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Possibility to measure elastic photon-photon scattering in vacuum
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Photon-photon scattering in vacuum due to the interaction with virtual electron-positron pairs is a conse-
guence of quantum electrodynamics. A way for detecting this phenomenon has been devised based on inter-
acting modes generated in microwave wave guides or cayEeBrodin, M. Marklund, and L. Stenflo, Phys.

Rev. Lett. 87, 171801(200)]. Here we materialize these ideas, suggest a concrete cavity geometry, make
guantitative estimates and propose experimental details. It is found that detection of photon-photon scattering
can be within the reach of present day technology.
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[. INTRODUCTION conditions. The estimated signal in the filtered region corre-
) ) sponds to roughly 30 microwave photons}mhe results of
_ Classically, photon-photon scattering does not take p"'{‘cﬁefs.[m] and[17], where effects of single microwave pho-
in vacuum. However, according to quantum electrodynamicgyng confined in cavities are measured using sensitive tech-
(QED), such a process may occur owing to the interactiomigyes involving transitions of Rydberg atoms, suggest that
with virtual electron-positron pairs. An effective field theory yetection of the estimated signal is possible. Hence we sug-
containing only the electromagnetic fields can be formulatecbest that elastic photon-photon scattering can be observed

in terms of the Heisenberg-Euler Lagrangidn2], which is  \yith present day technology.
valid for field strengths below the QED critical field

10V m™! and for wavelengths shorter than the Compton
wavelength 102 m [3-5]. Several suggestions to detect
photon-photon scattering in laboratories have been made
[6-8], and the recent increase in available laser intensities
has stimulated various schen|&s-14. In Ref.[15] we sug- Photon-photon scattering due to the interaction with vir-
gested an alternative method, using the significantly weaketual electron positron pairs can be described by the
(but still strong fields that can be confined in a microwave Heisenberg-Euler Lagrangid]

cavity. The main advantage of adopting a cavity is that we

II. BASIC EQUATIONS AND PRINCIPLES
OF CALCULATION

— 2 2 2
can achieve a resonant interaction between the eigenmodes L = eoF + keg[4F“+ 7G], (1)
in a large volume, leading to an excited signal at a newynere F=(E2-c?B?)/2 and G=cE-B. Here «
eigenfrequency. =20%h%/45mic®~1.63x 10 m&/kg, « is the fine-

In the present paper we materialize the proposal made igy,ctyre constant; Planck’s constanty, the electron mass,
Ref. [15] in several ways. Various concrete geometries ful-gnq ¢ the velocity of light in vacuum. The last terms i)
filing all resonance and frequency matching conditions in ggpresent the effects of vacuum polarization and magnetiza-
cavity are devised, and the coupling between the pumpon The QED corrected Maxwell's vacuum equations can
modes and the excited mode is evaluated for a rectangulgfan be written in their classical form USifidE eoE +P and
prism and a cylindrical geometry. The amplitude of the ex-yy_g; , M whereP andM are of third order in the field
cited mode is then determined in terms of the quality faCtorampIitudesE andB, and uo=1/c%,. Expressions foP and
of the cavity and the field strengths of the pump modesy; -an pe found in, for example, Ref@-13,15.

Comparing with the performance reached in existing SUper- there are several reasons for considering wave interac-

conducting niobium cavities, it turns out that the cavity key;ions in cavities.

parameters, namely the quality factor and the allowed field 1) \e can benefit from coherent resonant interactions. In

strength (before field emission and/or superconductivity .ontrast, the nonlinear coupling vanishes for parallel plane

break down can reach values which allow for several pho-y 4,6 in an unbounded medium. However, we note that the

tons in the excited mode. To be able to detect the very weagresence of an inhomogeneous background magnetic field

excited signal in the presence of the pump waves, we Progn aiso be responsible for a nonzero effect, see [RdF.

pose a “cavity f||ter|ng geometry.” Finite element calcula- (2) The growth of the new mode will not be saturated by

tions are made in order to demonstrate a geometry that fulzgnvection out of the interaction region.

fills the relevant resonance and frequency matching (3) The techniques for detecting small signals in such

cavities are very well developed, see e.g., REf8,17.
Calculations of the coupling strength between various

* Also at Institut fir Theoretische Physik IV, Ruhr-Universitat Bo- eigenmodes can be made including the nonlinear polarization

chum, D-44780 Bochum, Germany. and magnetization, see e.g., R@f5]. However, a more con-
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venient approach, which gives the same result, starts directly 1. RECTANGULAR PRISM GEOMETRY

W'tgthe Lagra:’lglan d(;ansngle). finding th L q We start by considering a rectangular prism cavity, with
ur general procedure for finding the cavity €igenmode, . of jts corners in the origin, and the opposite corner with

coupling and the saturated amplitude of the excited mode, teoordinates(xo,yo,zo). In practice we are interested in a

be applied in Secs. Il and IV, can be summarized as follows; S ; : :
(1) We determine théinear eigenmodesf the cavity us- shape wherdo>Xo, o but this assumption will not be used

. . ...in the calculations. We let the large amplitude pump modes
ing the standard Maxwell vacuum equations together W'trhave vector potentials of the fom? P pump

the boundary conditions for infinitely conducting walls, and
express all field components in terms of the vector potential
amplitude.

(2) Next we choose resonant eigenmodes fulfilling fre-
quency matching conditions. For two interacting initial pumpand
modes(indices 1 and Pwith distinct frequencies; and w,, 7y
the possible frequency matching choices, corresponding to a A=A sin(—
cubic nonlinearity, are Rw;+ w,) and {w,*2w,). For defi- Yo
niteness we concentrate on the choice where c.c. denotes complex conjugate,=1,2,3,..., and
where we have chosen the radiation gauge such that the sca-
lar potential is zero. It is easily checked that the correspond-
ing fields (omitting the c.c)

X Mz
A=A sin(—)sin(l—)exp(—iwt)§/+c.c. (3)
1 1 Xo Z 1

il "2 ety 4
)sm( % exp(—imt)k+c.c., (4)

w3 = 2(1)1 )] (2)

in all examples. Since the eigenfrequencies are determined B,= zAl cos(w—x>sin<n1—wz>exp(— ioit), (5a
by the geometry, we note that the conditi®) gives a de- Xo Xo %

sign requirement involving the dimensions of the cavity. In

this context it can be noted that there are several reasons for g - _ My Ay sin(w—x) COS(”l_WZ)eXp(_ iwt), (5b)
using two pump waves rather than one, that in principle

could excite a mode with three times the frequency of the
pump mode. First, for two pump modes there are generally
better possibilities to vary the parameters in the setup in or-
der to optimize the output of the excited mode. Second, for a
cylindrical geometry and a single pump mode, the desigrogether withw?=nfa?c?/z5+m?c?/x5, and

Eqy =iw,Aq sin (W—X)sin<n1—wz>exp(— iwit), (50
Xo %

requirements following from the frequency matching results T ay\  (nymz .

in eigenmodes that have a too weak nonlinear coupling. Fi- Ba=——A; COS(—)sm(—)exp(— iwpt), (63

nally, there is a general tendency to get stronger nonlinear Yo Yo %

coupling when the pump modes and the excited mode have o S

rather close frequencies. Byy = —2A, Sin(ly>cog<2—>exp(_ iw,t), (6b)
(3) We then perform a variation of the amplitude of the % Yo %

eigenmodes and lef[L d° dt=0 in order to obtain the
mode-coupling equations directly from the Lagrangian den- _ : <7T_y> . <n2772> .
sity (1). The evolution equation for each eigenmode is ob- Eac= 1wz, Sin sin exp-ieg),  (69)
tained by expressing the Lagrangian in terms of the potential

: — 2 2 2 /1,2 H
and varying the corresponding vector potential amplitude!©9ether with wy=nom’c?/ o+ w’c?ly; are proper eigen-

The lowest order linear terms then vanish, since the dispelmodes fulfilling Maxwells equations and the standard bound-

sion relation of each mode is fulfilled. For the terms that are?’y conditions. Similarly we assume that t_hei mode to be
quadratic in the fields we must thus take into account that th&*Cited can be described by a vector potentia

amplitude has a weak time dependence when making the (my\ . [ngmz . R

amplitude variation. However, for the QED correction terms A3 =Agsin Yo sin e expi—iwgh)x +c.c., (7)
in the Lagrangian the time dependence of the amplitudes can 0

be neglected. where w3=n3m2c?/ 2+ 7%c?ly3, in which case we get fields

(4) In the absence of dissipation, the equations now obof the same form as in Eq§5a)—(6¢).
tained imply steady growth of mode 3, until the energy of ~Next we turn to poin(3) in the scheme of the preceding
that mode is comparable to that of the pump modes. Howsection. As notedbove when performing the variationsA,,
ever, when some damping mechanism is pregegt, due to  the lowest order terms proportional 8;A; vanish due to
a finite conductivity of the cavity waljsthe amplitude satu- the dispersion relation, and we need to include terms due to
rates at a level where the mode-coupling growth balances thie time dependence of the amplitude of the type
dissipation of the excited mode. This effect can be easilyAga(ﬁA;)/&t. For the fourth order QED corrections propor-
included by adding a phenomenological damping term in theional to 5A;, only terms proportional t&5A,8A; survive the
evolution equation, whose value is estimated by comparingime integration, due to the frequency matchif®). After
with quality factors currently reached in superconductingsome algebra the corresponding evolution equation for mode
niobium cavities. 3 reduces to
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dA; iSOng - m(-)deSw=w1’2’3 We note from the f_requency matching con-
P TKrecAlAZ! (8 dition w3=2w;-w, that all of the eigenmodes cannot have
the same order of their respecti@ge for resonant interaction
where the dimensionless coupling coefficiény. is to occur, and thus we introdug@=p; , 5 for the different
5 ) 2 modes. Proceeding in the same manner as described in the
= ﬂ'z_c _ g’ 4.,.m two preceding sections, we obtain after lengthy but straight-
Krec w5 =) X2y2 * X3 * 2 ) forward algebra
272 ; 3

where the cylindrical coupling coefficielt,, is

8c? {Cz[ ,3%52,33| _ 27T4n§n2n3|

. . . Koy =
The three different sign alternatives (@) correspond to the N W38y a*t P z a

X[(_! +1_)w2n3(+1_1_)w3n2] . (9)

mode number matching options 2B
2n,-n, + Nz =0, (109 + az_z(z)l(ﬁann?,(la +1o) + 2B,nngl g - Zﬁ3nln2le):|
2m +ny=ng=0, (10D - %[2330)1“)2'63 + 20103l g = Brwpws(lc + 315)]
2n;—n,—ng=0, (109 27N,
. . A . -2 (N30 ~ Nyw w3~ N1 wyws) (15)
respectively, which must be fulfilled in order for the coupling z

to be nonzero. It is now possible to evaluate the couplingand the intearal defined
coefficient for specific mode numbers and geometries consis- grais are defined as

tent with the frequency matching conditions. As described in 1 )

the preceding section, we could then determine the saturated Ia:f J1(B1U)I1(B2u)J1(Bzu)u du, (16a
amplitude from a balance between mode-coupling growth 0

and dissipation, where the latter effect can be introduced by 1

simply adding a phenomenological damping term. However, - 2 2

it turns out that a cylindrical geometry gives a slightly better o f 0 [335(10) + J1(Bat) No( Bou)do( Bl du,
performance, and thus we will instead work out that case in

more detail. (16b)
1
IV. CYLINDRICAL GEOMETRY lc= f J5(B1U)I1(Bou)dy(Bsu)u du, (160
0
We consider the case where all eigenmodes are TE modes
with no angular dependence, with fields that can be derived 1
from the vector potential lg= | Jo(BrwI(B1U)Io(Bou) Iy (Baw)u du,  (16d)
0

A= AJl(pﬂ/a)sin( r%?)exp(— iwt)p+c.c., (11) and

1
wherea is the cylinder radiusz, is the length of the cavity, le= f Jo(B1U)I1(B1U) 1 (BoU) Jo(Bsu)u du. (166
J, is the first order Bessel function, aytis one of its zeros. 0
The cylinder occupies the regionsz=z, centered around \vhen calculating15) we have assumed the mode number
thez axis. We have here introduced cylindrical coordingtes matchingn,=2n,+n,. Equation(14) implies a linear growth
andz as well as the unit vectap in the azimuthal direction. of mode 3, until the backreaction of the pump modes be-
The corresponding fields are comes significant. In reality dissipative mechanis@g., a
I finite conductivity of the cavity wallswill set a limit on the
E=iwAJl(p,B/a)sin(—)exp(—iwt)g“o+c.c., (12)  excited amplitude. This can be described in a phenomeno-
% logical way by substitutingd/dt— d/dt—(w3/27Q), where
Q is the cavity quality factor. The steady state amplitude is

_BA (”_772) s thus
B= aJo(p,Bla)sm 2 exp—iwt)z

_ imQKey WEA] - 17
nmw nmz o ST, oz M (17
—ZAJl(p,Bla)co Z exp—-iwt)p+c.c., (13 char

where we have introduced the characteristic electric field
where the eigenfrequency é€=c?[(B/a)?+(nm/zp)?] for all  Eg o= (e0k) Y2=2.6X 10?° V/m [18]. Looking at the num-
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ber of excited photons in the cavity modeN V. CAVITY FILTERING GEOMETRY
~ * 3 . .
20f BsBg 0°r /i3 we finally obtain We search for a cavity geometry with the following prop-
2, _3M2, 512 12 4 2 erties.
Noep = 802%™ Q w3K°V'i°(B3)|A1‘ [Ad . (18 (1) The cavity should be rotationally symmetric.
16 AE har (2) There should be three eigenmodes with frequencies
fulfiling (2).

Before evaluating18) we need to specify the mode numbers 3 There should be a cylindrical interaction region where
and the geometry. As an example we I&1,n2,N3)  the mode structure resembles that considered in the preced-
=(3,15,2) (fulfilling nz=2n;+n,) and takeB,=B3=3.83, ing section.

corresponding to the first zero @k, and 3,=7.01 corre- (4) There should be a filtering region with a cross section
sponding to the second zero. This gives zga=9.53  small enough to give an exponential decay of the pump
through the frequency matching conditid and determines  modes, but large enough for the excited eigenmode to propa-
the frequency relations t@s/w;=1.26 andws/w;=1.12.  gate.

Substituting these values and numerically evaluating the in- (5) There should be an entrance region for the pump
tegrals (16a—16¢ then givesK.,=3.39. The key param- modes.

eters are the quality factor and the pump field strength. An \we thus make a geometrical design of the type outlined
advantage with our choice of eigenmodes is that the pumppove, see Figs.(4-1(c). The eigenmodes are then calcu-
electric field is zero at the cavity surface, which means thajated using the method of finite elements. In general there
we do not have to worry about field emissifif]. Instead |l be eigenmodes with the desired properties, except that
the pump amplitude is limited by the surface magnetic fieldthey will not fulfill Eq. (2) for the specified geometry. How-
which needs to be below the critical value for which theever, by repeated calculations Varying the |engtbf the
walls cease to be superconducting. From the experimentghyity, the mismatch frequenc§w(l) = ws(l) = 2w;(1) + w,(1)
results presented in Refi20], we find that the critical mag-  gradually approaches zero. The dimensions of the cavity and
netic field for a high pure niobium material can reaBh the corresponding mode structure is shown in Figs.
~0.28 Tesla, at a temperature of the order of or below 1 Kq(g)_1(c). As can be seen, the pump modes have decreased
If we specify =250 m, we getw;=8.10x 10" rad/s and  thejr amplitudes by a factor of the order of®.Grom the
,=7.15x10° rad/s, implying that field levels close to the jnteraction region to the end of the filtering regiéio the
magnetic surface field condition correspond %y |eft), whereas mode 3 has essentially the same amplitude in
=0.017 Vs/m andA,~0.024 Vs/m. qu conductivity of poth regions. By increasing the filtering distance, the pump
niobium allow for quality factorQ> 10" for temperatures  sjgnals could of course be reduced further. Naturally a filter-
in the range of interest below 1 K. But we note that thesgng geometry will make the mode coupling somewhat
high Ieveols_ have been hard to reach in practice, althddgh yeaker, as compared to our pure cylinder example. By add-
~4x 10" in Ref. [16]. We also note that there has been aing 4 filtering region of roughly the same size as the coupling
tendency to get lower quality factors when applying strongerregion' the coupling factor reducesKg ~ K/ \2, in which
fields_. However, in Ref[21],. it has been shown that it.i.s case we keep the same number of exc{ted photons if we
possible to reach surface fields of the order of the criticalhgose the size of the total cavity region to be roughly twice

level without significant decrease of th@ factor. Thus the size of the cylinder cavity presented in the preceding
adoptingQ=4x 10'° and the rest of the parameter values aSgection.

specified above, we obtain

Noep =~ 18. (19 VI. NONLINEARITIES IN THE WALLS OF THE CAVITY

Keeping the cavity at a temperatufe=0.5 K, thus means To our knowledge, a well-established and simple nonlin-
that the number of generated photons in our example is wekar model for the superconducting RF state does not exist. As
above the thermal fluctuation leveély,=1/[exp(fiws/KT) a starting point for a discussion, we may adopt a model with
-1]=7, wherek is the Boltzmann constant. To get an evena nonlinear magnetic third order susceptibilit'
lower thermal fluctuation level, it would be of interest to =x"'B;ByB), using the Einstein summation convention, and
generate photons with higher frequencies. However, it is noflefining the susceptibility in terms @ rather thanH. We
wise to just scale down the dimensions used above to gdhen consider the same geometry of the cavity and the eigen-
hawg/kT>1 and Ny, <1, sinceNggp decreases too quickly modes as in Sec. IV. The magneticcomponents of the
with the cavity volume. Instead we could consider higherpump fields penetrate roughly a skin depth inside the walls.
mode numbers, , ; and higher orders of to get a larger For a nonzero value of****= y,, the part of the nonlinear
excited eigenfrequency fulfilling ws/kT>1 which gives a magnetizatign that can act as a source for mode 3 is then
higher ratioNggp/ N M3:Xn|B§ZBzzi. Acoordingly we get currents in the azi-
On the other hand, detecting a very weak signal in themuthal directionJ;,¢=V X Mg, which in turn may induce
presence of strong pump fields might be difficult even forradial ~variations in the magnetic field Bs,(p)
signals well above the thermal fluctuation level, and thus we=(uo/ p) f J3,p dp. At the same time, the jump in the nonlin-
will below investigate the possibility of a cavity geometry ear susceptibility across the vacuum/superconductor bound-
that directly filters away the pump signals. ary causes a jump in the magnetization, and thereby a surface
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FIG. 1. (Color) The geometry of the cavity and the mode structure for the filtering geometry. Note that only half of the cavity is shown,
since the other half is redundant due to rotational symmetry of the cavity as well as the fields. The small region to the right is the entrance
region, the large middle region is where the interaction takes place, and the region to the left is the filtering region. All modes have the
electric field in the angular direction, i.&€=E(p,2)¢. The variations of IhE(p,z)| are shown in color cod¢a) The mode structure of pump
mode 1. The exponential decay in the region of small cross section diminishes the amplitude by a factéirotH®end of the filtered
region.(b) The mode structure of pump mode 2. The exponential decay in the region of small cross section diminishes the amplitude by a
factor of 108 in the end of the filtered regioiic) The mode structure of the excited mode. The amplitude is roughly the same in the region
of interaction and in the filtered region.
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currrentjzs=—M3 X p. A combination of the surface and bulk tion. Using performance data from current state-of-the-art
currents then yields a nonlinearly induced magnetic field insuperconducting niobium cavities, where a high quality fac-
side the vacuum region tor Q=4x 10 is combined with surface field strengths
a close to the critical valuB=~0.28 Tesla, we deduce that the
Badp<a= (Mo/P)f Jaop dp - MoanszB;Jpza, (20) number of scattered photons can re&tk 18 in a cylindri-
A cal cavity with length 2.5 m and 2.5 cm radius. In a filtering

where\ should be much larger than the skin depth such thagel?rgetrydwe gsglmat? t?at t?e gumlzaer of photonsd/v:Jlli?e
Js,(N) is negligible. Carrying out the integration in EQO), Wil be reduced by a tactor of order 2, as compared 10 the
we see that the two terms cancel such Bgl,-,=0, i.e., the PU'® cylinder case. Recent resultss,17, where measure-
nonlinear currents do not induce a magnetic field inside th&"€NtS_involving transitions in Rydberg atoms interacting
cavity. with single microwave photons have been made, strongly
We stress that this is not a proof that nonlinearities in theSUggest that the estimated field levels are within the range
walls generally are unable to affect the physics inside th&letectable with present day technology.
cavity. However, it suggests that a nonlinear current in the We note that, in principle, nonlinearities in the walls of
walls with the proper eigenfrequency does not by necessit}{'€ cavity may lead to excitation of the same mode as caused

excite the corresponding eigenmode of the cavity. y the QED nonlinearities. Our simple model calculation in
Sec. VI suggests that the mode coupling due to such an effect
VII. DISCUSSION AND SUMMARY vanishes. However, a more rigorous treatment is necessary to

draw definite conclusions. QED theory predicts a definite

In the present paper we have materialized our proposal fooutput level of mode 3. Experiments that result in a much
the detection of elastic photon-photon scattefitg. In par-  higher level would thus indicate that nonlinearities in the
ticular, we have calculated the output level of scattered phowalls play the main role.
tons in terms of the allowed pump field strength and the Finite element analysis, may provide a starting point for a
cavity quality factors for a reactangular prism as well as forsuitable design of the cavity. However, the degree of fine-
a cylindrical geometry. Furthermore, we have made finiteuning of the resonance frequencies of the modes is very
element calculations to show that the resonance and fredtigh, since for optimal performance the mismatch of the
quency matching conditions can be fulfilled in a filtering eigenfrequencies should not exce@d~ »/Q. Hence the
geometry, where only the scattered mode has a high enoudimal adjustments of the cavity geometry must be made ex-
frequency to reach the cavity region with a lower cross secperimentally.
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