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We have investigated two-photon nonlinearity in general cavity QED systems, which cover both weak- and
strong-coupling regimes and include the radiative loss from an atom. One- and two-photon propagators are
obtained in analytical forms. By surveying both coupling regimes, we have revealed the conditions on a
photonic pulse for yielding large nonlinear effects, depending on the cavityQ value. We also discuss the effects
of radiative loss on nonlinearity.
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I. INTRODUCTION

Significant nonlinear optical effects are usually obtained
when intense light fields are irradiated onto a material with
large nonlinear susceptibilities. By using an optical cavity, it
is possible to magnify the electric field inside a cavity, pro-
vided that the input field is resonant with the cavity mode
[1]. Thus, it is possible to enhance the nonlinear optical re-
sponse by placing the nonlinear material inside a cavity. This
idea was realized experimentally by using two-level atoms as
the nonlinear material[2,3], which demonstrated the possi-
bility of obtaining large nonlinearity even using weak input
fields. In particular, nonlinear effects appearing in the two-
photon state have recently attracted much attention due to
possible applications for quantum information devices[4]
and also due to recent progress in the photon-pair manipula-
tion technique[5,6].

In order to discuss theoretically the dynamics of the two-
photon state, a quantum-mechanical treatment of the photon
field is indispensable, because the nonlinearity appears in the
wave function of the photon, not in the amplitude[7]. Such
an analysis was pioneered in a case in which the nonlinear
material is a one-dimensional atom, obtained as the lossless
and weak-coupling limit of an atom-cavity system[8]. How-
ever, considering that magnification of photon fields occurs
more effectively in better(higher-Q-value) cavities, strong-
coupling cases also seem promising for yielding large non-
linearity [9]. The optimum cavity conditions for two-photon
nonlinearity have not been sufficiently discussed in the lit-
erature; thus, this type of nonlinearity should be investigated
using methods applicable to any coupling regime. In the
present study, we present analytical expressions for one- and
two-photon propagators in general atom-cavity systems, in
which both the weak- and strong-coupling regimes are cov-
ered and the loss from the cavity due to radiative decay into
noncavity modes is taken into account. Our discussion of
two-photon nonlinearity is based on the use of this propaga-
tor. Moreover, we clarify the optimum conditions on photo-
nic pulses for achieving large nonlinearity, depending on the
cavity conditions.

This study is presented as follows. In Sec. II, the theoret-
ical model of the atom-cavity system is introduced, and the
significance of the parameters is described. In Sec. III, we
define the input and output states of the photons. In Sec. IV,
the measure of the nonlinearity appearing in the output state
is defined. In Sec. V, we describe the form of the input wave
function and a scaling law for this atom-cavity system. In
Sec. VI, we numerically evaluate the nonlinearity for lossless
cases and clarify the optimum conditions for inducing large
nonlinearity. In Sec. VII, the effects of loss are discussed.
The analytic expressions for the one- and two-photon propa-
gators are shown in the Appendix.

II. SYSTEM

In this study, we investigate a single two-level system
(hereafter referred to as an “atom”) embedded in a one-sided
cavity [10] as a nonlinear optical system. The system is sche-
matically illustrated in Fig. 1. The atom is coupled not only
to the cavity mode but also to the noncavity modes. The
cavity mode is coupled through the right mirror of the cavity
to the external photon field, which is labeled one-
dimensionally byr. Although the external field actually ex-
tends only into ther .0 region and the incoming and outgo-
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FIG. 1. Schematic view of the atom-cavity system. The right
mirror of the cavity is weakly transmissive, through which the cav-
ity mode is coupled to the external photon field.g,g ,k represent the
atom-cavity coupling, the radiative decay rate of the atom into non-
cavity modes, and the decay rate of the cavity mode, respectively.
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ing photons are traveling in the opposite direction, we may
treat the incoming photons as if they were propagating in the
r ,0 region in the positive direction[11].

The Hamiltonian of the system is given, setting"=c=1,
by

H = vas+s− +E dmmdm
†dm +E dmsgms+dm + H.c.d + vcc

†c

+E dkkbk
†bk +E dkskkc

†bk + H.c.d + gss+c + c†s−d,

s1d

wheres−, c, bk, anddm are the annihilation operators for the
atomic excitation, cavity mode, external photon mode, and
noncavity mode, respectively.va and vc represent the fre-
quencies of the atomic transition and the cavity mode, andg
represents the atom-cavity coupling. Regardinggm and kk,
we use the flatband assumption, i.e.,gm=sg /2pd1/2 and kk

=sk /2pd1/2, by which the damping rates of the atom and the
cavity mode are given byg andk.

The complex frequencies of the atom and cavity are de-
fined by the following equations:

ṽa = va − ig/2, s2d

ṽc = vc − ik/2. s3d

Using these frequencies, the complex eigenfrequenciesṽ1,2
of the atom-cavity system are given by

sv − ṽ1dsv − ṽ2d = sv − ṽadsv − ṽcd − g2. s4d

It is of note thatg is related to the dissipation of this
atom-cavity system. Wheng=0, the input photons are al-
ways reflected back into the output port, i.e., the atom-cavity
system is lossless. In contrast, whengÞ0, some of the input
photons are lost as spontaneous emission into the noncavity
modes, i.e., the atom-cavity system is lossy. In the limit of
g→0 andsg,kd→`, keepingG=4g2/k constant, this atom-
cavity system is reduced to a one-dimensional atom, where
the atom is directly coupled to the external field atr =0 with
the coupling constantG [2,8].

The real-space operator of the external field,br, is given
by the Fourier transform ofbk:

br = s2pd−1/2E dkeikrbk. s5d

We note again that the negative(positive) r represents the
incoming (outgoing) field.

III. INPUT AND OUTPUT STATES

Our main concern in this study is to determine how the
initial one- or two-photon wave functions are transformed
after interacting with the atom-cavity system. In the initial
state, the atom and the cavity are in the ground states and one
or two photons exist in the input port, i.e.,

uCin
s1dl =E drcinsrdbr

†u0l, s6d

uCin
s2dl = 2−1/2E dr1dr2cinsr1,r2dbr1

† br2

† u0l. s7d

The one-photon wave functioncinsrd is normalized as
edrucinsrdu2=1, andcinsrd=0 in r .0. Similarly, cinsr1,r2d
satisfies edr1dr2ucinsr1,r2du2=1 and cinsr1,r2d=0 in
r1,r2.0, and has the following symmetry:cinsr2,r1d
=cinsr1,r2d.

After the photons have interacted with this atom-cavity
system, the excitations in the atom and the cavity mode com-
pletely escape to the external modessbkd or to the noncavity
modessdmd. Then the states of the system are written as
follows:

uCout
s1dl =E drcoutsrdbr

†u0l + ¯ , s8d

uCout
s2dl = 2−1/2E dr1dr2coutsr1,r2dbr1

† br2

† u0l + ¯ , s9d

where the ellipses imply the terms containing excitations in
the noncavity modes. Whereas the number of photons is con-
served in the output pulse [edrucoutsrdu2=1 and
edr1dr2ucoutsr1,r2du2=1] in the case ofg=0, the output state
is attenuated in general casessgÞ0d.

The input and output wave functions are related by the
propagatorG as follows:

coutsrd =E dr8Gsr ;r8dcinsr8d, s10d

coutsr1,r2d =E dr18dr28Gsr1,r2;r18,r28dcinsr18,r28d. s11d

The one- and two-photon propagators are analytically obtain-
able for this atom-cavity system(see the Appendix). The
two-photon propagator has the following symmetry:
Gsr2,r1; r28 ,r18d=Gsr1,r2; r18 ,r28d, which guarantees the sym-
metry in the output wave function,coutsr2,r1d=coutsr1,r2d.

IV. MEASURE OF NONLINEARITY

When two photons are input into this atom-cavity system,
the input wave functioncinsr1,r2d is finally transformed to
the output wave functioncoutsr1,r2d. In order to quantify the
nonlinear effect in this process, we comparecoutsr1,r2d with
the linear output wave functioncout

L sr1,r2d, which is defined
by

cout
L sr1,r2d =E dr18dr28Gsr1;r18dGsr2;r28dcinsr18,r28d, s12d

whereGsr ; r8d is the one-photon propagator. This linear out-
put is obtained when the atom in the cavity is replaced by a
harmonic oscillator with the same transition frequency, i.e.,
when the nonlinearity of the system is completely removed.

We here define the quantityb as follows:
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b =
E dr1dr2scout

L d*cout

ÎE dr1dr2ucoutu2ÎE dr1dr2ucout
L u2

, s13d

which gives theanglebetweencout andcout
L . b always lies in

the unit circlesub u ø1d due to Schwarz’s inequality, andb
=1 holds when the response of the system is completely
linear scout=cout

L d. Thus, the nonlinear effect is reflected in
the deviation ofb from unity, andub−1u may be regarded as
a measure of the nonlinear effect. In addition, when the
atom-cavity system is lossless, edr1dr2ucoutu2
=edr1dr2ucout

L u2=1 and b is simply reduced to the overlap
integral betweencout andcout

L .

V. INPUT WAVE FUNCTIONS AND SCALING LAW

Now we employ the above formalism for specific forms
of the input states and clarify the conditions required to ob-
tain a large degree of nonlinearity. In this study, we focus on
a case in which the two input photons have the same wave
function of Gaussian form, i.e.,

cinsr1,r2d = cinsr1 − adcinsr2 − ad, s14d

cinsrd = s2/pd2d1/4exps− r2/d2 + iqrd. s15d

The input wave function is characterized by two parameters,
q (the central frequency) and d (the coherent length of the
photon). as,0d in Eq. (14) represents the initial position of
the photons, which is an irrelevant parameter.

The atom-cavity system is characterized byg (the cou-
pling between the atom and the cavity mode), va−vc (the
frequency difference between the atom and the cavity mode),
g (the damping rate of the atom into the noncavity modes),
and k (the damping rate of the cavity mode). Adding the
input-photon parametersq andd, the whole system is speci-
fied by the set of parameterssg,va−vc,g ,k ,q,dd.

The number of parameters may be decreased with the
help of the following scaling law. Consider a scaling trans-
formation H→aH, where a is a positive constant. The
scaled Hamiltonian takes the form

aH = avas+s− +E dmmDm
†Dm +E dmsa1/2gms+Dm + H.c.d

+ avcc
†c +E dkkBk

†Bk +E dksa1/2kkc
†Bk + H.c.d

+ agss+c + c†s−d, s16d

whereBk=a−1/2bk/a and Dm=a−1/2dm/a satisfy the orthonor-
malized commutation relationsfBk,Bk8

† g=dsk−k8d, etc. As
for the photonic wave functions, noticing thatbr =a−1/2Br/a,
they are transformed ascsrd→a1/2csard. Comparing the
original and scaled quantities, it is concluded that a system
with parameters(ag,asva−vcd ,ag ,ak ,aq,d/a) is equiva-
lent to a system with parameterssg,va−vc,g ,k ,q,dd. Using
this law, the system is specified by the following set of di-

mensionless parameters:(sva−vcd /g,g /g,k /g,q/g,gd). In
the following numerical examples,va−vc is fixed at zero
andva s=vcd is chosen as the origin of frequency.

VI. NUMERICAL RESULTS FOR LOSSLESS CASES

In this section, we present the numerical results obtained
for the g=0 cases, in which the atom-cavity system is loss-
less and the number of photons is preserved in the output
pulse. The atom-cavity system is then characterized solely by
the ratiok /g, as was discussed in Sec. V. Equation(4) indi-
cates that Rabi splitting of the eigenfrequency of the atom-
cavity system takes place whenk /g,4. Thus, in our defini-
tion of the parameters, the strong-(weak-)coupling regime is
specified by the inequalityk /g&4 sk /g*4d.

A. Weak-coupling regime

First, we discuss the weak-coupling regime. In Fig. 2, the
nonlinearity ub−1u is plotted for cases of resonant inputsq
=0d as a function ofk /g and g2d/k. It has been confirmed
that, in the weak-coupling regime, nonlinearity appears most
strongly atq=0 and gets weaker asuqu is increased.

Figure 2 indicates that, roughly speaking,ub−1u is depen-
dent solely ong2d/k in the weak-coupling regime. This fact
can be explained as follows. In the weak-coupling regime,
the atom-cavity system may be regarded as a “one-
dimensional atom,” where the atom is coupled directly to a
one-dimensional photon field with a coupling constant of
4g2/k. The figure also clarifies that the nonlinearity is maxi-
mized wheng2d/k,0.5. For example, forg=120 MHz and
k=900 MHz [3], the optimum pulse lengthd is about 9 m.
The qualitative explanation for this optimum condition will
be given in Sec. VI C.

B. Strong-coupling regime

Next, we discuss the strong-coupling regime. In Fig. 3,
the nonlinearityub−1u is plotted for fixedk /gs=0.5d as a

FIG. 2. Dependence ofub−1u on g2d/k in the weak-coupling
regime [k /g=10 (solid line) and k /g=5 (dotted line)]. The fre-
quency of the photons is chosen atq=0. In the strong-coupling
regime, theq=0 photons are no longer resonant due to the Rabi
splitting and the nonlinearity becomes smaller(thin broken line,
wherek /g=2).
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function of kd and q/g. In contrast to the weak-coupling
regime, the nonlinearity is weak for resonant input(q=0).
This is because theq=0 photons are no longer resonant with
the cavity mode due to the Rabi splitting. Instead, a large
nonlinearity is obtained when the input photons are tuned to
the Rabi-split frequency,q, ±g. The maximum value of
ub−1u is approximately 1.5, which is almost the same as the
value obtained in the weak-coupling regime.The nonlinearity
is optimized forkd,4, the reasons for which will be dis-
cussed in Sec. VI C.

C. Optimum pulse for inducing large nonlinearity

In the preceding subsections, we clarified the optimum
frequencyq and the lengthd of the photon pulse required for
inducing large nonlinearity in both weak- and strong-
coupling regimes. Here, we account for these optimum con-
ditions from a unified perspective. To this end, we focus on
the wave functionwsrd, which is defined by

eiHts+u0l =E drwsrdbr
†u0l s17d

for a largets.0d. The significance ofwsrd becomes clear by
multiplying e−iHt from the left; if a single photon pulsewsrd
is prepared as an input at timet0, the photon will be com-
pletely absorbed by the atom at timet0+ t. Therefore, when
the input pulsecinsrd resembleswsrd in shape, the two input
photons try to occupy the atom simultaneously and strong
nonlinear effects are expected.

wsrd has the following form:

wsrd = 5 igk1/2

ṽ1
* − ṽ2

* seiṽ1
* sr+td − eiṽ2

* sr+tdd s− t , r , 0d,

0 sotherwised,

s18d

where ṽ1 and ṽ2 are the complex eigenfrequencies of the
atom-cavity system, as defined in Eq.(4). In the weak-
coupling regime,ṽ1 and ṽ2 are approximately given by

−ik /2 and −2ig2/k. Becauseg2/k@k in this regime, the
optimum frequencyq and pulse lengthd are given byq,0
and d,k /2g2, which accounts for the numerical results in
Sec. VI A. On the other hand, in the strong-coupling regime,
ṽ1 and ṽ2 are approximately given by −ik /4±g. Therefore,
the optimumq and d are roughly estimated atq, ±g and
d,4/k, which is in agreement with the numerical results
given in Sec. VI B.

VII. NUMERICAL RESULTS FOR LOSSY CASES

In the preceding section, the results obtained for the loss-
less casessg=0d are presented. Here, we discuss the lossy
casessgÞ0d, fixing the parametersk /g=5 (weak-coupling
regime) andq=0, which serve as an example.

The apparent result of the loss is attenuation of the photon
pulses. In Fig. 4, we have plotted the norm of the two-photon
output wave functioncoutsr1,r2d, i.e., the probability of find-
ing two photons in the output. The norm of the linear output
wave functioncout

L sr1,r2d is also plotted in the same figure.
As expected, the photon pulse is attenuated more signifi-
cantly when the loss parameterg is larger, for bothcout and
cout

L (compare the solid and broken lines). It is also observed
that cout

L is more attenuated thancout. This tendency can be
understood by the facts that, in the linear case, the photons
are more likely to be absorbed by the atom due to the ab-
sence of the saturation effect, and that the loss of photons
occurs only while the photons are occupying the atom, as
schematically shown in Fig. 1.

Figure 5 plots the nonlinear parameterub−1u defined in
Eq. (13), when the system is lossy, i.e.,gÞ0. It is observed
that ub−1u decreases slightly for theg2d/k&0.5 region and
increases slightly for theg2d/k*0.5 region; however, in
general, no qualitative changes are introduced by the loss.
Thus, although the probability of finding two photons in the
output decreases significantly as shown in Fig. 4, the nonlin-
ear characteristics of the output state are almost unchanged if
the output pulse contains two photons.

FIG. 3. Dependence ofub−1u on kd, wherek /g is fixed at 0.5
(strong-coupling regime). q/g=0.8 (broken line), q/g=0.9 (solid
line), q/g=1 (dotted line), andq/g=0 (thin broken line).

FIG. 4. Norms ofcoutsr1,r2d (bold lines) and cout
L sr1,r2d (thin

lines), for lossy cases ofg /g=0.1 (solid lines) and g /g=0.2 (bro-
ken lines). The atom-cavity system is in the weak-coupling regime
sk /g=5d and resonant photonssq=0d are used.
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VIII. SUMMARY

Here, we theoretically investigated a situation in which
two photons were simultaneously input into a nonlinear op-
tical system, and we examined the nonlinear effect in the
output wave function. As a model nonlinear optical system,
we employed a two-level system(atom) embedded in a cav-
ity, which is illustrated in Fig. 1. The one- and two-photon
propagators were obtained in the analytic forms that are pre-
sented in the Appendix. The angle between the linear and
nonlinear two-photon output wave functions, given by Eq.
(13), was used to measure the nonlinear effect. This quantity
was numerically evaluated in the weak-coupling regime(Fig.
2) and in the strong-coupling regime(Fig. 3), and the condi-
tions for inducing large nonlinearity were revealed. These
conditions were explained by the optimum pulse shape,
given by Eq.(18). The present findings suggest that pulse
shape control is more essential for optimizing the two-
photon nonlinearity thanQ-value control of the cavity sys-
tem. We also consideredgÞ0 cases, in which the atom-
cavity system is lossy. As shown in Fig. 4, the probability of
finding two photons in the output decreased greatly due to
the loss effect, but the nonlinearity in the output two-photon
wave function remained almost unchanged in comparison
with the lossless case.
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APPENDIX: PROPAGATORS

In this appendix, we present the analytic forms of the one-
and two-photon propagatorsGsr ; r8d andGsr1,r2; r18 ,r28d. Us-

ing the completeness relation in the one-photon space, 1ˆ

=edrbr
†u0lk0ubr, the one-photon propagator is given by

Gsr ;r8d = k0ubre
−iHtbr8

† u0l, sA1d

where r .0. r8, and t is the time difference between the
output and the input. This propagator is derivable by stan-
dard application of the Green function method[12].
Throughout this section, we employ a coordinate system
moving at light speed; transformation to a static coordinate
system is carried out by replacingr (coordinates without
primes) with r − t, or by replacing r8 (coordinates with
primes) with r8+ t. In this coordinate system, the one-photon
propagator is given as follows:

Gsr,r8d = Gsr − r8d = G0sr − r8d + G2sr − r8d, sA2d

G0sr − r8d = dsr − r8d − kusr8 − rdeiṽcsr−r8d, sA3d

G2sr − r8d = kusr8 − rdSeiṽcsr−r8d −
ṽ2 − ṽc

ṽ2 − ṽ1

eiṽ1sr−r8d

−
ṽ1 − ṽc

ṽ1 − ṽ2

eiṽ2sr−r8dD , sA4d

where ṽa (complex frequency of the atom), ṽc (complex
frequency of the cavity), andṽ1,2 (complex eigenfrequencies
of the atom-cavity system) are defined in Eqs.(2)–(4), re-
spectively.

Next, we proceed to the two-photon case. Using the com-

pleteness relation in the two-photon space, 1ˆ

=2−1edr1dr2br1

† br2

† u0lk0ubr1
br2

, the two-photon propagator is

identified as 2−1k0ubr1
br2

e−iHtbr18
† br28

† u0l. This quantity is com-

posed of two types of terms; in the first(second) type, the
photons initially located atr18 andr28 are scattered tor1 andr2
(r2 and r1), respectively. With the help ofcinsr18 ,r28d
=cinsr28 ,r18d, it can be shown that both types of terms yield
the same output wave functioncoutsr1,r2d after integration in
Eq. (11). We can therefore safely regard only the first type of
terms as constituting the two-photon propagator. The two-
photon propagator is thus given by

Gsr1,r2,r18,r28d = Gsr1 − r18dGsr2 − r28d − G2sr1 − r18dG2sr2 − r28d

+ o
j=4,6,8

Gjsr1,r2,r18,r28d, sA5d

whereGj s j =4,6,8d are defined by

FIG. 5. The effect of loss on the nonlinearityub−1u; g /g=0
(thin dotted line), g /g=0.1 (solid line), andg /g=0.2 (broken line).
The other parameters arek /g=5 andq=0.
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G4sr1,r2,r18,r28d =
− ig4k2

8p3 fI4sr1 − r2,r18 − r28,r2 − r18d + I4sr2 − r1,r28 − r18,r1 − r28dg, sA6d

G6sr1,r2,r18,r28d =
− ig6k2

8p3 fI6sr2 − r1,r18 − r28,r1 − r18d + I6sr1 − r2,r28 − r18,r2 − r28dg, sA7d

G8sr1,r2,r18,r28d =
− ig8k2

8p3 fI8sr1 − r2,r18 − r28,r2 − r18d + I8sr2 − r1,r28 − r18,r1 − r28dg, sA8d

I4sx,y,zd =E dkdqdv
eikx+iqy+ivzJsv,q,kd

sv − k − q + idd
, sA9d

I6sx,y,zd =E dkdqdv
eikx+iqy+ivzJsv,q,kdsv − ṽc − ṽ1dsv − ṽc − ṽ2d

sv − k − ṽcdsv − q − ṽcdsv − ñ0dsv − ñ1dsv − ñ2d
, sA10d

I8sx,y,zd =E dkdqdv
eikx+iqy+ivzJsv,q,kd

sv − k − ṽcdsv − q − ṽcdsv − ñ0dsv − ñ1dsv − ñ2d
, sA11d

where

Jsv,q,kd =
1

sk − ṽcdsv − k − ṽ1dsv − k − ṽ2dsq − ṽcdsv − q − ṽ1dsv − q − ṽ2d
sA12d

and ñ0,1,2 are defined bysv− ñ0dsv− ñ1dsv− ñ2d=sv−ṽa−ṽcdfsv−2ṽcdsv−ṽa−ṽcd−2g2g. The triple integrals in the defini-
tions of I4,6,8 are carried out analytically. It can be confirmed that the nonlinear part of the two-photon propagator,GNL =
−G2sr1−r18dG2sr2−r28d+o j=4,6,8 Gjsr1,r2,r18 ,r28d, is nonzero only when the condition maxsr1,r2d,minsr18 ,r28d is satisfied, i.e.,
nonlinearity appears only after the two photons have arrived at the atom. The one- and two-photon propagators reduce to those
for the one-dimensional atom in the limit ofg→0 andsg,kd→`, keepingG=4g2/k constant[8].
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