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Peierls instability, periodic Bose-Einstein condensates, and density waves
in quasi-one-dimensional boson-fermion mixtures of atomic gases
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We study the quasi-one-dimension@1D) spin-polarized Bose-Fermi mixture of atomic gases at zero
temperature. Bosonic excitation spectra are calculated in the random phase approximation on the ground state
with uniform Bose-Einstein condensat@®EC’s) and the Peierls instabilities are shown to appear in bosonic
collective excitation modes with wave numbedg2Dy the coupling between the Bogoliubov-phonon mode of
bosonic atoms and the fermion particle-hole excitations. The ground-state properties are calculated in the
variational method, and, corresponding to the Peierls instability, the state with a periodic BEC and fermionic
density waves with the perio@/ke are shown to have a lower energy than the uniform one. We also briefly
discuss the Q1D system confined in a harmonic oscillator potential and derive the Peierls instability condition
for it.
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[. INTRODUCTION divergence in phonon spectrum by the low-energy particle-
hole (p-h) excitations near Fermi surface with wave number
Ekp, which give a large contribution in phonon self-energy
because of a phase-space reduction in Q1D systems.

The cooling and trapping techniques of atoms, used in th
realization of Bose-Einstein condensat&EC’s) [1,2] and
degenerate Fermi gasgd, have recently produced quantum

Bose-Fermi mixtures of dilute atomic gaqds5]. Motivated Pe:g;g?ﬂg;g;ﬁ;:t ?r?[t)ﬁé’ ngftl)nﬁﬁ‘g?:]ti tgfeacg?r;ﬁngg r(r)1fictf]e
by the controllability of various experimental parameters y y

sueh as ap geomeries, parice rumbers, and meracicfs PCS e DL S50, Dl o7 conueor
strengths in experiments of ultracold atoms, a number o* P y ’ P

theoretical studies have been done to explain various eXperf_tructures originally, and the instability and periodic structure

mental results done for Bose-Fermi mixtufés-1§. in the graund state are brought purely by the_coupling be-
Further experimental advances have led to the realizatio yveen the Bogoliubov-phonon mode of bosonic atoms and

o : ; ; ermion p-h excitations.
of BEC's in quasi-one-dimension&D1D) system[5,19,2Q, ; ; ! :
by putting atoms in cylindrical traps long enough that the This paper is organized as follows. In Sec. Il, we intro-

one-particle energy-level spacing in the radial direction oy duce the model and derive the equations in the random phase

ceeds the interatomic-interaction energy, and the atoms C&}agggrt%)grgztslgrr]]igscelzgit;htieosgezr(]:tsr;uPnCtIS(:anc Tﬁﬂ;ﬁg éo lf;tlig%-s
move effectively in the axial directiofsee also Ref[21]). P : o q

Characteristic properties of the Q1D BEC's have been Olemc_>btained in Sec. Il are applied fpr the system with a uniform
onstrated in the formation experiments of matter-wave soli-ground state and solved numerically. We show the calculated

ons i epulively oratraciuey nteracing systfs 23, DOSOTC eXlaon spectiaand hal he Peiers nsiabily o
Also several new phenomena, which are typical in the QlDO

Bose system, have been proposed theoretically: quasi cor%l(':' The analytical estimations are also given for the collec-

Gensates withfuctuatig phass] and a Tonks-Grade e coct ol SECLS. I Sec. 1V e show it e tatewiy
gas of impenetrable bosofig5] and so on. P Y

In electric conductors, the Q1D systems have been reaf_er_rfnlons g[Wt'th Ia gerlosl/ ofq-rék_F)ﬂlsdr_nore S;ﬁbli t_ha? Fhet
ized in systems where electric currents can flow easier in on%.rll.I orm f]af?'. n Sec. v, we brie 3; 'SdCl.JSS he eleris ms_la-
specific crystal direction than in the vertical directid2$). llity in the finite .QlD system confined in a harmonic oscil-
One of the most fascinating phenomena in such a system |gtor(HO) potential[28].
the “Peierls instability”: a lattice distortion with a period of
2k [27]. This instability gives rise to a charge-density wave Il. MODEL, GREEN'S FUNCTIONS,
in the ground state, a collective state of electrons, which is AND MEAN-FIELD BASIS
caused by the strpng cor'relatlons among electrons dug to the \we consider a system of spin-polarized atom¥=a0: N,
phonon-electron interaction. The origin of the effect is theyggons and\; fermions with masses,; each other, con-

fined in an axially symmetric HO potentialUy, ¢
=3my 0P (C+y?) +w2Z%} where w, > w,. When atoms are
*Electronic address: tmiyakawa@arizona.optics.edu confined tightly enough in the direction that the radia(r)
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part of their wave functions can be approximated by that of AN
the lowest-energy state in the 2D HO potent%:ahb,fwf(x2 o~
+y?), then we call that the system is in the Q1D region. It ----O--- - ©
should be realized when the following holds.

(i) Ther-HO quantaiw, should be higher than the boson- direct crossed

boson and boson- fermlon interaction energleisbb
=4mh2a,ny I m, and ey = 2mh2a,mio/my,, where n; are
the boson and fermion 3D number densities agyg: are the

boson- boson and boson-fermi@rwave scattering lengths. Wi int ted in the b . itati d fth
Them in &2 is a reduced massn, =mmy/ (my-+m,). e are interested in the bosonic excitation modes of the

(ii) Ther-HO quanta should also be higher than the Ferm|tlyifm which can be obtained by the bosonic Green's func-
energy obtained by2°=%2(672n:°)%3/2m; [17]. °

The atomic states for the axiéd) degree of freedom are ( ) ((T[;;(xl);p‘f(xz)p (TLe(x) @(x)]) ) @
. ] : iG(xy,x)={ " AT , (4
described by the-dependent field operators for bosons and 1,X2 (T[(pf(xl)gof(xz)]) <T[(pf(xl)(P(X2)]>

fermions,f;’)(z) and ;b(z); the effective Hamiltonian for them

FIG. 1. Polarization potential induced by fermion particle-hole
excitation. Dashed line: bosgnoncondensajeSolid line: fermion.

is modeled by where x=(z,t) and Ep(x):;b(z,t)—@(z). They satisfy the
Dyson equation
- K2 d? N
- f dz¢ (Z){_ Z_mbE +Usl2) Mb} g [iﬁ%@ - Kg(zl)1:| - G(Xq, %)
~ K2 d? -
[ [' amaz V9" “f] i =t =1 + [ ) Glex),
+ f dz(})T(z)[gbb¢T(z)¢(z) + gbflﬂ(z)lp(z)} (2, where Kg(z):—(ﬁz/ZrT‘»o)dz/dzz_JrUb(z)—,u,D is a single-
particle operator and the matricegsand 1 are defined by

@ _(1 0 ) _(1 o) ©)
where theu, ¢ are the 1D chemical potentials for bosons and e 0 -1/’ 0 1/
fermions. The effective 1D coupling constardg, (boson
and bosohandgy (boson and fermionin Eg. (1) are related
to the swave scattering lengths:g,,=2%w8pp Ot
=2hw,ags, Which can be obtained from the 3D interaction by
integrating out the radial parts of the wave functiphg,29.
It should be noted that, in the limik,— 0, we obtain a

The boson self-energy in E@5) is in the 2xX2 matrix
form and separated into static and dynamical parts:
3(X1,X%0) =20(X1, %) +11(Xq,Xy). In the mean-field approxi-
mation, the static part is given by

uniform system in the axial dimension. 2ny, + %nf P

In weak interacting systems, the mean-field approxima- £30= Gop Gbb X, —%). (7)
tion should give a good starting point for further calcula- o P 2n, + %nf
tions, where bosons are assumed to occupy the lowest single- Obb

particle statepy(z) at T=0 and the expectation value of the
boson field operator(order parameter for BEC ®(2)

=($(2))=Nypo(2), satisfies 1D Gross-Pitaevskii equation

In the dynamical part, we take the contributions from the
fermion particle-holdp-h) pair excitationgFig. 1):

ATI(xy, %) = i ((I)(Zl)q)* ) P(z)P(z) )
ﬁZ d2 1172 bf
{ me d22 +Up(2) +gbbnb+gbfnf:|q) u®,  (2) P ()P (z) P(2)P(2)

X G (X1, %) G' (X2, %q), (8)
where the(axial) 1D boson densityn, is defined byny(z) which is just a polarization potential for pair excitations. It
=|d(2)[2 should be noted that this approximation is equivalent to the

For fermions, the ground state is obtained by a Slaterandom phase approximation and gives the strong correlation
determinant of fermion single-particle wave functiopgz)  effects, especially in the bosonic collective modes
for the mean-field energied below the 1D Fermi energy (Bogoliubov-phonon mode
€=, Which are obtained from the Hartree equation For the fermion Green’s function in E¢8), we use that
for the unperturbed fermion single-particle state obtained
from Eq.(3):

12 o?
{ +Ui(2) + gbfnb(z)]lﬂj(z) €. (3 o
IG'(xq,%0) = E (20 t(z0) €92 Oty ~ 1) 49(6} — €r)
i

2my dZ

In this state, the fermion density is obtained Iy(z) .
ZEEfSEF|¢j|2' - 0(t2 - tl) 9(6,: - 6])] (9)
]
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To advance the calculation, we expand the boson field [ll. PEIERLS INSTABILITY
operatorsP and @' by boson creation and annihilation opera- OF THE HOMOGENEOUS STATE
tors 3, and ] for the quasiparticle states: A. Dispersion equation for excitation energies

o= - £ np Let us consider the case 6f=0 and discuss the stability
¢(2)= - (@B, —v\(2B)), of the 1D homogeneous states in uniform mixtures, where
the boson and fermio(iLD) densitiesn, ¢ and the order pa-
rameterd take constant values:
E;\DT(Z) = 2 {U;(Z)BI - U)\(Z)B)\}r N N
N Np _ Nyt
L Ny ¢ =

®= - (14)

where the quasiparticle wave functiongz;) anduv,(z;) for
the eigenenergiesh(), can be determined from the
Bogoliubov-type eigenequations

wherelL is a quantization length for the box-potential regu-
larization. In this case, the fermion single wave functions
become plane waves/,=€*?/\L, with wave numberk

—7-rn/L (n=integey and mean-field single-particle energy

Lu,(zy) + J dz{N,gppd(z1 — ) ﬁzk /2mg+gpyp. The Fermi wave number and enerly,
and €, becomesk==mn; and e =A272nZ/ (2M;) + gyp.
+ 111(z1,25; Q) Hun (20) - v)(20)} = QU (1), The boson quasiparticle wave functioog and v, also

become plane waves, \(2)=u, ,€%? and v, (2)=v, &%

(10) Substituting them into Eq$10) and(11), we obtain
(ek— Hp)Uy i+ {Gponp + AL Huy = vy b = QU ks
Lvy(z) +f dz{NyGopd(z1 — 2,) (15)
+ 1ll(21,25; Q) HoA () — (2} = ~ Fillyoy(20), (ek = o)V + {GobMy + AIL(Q)Hu k= Unid = = 0 ko
(11 (16)
where £=K+gypy+gy;. The A1l denotes the energy rep- where EE:hzkzlzmb"'gbbnb"'gbfnfa_ and the polarization po-
resentation of the polarization potential in E§): tential 211,(€2,) for plane waves is given by
2 _ 2 ke dq 1
hll(z1,25;00)) = gbfz D(z)P(2,) Al () = GorMo | 7L A= e+ et ig
V(2 U2 (2 (2 _ 1 } | a7
hQ, - € +e;] hQX—6I1+€lf1+k+i77
¢;(zl) In(z) ¥(22) p(22) Using the equality of the bosonic chemical potential and the
- O — e+ € (12 interaction energy in the mean-field approximatiomn,
NoTh TP =0uuNp+OpNs, We obtain the dispersion equation fay:
where the indexp (h) represents a state with energy above (10,)% = ()2 + 2eX{gupnp, + AIL(Q))}, (18)
(below) the Fermi energy. Since we consider the stationary o
condensates, the order parameferis assumed to be real wheree=1i’k?/ 2m,
[30]. Introducing the complex enerdy, =w, —ivy,, we separate
We should note that the number of eigenval&s ob- the polarization potential into the real and imaginary parts
tained from Eqs(10) and(11) may exceed the dimension of Al (wy, ) = hHEe(wm ) + iﬁHLm(ww %) (19)

the bosonic quasiparticle space because these equations are _ . o
not linear for the eigenvalu€), (the #I1 depends on the After execution of they integration in Eq(17), they become
eigenvalug In this case, the eigenfunctions for different ei- [31]

genvalues do not satisfy the orthogonality relations, but they omee |12 (2m 2
are proved still to be a complete set. (k+ 2kg) = Lha +< f”)

For normalizations of the quasiparticle wave fUﬂCtIOﬂS,ﬁHRe(w y):__k In hk
we take A 2 { (k= 2ke) + mm} 2mm

fd21[|u>\(21)|2_ o (z)[7] —J ledzz{U;(Zl) _U;(Zl)} (k+ 2ke) + 2mfw)\} <2mf7)\>

F
dIl(z;,2,;2) *+In
W T2t - =1. 2miw 2mey,
40 Ql\{ux(zz) n(z)}=1 (13 {(k— 2ke) — f ’\} + ( hf ’\)
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2mf W)\

hk
2mf W)

)

me 2
2 Tk ) O

|

ﬁHLm(a)}\, n =—A¢ 770(2|(F - ’ k

k+

- 770( 2k|: -

+ arcta

2m; \?
(k+ 2kg)? + (ﬁ—kf) (% =)

me 2
2 ﬁ W\ Y\

—arcta

2
2+ (22 -

where A.=(gin,/2m)my/#%, and the principal values

(20)

should be taken for the arctangent function:w/2

<arctanx=< 7/2. Using these results, E¢L8) can be sepa-

rated into the coupled equations
12w = 73) = ()7 + 2eR{gogly + ALY,

ﬁzw}\'}/)\ = Qt()ﬁHLm .

Now, in order to analyze the dispersion equati@iy and
(22) qualitatively, we discriminate two cases. First, when
AIL™(wy) #0 and w,, k>0, Egs.(21) and (22) have solu-
tions with complex energiety, >0), which correspond to

the continuump-h excitations in the continuum.

Second, in the region where apyh pair excitations are
prohibited(y, =0), the polarization potential becomes real:

(k+ 2k|:)2 - (mew)\/ﬁk)z
(k = 2kp)? = (2myw, /Aik)?

ATIRS(w,) = = Adn

In this case, introducing the dimensionless variabigs
=2w,/(veke) andk=k/kg (vp=fike/my: the Fermi velocity,

the dispersion relation, E¢21), becomes
Kk + 22 - &}

K(k-2?- a2

2 2
—s  Mi~ ~,U 4
a)i = —f2k4+ 2k2—§ 2-=In

where vg=1gpN,/M, and ¢ is the dimensionless boson-

fermion coupling constant defined by

_ gtz)f
Qo UF

The solutions of Eq(24) correspond to the bosonic excita-
tion energies, which we are interested in, adis just the

(21)

(22

(23)

(24)

(25)
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FIG. 2. Excitation spectrunin units of avgkg) of Bose-Fermi
mixtures. Solid lines: collective modes @fh pairs and bosonic
modes. Dashed line: free boson. Shaded area: contirpitirpair
excitation spectra.

B. Excitation spectra and Peierls instabilities

Let us study the bosonic excitation spectra on the homo-
geneous ground statd4) with solving the dispersion rela-
tions(21) and(22). To understand general features, we show
numerical results for two typical case@Rvg<vg and 2b)
vg>ve in Fig. 2: 2a) (vg/ve)?=0.67, {=0.99 and o)
(vg/vp)?=1.50, {=0.80. The same values have been taken
for boson and fermion massesy,=m;, for all cases. The
shaded areas in Fig. 2 correspond to the continuum spectra
corresponding to the fermionjz-h excitation states, and the
solid lines are to the isolated modes, corresponding to the
collective excitations. It should be noted that two collective
modes(low and high lying exist with the same wave num-
berk (except narrow regions aroundg; they can be inter-
preted to be a coherent superposition of the Bogoliubov-
phonon mode from bosonic atoms and the fermimin
collective mode. For comparison, the Bogoliubov-phonon
spectra in boson-fermion noninteracting systefgg;=0)
have been plotted in Fig. 2, and we can find that it runs

Bogoliubov-phonon sound velocity. It should be noted thatbetween two collective spectra in the interacting ones.

the scaled equatiof24) depends on three dimensionless pa-

rametersami/my, vg/vg, and{.

Let us discuss the specific features of the collective
modes, especially in smatlandk~ 2kr regions.

013612-4
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In the small-wave-number regida<kg|1-(vg/ve)?, the mh? (Gos)?
Bogoliubov-phonon modegdashed ling in the boson- Tf”f = E'
fermion noninteracting limit are located below the fermion
p-h excitation modes in energy and absorbed into the ferwhere we have used the relatiop=kg/ 7. This k=0 insta-
mion p-h continuum whervg<vg [case 2a)]. In the case bility is considered to cause the phase-separated states to
thatvg>uvg [case )], the corresponding modes are abovebecome more stable. In the present paper, we do not discuss
the continuum. It suggests that the low-lying collective modethis instability and concentrate only on the density-wave
in 2(a) is mainly a Bogoliubov-phonon mode from bosonic states caused by the Peierls instability, which is discussed in
atoms but the corresponding mode ifbRis mainly the fer-  the next section. It should be a very interesting problem to
mion p-h one, and the high-lying modes have opposite charstudy the cooperation and competition between these states
acters. In Fig. 2, the bosonic excitation modes are found tgfor 2D Bose-Fermi mixtures in an optical lattice, 44&)).
be influenced by the interaction with the fermip#h excita-
tion modes and pushed downward or upward in the céme 2

(30)

IV. DENSITY WAVES IN THE BOSON-FERMION

or 2(b).
. . ROUND STATE
Around k=2kg, the low-lying collective modes become GROUND S

very soft and, between two critical wave numbers The results obtained in the previous section show that the
k-<k<k,, they are found to be zero modes in both cases. Thomogeneous state is not the true ground state of the system
calculate the energy of these modes analytically, we expangnd a lower energy can be obtained for the state with a spa-

Eq. (22) to the leading order ofg|/kg (q=k—2kg): tially periodic condensate characterized by tlig-@eriodic
order parameter ®(z)=b,+b, cog2kzz). The constant
12wy, = Agy € [wﬁ(w)\—vp|q|) bosonic density is given by,=bi+b3/2. In the case of a
ko weakly periodic variatiorb,<b,, up to second order ib,,
2% the mean-field Hamiltonian for the Bose-Fermi system be-
- arctar(zz—”;"ﬂ . (26) comes
vEd’ — wf + %4

When w, <vg|q|, the above equation reducesdQy, =0. In H_ %(bﬂ% b2b2) + b2+ ) elele,
the case ofw,=1v,=0, two critical wave numbers are ob- L 2 S

tained from Eq(21):
ey * Goibubp X (& i G+ Eloi 80 (31
k

m
—‘=2¢4exr{——{1 <ﬂ> H (27)
ke ¢ Myvg where¢, and 6l are the annihilation and creation operators

o _ _ - for fermions with wave numbek and energyel =%2k?/2m
which gives(k_=1.9%g, k,=2.0%) for 2(a) in Fig. 2 and , ; k f
(k.=1.9%, k+:2.05<FF) for 2(b) inFthe same figure. +gbf(bﬁ+br2)/2).' The € in Eq. (3D ' the energy generated

Analyzing the eigenvalues of E21) in more detail, we from _the perloc_ilc condensat&ﬁ:eZkF/2+gbbbu. The Ia_st
find that they become purely imaginaf, =0, y, #0)) in term in Eq.(31) is for the processes that the fermion with a
the region between the two critical wave numbersWave numbelk feeling periodic- and uniform-bosonic con-
k_<k<k,; it is just the “Peierls instability” in the Q1D sys- densates scatters into states vkittke.
tem, which suggests that the homogeneous state is unstable!n order to Obt"’}'” a single-particle energy, we calculate
against fluctuations with a wave number aroutkg. 2 the fermion Green's function

Finally, we should comment on a different kind of insta- d
bility that may occur in the small wave number fluctuation iFie(t-t) = (T[&k(t)éi,(t’)b =J _we—iw(t—t’)Fk’k,(w)'
[17]. When we take thek—O0 limit with keeping w,/k 2m

=const, the real part of the polarization potential becomes (32)
2 2 - .
AR w,) = (9o0) ™M z(ka) 2 (28)  Where&(t)=e"""ge M. For a fixed wave numbek, the
mhog o5 = (vek) Green'’s functiorF, ,,(w) has nonvanishing off-diagonal ma-

trix elements aby ok, in the Hamiltonian(31). In the limit
k— +kg, fermion states with wave numbetandk-2kg are
almost degenerate in energy, but that with2k. is sepa-

and the imaginary paﬂf[}(m vanishes except atz=vg. Sub-
stituting Eq.(28) into Eq. (21), we obtain two branches of

excitations: rated. Consequently, in the case lgf=k>0, the Dyson
vé +v§ 1 12 equation for the Green'’s function can be approximated by
ho, =hk + =\(wE-vd)?+4AZi| . (29
2 2 h(,() - GL - A Fk,k (ﬁ )
In the strong boson-fermion interacting cdge>1), the en- -A fho- GL—sz Frok-2x “\o/’ (339

ergy of the low-lying mode becomes purely imaginary, and it
suggests an instability of the system. We find the stabilitywhereF is a diagonal part of the Green’s function and
condition for thek=0 mode: =0pib,bp. They can be solved easily:

013612-5



MIYAKAWA, YABU, AND SUZUKI

2 2
Fips ——— K (34)
w-El/h-in o-Elh+iy
E __ ~U U Vi (35)
AT w-Eplh—in wo-Eflhiting
where
1 gk 1/2
U :\/j 1-—=2—1% 36
K 2{ \"§§+A2} (36
1 gk 1/2
Vi= \/i 14—t 37

with &=%ve(k—kg). The single-particle energy with wave
numberk is obtained from the pole dfy (w):

(38)

from which we can understand that théA2 is the energy

R
Eq= e~ &t V& +A%

PHYSICAL REVIEW A 70, 013612(2004)
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FIG. 3. Gap energy as function ofv/myug (in units ofeg) for
£=0.99.
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gap at the Fermi surface. It is clear that the periodic conden-

sate has produced an energy gap|2hear the Fermi surface.
To evaluate the value of, we calculate the total energy

. do | A
n(2) = lim > | ——&™[Fy+ Fro-2 €2
7—04 K 2’7T|

of the system in the present approximation. The fermionic

contributions to the energy are obtained by summing up the

E, in Eq. (38) up to the Fermi wave numbég:

Es :j dkE (ke — [k))
= (% + gbfnb)nf + nf|:eF — Ve + A2

& |n<.eF e+ Az)}
e A ’

where er=fivgke/2. For simplicity, we consider the weak-
coupling limit|A| <eg; then, the total energy density of the

system becomes
an2|:g{l + ( meF>2}
der [ ¢ My

1 dep
2{1+2In Al H

Minimizing Eq. (40) with respect tgA|, we obtain the sta-
tionary value of the gap parameter:

-2

(39)

Etot(|A|) - E(0) =

(40)

(41)

Using the above result, the energy difference between th

ground and uniforr{A=0) states is
2

Etot(|A|) - E(0) = - 47Tﬁv|:’

(42)

which shows that the state with the “periodic condensate”

(b, #0) has lower energy than the uniform one.

Next, we discuss the fermionic density, which is obtained

from the Green’s function:

+ Pz k€ 2+ Fai ok - (43)
Using Eqs.(34)—<37), it becomes
ni(2) = X, [UZ + V2 - 2U,V, cog2ke2)]
k
=n {1 - A cog 2k z)} (44)
7 et il

which shows that, for finite\, the fermion state is in the
density-wave one where the fermionic density has a period-
icity 2ke. Corresponding to Eqi44), the direct calculation
shows that the bosonic density(z) has a similar density-
wave structure:

Al
|9be| Ny

It should be noted that, different from(z), the periodic part

in ny(z) is proportional to the absolute value of the gap pa-

rameter|A|. That means that the boson and fermion density
waves are out of phase for the boson-fermion repulsive sys-
tem, but in phase for the attractive one.

As seen in Eq(41), the gap energy essentially depends
on two combinations of parametersmue/myg and the
dimensionless coupling constafitin Fig. 3, we just plotted
the gap energy as a function wkv/ myg for {=0.99, from
Which we can read off that the boson-fermion density-wave
state can be observed by increasing the 1D density of con-
densate and/or using heavier bosons than fermions.

n,(z) = nb[ 1+ cos(Zsz)} . (45)

V. PEIERLS INSTABILITY OF THE SYSTEM
IN THE HARMONIC OSCILLATOR POTENTIAL

In this section, we briefly discuss the nonuniform boson-
fermion mixtures confined in a HO potential with finite axial
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dimension(w,# 0) and the condition for its Peierls instabil- kn:\s’%/aho~2kp. Since the higher nodal modas~ N;

ity. have a broader spatial extensi@n=2na,.) than a conden-
Using the eigenenergj}":hwa(m%) (n=0,1,2,..)and sate one, the asymptotic expansions can be used fapthe

the wave functionp® for the 1D HO potential, the quasipar- in the middle of the tragz| <ze<L, [32]:

ticle amplitudesu, andv, are expanded by

ho o _n_77
L@ =S WD, 0n@=S . (46 %02 C°5<k”2 2)' 3

For a bosonic eigenstate with higher nodal mode, the nega-
Substituting them into Eqg10) and(11), we can obtain the  tive energy amplitude}=0 of Eq.(47) can be neglected.
eigenequations for the excitation energles,: Using these approximations, the matrix elements like
ho _ " NN (Oplhn) become linear combinations of the form
% [(en” = Foon) Gty * Allmr{ ) (Uy = 03) ] = 0, (47) J1(zreK) 1 1K, whereJ;(x) is the first-order Bessel function
and theK is a wave-number difference between the initial
ho N AN — and finial statesK =k,+k,—k,. In the case ofx|>1, using
% [(en”+ fren) dmpvn + Allme( @) (wn = U) ] =0, (48) the asymptotic expansion of the Bessel ffu|nctid[(,x)/x
~|x|7%72, the terms ofx| < O(1) can contribute to the matrix
where, to concentrate on the role of the polarization potentiabjements. Under the restriction of wave numbeys ke and
effepts in finite systems, we ha\_/e neglgcted the Hartree pck-p>kF with k,~ 2ke (kF=\e"2—l\lf/ahc), the main contributions
tential. The polarization potentidlly, in Egs. (47) and 4 the matrix element are from the scattering procedses
(48), is given by —k,+k, andk,+k,—k,. To make an estimate, we replace a

(mhp0)(0p|hn) product of Bessel functions as
Allp(wy) = (gbf)szE {m I(x) %) 1
h A h
P P S LT (1 [xy) (L~ [xg — %) (54)
(mph0){0h|pn) 49 X1 X 4
oy, = e+ e’ | and take the continuum-limit for the wave-number sums:
. . . S, n— fdpfdh.
The matrix elements in Eq49) are defined by Finally, the eigenenergy for a collective state with wave
ho tho i numberk,=2kg can be obtained:
(mhpo) = f Az én by Pos (50 2 0)
. . . . hw, = 4e ~ i s In|4kezre]. (55
where the single-particle wave functions in E§0) have 27hug

been replaced by the HO eigenfunctioaﬁ%". It should be

e 10 otntl. he second e o h rghthand ide of
y only b 9 is not divergent at B-. This is because the scattering of

It is important at this point to contrast the finite system to thetr pped atoms without wave-number conservation smears a

homogeneous system in which the condensate is present %& gularity due to a sharp Fermi sea. The Peierls instability

over the range. - . ;
. . . ._occurs where the polarization energy is overcome by the ki-
We restrict the present discussion to the parameter regio P oy y

. Retic ener :
hw, > us> up>fow, Under these conditions, we can take etic energy 4

Contrary to the uniform system, the static polarization

several approximations. Becaugg>fw,, the system is in Lvg(0)?
the Thomas-Ferm(TF) regime, so that we can take the TF 1< 4 L2 In|4kezre (56)
approximation for the order parameter: F
2 where vg(0)=1gppnp(0)/m. This is the Peierls instability
®= \*“‘bepo o \[1==6zre—|2)). (51)  condition where a boson-fermion density wave may occur.
Z$F We roughly estimate the parameters according to experi-

mental conditions. Whem,/mg~ 1, we can express the ve-

The zr in Eq. (51) s a cutoff length in the TF approxima- locity ratio and the dimensionless coupling constant by

tion:
2 2/3
1 W, &y,
5 (3N8\ 5:—< N —’—”) (87)
I = V2ah0< 4\;‘5 ) y (52) U|2: 4Nf bwaaho
where B=mg,,an,/ A2 with a,,=VA/mw, (the HO length in 2 o aﬁf (58)
P bl =2, 58
the axial directioin ¢ 72N¢ @, 8pBho

As we have seen in Sec. lll, the Peierls instability comes
from the coupling between the boson mode with wave numAs a possible candidate for the Peierls instability, we take the
ber near R and the fermionp-h excitations neakg. Al-  rubidium isotope system®’Rb-2*Rb mixtures. Taking the
though the wave number is not strictly conserved in a HOscattering lengths if33], a,,=5.3 nm anda,;=29.1 nm, and
potential, the instability mode would have “wave number”the typical trapping frequenciem,=27x10 Hz and o,

013612-7



MIYAKAWA, YABU, AND SUZUKI PHYSICAL REVIEW A 70, 013612(2004)

=27 X 15 kHz, Eq.(56) gives N;=10° and N,=2x 10* for  variational method, the boson-fermion density wave state has
realization of the Peierls instability. been shown to have a lower energy than the uniform state.
We also expanded our analysis for systems in an axial har-
monic oscillator potential and derived the Peierls instability
VI. SUMMARY Condr“on
; It is well known that density waves in Q1D conductors
In the present paper, we studied the occurrence of ?ead to generations of Lee-Rice-Andersis] and phase

Peierls instability in Q1D Bose-Fermi mixtures at zero tem- i 5 des. Th di fthe d ical .
perature. We analyzed the bosonic collective-excitation spec's—0 iton[26] modes. Thus, studies of the dynamical properties
f boson-fermion density waves should be interesting prob-

tra in the random phase approximation. It shows that th :

mixtures of a uniform BEC and a Fermi gas are unstabldeMs in the future.
against spontaneous formation of a collective mode of wave
number Xg; this type of instability is known as the Peierls
instability. This result suggests that the ground state of The authors are supported by Grants-in-Aid for Scientific
bosons is a periodic condensate with periotk-. In the  Research by JSPAS.
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