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We study the quasi-one-dimensional(Q1D) spin-polarized Bose-Fermi mixture of atomic gases at zero
temperature. Bosonic excitation spectra are calculated in the random phase approximation on the ground state
with uniform Bose-Einstein condensates(BEC’s) and the Peierls instabilities are shown to appear in bosonic
collective excitation modes with wave number 2kF by the coupling between the Bogoliubov-phonon mode of
bosonic atoms and the fermion particle-hole excitations. The ground-state properties are calculated in the
variational method, and, corresponding to the Peierls instability, the state with a periodic BEC and fermionic
density waves with the periodp /kF are shown to have a lower energy than the uniform one. We also briefly
discuss the Q1D system confined in a harmonic oscillator potential and derive the Peierls instability condition
for it.
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I. INTRODUCTION

The cooling and trapping techniques of atoms, used in the
realization of Bose-Einstein condensates(BEC’s) [1,2] and
degenerate Fermi gases[3], have recently produced quantum
Bose-Fermi mixtures of dilute atomic gases[4,5]. Motivated
by the controllability of various experimental parameters
such as trap geometries, particle numbers, and interaction
strengths in experiments of ultracold atoms, a number of
theoretical studies have been done to explain various experi-
mental results done for Bose-Fermi mixtures[6–18].

Further experimental advances have led to the realization
of BEC’s in quasi-one-dimensional(Q1D) system[5,19,20],
by putting atoms in cylindrical traps long enough that the
one-particle energy-level spacing in the radial direction ex-
ceeds the interatomic-interaction energy, and the atoms can
move effectively in the axial direction(see also Ref.[21]).
Characteristic properties of the Q1D BEC’s have been dem-
onstrated in the formation experiments of matter-wave soli-
tons in repulsively or attractively interacting systems[22,23].
Also several new phenomena, which are typical in the Q1D
Bose system, have been proposed theoretically: quasi con-
densates with fluctuating phases[24] and a Tonks-Girardeau
gas of impenetrable bosons[25] and so on.

In electric conductors, the Q1D systems have been real-
ized in systems where electric currents can flow easier in one
specific crystal direction than in the vertical directions[26].
One of the most fascinating phenomena in such a system is
the “Peierls instability”: a lattice distortion with a period of
2kF [27]. This instability gives rise to a charge-density wave
in the ground state, a collective state of electrons, which is
caused by the strong correlations among electrons due to the
phonon-electron interaction. The origin of the effect is the

divergence in phonon spectrum by the low-energy particle-
hole sp-hd excitations near Fermi surface with wave number
2kF, which give a large contribution in phonon self-energy
because of a phase-space reduction in Q1D systems.

In the present paper, we investigate the occurrence of the
Peierls instability in the Q1D uniform system of an atomic-
gas Bose-Fermi mixture atT=0. Different from conductors
that have the periodic structures by lattices, it has no periodic
structures originally, and the instability and periodic structure
in the ground state are brought purely by the coupling be-
tween the Bogoliubov-phonon mode of bosonic atoms and
fermion p-h excitations.

This paper is organized as follows. In Sec. II, we intro-
duce the model and derive the equations in the random phase
approximation using the Green’s function method to calcu-
late the bosonic excitation spectra. In Sec. III, the equations
obtained in Sec. II are applied for the system with a uniform
ground state and solved numerically. We show the calculated
bosonic excitation spectra and that the Peierls instability ap-
pears in collective excitation modes around the wave number
2kF. The analytical estimations are also given for the collec-
tive excitation spectra. In Sec. IV, we show that the state with
periodic BEC’s and density-wave states for both bosons and
fermions (with a period ofp /kF) is more stable than the
uniform state. In Sec. V, we briefly discuss the Peierls insta-
bility in the finite Q1D system confined in a harmonic oscil-
lator (HO) potential[28].

II. MODEL, GREEN’S FUNCTIONS,
AND MEAN-FIELD BASIS

We consider a system of spin-polarized atoms atT=0: Nb
bosons andNf fermions with massesmb,f each other, con-
fined in an axially symmetric HO potentialUb,f

= 1
2mb,fhvr

2sx2+y2d+va
2z2j where vr @va. When atoms are

confined tightly enough in ther direction that the radialsrd*Electronic address: tmiyakawa@arizona.optics.edu
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part of their wave functions can be approximated by that of
the lowest-energy state in the 2D HO potential1

2mb,fvr
2sx2

+y2d, then we call that the system is in the Q1D region. It
should be realized when the following holds.

(i) The r-HO quanta"vr should be higher than the boson-
boson and boson-fermion interaction energies:ebb

3D

=4p"2abbnb
3D /mb and ebf

3D=2p"2abfnf
3D /mr, where nb,f

3D are
the boson and fermion 3D number densities andabb,bf are the
boson-boson and boson-fermions-wave scattering lengths.
The mr in ebf

3D is a reduced mass:mr =mbmf / smb+mfd.
(ii ) The r-HO quanta should also be higher than the Fermi

energy obtained byeF
3D="2s6p2nf

3Dd2/3/2mf [17].
The atomic states for the axialsad degree of freedom are

described by thez-dependent field operators for bosons and

fermions,f̂szd and ĉszd; the effective Hamiltonian for them
is modeled by

H =E dzf̂†szdF−
"2

2mb

d2

dz2 + Ubszd − mbGf̂szd

+E dzĉ†szdF−
"2

2mf

d2

dz2 + Ufszd − m fGĉszd

+E dzf̂†szdFgbb

2
f̂†szdf̂szd + gbfĉ

†szdĉszdGf̂szd,

s1d

where themb,f are the 1D chemical potentials for bosons and
fermions. The effective 1D coupling constantsgbb (boson
and boson) andgbf (boson and fermion) in Eq. (1) are related
to the s-wave scattering lengths:gbb=2"vrabb, gbf
=2"vrabf, which can be obtained from the 3D interaction by
integrating out the radial parts of the wave functions[17,29].
It should be noted that, in the limitva→0, we obtain a
uniform system in the axial dimension.

In weak interacting systems, the mean-field approxima-
tion should give a good starting point for further calcula-
tions, where bosons are assumed to occupy the lowest single-
particle statew0szd at T=0 and the expectation value of the
boson field operator(order parameter for BEC), Fszd
=kf̂szdl=ÎNbw0szd, satisfies 1D Gross-Pitaevskii equation

F−
"2

2mb

d2

dz2 + Ubszd + gbbnb + gbfnfGF = mbF, s2d

where the(axial) 1D boson densitynb is defined bynbszd
= uFszdu2.

For fermions, the ground state is obtained by a Slater
determinant of fermion single-particle wave functionsc jszd
for the mean-field energiese j

f below the 1D Fermi energy
eF=m f, which are obtained from the Hartree equation

F−
"2

2mf

d2

dz2 + Ufszd + gbfnbszdGc jszd = e j
fc jszd. s3d

In this state, the fermion density is obtained bynfszd
=oe j

føeF
uc ju2.

We are interested in the bosonic excitation modes of the
system, which can be obtained by the bosonic Green’s func-
tions

iGsx1,x2d = S kTfŵsx1dŵ†sx2dgl kTfŵsx1dŵsx2dgl
kTfŵ†sx1dŵ†sx2dgl kTfŵ†sx1dŵsx2dgl

D , s4d

where x=sz,td and ŵsxd=f̂sz,td−Fszd. They satisfy the
Dyson equation

Fi"
]

]t
t3 − Kb

0sz1d1G ·Gsx1,x2d

= "dsx1 − x2d1 +E d2x3"Ssx1,x3d ·Gsx3,x2d, s5d

where Kb
0szd=−s"2/2mbdd2/dz2+Ubszd−mb is a single-

particle operator and the matricest3 and 1 are defined by

t3 = S1 0

0 − 1
D, 1 =S1 0

0 1
D . s6d

The boson self-energy in Eq.(5) is in the 232 matrix
form and separated into static and dynamical parts:
Ssx1,x2d=S0sx1,x2d+Psx1,x2d. In the mean-field approxi-
mation, the static part is given by

"S0 = gbb12nb +
gbf

gbb
nf FF

F*F* 2nb +
gbf

gbb
nf
2dsx1 − x2d. s7d

In the dynamical part, we take the contributions from the
fermion particle-holesp-hd pair excitations(Fig. 1):

"Psx1,x2d = −
i

"
gbf

2 S Fsz1dF*sz2d Fsz1dFsz2d
F*sz1dF*sz2d F*sz1dFsz2d

D
3 Gfsx1,x2dGfsx2,x1d, s8d

which is just a polarization potential for pair excitations. It
should be noted that this approximation is equivalent to the
random phase approximation and gives the strong correlation
effects, especially in the bosonic collective modes
(Bogoliubov-phonon mode).

For the fermion Green’s function in Eq.(8), we use that
for the unperturbed fermion single-particle state obtained
from Eq. (3):

iGfsx1,x2d = o
j

c jsz1dc jsz2d*e−ie j
fst1−t2dfust1 − t2duse j

f − eFd

− ust2 − t1duseF − e j
fdg. s9d

FIG. 1. Polarization potential induced by fermion particle-hole
excitation. Dashed line: boson(noncondensate). Solid line: fermion.
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To advance the calculation, we expand the boson field
operatorsŵ andŵ† by boson creation and annihilation opera-

tors b̂l and b̂l
† for the quasiparticle states:

ŵszd = o
l

hulszdb̂l − vl
* szdb̂l

†j,

ŵ†szd = o
l

hul
* szdb̂l

† − vlszdb̂lj,

where the quasiparticle wave functionsulsz1d andvlsz1d for
the eigenenergies"Vl can be determined from the
Bogoliubov-type eigenequations

Lulsz1d +E dz2hnbgbbdsz1 − z2d

+ "Psz1,z2;Vldjhulsz2d − vlsz2dj = "Vlulsz1d,

s10d

Lvlsz1d +E dz2hnbgbbdsz1 − z2d

+ "Psz1,z2;Vldjhvlsz2d − ulsz2dj = − "Vlvlsz1d,

s11d

whereL=Kb
0+gbbnb+gbfnf. The"P denotes the energy rep-

resentation of the polarization potential in Eq.(8):

"Psz1,z2;Vld = gbf
2 o

p,h
Fsz1dFsz2d

3 Fch
*sz1dcpsz1dcp

* sz2dchsz2d
"Vl − ep

f + eh
f

−
cp

* sz1dchsz1dch
*sz2dcpsz2d

"Vl − eh
f + ep

f G , s12d

where the indexp shd represents a state with energy above
(below) the Fermi energy. Since we consider the stationary
condensates, the order parameterF is assumed to be real
[30].

We should note that the number of eigenvaluesVl ob-
tained from Eqs.(10) and(11) may exceed the dimension of
the bosonic quasiparticle space because these equations are
not linear for the eigenvalueVl (the "P depends on the
eigenvalue). In this case, the eigenfunctions for different ei-
genvalues do not satisfy the orthogonality relations, but they
are proved still to be a complete set.

For normalizations of the quasiparticle wave functions,
we take

E dz1fuulsz1du2 − uvlsz1du2g −E dz1dz2hul
* sz1d − vl

* sz1dj

3UdPsz1,z2;Vd
dV

U
Vl

hulsz2d − vlsz2dj = 1. s13d

III. PEIERLS INSTABILITY
OF THE HOMOGENEOUS STATE

A. Dispersion equation for excitation energies

Let us consider the case ofva=0 and discuss the stability
of the 1D homogeneous states in uniform mixtures, where
the boson and fermion(1D) densitiesnb,f and the order pa-
rameterF take constant values:

F =ÎNb

L
, nb,f =

Nb,f

L
, s14d

whereL is a quantization length for the box-potential regu-
larization. In this case, the fermion single wave functions
become plane waves,ck=eikz/ÎL, with wave numberk
=pn/L sn=integerd and mean-field single-particle energy
ek

f ="2k2/2mf +gbbnb. The Fermi wave number and energy,kF
andeF, becomeskF=pnf andeF="2p2nf

2/ s2mfd+gbbnb.
The boson quasiparticle wave functionsul and vl also

become plane waves:ul,kszd=ul,ke
ikz and vl,kszd=vl,ke

ikz.
Substituting them into Eqs.(10) and (11), we obtain

sek
b − mbdul,k + hgbbnb + "PksVldjhul,k − vl,kj = "Vlul,k,

s15d

sek
b − mbdvl,k + hgbbnb + "PksVldjhvl,k − ul,kj = − "Vlvl,k,

s16d

whereek
b="2k2/2mb+gbbnb+gbfnf, and the polarization po-

tential "PksVld for plane waves is given by

"PksVld = gbf
2 nbE

−kF

kF dq

2p
F 1

"Vl − eq+k
f + eq

f + ih

−
1

"Vl − eq
f + eq+k

f + ih
G . s17d

Using the equality of the bosonic chemical potential and the
interaction energy in the mean-field approximation,mb
=gbbnb+gbfnf, we obtain the dispersion equation forVl:

s"Vld2 = sek
bd2 + 2ek

bhgbbnb + "PksVldj, s18d

whereek
b="2k2/2mb.

Introducing the complex energyVl=vl− igl, we separate
the polarization potential into the real and imaginary parts

"Pksvl,gld = "Pk
Resvl,gld + i"Pk

Imsvl,gld. s19d

After execution of theq integration in Eq.(17), they become
[31]

"Pk
Resvl,gld = −

Ak

2 3ln
Hsk + 2kFd −

2mfvl

"k
J2

+ S2mfgl

"k
D2

Hsk − 2kFd +
2mfvl

"k J2

+ S 2mfgl

"k D2

+ ln
Hsk + 2kFd +

2mfvl

"k
J2

+ S2mfgl

"k
D2

Hsk − 2kFd −
2mfvl

"k
J2

+ S2mfgl

"k
D24 ,
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"Pk
Imsvl,gld = − Ak3puS2kF − Uk −

2mfvl

"k
UD

− puS2kF − Uk +
2mfvl

"k
UD

+ arctan1 2S2mf

"k
D2

vlgl

sk + 2kFd2 + S2mf

"k
D2

sgl
2 − vl

2d2
− arctan1 2S2mf

"k
D2

vlgl

sk − 2kFd2 + S2mf

"k
D2

sgl
2 − vl

2d24 ,

s20d

where Ak=sgbf
2 nb/2pdmf /"2k, and the principal values

should be taken for the arctangent function: −p /2
øarctanxøp /2. Using these results, Eq.(18) can be sepa-
rated into the coupled equations

"2svl
2 − gl

2d = sek
bd2 + 2ek

bhgbbnb + "Pk
Rej, s21d

"2vlgl = ek
b"Pk

Im. s22d

Now, in order to analyze the dispersion equations(21) and
(22) qualitatively, we discriminate two cases. First, when
"Pk

ImsvldÞ0 andvl , k.0, Eqs.(21) and (22) have solu-
tions with complex energiessgl.0d, which correspond to
the continuump-h excitations in the continuum.

Second, in the region where anyp-h pair excitations are
prohibitedsgl=0d, the polarization potential becomes real:

"Pk
Resvld = − AklnU sk + 2kFd2 − s2mfvl/"kd2

sk − 2kFd2 − s2mfvl/"kd2U . s23d

In this case, introducing the dimensionless variablesṽl

=2vl / svFkFd and k̃=k/kF (vF="kF /mf: the Fermi velocity),
the dispersion relation, Eq.(21), becomes

ṽl
2 =

mf
2

mb
2k̃4 + 2k̃2vB

2

vF
2H2 −

z

k̃
lnU k̃2sk̃ + 2d2 − ṽl

2

k̃2sk̃ − 2d2 − ṽl
2
UJ ,

s24d

where vB=Îgbbnb/mb and z is the dimensionless boson-
fermion coupling constant defined by

z =
gbf

2

pgbb"vF
. s25d

The solutions of Eq.(24) correspond to the bosonic excita-
tion energies, which we are interested in, andvB is just the
Bogoliubov-phonon sound velocity. It should be noted that
the scaled equation(24) depends on three dimensionless pa-
rametersmf /mb, vB/vF, andz.

B. Excitation spectra and Peierls instabilities

Let us study the bosonic excitation spectra on the homo-
geneous ground state(14) with solving the dispersion rela-
tions (21) and(22). To understand general features, we show
numerical results for two typical cases 2(a) vB,vF and 2(b)
vB.vF in Fig. 2: 2(a) svB/vFd2=0.67, z=0.99 and 2(b)
svB/vFd2=1.50, z=0.80. The same values have been taken
for boson and fermion masses,mb=mf, for all cases. The
shaded areas in Fig. 2 correspond to the continuum spectra
corresponding to the fermionicp-h excitation states, and the
solid lines are to the isolated modes, corresponding to the
collective excitations. It should be noted that two collective
modes(low and high lying) exist with the same wave num-
ber k (except narrow regions around 2kF); they can be inter-
preted to be a coherent superposition of the Bogoliubov-
phonon mode from bosonic atoms and the fermionp-h
collective mode. For comparison, the Bogoliubov-phonon
spectra in boson-fermion noninteracting systemssgbf=0d
have been plotted in Fig. 2, and we can find that it runs
between two collective spectra in the interacting ones.

Let us discuss the specific features of the collective
modes, especially in smallk andk,2kF regions.

FIG. 2. Excitation spectrum(in units of "vFkF) of Bose-Fermi
mixtures. Solid lines: collective modes ofp-h pairs and bosonic
modes. Dashed line: free boson. Shaded area: continuump-h pair
excitation spectra.
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In the small-wave-number regionk,kFu1−svB/vFd2u, the
Bogoliubov-phonon modes(dashed line) in the boson-
fermion noninteracting limit are located below the fermion
p-h excitation modes in energy and absorbed into the fer-
mion p-h continuum whenvB,vF [case 2(a)]. In the case
that vB.vF [case 2(b)], the corresponding modes are above
the continuum. It suggests that the low-lying collective mode
in 2(a) is mainly a Bogoliubov-phonon mode from bosonic
atoms but the corresponding mode in 2(b) is mainly the fer-
mion p-h one, and the high-lying modes have opposite char-
acters. In Fig. 2, the bosonic excitation modes are found to
be influenced by the interaction with the fermionp-h excita-
tion modes and pushed downward or upward in the case 2(a)
or 2(b).

Around k.2kF, the low-lying collective modes become
very soft and, between two critical wave numbers
k−,k,k+, they are found to be zero modes in both cases. To
calculate the energy of these modes analytically, we expand
Eq. (22) to the leading order ofuqu /kF sq=k−2kFd:

"2vlgl = A2kF
ekF

b Fpusvl − vFuqud

− arctanS 2vlgl

vF
2q2 − vl

2 + gl
2DG . s26d

Whenvl,vFuqu, the above equation reduces tovlgl=0. In
the case ofvl=gl=0, two critical wave numbers are ob-
tained from Eq.(21):

k±

kF
= 2 ± 4 expF−

2

z
H1 +SmfvF

mbvB
D2JG , s27d

which givessk−=1.97kF , k+=2.02kFd for 2(a) in Fig. 2 and
sk−=1.92kF , k+=2.05kFd for 2(b) in the same figure.

Analyzing the eigenvalues of Eq.(21) in more detail, we
find that they become purely imaginarysvl=0, glÞ0d) in
the region between the two critical wave numbers,
k−,k,k+; it is just the “Peierls instability” in the Q1D sys-
tem, which suggests that the homogeneous state is unstable
against fluctuations with a wave number around 2kF.

Finally, we should comment on a different kind of insta-
bility that may occur in the small wave number fluctuation
[17]. When we take thek→0 limit with keeping vl /k
=const, the real part of the polarization potential becomes

"Pk
Resvld =

sgbfd2nb

p"vF

svFkd2

vl
2 − svFkd2 s28d

and the imaginary partPk
Im vanishes except atvB=vF. Sub-

stituting Eq.(28) into Eq. (21), we obtain two branches of
excitations:

"v± = "kFvF
2 + vB

2

2
±

1

2
ÎsvF

2 − vB
2d2 + 4zvF

2vB
2G1/2

. s29d

In the strong boson-fermion interacting casesz.1d, the en-
ergy of the low-lying mode becomes purely imaginary, and it
suggests an instability of the system. We find the stability
condition for thek.0 mode:

p2"2

mf
nf ù

sgbfd2

gbb
, s30d

where we have used the relationnf =kF /p. This k.0 insta-
bility is considered to cause the phase-separated states to
become more stable. In the present paper, we do not discuss
this instability and concentrate only on the density-wave
states caused by the Peierls instability, which is discussed in
the next section. It should be a very interesting problem to
study the cooperation and competition between these states
(for 2D Bose-Fermi mixtures in an optical lattice, see[18]).

IV. DENSITY WAVES IN THE BOSON-FERMION
GROUND STATE

The results obtained in the previous section show that the
homogeneous state is not the true ground state of the system
and a lower energy can be obtained for the state with a spa-
tially periodic condensate characterized by the 2kF-periodic
order parameter Fszd=bu+bp coss2kFzd. The constant
bosonic density is given bynb=bu

2+bp
2/2. In the case of a

weakly periodic variationbp!bu, up to second order inbp,
the mean-field Hamiltonian for the Bose-Fermi system be-
comes

Ĥ

L
=

gbb

2
sbu

4 + bu
2bp

2d + ep
bbp

2 + o
k

ek
f ĉk

†ĉk

+ gbfbubpo
k

sĉk−2kF

† ĉk + ĉk+2kF

† ĉkd, s31d

where ĉk and ĉk
† are the annihilation and creation operators

for fermions with wave numberk and energyek
f ="2k2/2mf

+gbfsbu
2+bp

2/2d. The ep
b in Eq. (31) is the energy generated

from the periodic condensate:ep
b=e2kF

b /2+gbbbu
2. The last

term in Eq.(31) is for the processes that the fermion with a
wave numberk feeling periodic- and uniform-bosonic con-
densates scatters into states withk±2kF.

In order to obtain a single-particle energy, we calculate
the fermion Green’s function

iFk,k8st − t8d ; kTfĉkstdĉk8
† st8dgl =E dv

2p
e−ivst−t8dFk,k8svd,

s32d

where ĉkstd=eiĤt/"ĉke
−iĤt/". For a fixed wave numberk, the

Green’s functionFk,k8svd has nonvanishing off-diagonal ma-
trix elements atFk,k±2kF

in the Hamiltonian(31). In the limit
k→ +kF, fermion states with wave numbersk andk−2kF are
almost degenerate in energy, but that withk+2kF is sepa-
rated. Consequently, in the case ofkFùk.0, the Dyson
equation for the Green’s function can be approximated by

S"v − ek
f − D

− D "v − ek−2kF

f DS Fk,k

Fk,k−2kF

D = S"

0
D , s33d

whereFk,k is a diagonal part of the Green’s function andD
=gbfbubp. They can be solved easily:
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Fk,k =
Uk

2

v − Ek
−/" − ih

+
Vk

2

v − Ek
+/" + ih

, s34d

Fk,k−2kF
=

− UkVk

v − Ek
−/" − ih

+
UkVk

v − Ek
+/" + ih

, s35d

where

Uk =Î1

2H1 −
jk

Îjk
2 + D2J1/2

, s36d

Vk =Î1

2H1 +
jk

Îjk
2 + D2J1/2

, s37d

with jk="vFsk−kFd. The single-particle energy with wave
numberk is obtained from the pole ofFk,ksvd:

Ek
± = ek

f − jk ± Îjk
2 + D2, s38d

from which we can understand that the 2uDu is the energy
gap at the Fermi surface. It is clear that the periodic conden-
sate has produced an energy gap 2uDu near the Fermi surface.

To evaluate the value ofD, we calculate the total energy
of the system in the present approximation. The fermionic
contributions to the energy are obtained by summing up the
Ek

− in Eq. (38) up to the Fermi wave numberkF:

Ef =E dkEk
−uskF − ukud

= SeF

3
+ gbfnbDnf + nfFeF − ÎeF

2 + D2

−
D2

eF
lnSeF + ÎeF

2 + D2

uDu
DG , s39d

where eF="vFkF /2. For simplicity, we consider the weak-
coupling limit uD u !eF; then, the total energy density of the
system becomes

EtotsuDud − Etots0d =
nfD

2

4eF
F2

z
H1 +SmfvF

mbvB
D2J

−
1

2H1 + 2 ln
4eF

uDu JG . s40d

Minimizing Eq. (40) with respect touDu, we obtain the sta-
tionary value of the gap parameter:

uDu
eF

= 4 expF−
2

z
H1 +SmfvF

mbvB
D2JG . s41d

Using the above result, the energy difference between the
ground and uniformsD=0d states is

EtotsuDud − Etots0d = −
D2

4p"vF
, s42d

which shows that the state with the “periodic condensate”
sbpÞ0d has lower energy than the uniform one.

Next, we discuss the fermionic density, which is obtained
from the Green’s function:

nfszd = lim
h→0+

o
k
E dv

2pi
eihvfFk,k + Fk,k−2kF

ei2kFz

+ Fk−2kF,ke
−i2kFz + Fk−2kF,k−2kF

g. s43d

Using Eqs.(34)–(37), it becomes

nfszd = o
k

fUk
2 + Vk

2 − 2UkVk coss2kFzdg

= nfF1 −
D

eFz
coss2kFzdG , s44d

which shows that, for finiteD, the fermion state is in the
density-wave one where the fermionic density has a period-
icity 2kF. Corresponding to Eq.(44), the direct calculation
shows that the bosonic densitynbszd has a similar density-
wave structure:

nbszd = nbF1 +
uDu

ugbfunb
coss2kFzdG . s45d

It should be noted that, different fromnfszd, the periodic part
in nbszd is proportional to the absolute value of the gap pa-
rameteruDu. That means that the boson and fermion density
waves are out of phase for the boson-fermion repulsive sys-
tem, but in phase for the attractive one.

As seen in Eq.(41), the gap energyD essentially depends
on two combinations of parameters:mfvF /mbvB and the
dimensionless coupling constantz. In Fig. 3, we just plotted
the gap energy as a function ofmfvF /mbvB for z=0.99, from
which we can read off that the boson-fermion density-wave
state can be observed by increasing the 1D density of con-
densate and/or using heavier bosons than fermions.

V. PEIERLS INSTABILITY OF THE SYSTEM
IN THE HARMONIC OSCILLATOR POTENTIAL

In this section, we briefly discuss the nonuniform boson-
fermion mixtures confined in a HO potential with finite axial

FIG. 3. Gap energy as function ofmfvF /mbvB (in units ofeF) for
z=0.99.
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dimensionsvaÞ0d and the condition for its Peierls instabil-
ity.

Using the eigenenergyen
ho="vasn+ 1

2
d sn=0,1,2, . . .d and

the wave functionfn
ho for the 1D HO potential, the quasipar-

ticle amplitudesul andvl are expanded by

ulszd = o
n

un
lfn

hoszd, vlszd = o
n

vn
lfn

hoszd. s46d

Substituting them into Eqs.(10) and(11), we can obtain the
eigenequations for the excitation energies"vl:

o
n

fsen
ho − "vlddm,nun

l + "Pmnsvldsun
l − vn

ldg = 0, s47d

o
n

fs«n
ho + "vlddm,nvn

l + "Pmnsvldsvn
l − un

ldg = 0, s48d

where, to concentrate on the role of the polarization potential
effects in finite systems, we have neglected the Hartree po-
tential. The polarization potential"Pmn in Eqs. (47) and
(48), is given by

"Pmnsvld = sgbfd2Nbo
ph
F kmhup0lk0puhnl

"vl − ep
ho + eh

ho

−
kmpuh0lk0hupnl
"vl − eh

ho + ep
ho G . s49d

The matrix elements in Eq.(49) are defined by

kmhup0l =E dzfm
hofh

hofp
how0, s50d

where the single-particle wave functions in Eq.(50) have
been replaced by the HO eigenfunctionsfn

ho. It should be
noted that the matrix element, Eq.(50), has a transition prob-
ability only in the spatial region where the condensate exists.
It is important at this point to contrast the finite system to the
homogeneous system in which the condensate is present all
over the range.

We restrict the present discussion to the parameter region
"vr .m f .mb."va. Under these conditions, we can take
several approximations. Becausemb."va, the system is in
the Thomas-Fermi(TF) regime, so that we can take the TF
approximation for the order parameter:

F = ÎNbw0 ~Î1 −
z2

zTF
2 uszTF − uzud. s51d

The zTF in Eq. (51) is a cutoff length in the TF approxima-
tion:

zTF = Î2ahoS3Nbb

4Î2
D1/3

, s52d

whereb=mgbbaho/"2 with aho=Î" /mva (the HO length in
the axial direction).

As we have seen in Sec. III, the Peierls instability comes
from the coupling between the boson mode with wave num-
ber near 2kF and the fermionp-h excitations nearkF. Al-
though the wave number is not strictly conserved in a HO
potential, the instability mode would have “wave number”

kn=Î2n/aho,2kF. Since the higher nodal modesn,Nf

have a broader spatial extensionsLn=Î2nahod than a conden-
sate one, the asymptotic expansions can be used for thefn

ho

in the middle of the trapuzu ,zTF,Ln [32]:

fn
hoszd ~ cosSknz−

np

2
D . s53d

For a bosonic eigenstate with higher nodal mode, the nega-
tive energy amplitudevn

l=0 of Eq. (47) can be neglected.
Using these approximations, the matrix elements like

k0puhnl become linear combinations of the form
J1szTFKd /zTFK, whereJ1sxd is the first-order Bessel function
and theK is a wave-number difference between the initial
and finial states:K=kn+kh−kp. In the case ofuxu@1, using
the asymptotic expansion of the Bessel function,J1sxd /x
,uxu−3/2, the terms ofuxuøOs1d can contribute to the matrix
elements. Under the restriction of wave numberskhøkF and
kp.kF with kn,2kF skF=Î2Nf /ahod, the main contributions
of the matrix element are from the scattering processeskn
→kp+kh andkn+kh→kp. To make an estimate, we replace a
product of Bessel functions as

J1sx1d
x1

J1sx2d
x2

.
1

4
us1 − ux1udus1 − ux1 − x2ud s54d

and take the continuum-limit for the wave-number sums:
op,h→edpedh.

Finally, the eigenenergy for a collective state with wave
numberkn=2kF can be obtained:

"vl = 4eF −
gbf

2 nbs0d
2p"vF

lnu4kFzTFu. s55d

Contrary to the uniform system, the static polarization
potential, the second term of the right-hand side of Eq.(55)
is not divergent at 2kF. This is because the scattering of
trapped atoms without wave-number conservation smears a
singularity due to a sharp Fermi sea. The Peierls instability
occurs where the polarization energy is overcome by the ki-
netic energy 4eF:

1 ,
z

4

vBs0d2

vF
2 lnu4kFzTFu, s56d

where vBs0d=Îgbbnbs0d /m. This is the Peierls instability
condition where a boson-fermion density wave may occur.

We roughly estimate the parameters according to experi-
mental conditions. Whenmb/mF,1, we can express the ve-
locity ratio and the dimensionless coupling constant by

vB
2

vF
2 =

1

4Nf
S3Nb

vr

va

abb

aho
D2/3

, s57d

z =Î 2

p2Nf

vr

va

abf
2

abbaho
. s58d

As a possible candidate for the Peierls instability, we take the
rubidium isotope system:87Rb-84Rb mixtures. Taking the
scattering lengths in[33], abb=5.3 nm andabf=29.1 nm, and
the typical trapping frequenciesva=2p310 Hz and vr

PEIERLS INSTABILITY, PERIODIC BOSE-EINSTEIN… PHYSICAL REVIEW A 70, 013612(2004)

013612-7



=2p315 kHz, Eq.(56) gives Nf =103 and Nb=23104 for
realization of the Peierls instability.

VI. SUMMARY

In the present paper, we studied the occurrence of a
Peierls instability in Q1D Bose-Fermi mixtures at zero tem-
perature. We analyzed the bosonic collective-excitation spec-
tra in the random phase approximation. It shows that the
mixtures of a uniform BEC and a Fermi gas are unstable
against spontaneous formation of a collective mode of wave
number 2kF; this type of instability is known as the Peierls
instability. This result suggests that the ground state of
bosons is a periodic condensate with periodp /kF. In the

variational method, the boson-fermion density wave state has
been shown to have a lower energy than the uniform state.
We also expanded our analysis for systems in an axial har-
monic oscillator potential and derived the Peierls instability
condition.

It is well known that density waves in Q1D conductors
lead to generations of Lee-Rice-Anderson[34] and phase
soliton[26] modes. Thus, studies of the dynamical properties
of boson-fermion density waves should be interesting prob-
lems in the future.
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