w). Since the positive- Comparing Eqs(22) and(26) and takingp=-iw+0 we infer
frequency parE™(r,w) of the electric field is known from that the forward Laplace transforms satisfy the identity:
Eq. (42), (27), and (33), the differential equatiori44) may

serve as the definition of the operatdfr,w). Defining - a)?(— iw+0)—egox(—io+ O)E(— iw+0)

J(r ,w) in this way we try to make contact with the phenom- i 1 ] ]

enological quantization procedure, in which an equation of =—J(—iw+0) - —[- aX(0) + &oE(0)]
w w

the same form as E@44) plays an important rol¢17-23.

Although the equations have the same form in the two theo- i

ries, their interpretation is rather different. In the phenom- +;[‘ aX(0) +&0E(0)], (47)
enological quantization procedure neith&™(r,w) nor

J(r,w) are known at first. To obtain a well-defined theory where we suppressed the dependence éor the moment.
one has to postulate several propertied(@f, w). In particu-  Likewise, from Eqs.(31) and (32) we derive for the back-
lar, one postulates an identity for the commutatodof,w)  ward Laplace transforms:

with its Hermitian conjugate. Only after doing so does one

arrive at a meaningful theory. In the present theory we are - a)v((iw+ 0) —eoxlio+ 0)é(iw+ 0)

able toderivethe algebraic properties dfr , w), as we shall i 1 . _

see later on. =—J(iw+0) + [~ aX(0) + &E(0)]
w w

As in the phenomenological theory, the operaifr, w)
may be interpreted as(@&equency-dependenhoise-current i
density. Its form still needs to be elaborated in more detail. - —[-aX(0) + 5E(0)], (48)
By substituting Eq(42) at the left-hand side of E¢44) and @

using the definition34) of the Green function to eliminate \yhere we note that the frequency argument in the suscepti-

the differential operators, we get bility in front of E differs from that in the corresponding
term in EqQ.(47). Adding the right-hand sides of Eq&l7)
and(48) we see that all terms depending on the operators at
5 t=0 drop out. The resulting equality can be used to evaluate
w =i+ 0) = X(r iw+ 0)] Ehg nght-hanq side of Ecq46)_, |f_the susceptibility in front of
7C E in Eq. (48) is changed tg((-iw+0) by hand. The correc-

_ . tion term that is brought about in this way, can be rewritten
xf dr'G(r,r',io+0)-J(r',iw+0). (45 by means of Eq(38). Finally, we arrive at the identity:

J(r,w)=i[\]_(r,—iw+0)+:](r,iw+0)]

+

2

013816-7



L. G. SUTTORP AND M. WUBS PHYSICAL REVIEW A70, 013816(2004

) ) i to an expression with derivatives acting on the Green func-
—aXr,0) ~eox(rw)ET(r,w) = —J(,w). (49 tion. Evaluating these by using E¢36), we arrive at the
following two terms:
Hence, the noise-current densityr ,w) can also be found as

the difference of the positive-frequency Fourier component . .
P g y P 802w3 xi(r,w)fdr’ e(r', G (r,r',w)-A(r',0)

of the polarization density afr)X(r,t) andeox(r, ) times ~ ~ 2

the positive-frequency Fourier component of the electric

field E(r,1), a_parF from a trivial fgctor/w. Hgnce, the noise- + 80, Yi(r, @A(r,0). (51)
current density is due to a noise term in the polarization ™

density, as has been noted for the homogeneous damped- _

polariton model[9], and in the context of the phenomeno- Here we introduced the notatioB(r,r’,w)=G(r,r’,-iw

logical quantization scheni@2,26,36. In the present model +0) [and henceG*(r,r’,w):a(r,r’,iw+0) as well, in

the noise—_current.density is a specific linear combination ognalogy to the notations far and y. The final term in Eq.

the canonical variables, as we shall see below. (51) cancels the first term in Eq50). Part of the integral
term in Eq.(51) (namely, withy" instead ofe”) drops out as
well, when the contribution from the second term in E2B)

V. EVALUATION OF THE NOISE-CURRENT DENSITY is taken into account.
The expressiori45) for the noise-current density(r , ) CoII'ecting all terms,.wle arrive at the following result for
is rather formal. It depends on the forward and the backward€ noise-current density:
Laplace transformg andJ. In Sec. 1l these have been given
in terms of the canonical variables. By using E(&7) and J(r,w) :f dr’q calr,r’,w) -A(r',0)
(33), we are able to expredsr , w) in the canonical variables

as well. _ _ o +ep(r,r’ ) -TI(r’,0) + cy(r,r’,w) - X(r',0)
We start by evaluating the first two contributions at the
right-hand side of Eq(45). After substitution of Eqs(27) +Cp(r,r',w) - P(r’,0)
and(33) and adding the two contributions, several terms are %
found to drop out. The remaining terms are closely related. +f do’ Cygor,r',w,0') - [w’z Y, (r',0)
0

As before, we shall write((r,—iw+0) as x(r,w), and, cor-
respondinglyx(r ,iw+0) as its complex conjugatg’ (r , ). iw

Furthermore, the imaginary part gfr , ) will be written as +—Qu,(r'0) | . (52
xi(r,). Using these notations, we find from the first two P

terms of Eq.(45): The (tensoria) coefficients have the following form:

L 3 —ie+ 0+ 3(rie+ 0)]
- I_w Iw *
2 cA(r,r’,w):—:—::sz3xi(r,w)GT,(r,r’,w), (539

i
== 20 xi(r, @Ar,0 + —2Lu? x,(r,w)X(r,0)
T x4

i *
[ cp(r,r' o) =- —w? xi(r,)G(r,r',w), (53b
| I > i T
_ﬂw Xi(r,o)P(r,0)+ ﬂcz) Xx(r,w) 7C
T 27ma

*© Uy iw i80p 2
X | do'—————| 0?Y,(r,0+—Q,(r,0 cx(r,r',w)=——w xi(r,o)l &r-r")
JO w w/2_(w+i0)2|:w w( ) o Qw( ) X o Xi
_is_ow Y (r w)fx dw’L - ia,zwz Xi(r,w)G;—,(I’,I",w)
27 ' 0 0'?=(w-1i0)? me
iw - leop’ o* xi(r,0)x ', )G (r,r', ),
X|w'?Y,(r,00+—Q,(r,0) |, (50) mcla’
p

(530
where all canonical variables are takenta0. It should be
noted that the two integral terms are not the Hermitian con-
jugates of each other, since the signs of the terms @ith colr,r’,w)=- Lo . xi(r, @) 8(r=r")
do not match. Ta
In the integral term of Eq45) we have to insert Eq33)

for p=iw+0. The term with the spatial derivatives of the +——0° xi(r,o)x (1", w)G'(r,r',0),
vector potential does not drop out now, as it did in Egf). mcha
It can be evaluated by a partial integratiorrin which leads (530
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&0 ® U, with (3), or more straightforwardly, by employing the equa-
Cyqll I o,0") == Elm mx(f,w)} tions of motion(6)
X1 O —1")+ —2 v, i—[H.J_(r,p)] =pJ(r.p)+ i(V X[V X E(r,0)]
7’ @2 (w—i0)2 h HoP
Xxi(r,w)x (r',w) G (r,r',w). (53¢ + %js_(r,p)E(r,O)>, (55)

In the first three formulas the complex conjugate of the
Green functiorG+/(r,r’,w) appears. It is the transverse part and
of G(r,r’,w) with respect tor’, which is defined by the

convolution fdr” G(r,r”,w)-8t(r"=r’). In the last term of LI - i(

Eq. (53¢ the symbolv(’u, denotes the bath coupling param- ﬁ[H,J(r,p)] =-pJ(r.p)* oP VX[V xE(r.0]

eter at the positiom’ (and the frequencw’). Furthermore, p?

a' andp’ stand fora(r’) andp(r’), respectively. + —Zg_(r,p)E(r,o)), (56)
c

The coefficients in Eq53) can be interpreted as commu-

tators. In fact, from Eq(4) we infer where the electric field is taken at timie0. Using these

expressions, we find as the contribution from the first two

i ! !

%[J(f,w),ﬂ(f 0)]==calr,r',w), (548 terms in Eq.(45) to the commutatoti/A)[H,J(r , )],
i O =i+ 0+ 31w+ O Lax(r,w)E,0)
[0 AT O] =cn(r o), (54b) 27 TR g ST

(57)
;—[J(r,w),x(r',o)] =cp(r,r',m), (54¢  Furthermore, the last term in EG15) contributes
and analogous relations for the other coefficients. iaﬁxi(r,w) J dr'G(r,r’iw+0) - J(r',iw+0)
It should be noted that the coefficients in E¢E3a—53d) c?

are all proportional to the imaginary payi(r , w) of the sus- e
ceptibility. Furthermore, the coefficient in E¢p3e) is pro- - = wxi(r, w)E(r,0). (58)
portional to the bath coupling parametey. In the absence

of absorption the dielectric is not coupled to a bath, so thabn adding the two contributions, we see that the terms de-
v,, vanishes. As Eq(19) shows, the imaginary part of the ’

o - . ending onE(r,0) cancel. The remaining terms are propor-
susceptibility vanishes in that case as well, at least for all. g (.0 9 brop

frequencies that are off-resonance. Hence, all coefﬁcients',Onal t0J{r,w), so that we arrive at the simple result

(53) are zero in this case, so that the noise-current density i
itself disappears. Clearly, the present formalism loses its —[H,I(r,0)]=-iwd(r,o). (59)
meaning for a nonabsorptive dielectric. h

As the noise-current density is fully known now interms 14 ynderstand how this commutation property comes
of the canonical variables, we can proceed and derive itgp,q¢ it is useful to give a somewhat more formal derivation

properties. This will be the subject in Sec. VI. of the commutator. To that end we start by remarking that for
an arbitrary operatof)(t) the commutator of the Hamil-
VI. PROPERTIES OF THE NOISE-CURRENT DENSITY tonian with its Laplace transforrf(p) follows directly by

) ) ) ) . Laplace-transforming the equation of motion in the Heisen-
In this section we will determine a few of the properties berg picture:

of the noise-current density(r,w). In particular, we will
focus on its commutation relations. i — _
We start by considering the commutator X , ») with %[H,Q(p)] = pQ(p) - Q(0). (60)
the Hamiltonian(3). To evaluate this commutator, we might
use the expression$2)<53), employ the canonical commu- \riting the analogous equation for the backward Laplace
tation relationg4) and evaluate all contributions in a system- ransform,
atic way. Owing to the complexity of E¢53), this is a rather
tedious task. A more convenient way to obtain the commu- i . .
tator is to use the expressigd5) for J(r,w) in terms of g[H,Q(P)F—PQ(IO) +Q(0), (61)
J(r,—iw+0) and J(r ,iw+0). The commutators of the latter
with the Hamiltonian can be found without difficulty. In fact, and adding the two equations after substitution of the appro-
one gets by evaluating the commutators of Eg3%) and(33) priate argumentp, we get
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As demonstrated above, the commutator properties in

[ — v
AH[Q(10+0) +Qiw+0]] Egs. (59), (64), and (65) follow from the dynamics of the
o 5 damped-polariton model. These commutation relations are
=—io[Q(-iw+0)+ Qo+ 0)]. (62) the same as the postulated relations of the noise-current den-

) ) ) sity in the phenomenological quantization schejhé-23.
In particular, one gets fof)(t)=E(r,t) by comparison with  Eyigently, the status of the commutation relations is rather
Eq. (43), different in both schemes. Our results provide a justification
i for the postulates in the phenomenological theory.
—[H,EP(r,0)] = - i0EP(r,w). (63) The collection of operator3(r , w) possesses another con-
h venient property: together with their Hermitian conjugates
they form a complete basis set for the canonical variables of
time dependence in Eq41) would be compromised. By the model. It means that each of these variables can be writ-

invoking the definition(44) of the noise-current density in ten as a Ilne_ar combination of the operators from the basis.
terms of the positive-frequency Fourier component of the!© Prove this statement, we may argue as follows. Let us
electric field, it is immediately clear now thatr ,») must tentatlvely write the vector potential as
satisfy a commutation relation of the same form, which is o
indeed what we got in Eq59). A(r,0) :f dr’f do J(r',w) -fA(r',r,m) + H.c.,

It should be noted that the commutator expression in Eq. 0
(55) contains an additional term that differs from that in Eq. (66)

(60). The reason for this discrepancy is thidt ,p) has not with as yet unknown tensorial coefficientg. Taking the

been defined as the Laplace transform of some operatQly mmutator of both sides wild(r”, ')]" we find from Egs.
J(r,t), as we noticed already in Sec. lll. Similar remarks(54b) (64), and (65):
apply toJ(r, p). .

Let us now turn our attention to the commutatodaf, w) falr o1’ @) = I chrr ) (67)
with its Hermitian conjugate at a different position and fre- A gowlxi(f,w) W7
quency. In view of the general form E@L5) it is convenient

to start by calculating the three commutators involvingnd

Of course, this could not be otherwise: if it did not hold, the

so that we get:

J. These follow by substitution of Eq&27) and(33) and use A(r,0) = J dr’ J do———
of the canonical commutation relatiod). The results are £ wzx,(r , )
given in Egs(B1) and(B3) of Appendix B. As shown there, ) .
these commutators df andJ can be used to prove the com- XA, w) 'Cn(r o) +H.C. (68)
mutation relation To really establish the validity of this equality, which we
found by merely assuming the general form in E&g), we
[J(r,w),[J(r',w')]T]:@wz Yi(r, 0)dlw-w)l 8r-r"). insert Eq.(52) on the right-hand _side, Which then becomes a
™ linear combination of the canonical variables. Upon evaluat-

(64) ing the resulting integrals with the techniques of Appendices

A and B, we indeed find that only the term with the vector

In an analogous fashion one may evaluate the commutator @otential survives, and that the left-hand side is recovered.

the noise-current density with its counterpart for different Two other examples of identities, which may be checked
arguments. It is found that this commutator vanishes: in an analogous way, are

[J(r,w),d(r",0")]=0. (65

II(r 0)———fdr f do————J(",0) - cA(r N
As shown in Appendix B, the commutato(§4) and (65) X.( )
appear as the results of calculations in which several terms +HC. (693
cancel one another. In fact, all nonlocal terms involving ’
transverse delta functions and Green functions drop out. The
final answers show thak(r, w) is a strictly local operator in  x(r,0) = f dr’ f do————3(r", ) Cp(r',r, o)
its space variable: for alf’#r it commutes both with €0 0 xi(r', o)
J(r',w) and with the Hermitian conjugate of the latter. +He (690)
Moreover, the right-hand sides of Eq$§4) and (65) show e
that the noise-current density is local in the frequency asSimilar identities are found to be valid for the canonical
well: the commutators vanish fes # »’. As a final comment variablesP, Y, andQ,,. Since all canonical variables can
we note that the commutator E(4) is proportional to the thus be expressed in terms dfnd its Hermitian conjugate,
imaginary part of the susceptibility. Hence, it vanishes ifthese operators must form a complete basis, as we set out to
there is no absorption. As we have seen above, the nois@rove.
current density itself vanishes in that case, so that(&4). The completeness of the set of operatd(s,w) and
becomes a trivial identity. [J(r,w)]", and their properties Eq$59), (64), and(65) im-
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ply that the noise-current density is proportional to the di-This result for the long-time limit is the generalization of a
agonalizing operator of the system Hamiltoni@. In fact, similar finding for the homogeneous damped-polariton
we may write: model, which we already discussgtb].
- The time-dependent electric fiellr ,t) could be found in
H=Z drf dw;[‘](r,w)]T J(r, ). (70) principle by separately evaluating its transverse part
&o o X o) -II(r ,t)/e, from Eq. (698 and its longitudinal part

We have checked that E@3) can be recovered from Eq. [aX(r, D], /e from Eq.(69), and adding the two contribu-

o . - . tions. However, a simpler way to obtalf(r ,t) is to insert
(70). This is accomplished by substituting E§2) with (53) . ) :
in (70) and evaluating the resulting expression in terms oithe solution of Eq(44) into the general form Eq41). In this
the canonical variables. A few details of this calculation areV@y We get
given in Appendix C. It should be noted that the two expres- o _
sions for the Hamiltonian do not agree completely: they dif- E(r,t) =— i,uof dr’f do €' o G(r,r',w) - J(r',»)
fer by ac-number, which corresponds to a zero-point energy. 0
Now that we have succeeded in obtaining the diagonaliz- +H.c. (74)
ing operators of our model, we can determine the full time
dependence of the vector potential, the electric field, the pon Appendix D, it is shown that in the long-time limit the
larization density, or any of the dynamic variables that weelectric field is given by an expression of the same form as
have considered above. For example, the vector potential &d. (74), with J replaced byJ,. By using the commutation
time t follows from Eq. (68) by substituting the time- relations(64)—(65), which are valid forJ, as well, one may
dependent noise-current densigy'®J(r’,w) in the inte- show that the commutator of the electric field and the vector
grand_ |nserting the expressi@ﬁgb) for cm and using Eq. potential in the Iong-time limit has the standard form as Eq.
(35) we get (5a).
o As a final example, we consider the time-dependent po-
A(r ) = —Mof dr,f dw €79 G(r,r',@) - I(r",w) + H.c. larization density «X(r,t). It follows from Eq.(69b) as:
0

— MT_CY ’ ” 1 —j wt
(71) aX(r,t) o dr Jo dw—wZXi(r,,w)e

In the phenomenological quantization scheme an integral , ‘.,
representation of the same form shows[2@]. However, in XJ(r',w) - cp(r'sr, ) + H.c. (79
that theory the noise-current densitir , w) is a formal op-  gybstituting Eq(53d) we get
erator. In the present model we have an explicit expression
for J at our disposal. In fact, by substituting £§2) we may o 7 it
evaluate the right-hand side of E(1) in terms of the ca- —eX(ry=- 2 dr o do €7 w X(r, o)
nonical variables at=0. The results are presented in Appen-
dix D. As shown there, the vector potential gets a simple XG(r,r',w) - (', w)
form when enough time has passed for transients to die out. o 1
In that long-time limit, it reduces to a linear combination of + if dow €''=J(r,w) + H.c., (76)

0 w

bath operators only:

1 J1 (7 ot where we used Eq35). This form for the time-dependent
Al =S5 | dr'—] doe™ v o) polarization density shows that it is the sum of a term involv-
0 ing the properties of the medium through the susceptibility

, 5 , iw , and a term which is determined by the noise-current density
XGr(r,r' @) - | 0™ Y (1 ,0)+;Qw(r ,0) only. In fact, this is consistent with Eq49), which was
written in terms of the positive-frequency Fourier compo-
+H.c. (72)  nents. Indeed, the integrand in the first term on the right-

hand side of EQ.(76) is proportional to the positive-
frequency part of the electric field, as we have seen in Eq.
(74). In Appendix D the time-dependent polarization density
€0 iw is evaluated in terms of the canonical variable$=0. Fur-
‘]'(r’w)__zyv“’)((r’w)[wz Yo(r.0 +;Qw(r,0)] thermore, it is shown there that the long-time limit of
(73) —aX(r,t) follows from Eq.(76) by replacingd by J;, as was
found above for the vector potential and the electric field.
The combination between square brackets is proportional to The expressiong71), (74), and (76) give the complete
the annihilation operator of the bath harmonic oscillators atime dependence of the vector potential, the electric field and
the chosen position and frequency. Indeddsatisfies the the polarization density in the inhomogeneous damped-
same standard commutation relatiof@®!)—65) as J. The  polariton model. For the special case of a homogeneous me-
vector potential thus depends on the bath annihilation andium, the expressions reduce to those given in F3f.As
creation operators only, when all transients have died outve have seen, the implicit dependence on the canonical vari-

This expression has the same form as Eff), with the
noise-current operator replaced by:
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ables att=0 can be made explicit by substitution of the In order to show the internal consistency of our results,
noise-current density in the form of E(b2). we have derived and employed several frequency sum rules
Now that we have found in Eqé71) and(74) the explicit ~ for the tensorial Green function and for the susceptibility,
time dependence of the field operatérsand E in terms of ~ namely Egs(A4), (A5), (C6), (C8), and(C9). The outcomes
the noise-current density, we can determine the commuta- solely depend on the high-frequency asymptotic behavior of
tors [E(r,t),A(r’,t)] and [E(r,t),B(r’,t)] for arbitrary t. the Green funct[on_and the_ susceptibility. In the present
Actually, for t=0 we have already determined these in Eq_model this behavior is determined by the valqes of(tbeal)
(5) and the fact that these commutators are mediumParametersy, p, wy, andv,,. The Green function sum rules
independent almost directly followed from the standard com&r€ generalizations of velocity sum rules that have been de-
mutation relationg4). Now that we have integrated out the r|V(\a/S for: homogeneouz d'ﬁlef.‘:tlrc'j@g’lq' . fth
dynamics of the material variables, the expressions(EL). e have expressed all field operators in terms of the

. noise-current density operatal& , w), which also diagonal-
and (74) clegrly both’depend on the r_nedlum through .theize the Hamiltonian. These operators and their Hermitian
Green functionG(r,r’,w) and the noise-current density

; . . . ._conjugates were proved to be local both in position and in
J(r’, w). However, since no approximations were made ingequency: any pair of them commute when taken at different

order to obtain the time dependence of the field operatorositions and/or different frequencies. The locality in posi-
their commutators should still be medium independent, andion is not self-evident priori, as some of the canonical
equal to those &t=0. With the use of Eq434)«36) and the  variables of the model, namely andIl, satisfy a commu-
Green-function sum ruléA4) one can verify that the com- tation relation(4a) with a nonlocal transverse delta function.
mutators[E(r,t),A(r’,t)] and[E(r,t),B(r’,t)] indeed have The positive-frequency Fourier componégit)(r , w) of the
the medium independent values of E§). A medium inde- electric field is nonlocal in space as well: it does not com-
pendent commutatdie(r ,t),B(r’,t)] was also found in the mute with its Hermitian conjugate at a positioh(and at the
phenomenological schenj23], which was the principal ar- same frequency). The locality of J(r,w) with respect to
gument in showing that the phenomenological scheme ighe frequency is connected to the validity of a generalized
consistent with(although not founded gmuantum electro- optical theorem(B7) for the Green function. When the
dynamics. Finally, it may be remarked that in our theory theindependent frequency variables in this theorem are chosen
commutatorg P(r ,t),X(r’,t)] and[Q,(r,t),Y, (r',t)] are to be equal, it reduces to the standard form of the optical
also medium independent; these commutators have no coufieorem[22].
terparts in the phenomenological theory. The diagonalizing operators are not unique. For example,
if one breaks up the noise-current density in terms of its

canonical elements according to E§2), then for long times
VIl. CONCLUSION AND DISCUSSION after the initial timet=0 one finds that the field operators are
determined only by the initial bath operators, since time-

By solving the inhomogeneous damped-polariton modetependent coefficients of other canonical variables all decay
we have established a rigorous basis for the phenomenologgxponentially fast. If only long times are considerét,, »)
cal quantization procedure, which has been used to descrilg@n be taken to be proportional to the initial annihilation
guantum phenomena in linear lossy dielectrics with greapperator of the bath harmonic oscillator at positiorand
success. Up to now such a firm basis was available for hoirequencyw. We stressed this point in Refl5] for homo-
mogeneous dielectrics only, through the pioneering work ofjeneous dielectrics. Other diagonalizing operators can be
Huttner and Barnetf8,9]. constructed by transforming the noise-current denKity w)

As a tool in our treatment we have used forward andwith arbitrary unitary transformationd(r,r’, ), but these
backward Laplace transformations. With the help of these wevould not have the physical interpretation of noise-current
solved the equations of motion for the canonical variablesdensity operators.

The Laplace transforms of the electric field were shown to Our solution provides detailed information on the dy-
obey wave equations with source terms that could be exaamical behavior of absorptive dielectrics. This information
pressed in terms of the canonical variables at tim@. Upon  can be used to study dynamical processes like spontaneous
introducing the Green function of these wave equations wemission of guest atoms in inhomogeneous media. For in-
were able to derive an expression for the positive-frequencgtance, transient effects in emission processes, which we
Fourier component of the time-dependent electric field. Thestudied in homogeneous medliks], can now be investigated
latter was found to satisfy a wave equation with a frequencyin the general inhomogeneous case. Local-field effects,
dependent source term that could be interpreted as a noisehich by their very nature are brought about by inhomoge-
current density for the inhomogeneous damped-polaritomeities in the medium, form another field of interest for
model. Explicit expressions for this noise-current density inwhich our solution may be helpful.

terms of the canonical variables of the system have been To obtain our results we have employed a Laplace-
derived. By establishing its algebraic properties we couldransform technique which we used bef¢ié]. An alterna-
prove that it is proportional to the diagonalizing operator oftive method, which was adopted in R¢®], is based on a
the model. Once we have shown this, the time-dependence dfagonalization procedure due to FaptD]. We have been

all relevant operators can be determined. As an illustratiorable to carry out the diagonalization of the inhomogeneous
we gave the time-dependent expressions for the vector pa@amped-polariton model along those lines as well. Details of
tential, the electric field, and the polarization density. that work will be published elsewhefd1].
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APPENDIX A: SHORT-TIME LIMIT
OF THE ELECTRIC FIELD

In Sec. IV the electric-field operatdE(r,t) has been
found as a Fourier mtegraﬂl) with the positive-frequency
Fourier componenE +)(r w) given in Eq.(42). It contains

the source terma andJ, which have been given in EqR7)

and(33) as linear combinations of the canonical variables atsm

t=0. As a check, we shall verify that the Fourier integral in
Eq.(41) reduces td(r,0) in the limitt— 0. As we shall see,
the proof will depend on the validity of a few sum rules for
the Green function.

By employing the identity[E(r,—iw+0)]T=E(r ,iw+0),

PHYSICAL REVIEW A 70, 013816(2004)

o)

J.

which is in fact a sum rule for the Green functif2g].
Likewise, one proves

do G(r,r',—iw+0) =—imc2 | 8r -r'), (Ad)

f dw w3€(r,r',—iw+O)Y(r',—iw+0)

”TC o — 1 &r-r'),
€op
ce the susceptibility x(r,-iw+0) behaves like
a?l(gop) ]/ (w+i0)? for large w in the upper half-plane.
Finally, the contribution of Q, is determined by
the integral

(A5)

o

1

dw w3G(r,r’,—iw+O)Y(r’,—iw+0)m.

and the corresponding identity for the backward Laplace

transform, one may write the Fourier integral representing

E(r,0) as
ir do [E(r,-iw+0) +E(r,—iw+0)]. (A1)
2w) _.,

Upon substituting Eqg37), (38), (27), and(33), we find that
all terms withA(r’,0), P(r',0), andY ,.(r’,0) cancel. We
are left with the following expression:

—I—f dwfdr’g(r,r’,—iw+0)- mow II(r’,0)
™ —00

!

+ o[’ X(r', 0] + 5~ &x(r' ~iw+0)X(r",0)
o

1

o’

,w3Y(r’,—iw+O)
p

o0 !

<

do’ 5Q.(r",0)

—( +i0) (A2)

This result can be simplified by considering the integrals

over w. The terms withIl and[aX]; contain the integral

/7, do wE(r ', —iw+0). Since the Green function is ana-
lytic for w in the upper half-plane, we may evaluate the

integral by closing the contour in this half-plane. The Green

function satisfies the differential Eq¢34). Now e(r,p)=1
+x(r,p) tends to 1 for largep in the right half-plane, as
follows from the expression(19) for y. Hence, the
asymptotic form of the Green function for large in the

upper half-plane has the same form as the free-space Green

function, namely,

2

~ o ~C— - !
G(r,r',—iw+0) = (w+i0)2| or=r’). (A3)

As a consequence, closing the contour yields the identity

(A6)

As the integrand is proportional taw+i0)~2 for large w in
the upper half-plane, a contour deformation leads to a van-
ishing result.

From the above we conclude that the expressi®) is
equal to

- iH(r,O) + i[aX(r,O)],_, (A7)
€0

€0

which is in agreement with E¢25).

APPENDIX B: COMMUTATORS OF THE
NOISE-CURRENT DENSITY

In this appendix we derive the commutators of the noise-
current density with itself and with its Hermitian conjugate.
We start from Eq(45), in which J(r w) IS glven as a linear
combination of the source terrﬂ(sr p) andJ(r p). From the
definition (27) and the canonical commutation relatio@s

we obtain the commutatdd,J'] as

[3(r.p),[3(r, p')]*]
_iip-p”
* - A - !
o pD —(VV=1A)8(r-r")

[x(r,p) = x(r,p’ )l &(r =r"),
(B1)

1

: pp
- |£th+

where we used the auxiliary relation

foc 2 2

wv,
P+ ) (p'?+ WD)
., 9% 1 [ 11
go PP- P2 x(r,p)  X(r.p)
where for brevity we did not write the position dependence

}, (B2)
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of v,, p, and a. The commutator[j(r ,p)'[j(rr,pf)]‘r] is terms proportional td &(r —r') cancel as well, unless and
equal to Eq(B1), apart from an overall minus sign. Finally, ®" are equal:

the commutation relation of with J' is found to be 1 — . — )
m[‘](r,—|w+0)+J(r,|w+0),[J(r’,—|w’ +0)]"

[3(r,p), 30", p)]'] T3 e + 0]

_REP vt a) s 1) oo
uo PP’ === xi(r,0)8(w= ')l A =1'). (B4)
- isoh%[ﬁr,p) =X, p O 8(r-r"). The contribution with a single Green-function factor is

goh o' —
(B3) ﬁmxi(r,w)xi(r',w')[&e(r,r "iw+0)
The* last term. on the rig_ht-hand side is'no'g singular for —w’zg(r,r’,—iw’ +0)]. (B5)
=p'". In fact, it is proportional to the derivative of the sus-

ceptibility in that case. It should be noted that the commutaFinally, the contribution with two Green-function factors is
tors(B1) and(B3) are local, as they vanish for~r’. Thisis  found as

not self-evident, since the definitiorig27) and (33) contain .

nonlocal longitudinal terms. When evaluating the commuta%ww'(w+ o )xi(r,o)x(r' o) f dr’G(r,r",iw+0)

tors, one finds that the nonlocal transverse delta function irfrC

the canonical commutat@da compensates for the nonlocal

- ) V//x V”XET”,I’I,—i ,+O
terms inJ andJ. { [ ( @ )1}

o v 3 13
Having derived the commutators fdrandJ, we can de- + 80h4 w “/’ —i(r, @) xi(r ') f dr” [(r", i+ 0)
termine the commutator af(r ,w) with [J(r",»")]", by us- mctw-w' -i0
ing Eq. (45). In vae have to substitutp=-iw+0 or p’= e (G P +0)]C_5(r,r”,iw+0) -C_E(r”,r’,—iw’ +0).

—-iw’+0, while inJ the argument ip=iw+0 or p’=iw’+0. (B6)
Sorting out the various terms, we get three different types of

contributions, namely those containing either no GreenThe second integral appearing here can be split into two
function factor, or one or two such factors. In the first con-parts, which may be rewritten with the use of E84) and
tribution the terms proportional t&V V-I A) drop out. The (36). After a partial integration we arrive at the identity

fdr" D iw+0) = X(r", =0’ + 0]G(r,I",iw+0) - G(r",r',~iw' +0)

2
C J— JR— JR— JR—
== {wZG(r,r’,iaﬁ 0) - ' ?G(r,r',—iw' +0)+ (v’ - 0'? f dr"G(r,r"iw+0) -{V'[V"X G(r",r',—iew +0)]}|.

w2w/2

(B7)

For arbitraryw and ' this identity has the form of a gener- mytators ofJ andJ with their counterparts for different ar-

=w' one recovers the optical theorem that has been discussed

before[22]. When Eq.(B7) is used in Eq(B6), it turns out LOrplT=3r.p), Pe,pl'=3rp), (B9

that all terms with spatial derivatives cancel, while the re- ) )

maining terms are the opposite of E@5). As a conse- as follows from inspection of E¢27) and(33). Hence, the

guence, we are left with E¢B4), so that we have proven the commutators ol andJ can be written down immediately by

commutation relatiori64). using Eqs(B1) and(B3). Subsequently, these commutation
The commutator of)(r,w) with J(r',»’) can be evalu- relations can be employed in evaluating the commutator of

ated in a similar way. As a preparation, one needs the com}(r,w) with J(r’,»’). We encounter terms with various
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numbers of Green-function factors. The contribution without APPENDIX C: EVALUATION OF THE HAMILTONIAN

a Green function is found to vanish: In order to show how the Hamiltonia(8) is recovered

. v -, ., S from Eq. (70), we give a few examples of the calculations
[r-io+0)+I(rie+0),J(r',~i0"+0)+I(r"io" +0] iyt are involved. We shall demonstrate how the terms qua-
=0. (B9) draticinIl and inA in Eq. (3) are obtained after substitution

of Eq.(52) with (538 and(53b) in Eq.(70). In this Appendix
In an analogous way as above, the terms with one and withll canonical variables are takentatO.
two  Green-function factors in the commutator We start with the term quadratic . After substitution
[J(r,w),J(r",w")] can be shown to cancel. This completesof the appropriate expressions we get the following contri-

the proof of Eq.(65). bution to the Hamiltonian:
|
1 N 3 ' " ! ~ H ~ " "
S | dr do 0° x;(r,w) | dr dr” II(r’) - G(r',r,—iw+0) - G(r,r",iw+0) - TI(r"). (C1
7T8()C 0

We could replace the transverse parts of the Green functiond o?/(sgp)]/ (0+i0)?, as we have seen in Appendix A, one
by the full Green functions, aH is purely transverse. Let us derives from the differential equation for the Green function
now rewrite xi(r,w) as ~i/2)[x(r,-io+0)=x(r,io+0)].  the asymptotic form for large:

Subsequently, we carry out the integral oveloy means of

the optical theorem, which follows from E@B7) by taking 2

6(r,r’,—iw+0)—c—zl or-r")

o’ =w. In doing so, the integral with the spatial derivatives in (w+i0)

Eq. (B7) drops out, whereas the contributions with a single 4

Green function in Eq(B7) remain. In this way we find from __C [ VV-1A) &r-rt'

Eq. (C1): (w+i0)* ( ) & )

i - ’ ” ’ el el Iu“oa2 ’
- 5 do o | dr’ [ dr” II(r') - [G(r/,r",iw+ 0) +——18r-r")], (CH)
2megC Jg p
—E(r’,r”,—iw+ 0)]-TI(r"). (C2)  as a generalization of E¢A3). Employing this asymptotic
form in Eq. (C4) one finds by contour integration the sum

The integral over the frequency can now be performed Witr}
the use of the sum rule EGA4). We finally obtain the simple
result(2so) ™t [ dr [II(r)]?, as in Eq.(3). - B
As a second example, we consider the terms quadratic ij dw wS[G(r,r’,— iw+0) -
A. From Egs.(70) with (52) and (538 we get a similar -
expression as in EGC1). The main difference is a factes® 2
instead ofw?® in the integrand. After performing the integral = —iwc“{(V V-1A)8r-r")+ ot a(r —r’)]
overr as before, we arrive at p

ule:

2

C
(w+i0)?

Ié(r—r’)]

ieg [~ — (C6)
- Ozf dw w3fdr’fdr” AT -[G(r',r",iw+0)
2mC J o Substitution in Eq(C3) yields
~G(r',r",~iw+0)]-A(r"). (C3) 1 o2
—_— . - _ a 2

Owing to the presence of the facta® we cannot use the 210 f arA(n) - (VV-14)-AlD +fdr Zp[A(r)]
sum rule Eq(A4). However, we may proceed by adding and 5
subtracting the asymptotic form E@A3). In this way, the -1 dr [V X A(r)]2+J dri[A(r)]Z, (C7)
w-integral becomes: 20 2p

2

(0+i0)?

I S —r’)}, which agrees with the contributions in E®).
Similar techniques can be used to obtain the other terms
(C4) in the Hamiltonian(3). Several additional sum rules, with
integrands containing products of the Green function and the
where we relabeled the position variables. Since thesusceptibility, are needed in establishing complete agree-
asymptotic form of the susceptibility for largev is  ment. These are:

—f dw ws[a(r,r',—iw+0)—
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o _ N i oo’
f do ox(r,—iw+0)G(r,r',—iw+0)x(r',—iw+0)=0, Cax(r,r',w)=- 'U:_ IM[Grr(r,r",w)]
i !
(C83 - g -@? IM[G(r,r", )x(r', )],
C
* - — _ (D20)
f do o°x(r,—iw+0)G(r,r',—io+0)x(r',—iw+0)
o 1
i rc2a Cap(r, I, @) = —5— o IM[Gr(r,r", 0)x(r', w)],
=S -t). (C8b) e
£opP (D2d)
Furthermore, one needs two sum rules for the susceptibility: 1 v
C rr',wo)= Im & -
* — ira? avd ") mcla’ [ w'?-(w+i0)?
f do wx(r,—io+0)=—, (C9a)
- Eop
XG1(r,rw)x(r',w) |. (D2
- 3| = _: a_z 1 _ iﬂ'azz’g The expressioiD1) gives the vector potentid(r,t) for
do o° | x(r,—iw+0)+ — | = . . i : .
o gop (w +1i0) gop all t in terms of the canonical variablestat0. In particular,

it may be used to determine the vector potential for large
when all transients have died out. In order to derive this

h | def ) asymptotic form, one starts by noting that the term with the
To prove these sum rules one uses a contour deformation ang.. - iian conjugate in(D1) can be used to extend the

the asymptotic behavior of the integrands, as before. w-integral over the whole real axis. For all positivehis
integral may be evaluated by deforming the contour in the

APPENDIX D: TIME-DEPENDENT OPERATORS lower half-plane. Ift gets large, the behavior &(r,t) is
dominated by the contributions from those singularities of

In this Appendix we show how time-dependent operatorghe frequency-dependent integrand that are located close to
can be expressed as linear combinations of the canonic#tie realw-axis in the lower half-plane. To find these singu-
variables. As examples we shall discuss the vector potentialarities we consider the contributions from the various terms
the electric field, and the polarization density. in Eqg. (D1) one by one. The contributions involving, I,

The time-dependent vector potential has been given in EgX, andP depend on the coefficient®2a—D2c). The sin-
(71). By substituting the expressi@b2) for the noise-current gularities in these coefficients are determined by those of
density, and employing the same methods as used in checkthe analytical continuations pj(r,) andG(r,r’,w). The
ing Eq.(68) we derive Green functionG+7: in Egs. (D2a—D20¢) is defined as the

convolution of the Green functio® with two transverse

(C9b)

o , delta functions, one at its left and the other at its right-hand
A(r,t) = f df'J do e_""t{CAA(fyf',w) -A(r’,0) side. When the susceptibility has a finite imaginary part for
0 real w, continuity implies that the singularities gfandG in
+Can(r,r’,m) - TI(r',0) + Cax(r,r’,w) - X(r',0) the lower half-plane are located at a finite distance from the
, , real w-axis. As a consequence, the contributions from the
*+Cap(r,r', o) - P(r’,0) terms withA, II, X, andP in Eq.(D1) will die out exponen-
o tially fast for larget. On the other hand, some of the singu-
+f do’ Caydr,r',0,0’) - [w'z Y (r',0) larities of the coefficien{D2e) are really close to the real
0

axis, as they are given by=*w’'-i0. The contributions
i from these singularities will dominate the behavior of Eq.
+— Qi (r ',0)}} +H.c. (D1)  (D1) for larget. These contributions are readily evaluated by
p calculating the residues. One arrives at the result given in Eq.
o (72) of the main text. It shows that the long-time behavior of
The coefficients are A(r ,t) is governed by the specific combinatidi(r ,w) of
bath operators, given in E73):

’ __i ’ o
Canltr ) == 20 IMGrrr el (D2a A(r,t)z—,uofdr’f dw €1 G1(r,1",0) - (1", )
0

+H.c. (D3)

I 1o
Can(r,r’,w) == —Im[Gyp/(r,r'",w)], D2b , i L
anl w) T [Grr( @] (D2b) As noted in the main text, the combination of bath operators
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occurring ind|(r ,w) is in fact proportional to the annihilation

, _ i£o ,
operator of the bath harmonic oscillator rand with fre-  Cxp(r.r', @) = WXi(f.wﬂ ar-r’)

quencyw.
The time-dependent electric fieElr ,t) can be evaluated g | Girr’ ,
in an analogous way. Substituting E§2) in (74) we obtain o " mix(r,@)G(r,r", w)x(r’, »)],

an expression like Eq(D1). The coefficientscg; (with i

=A,I1,X,P,YQ) follow from c4; in Eq.(D2) upon multiply- (D5d)
ing each coefficient byw and dropping the subscript (but
not T') of the Green functions. The analysis of the long-time Cxydl 0,0
behavior of the electric field is completely analogous to that
of the vector potential. One finds an expression of the same _igg Vo ,
form as Eq.(74), with J replaced byJ,: = Elm 2 (0+i0)2 (w+ i0)2)((r,w) | 8(rr—=r")
E(r,t):—i,uOJdr’f dw e““’th(r,r’,w)-J,(r’,w) ieg w’ U;r
0 - 2 rlm 12 _ FA\2
mCaw 0" = (w+i0)
+H.c. (D4)
Finally, we consider the time-dependent polarization den- Xx(r,@)G(r,r', o) x(r ’,w)] : (D5¢)

sity. From Eqs(75) and(52) with (53) we derive an expres-
sion for X(r,t), which has the same form as E@1), with

the coefficients: The behavior in the long-time limit is dominated by the sin-

iSO
cyalr,r’,m) =
XA( ) 7TC2a

? Im[x(r,w)G1/(r,r', m)],

(D5a)

Cxn(r,r',w)=- o Im[x(r,w)G1/(r,r’, )],

77'02(1
(D5b)

Cxx(r,r’',w) = Sipzw xi(r,o)l 8(r=r’")
ey

!

wc(jzaw Imx(r,w)G/(r,r',w)]

Sgp ~o® IM[x(r,0)G(r,r",w)x(r',0)],
TC

(D50¢)

gularities close to the real frequency axis. These singularities
arise from the coefficient in EqD5e€). Evaluating their con-
tributions we arrive at the following expression (r ,t) in

the long-time limit:

X(r,t)zélfdr’f dw e @ x(r,w)
0
XG(r,r’,w) - J(r',w)

i [~ 1
——f dw e''=],(r,w) + H.c.,
w

aJo

(D6)

with J; given by Eq.(73). Upon multiplying with -« and
comparing with Eq(76), we see that the long-time limit has
the same effect on the polarization density as it has on the
vector potential and the electric field: the dependence on the
full noise-current density(r , ) is replaced by a dependence
on J(r,w).
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