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Photon-photon scattering in vacuum due to the interaction with virtual electron-positron pairs is a conse-
quence of quantum electrodynamics. A way for detecting this phenomenon has been devised based on inter-
acting modes generated in microwave wave guides or cavities[G. Brodin, M. Marklund, and L. Stenflo, Phys.
Rev. Lett. 87, 171801(2001)]. Here we materialize these ideas, suggest a concrete cavity geometry, make
quantitative estimates and propose experimental details. It is found that detection of photon-photon scattering
can be within the reach of present day technology.
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I. INTRODUCTION

Classically, photon-photon scattering does not take place
in vacuum. However, according to quantum electrodynamics
(QED), such a process may occur owing to the interaction
with virtual electron-positron pairs. An effective field theory
containing only the electromagnetic fields can be formulated
in terms of the Heisenberg-Euler Lagrangian[1,2], which is
valid for field strengths below the QED critical field
1018 V m−1 and for wavelengths shorter than the Compton
wavelength 10−12 m [3–5]. Several suggestions to detect
photon-photon scattering in laboratories have been made
[6–8], and the recent increase in available laser intensities
has stimulated various schemes[9–14]. In Ref. [15] we sug-
gested an alternative method, using the significantly weaker
(but still strong) fields that can be confined in a microwave
cavity. The main advantage of adopting a cavity is that we
can achieve a resonant interaction between the eigenmodes
in a large volume, leading to an excited signal at a new
eigenfrequency.

In the present paper we materialize the proposal made in
Ref. [15] in several ways. Various concrete geometries ful-
filling all resonance and frequency matching conditions in a
cavity are devised, and the coupling between the pump
modes and the excited mode is evaluated for a rectangular
prism and a cylindrical geometry. The amplitude of the ex-
cited mode is then determined in terms of the quality factor
of the cavity and the field strengths of the pump modes.
Comparing with the performance reached in existing super-
conducting niobium cavities, it turns out that the cavity key
parameters, namely the quality factor and the allowed field
strength (before field emission and/or superconductivity
break down) can reach values which allow for several pho-
tons in the excited mode. To be able to detect the very weak
excited signal in the presence of the pump waves, we pro-
pose a “cavity filtering geometry.” Finite element calcula-
tions are made in order to demonstrate a geometry that ful-
fills the relevant resonance and frequency matching

conditions. The estimated signal in the filtered region corre-
sponds to roughly 30 microwave photons/m3. The results of
Refs.[16] and[17], where effects of single microwave pho-
tons confined in cavities are measured using sensitive tech-
niques involving transitions of Rydberg atoms, suggest that
detection of the estimated signal is possible. Hence we sug-
gest that elastic photon-photon scattering can be observed
with present day technology.

II. BASIC EQUATIONS AND PRINCIPLES
OF CALCULATION

Photon-photon scattering due to the interaction with vir-
tual electron positron pairs can be described by the
Heisenberg-Euler Lagrangian[1]

L = «0F + k«0
2f4F2 + 7G2g, s1d

where F=sE2−c2B2d /2 and G=cE ·B. Here k
;2a2"3/45me

4c5<1.63310−30 ms2/kg, a is the fine-
structure constant," Planck’s constant,me the electron mass,
andc the velocity of light in vacuum. The last terms in(1)
represent the effects of vacuum polarization and magnetiza-
tion. The QED corrected Maxwell’s vacuum equations can
then be written in their classical form usingD=«0E+P and
H =B /m0−M whereP andM are of third order in the field
amplitudesE andB, andm0=1/c2«0. Expressions forP and
M can be found in, for example, Refs.[3–13,15].

There are several reasons for considering wave interac-
tions in cavities.

(1) We can benefit from coherent resonant interactions. In
contrast, the nonlinear coupling vanishes for parallel plane
waves in an unbounded medium. However, we note that the
presence of an inhomogeneous background magnetic field
can also be responsible for a nonzero effect, see Ref.[14].

(2) The growth of the new mode will not be saturated by
convection out of the interaction region.

(3) The techniques for detecting small signals in such
cavities are very well developed, see e.g., Refs.[16,17].

Calculations of the coupling strength between various
eigenmodes can be made including the nonlinear polarization
and magnetization, see e.g., Ref.[15]. However, a more con-
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venient approach, which gives the same result, starts directly
with the Lagrangian density(1).

Our general procedure for finding the cavity eigenmode
coupling and the saturated amplitude of the excited mode, to
be applied in Secs. III and IV, can be summarized as follows:

(1) We determine thelinear eigenmodesof the cavity us-
ing the standard Maxwell vacuum equations together with
the boundary conditions for infinitely conducting walls, and
express all field components in terms of the vector potential
amplitude.

(2) Next we choose resonant eigenmodes fulfilling fre-
quency matching conditions. For two interacting initial pump
modes(indices 1 and 2) with distinct frequenciesv1 andv2,
the possible frequency matching choices, corresponding to a
cubic nonlinearity, are ±s2v1±v2d and ±sv1±2v2d. For defi-
niteness we concentrate on the choice

v3 = 2v1 − v2 s2d

in all examples. Since the eigenfrequencies are determined
by the geometry, we note that the conditions2d gives a de-
sign requirement involving the dimensions of the cavity. In
this context it can be noted that there are several reasons for
using two pump waves rather than one, that in principle
could excite a mode with three times the frequency of the
pump mode. First, for two pump modes there are generally
better possibilities to vary the parameters in the setup in or-
der to optimize the output of the excited mode. Second, for a
cylindrical geometry and a single pump mode, the design
requirements following from the frequency matching results
in eigenmodes that have a too weak nonlinear coupling. Fi-
nally, there is a general tendency to get stronger nonlinear
coupling when the pump modes and the excited mode have
rather close frequencies.

(3) We then perform a variation of the amplitude of the
eigenmodes and letdeL d3r dt=0 in order to obtain the
mode-coupling equations directly from the Lagrangian den-
sity (1). The evolution equation for each eigenmode is ob-
tained by expressing the Lagrangian in terms of the potential
and varying the corresponding vector potential amplitude.
The lowest order linear terms then vanish, since the disper-
sion relation of each mode is fulfilled. For the terms that are
quadratic in the fields we must thus take into account that the
amplitude has a weak time dependence when making the
amplitude variation. However, for the QED correction terms
in the Lagrangian the time dependence of the amplitudes can
be neglected.

(4) In the absence of dissipation, the equations now ob-
tained imply steady growth of mode 3, until the energy of
that mode is comparable to that of the pump modes. How-
ever, when some damping mechanism is present(e.g., due to
a finite conductivity of the cavity walls) the amplitude satu-
rates at a level where the mode-coupling growth balances the
dissipation of the excited mode. This effect can be easily
included by adding a phenomenological damping term in the
evolution equation, whose value is estimated by comparing
with quality factors currently reached in superconducting
niobium cavities.

III. RECTANGULAR PRISM GEOMETRY

We start by considering a rectangular prism cavity, with
one of its corners in the origin, and the opposite corner with
coordinatessx0,y0,z0d. In practice we are interested in a
shape wherez0@x0,y0 but this assumption will not be used
in the calculations. We let the large amplitude pump modes
have vector potentials of the form

A1 = A1 sinSpx

x0
DsinSn1pz

z0
Dexps− iv1tdŷ + c.c. s3d

and

A2 = A2 sinSpy

y0
DsinSn2pz

z0
Dexps− iv2tdx̂ + c.c., s4d

where c.c. denotes complex conjugate,n1,2=1,2,3, . . ., and
where we have chosen the radiation gauge such that the sca-
lar potential is zero. It is easily checked that the correspond-
ing fields (omitting the c.c.)

B1z =
p

x0
A1 cosSpx

x0
DsinSn1pz

z0
Dexps− iv1td, s5ad

B1x = −
n1p

z0
A1 sinSpx

x0
DcosSn1pz

z0
Dexps− iv1td, s5bd

E1y = iv1A1 sin Spx

x0
DsinSn1pz

z0
Dexps− iv1td, s5cd

together withv1
2=n1

2p2c2/z0
2+p2c2/x0

2, and

B2z = −
p

y0
A2 cosSpy

y0
DsinSn2pz

z0
Dexps− iv2td, s6ad

B2y =
n2p

z0
A2 sinSpy

y0
DcosSn2pz

z0
Dexps− iv2td, s6bd

E2x = iv2A2 sinSpy

y0
DsinSn2pz

z0
Dexps− iv2td, s6cd

together with v2
2=n2

2p2c2/z0
2+p2c2/y0

2 are proper eigen-
modes fulfilling Maxwells equations and the standard bound-
ary conditions. Similarly we assume that the mode to be
excited can be described by a vector potential

A3 = A3sinSpy

y0
DsinSn3pz

z0
Dexps− iv3tdx̂ + c.c., s7d

wherev3
2=n3

2p2c2/z0
2+p2c2/y0

2, in which case we get fields
of the same form as in Eqs.(6a)–(6c).

Next we turn to point(3) in the scheme of the preceding
section. As notedabove, when performing the variationsdA3

* ,
the lowest order terms proportional todA3

*A3 vanish due to
the dispersion relation, and we need to include terms due to
the time dependence of the amplitude of the type
A3] sdA3

*d /]t. For the fourth order QED corrections propor-
tional todA3

* , only terms proportional toA1
2A2

*dA3
* survive the

time integration, due to the frequency matching(2). After
some algebra the corresponding evolution equation for mode
3 reduces to
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dA3

dt
= −

i«0kv3
3

8
KrecA1

2A2
* , s8d

where the dimensionless coupling coefficientKrec is

Krec=
p2c2

v3
4 Hs− ,− , + dF8p2c2

x0
2y0

2 + S 4

x0
2 +

7n1
2

z0
2 Dv2v3G

+
n2n3p2c2

z0
2 S7n1

2

z0
2 −

3

x0
2D +

7v1n1

z0
2

3fs− , + ,− dv2n3s+ ,− ,− dv3n2gJ . s9d

The three different sign alternatives in(9) correspond to the
mode number matching options

2n1 − n2 + n3 = 0, s10ad

2n1 + n2 − n3 = 0, s10bd

2n1 − n2 − n3 = 0, s10cd

respectively, which must be fulfilled in order for the coupling
to be nonzero. It is now possible to evaluate the coupling
coefficient for specific mode numbers and geometries consis-
tent with the frequency matching conditions. As described in
the preceding section, we could then determine the saturated
amplitude from a balance between mode-coupling growth
and dissipation, where the latter effect can be introduced by
simply adding a phenomenological damping term. However,
it turns out that a cylindrical geometry gives a slightly better
performance, and thus we will instead work out that case in
more detail.

IV. CYLINDRICAL GEOMETRY

We consider the case where all eigenmodes are TE modes
with no angular dependence, with fields that can be derived
from the vector potential

A = AJ1srb/adsinSnpz

z0
Dexps− ivtdŵ + c.c., s11d

wherea is the cylinder radius,z0 is the length of the cavity,
J1 is the first order Bessel function, andb is one of its zeros.
The cylinder occupies the region 0øzøz0 centered around
thez axis. We have here introduced cylindrical coordinatesr
andz as well as the unit vectorŵ in the azimuthal direction.
The corresponding fields are

E = ivAJ1srb/adsinSnpz

z0
Dexps− ivtdŵ + c.c., s12d

B =
bA

a
J0srb/adsinSnpz

z0
Dexps− ivtdẑ

−
np

z0
AJ1srb/adcosSnpz

z0
Dexps− ivtdr̂ + c.c., s13d

where the eigenfrequency isv2=c2fsb /ad2+snp /z0d2g for all

modesv=v1,2,3. We note from the frequency matching con-
dition v3=2v1−v2 that all of the eigenmodes cannot have
the same order of their respectiveb, for resonant interaction
to occur, and thus we introduceb=b1,2,3 for the different
modes. Proceeding in the same manner as described in the
two preceding sections, we obtain after lengthy but straight-
forward algebra

dA3

dt
= −

i«0kv3
3

8
KcylA1

2A2
* , s14d

where the cylindrical coupling coefficientKcyl is

Kcyl =
8c2

v3
4J0

2sb3dHc2Fb1
2b2b3

a4 Ib −
2p4n1

2n2n3

z0
4 Ia

+
p2b1

a2z0
2 sb1n2n3sIa + Icd + 2b2n1n3Id − 2b3n1n2IedG

−
b1

a2 f2b3v1v2Ie + 2b2v1v3Id − b1v2v3sIc + 3Iadg

−
2p2n1Ia

z0
2 sn3v1v2 − n2v1v3 − n1v2v3dJ s15d

and the integrals are defined as

Ia =E
0

1

J1
2sb1udJ1sb2udJ1sb3udu du, s16ad

Ib =E
0

1

f3J0
2sb1ud + J1

2sb1udgJ0sb2udJ0sb3udu du,

s16bd

Ic =E
0

1

J0
2sb1udJ1sb2udJ1sb3udu du, s16cd

Id =E
0

1

J0sb1udJ1sb1udJ0sb2udJ1sb3udu du, s16dd

and

Ie =E
0

1

J0sb1udJ1sb1udJ1sb2udJ0sb3udu du. s16ed

When calculating(15) we have assumed the mode number
matchingn3=2n1+n2. Equation(14) implies a linear growth
of mode 3, until the backreaction of the pump modes be-
comes significant. In reality dissipative mechanisms(e.g., a
finite conductivity of the cavity walls) will set a limit on the
excited amplitude. This can be described in a phenomeno-
logical way by substitutingd/dt→d/dt−sv3/2pQd, where
Q is the cavity quality factor. The steady state amplitude is
thus

A3 =
ipQKcyl

4

v3
2A1

2

Echar
2 A2

* , s17d

where we have introduced the characteristic electric field
Echar=s«0kd−1/2<2.631020 V/m [18]. Looking at the num-
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ber of excited photons in the cavity modeN
<«0eE3E3

* d3r /"v3 we finally obtain

NQED =
«0a

2z0p3Q2v3
5Kcyl

2 J0
2sb3duA1u4uA2u2

16 "Echar
4 . s18d

Before evaluating(18) we need to specify the mode numbers
and the geometry. As an example we letsn1,n2,n3d
=s3,15,21d (fulfilling n3=2n1+n2) and takeb2=b3=3.83,
corresponding to the first zero ofJ1, and b1=7.01 corre-
sponding to the second zero. This gives usz0/a=9.53
through the frequency matching condition(2) and determines
the frequency relations tov3/v2=1.26 andv3/v1=1.12.
Substituting these values and numerically evaluating the in-
tegrals (16a)–(16e) then givesKcyl=3.39. The key param-
eters are the quality factor and the pump field strength. An
advantage with our choice of eigenmodes is that the pump
electric field is zero at the cavity surface, which means that
we do not have to worry about field emission[19]. Instead
the pump amplitude is limited by the surface magnetic field,
which needs to be below the critical value for which the
walls cease to be superconducting. From the experimental
results presented in Ref.[20], we find that the critical mag-
netic field for a high pure niobium material can reachB
<0.28 Tesla, at a temperature of the order of or below 1 K.
If we specify z0=2.50 m, we getv1=8.103109 rad/s and
v2=7.153109 rad/s, implying that field levels close to the
magnetic surface field condition correspond toA1
=0.017 Vs/m andA2<0.024 Vs/m. The conductivity of
niobium allow for quality factorsQ.1011 for temperatures
in the range of interest below 1 K. But we note that these
high levels have been hard to reach in practice, althoughQ
<431010 in Ref. [16]. We also note that there has been a
tendency to get lower quality factors when applying stronger
fields. However, in Ref.[21], it has been shown that it is
possible to reach surface fields of the order of the critical
level without significant decrease of theQ factor. Thus
adoptingQ=431010 and the rest of the parameter values as
specified above, we obtain

NQED < 18. s19d

Keeping the cavity at a temperatureT<0.5 K, thus means
that the number of generated photons in our example is well
above the thermal fluctuation levelNth=1/fexps"v3/kTd
−1g<7, wherek is the Boltzmann constant. To get an even
lower thermal fluctuation level, it would be of interest to
generate photons with higher frequencies. However, it is not
wise to just scale down the dimensions used above to get
"v3/kT.1 and Nth!1, sinceNQED decreases too quickly
with the cavity volume. Instead we could consider higher
mode numbersn1,2,3 and higher orders ofb to get a larger
excited eigenfrequency fulfilling"v3/kT.1 which gives a
higher ratioNQED/Nth.

On the other hand, detecting a very weak signal in the
presence of strong pump fields might be difficult even for
signals well above the thermal fluctuation level, and thus we
will below investigate the possibility of a cavity geometry
that directly filters away the pump signals.

V. CAVITY FILTERING GEOMETRY

We search for a cavity geometry with the following prop-
erties.

(1) The cavity should be rotationally symmetric.
(2) There should be three eigenmodes with frequencies

fulfilling (2).
(3) There should be a cylindrical interaction region where

the mode structure resembles that considered in the preced-
ing section.

(4) There should be a filtering region with a cross section
small enough to give an exponential decay of the pump
modes, but large enough for the excited eigenmode to propa-
gate.

(5) There should be an entrance region for the pump
modes.

We thus make a geometrical design of the type outlined
above, see Figs. 1(a)–1(c). The eigenmodes are then calcu-
lated using the method of finite elements. In general there
will be eigenmodes with the desired properties, except that
they will not fulfill Eq. (2) for the specified geometry. How-
ever, by repeated calculations varying the lengthl of the
cavity, the mismatch frequencydvsld=v3sld−2v1sld+v2sld
gradually approaches zero. The dimensions of the cavity and
the corresponding mode structure is shown in Figs.
1(a)–1(c). As can be seen, the pump modes have decreased
their amplitudes by a factor of the order of 106, from the
interaction region to the end of the filtering region(to the
left), whereas mode 3 has essentially the same amplitude in
both regions. By increasing the filtering distance, the pump
signals could of course be reduced further. Naturally a filter-
ing geometry will make the mode coupling somewhat
weaker, as compared to our pure cylinder example. By add-
ing a filtering region of roughly the same size as the coupling
region, the coupling factor reduces toKfil ,Kcyl /Î2, in which
case we keep the same number of excited photons if we
choose the size of the total cavity region to be roughly twice
the size of the cylinder cavity presented in the preceding
section.

VI. NONLINEARITIES IN THE WALLS OF THE CAVITY

To our knowledge, a well-established and simple nonlin-
ear model for the superconducting RF state does not exist. As
a starting point for a discussion, we may adopt a model with
a nonlinear magnetic third order susceptibilityMi

=xi jlkl BjBkBl, using the Einstein summation convention, and
defining the susceptibility in terms ofB rather thanH. We
then consider the same geometry of the cavity and the eigen-
modes as in Sec. IV. The magneticz components of the
pump fields penetrate roughly a skin depth inside the walls.
For a nonzero value ofx3333;xnl, the part of the nonlinear
magnetization that can act as a source for mode 3 is then
M 3=xnlB1z

2 B2z
* ẑ. Acoordingly we get currents in the azi-

muthal directionJ3wŵ= = 3M 3, which in turn may induce
radial variations in the magnetic field B3zsrd
=sm0/rdeJ3wr dr. At the same time, the jump in the nonlin-
ear susceptibility across the vacuum/superconductor bound-
ary causes a jump in the magnetization, and thereby a surface
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FIG. 1. (Color) The geometry of the cavity and the mode structure for the filtering geometry. Note that only half of the cavity is shown,
since the other half is redundant due to rotational symmetry of the cavity as well as the fields. The small region to the right is the entrance
region, the large middle region is where the interaction takes place, and the region to the left is the filtering region. All modes have the
electric field in the angular direction, i.e.,E=Esr ,zdŵ. The variations of lnuEsr ,zdu are shown in color code.(a) The mode structure of pump
mode 1. The exponential decay in the region of small cross section diminishes the amplitude by a factor of 10−6 in the end of the filtered
region.(b) The mode structure of pump mode 2. The exponential decay in the region of small cross section diminishes the amplitude by a
factor of 10−8 in the end of the filtered region.(c) The mode structure of the excited mode. The amplitude is roughly the same in the region
of interaction and in the filtered region.
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currrentj 3s=−M 33r̂. A combination of the surface and bulk
currents then yields a nonlinearly induced magnetic field in-
side the vacuum region

B3zur,a = sm0/rdE
l

a

J3wr dr − m0xnlB1z
2 B2z

* ur=a, s20d

wherel should be much larger than the skin depth such that
J3wsld is negligible. Carrying out the integration in Eq.(20),
we see that the two terms cancel such thatB3zur,a=0, i.e., the
nonlinear currents do not induce a magnetic field inside the
cavity.

We stress that this is not a proof that nonlinearities in the
walls generally are unable to affect the physics inside the
cavity. However, it suggests that a nonlinear current in the
walls with the proper eigenfrequency does not by necessity
excite the corresponding eigenmode of the cavity.

VII. DISCUSSION AND SUMMARY

In the present paper we have materialized our proposal for
the detection of elastic photon-photon scattering[15]. In par-
ticular, we have calculated the output level of scattered pho-
tons in terms of the allowed pump field strength and the
cavity quality factors for a reactangular prism as well as for
a cylindrical geometry. Furthermore, we have made finite
element calculations to show that the resonance and fre-
quency matching conditions can be fulfilled in a filtering
geometry, where only the scattered mode has a high enough
frequency to reach the cavity region with a lower cross sec-

tion. Using performance data from current state-of-the-art
superconducting niobium cavities, where a high quality fac-
tor Q<431010 is combined with surface field strengths
close to the critical valueB<0.28 Tesla, we deduce that the
number of scattered photons can reachN<18 in a cylindri-
cal cavity with length 2.5 m and 2.5 cm radius. In a filtering
geometry we estimate that the number of photons/volume
will be reduced by a factor of order 2, as compared to the
pure cylinder case. Recent results[16,17], where measure-
ments involving transitions in Rydberg atoms interacting
with single microwave photons have been made, strongly
suggest that the estimated field levels are within the range
detectable with present day technology.

We note that, in principle, nonlinearities in the walls of
the cavity may lead to excitation of the same mode as caused
by the QED nonlinearities. Our simple model calculation in
Sec. VI suggests that the mode coupling due to such an effect
vanishes. However, a more rigorous treatment is necessary to
draw definite conclusions. QED theory predicts a definite
output level of mode 3. Experiments that result in a much
higher level would thus indicate that nonlinearities in the
walls play the main role.

Finite element analysis, may provide a starting point for a
suitable design of the cavity. However, the degree of fine-
tuning of the resonance frequencies of the modes is very
high, since for optimal performance the mismatch of the
eigenfrequencies should not exceeddv,v /Q. Hence the
final adjustments of the cavity geometry must be made ex-
perimentally.
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