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Two-photon nonlinearity in general cavity QED systems
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We have investigated two-photon nonlinearity in general cavity QED systems, which cover both weak- and
strong-coupling regimes and include the radiative loss from an atom. One- and two-photon propagators are
obtained in analytical forms. By surveying both coupling regimes, we have revealed the conditions on a
photonic pulse for yielding large nonlinear effects, depending on the cQuwislue. We also discuss the effects
of radiative loss on nonlinearity.
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I. INTRODUCTION This study is presented as follows. In Sec. Il, the theoret-
o i . _ical model of the atom-cavity system is introduced, and the
Significant nonlinear optical effects are usually obtainedgjgnificance of the parameters is described. In Sec. Ill, we
when intense light fields are irradiated onto a material withyefine the input and output states of the photons. In Sec. IV,
large nonlinear susceptibilities. By using an optical cavity, itihe measure of the nonlinearity appearing in the output state
is possible to magnify the electric field inside a cavity, pro-js gefined. In Sec. V, we describe the form of the input wave
vided that the input field is resonant with the cavity modefynction and a scaling law for this atom-cavity system. In
[1]. Thus, it is possible to enhance the nonlinear optical regec. v/, we numerically evaluate the nonlinearity for lossless
sponse by placing the nonlinear material inside a cavity. Thig,ses and clarify the optimum conditions for inducing large
idea was realized experimentally by using two-level atoms aggplinearity. In Sec. VII, the effects of loss are discussed.

the nonlinear materigi2,3], which demonstrated the possi- The analytic expressions for the one- and two-photon propa-
bility of obtaining large nonlinearity even using weak input gators are shown in the Appendix.

fields. In particular, nonlinear effects appearing in the two-
photon state have recently attracted much attention due to L. SYSTEM
possible applications for quantum information devigd$ '

and also due to recent progress in the photon-pair manipula- |n this study, we investigate a single two-level system
tion techniquef5,6]. (hereafter referred to as an “atopgmbedded in a one-sided
In order to discuss theoretically the dynamics of the two-cavity [10] as a nonlinear optical system. The system is sche-
photon state, a quantum-mechanical treatment of the photafatically illustrated in Fig. 1. The atom is coupled not only
field is indispensable, because the nonlinearity appears in thg the cavity mode but also to the noncavity modes. The
wave function of the photon, not in the amplitufd. Such  cavity mode is coupled through the right mirror of the cavity
an analysis was pioneered in a case in which the nonlineap the external photon field, which is labeled one-
material is a one-dimensional atom, obtained as the lossleggmensionally byr. Although the external field actually ex-

and weak-coupling limit of an atom-cavity syst¢8]. How-  tends only into the >0 region and the incoming and outgo-
ever, considering that magnification of photon fields occurs

more effectively in bette(higherQ-value cavities, strong-

coupling cases also seem promising for yielding large non- A Y input
linearity [9]. The optimum cavity conditions for two-photon : -—
nonlinearity have not been sufficiently discussed in the lit- 5
erature; thus, this type of nonlinearity should be investigate g K
using methods applicable to any coupling regime. In the " o >I‘
present study, we present analytical expressions for one- an
two-photon propagators in general atom-cavity systems, i
which both the weak- and strong-coupling regimes are cov- —_—
ered and the loss from the cavity due to radiative decay intc ! output

|

noncavity modes is taken into account. Our discussion of
two-photon nonlinearity is based on the use of this propaga- :

tor. Moreover, we clarify the optimum conditions on photo- r=0
nic pulses for achieving large nonlinearity, depending on the

cavity conditions. FIG. 1. Schematic view of the atom-cavity system. The right

mirror of the cavity is weakly transmissive, through which the cav-
ity mode is coupled to the external photon figidy, « represent the

atom-cavity coupling, the radiative decay rate of the atom into non-
*Electronic address: ikuzak@aria.mp.es.osaka-u.ac.jp cavity modes, and the decay rate of the cavity mode, respectively.
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ing photons are traveling in the opposite direction, we may
treat the incoming photons as if they were propagating in the W) = 2_1/2J dfldle//in(fl,fz)b:lbrTz|0>- (7)
r <0 region in the positive directiofiL1].
The Hamiltonian of the system is given, settifigc=1,  The one-photon wave function,(r) is normalized as
by Jdr|gin(r)[2=1, and ¢,(r)=0 in r>0. Similarly, i(ry,r5)
satisfies  [dr,dry|in(ry,r2)?°=1  and  ¢,(r,,r,)=0 in
’H=waa+a'_+f d,u,,u,deM+f du(y,o.d, + H.c) + wc'c r{,r,>0, and has the following symmetryi,(ro,rq)
:llfin(rlirZ)-
§ " . After the photons have interacted with this atom-cavity
+ | dkkibe+ | dk(kc'b+H.c) +g(oc+clo), system, the excitations in the atom and the cavity mode com-
pletely escape to the external modbg) or to the noncavity
1) modes(d,). Then the states of the system are written as

whereo, ¢, by, andd, are the annihilation operators for the follows:

atomic excitation, cavity mode, external photon mode, and

noncavity mode, respectivelw, and w. represent the fre- |‘I’<l)>= f dry, t(r)bT|O> 4o (8)
quencies of the atomic transition and the cavity mode,gnd out U '

represents the atom-cavity coupling. Regardipgand «,

we use the flatband assumption, i.?/w=(y/27r)l/2 and

=(x/2m)''2, by which the damping rates of the atom and the |w @)y = 2‘1’2f drldrzzpout(rl,rz)b;rlbfz|0) + (9
cavity mode are given by and «.

_ The complex frequencies of the atom and cavity are deyhere the ellipses imply the terms containing excitations in
fined by the following equations: the noncavity modes. Whereas the number of photons is con-

-~ _ served in the output pulse[fdr|gy(r)]?=1 and
wa_ wa l‘y/21 (2) 2 .

Jdrydry|iulry,r2)[?=1] in the case ofy=0, the output state
D= w0y iKl2. 3) is attenuated in general cases# 0).

The input and output wave functions are related by the
Using these frequencies, the complex eigenfrequerigigs propagatoiG as follows:
of the atom-cavity system are given by

(=01 (=) = (- D) (0 — D) — & (4) Poudr) =fdr’G(r;r’)¢in(r’), (10)

It is of note thaty is related to the dissipation of this
atom-cavity system. Whery=0, the input photons are al-
ways reflected back into the output port, i.e., the atom-cavity Poulr1,72) =J dridroG(ro,rorg,r)din(ry,ry) . (12)
system is lossless. In contrast, whe# 0, some of the input
photons are lost as spontaneous emission into the noncavif,e one- and two-photon propagators are analytically obtain-
modes, i.e., the atom-ca\_/ity system is lossy. In t_he limit ofgpje for this atom-cavity systertsee the Appendjx The
y— 0 and(g, x) -, keepingl'=4g?/ x constant, this atom- yyo_photon propagator has the following symmetry:
cavity system is reduced to a one-dimensional atom, Wher@(rz,rl;ré,ri):G(rl,rz;ri,ré), which guarantees the sym-
the atom is directly coupled to the external field a0 with metry in the output wave functionyu(rs, )= Yioull1,2)-
the coupling constarit [2,8].

The real-space operator of the external fiddd,is given

When two photons are input into this atom-cavity system,
b, = (277)‘1’2J dké“b,. (5)  the input wave functioni,(ry,r,) is finally transformed to
the output wave functioy,(ry,r»). In order to quantify the
We note again that the negatiypositive) r represents the nonlinear effect in this process, we compaig(r,r,) with
incoming (outgoing field. thelinear output wave functionﬁout(rl,rz), which is defined
by
I1l. INPUT AND OUTPUT STATES

Our main concern in this study is to determine how the YoulT1.12) :J dridryG(ry;r)G(ro;r) in(ri,ry), (12)
initial one- or two-photon wave functions are transformed
after interacting with the atom-cavity system. In the initial
state, the atom and the cavity are in the ground states and o
or two photons exist in the input port, i.e.,

whereG(r;r’) is the one-photon propagator. This linear out-
Bﬁt is obtained when the atom in the cavity is replaced by a
harmonic oscillator with the same transition frequency, i.e.,
when the nonlinearity of the system is completely removed.
Wiy = f dra(r)bf|0), (6) We here define the quantify as follows:
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f d r1d r2( (/flaut)* 'Jfout
: (13

B= 15
\/ J dr,d r2| ‘poutlz \/f dr,d r2| wlaqu // T T

which gives theanglebetweeny,; and %ut- B always lies in
the unit circle(|8| <1) due to Schwarz's inequality, angl
=1 holds when the response of the system is completely 0.5 e
linear (o= ¥,). Thus, the nonlinear effect is reflected in Sl

the deviation ofg from unity, and|3—1| may be regarded as

a measure of the nonlinear effect. In addition, when the 0 ‘
atom-cavity  system is  lossless, [dr,dry|ig.d® 0 0.5 1 1.5 2 25
= [dr.dr,|y5,?=1 and 8 is simply reduced to the overlap g2d/x

integral betweeny,,; and ¢,

B~

FIG. 2. Dependence di3—1| on g?d/« in the weak-coupling
regime [x/g=10 (solid line) and «/g=5 (dotted ling]. The fre-
V. INPUT WAVE FUNCTIONS AND SCALING LAW quency of the photons is chosen @t0. In the strong-coupling
regime, theq=0 photons are no longer resonant due to the Rabi
Now we employ the above formalism for specific forms spjitting and the nonlinearity becomes smaliétin broken line,
of the input states and clarify the conditions required to obwhere/g=2).
tain a large degree of nonlinearity. In this study, we focus on
a case in which the two input photons have the same WaVvf ensionless parameter§w,

- N
function of Gaussian form, i.e., ©0/9,7/9,x/9,a/9,9d). In

the following numerical examplesy,—w, is fixed at zero
in(r1,72) = (11— Q) (1, — @), (14) andw, (=) is chosen as the origin of frequency.

(1) = (2/77d2)1/4eX[i— r2/d2 + iqr) (15) VI. NUMERICAL RESULTS FOR LOSSLESS CASES
in - .
The input wave function is characterized by two parameters, In this section, we present the numerical results obtained

g (the central frequengyandd (the coherent length of the for the y=0 cases, in which the at_om-cavity system Is loss-
photon. a(<0) in Eq. (14) represents the initial position of less and the numbgr of photops Is preserved n the output
the photons, which is an irrelevant parameter. pulse. The atom-cavity system is then characterized solely by

g : : _ the ratiok/g, as was discussed in Sec. V. Equat{@nindi-
pIirTghT)ea;\tfsglzr? a;\r/]t}yasts)/rsTt]e;r:]cljstﬁQacrgsitg/rlrzne;dg):(_ﬂl)ec ((:t?]lé cates that Rabi splitting of the eigenfrequen_cy of the_a_tom—
frequency difference between the atom and the cavity mode(:.av'tny%Stem takes plache wheriig<4|.( Thus,l_m our qlefm_l-

v (the damping rate of the atom into the noncavity modes tion of the parameters, the str<0r(gvea iCOUP Ing regime 1s
and « (the damping rate of the cavity modeAdding the specified by the inequality/g=4 (x/g=4).
input-photon parametersandd, the whole system is speci-
fied by the set of parametetg, w,— v, v, k,q,d).

The number of parameters may be decreased with the First, we discuss the weak-coupling regime. In Fig. 2, the
help of the following scaling law. Consider a scaling trans-nonlinearity|3-1| is plotted for cases of resonant inpla
formation H— a’H, where « is a positive constant. The =0) as a function ofx/g and g’d/ k. It has been confirmed

A. Weak-coupling regime

scaled Hamiltonian takes the form that, in the weak-coupling regime, nonlinearity appears most
strongly atq=0 and gets weaker ag| is increased.
- + | duuD™D +fd 1/2 D +H.c. Figure 2 |nd|cates_, that, roughly spe_ak|rhg,—_1| is depen-
oAM= awg0.0 f HEE = a0y ) dent solely org?d/ « in the weak-coupling regime. This fact

can be explained as follows. In the weak-coupling regime,
+ awLclc+ f dkkBin"‘ f dk(a2k,c'B + H.C) the atom-cavity system may be regarded as a “one-
dimensional atom,” where the atom is coupled directly to a
one-dimensional photon field with a coupling constant of
49?/ k. The figure also clarifies that the nonlinearity is maxi-
where By =a "%y, andD,=a 2, satisfy the orthonor- mized wheng?d/ x~0.5. For example, fog=120 MHz and
malized commutation reIationBBk,Bl,]:a(k—k'), etc. As k=900 MHz[3], the optimum pulse lengtt is about 9 m.
for the photonic wave functions, noticing that=a"?B,,,, The qualitative explanation for this optimum condition will
they are transformed ag(r) — o'?y(ar). Comparing the be given in Sec. VI C.
original and scaled quantities, it is concluded that a system . )
with parametergag, a(w,— o), ay, ax, aq,d/ @) is equiva- B. Strong-coupling regime
lent to a system with parameteig, w,— o, v, ,d,d). Using Next, we discuss the strong-coupling regime. In Fig. 3,
this law, the system is specified by the following set of di-the nonlinearity|3—1| is plotted for fixed«/g(=0.5 as a

+ag(o,c+clo), (16)
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FIG. 3. Dependence d3-1| on «d, wherex/g is fixed at 0.5 FIG. 4. Norms of iy (r1,r,) (bold lineg and ¢, (ry,r,) (thin

(strong-coupling regime q/g=0.8 (broken ling, q/g=0.9 (solid lines), for lossy cases of/g=0.1 (solid lineg and y/g=0.2 (bro-

line), g/g=1 (dotted ling, andq/g=0 (thin broken ling. ken lines. The atom-cavity system is in the weak-coupling regime
(k/g=5) and resonant photor{ig=0) are used.

function of xd and g/g. In contrast to the weak-coupling

regime, the nonlinearity is weak for resonant inpgt0).  —ix/2 and -29%/ k. Becauseg?/ k> k in this regime, the

This is because thg=0 photons are no longer resonant with optimum frequencyg and pulse lengtld are given byg~0

the cavity mode due to the Rabi splitting. Instead, a largeand d~ «/2g?, which accounts for the numerical results in

nonlinearity is obtained when the input photons are tuned t&ec. VI A. On the other hand, in the strong-coupling regime,

the Rabi-split frequencyg~ +g. The maximum value of ; andw, are approximately given byix/4+g. Therefore,

|8-1] is approximately 1.5, which is almost the same as thehe optimumq andd are roughly estimated ai~ +g and

value obtained in the weak-coupling regime.The nonlinearityd~4/«, which is in agreement with the numerical results

is optimized forkd~4, the reasons for which will be dis- given in Sec. VI B.

cussed in Sec. VI C.

VII. NUMERICAL RESULTS FOR LOSSY CASES
C. Optimum pulse for inducing large nonlinearity

In the preceding subsections, we clarified the optimum In the preceding section, the results obtai_ned for the loss-
frequencyq and the lengtid of the photon pulse required for l€ss case¢y=0) are presented. Here, we discuss the lossy
inducing large nonlinearity in both weak- and strong-cases(y#0), fixing the parameter&/g=5 (weak-coupling
coupling regimes. Here, we account for these optimum contegime andq=0, which serve as an example.
ditions from a unified perspective. To this end, we focus on The apparent result of the loss is attenuation of the photon
the wave functionp(r), which is defined by pulses. In Fig. 4, we have plotted the norm of the two-photon

output wave functiony,(ry,r»), i.e., the probability of find-
it _ + ing two photons in the output. The norm of the linear output
e"a./0) = J dree(r)br|0) (17 wave function#out(rl,rz) is also plotted in the same figure.

As expected, the photon pulse is attenuated more signifi-
cantly when the loss parameteiis larger, for bothy,, and
Y« (compare the solid and broken linet is also observed

i that %ut is more attenuated thap,,. This tendency can be
pletely absorbed by the atom at timgrt. Therefore, when ngerstood by the facts that, in the linear case, the photons

the input pulseyn(r) resemblesy(r) in shape, the two input  are more likely to be absorbed by the atom due to the ab-
photons try to occupy the atom simultaneously and strongence of the saturation effect, and that the loss of photons

for a larget(>0). The significance of/(r) becomes clear by
multiplying "7t from the left; if a single photon pulse(r)
is prepared as an input at timtg the photon will be com-

nonlinear effects are expected.
¢(r) has the following form:

igKlIZ

—(eiZ)*l(Ht) _ eiZ);(r+t)) (-t<r<Do0),

~% ~%

@(r) =) o1~ o,
0 (otherwise,

occurs only while the photons are occupying the atom, as
schematically shown in Fig. 1.

Figure 5 plots the nonlinear paramet@-1| defined in
Eqg. (13), when the system is lossy, i.ex# 0. It is observed
that|3—1| decreases slightly for thg?d/ x<0.5 region and
increases slightly for the?d/x=0.5 region; however, in

(18) general, no qualitative changes are introduced by the loss.
Thus, although the probability of finding two photons in the
where ®; and w, are the complex eigenfrequencies of the output decreases significantly as shown in Fig. 4, the nonlin-
atom-cavity system, as defined in E@). In the weak- ear characteristics of the output state are almost unchanged if
coupling regime,w; and w, are approximately given by the output pulse contains two photons.
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2 G(r;r') =(0lb,e b, |0), (A1)
1.5 —— . . :
.................... T~ wherer>0>r’, andt is the time difference between the
_ T \\\\\ output and the input. This propagator is derivable by stan-
‘T o T T~ dard application of the Green function methdd?2].
A

_______________________________________ Throughout this section, we employ a coordinate system
"""""""" moving at light speed; transformation to a static coordinate
0.5 system is carried out by replacing (coordinates without
primeg with r—t, or by replacingr’ (coordinates with
prime9g with r’ +t. In this coordinate system, the one-photon

0, 05 1 15 5 25 propagator is given as follows:
g2d/x
FIG. 5. The effect of loss on the nonlinearigg-1/; y/g=0 G(r,r')=G(r=r")=Go(r —=r") +Gy(r =r"), (A2)

(thin dotted ling, v/g=0.1(solid line), andy/g=0.2 (broken ling.
The other parameters ardg=5 andq=0.

VIIl. SUMMARY Go(r=r")=8r—r") = k6(r' =ne@)  (A3)

Here, we theoretically investigated a situation in which
two photons were simultaneously input into a nonlinear op-
tical system, and we examined the nonlinear effect in the
output wave function. As a model nonlinear optical system,
we employed a two-level systetatom) embedded in a cav- .
ity, which is illustrated in Fig. 1. The one- and two-photon W~ wceiz,z(r_r'))

Wy — wCeiz)l(r—r’)

Wy~ W

Go(r=r")=«6(r' - r)(e“?c("’/) -

propagators were obtained in the analytic forms that are pre- W~ Wy
sented in the Appendix. The angle between the linear and
nonlinear two-photon output wave functions, given by Eg.

(13), was used to measure the nonlinear effect. This quantitynere @, (complex frequency of the atom®, (complex
was numerically evaluated in the weak-coupling regiffig.  frequency of the cavity anda, , (complex eigenfrequencies
2) and in the strong-coupling regini€ig. 3), and the condi-  of the atom-cavity systeyrare defined in Eqs(2)~4), re-
tions for inducing large nonlinearity were revealed. Thesegpectively.

conditions were explained by the optimum pulse shape, Next, we proceed to the two-photon case. Using the com-
given by Eq.(18). The present findings suggest that pulse . . ~
: ; IS pleteness relation in the two-photon space, 1

shape control is more essential for optimizing the two-- ] + ot .

. : : =271fdr,dr,b/ b’ |0)0lb, b, , the two-photon propagator is
photon nonlinearity thai@-value control of the cavity sys- a ol L2y ] o
tem. We also consideregi#0 cases, in which the atom- identified as 2X0[b; b, & bribré|0>' This quantity is com-
cavity system is lossy. As shown in Fig. 4, the probability of posed of two types of terms; in the fir&econd type, the
finding two photons in the output decreased greatly due t@hotons initially located at; andr, are scattered to, andr,
the loss effect, but the nonlinearity in the output two-photon(r, and r,), respectively. With the help ofi,(ry,r5)
wave function remained almost unchanged in comparisor ;. (r5,r}), it can be shown that both types of terms yield

(A4)

with the lossless case. the same output wave functiaf(r,r,) after integration in
Eqg. (11). We can therefore safely regard only the first type of
ACKNOWLEDGMENTS terms as constituting the two-photon propagator. The two-

. photon propagator is thus given by
The authors are grateful to H. Ajiki, M. Bamba, and K.

Edamatsu for fruitful discussions.
G(ry,rrg,r) =G(ry—r)G(ro—ry) = Gy(ry = r1)Gy(r, = ry)

+ Gi(rq,r,,r1,15), A5
In this appendix, we present the analytic forms of the one- 126’8 i(fr2rrs) (AS)
and two-photon propagato@(r;r') andG(r,rp;ry,r5). Us-
ing the completeness relation in the one-photon spéce, 1
:fdrb;r|0><0|br, the one-photon propagator is given by whereG; (j=4,6,8 are defined by

APPENDIX: PROPAGATORS
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_ 42
G4(r1,r2,ri7ré):—8ﬂ_3 [la(ry=rory = rorp=rp) +l(ra=ry,ro—ry,ry—ry)l, (A6)

! ! _igus ! ! ! ! ! !
Ge(ry,rpry,ry) = _ﬂ_g [le(ra=rq,ri—rory—ry) +lgry=raro=ry,r=ryl, (A7)

! ! _i98K2 ! ! ! ! ! !
Gg(ry,rp,ry,ry) = _8773 [lg(ry=rory—rora—ry) +lgro=ry,ro=ry,ry—ryl, (A8)

eikx+iqy+inJ(w,q,k)

|4(x,y,z):fdkdqcto (o-k=q+id) ' (A9)
oy oz (4, k) (@ — g — @1)(@ — Do — @)
ls(X,y,2) = | dkdqgdw — — — = ~ A10
*“Xyz)[ A o=k 0(0-q- a0 To)@-T)(0-T2) (A0
eikx+iqy+iwz‘J(w, q1 k)
lg(X,y,2) = | dkdqdo — — = = =, All
S(Xyz)f A o=k a0(0-q- a9 0 To)@-T)(0—72) (ALD
where
1
J(w,q,k) = (A12)

(k= @c)(w = k=o1)(w = K= 0,)(q = we)(w =g~ 0)(w=q=p)

and7y 1 , are defined byw=7p)(0=71)(0=T,) = (0= 05~ @) (0= 20.)(w=®,~ @) — 2g%]. The triple integrals in the defini-

tions of I, ¢ g are carried out analytically. It can be confirmed that the nonlinear part of the two-photon prop&yater,
—G,(r1=r1)Gy(r=r) +2j-4.6,8 Gj(r1,r2,r1,r5), is nonzero only when the condition nmax,r,) <min(ry,r,) is satisfied, i.e.,
nonlinearity appears only after the two photons have arrived at the atom. The one- and two-photon propagators reduce to those
for the one-dimensional atom in the limit gf— 0 and(g, k) — =, keepingl'=4g?/ k constan{8].
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