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Occupation number and fluctuations in the finite-temperature Bose-Hubbard model
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We study the occupation numbers and number fluctuations of ultracold atoms in deep optical lattices for
finite-temperatures within the Bose-Hubbard model. Simple analytical expressions for the mean occupation
number and number fluctuations are obtained in the weak-hopping regime using an interpolation between
results from different perturbation approaches in the Mott-insulator and superfluid phases. With this approach
the magnitude of number fluctuations under a wide range of experimental conditions can be estimated and the
properties of the finite-temperature phase diagram can be studied. These analytical results are compared to
exact one-dimensional numerical calculations using a finite temperature variant of the density-matrix renor-
malization grougDMRG) method and found to have a high degree of accuracy. We find very good agreement,
also in the crossover “thermal” region. We also analyze the influence of finite temperature on the behavior of
the system in the vicinity of the zero-temperature phase transition, in one, two, and three dimensions.
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I. INTRODUCTION an approximate Mott phase exists. Furthermore, the transi-

The Bose-HubbardBH) model, first studied in the late tion between superfluid and insulating behavior passes
1980s[1], has long been considered a rather academic testingrough an intermediate thermal region. Recently this ther-
ground for analytical as well as numerical approaches ifnal crossover has been studied within a slave-boson formal-
quantum statistical mechanics. Its most interesting feature i#m [23]. In this work we study the finitd- properties using
the existence of a quantum phase transifidhat zero tem- & perturbative analytic approach in the strong-coupling limit,
perature between a superfluid and a Mott-insulating phaséleriving simple analytical expressions for the occupation
With recent advances in the experimental techniques of atoumber and number fluctuations that cover both quantum
trapping and optical lattices, the BH model has regained sukand thermal effects. We are able to verify these results nu-
stantial practical importance. As noticed [8], the BH  merically in one spatial dimension by employing a firilte-
Hamiltonian applies to bosonic atoms trapped in a deep latversion of the DMRG approacii2l]. We observe good
tice potential. Recent experiments with optical lattijé¢y  agreement between perturbative and DMRG results, includ-
have spectacularly confirmed the existence of the superfluidng the description of the thermal crossover between the su-
insulator transition. Since the Mott-phase is characterized bperfluid and insulating phases. Finally, we analyze the behav-
a well-defined occupation number of the potential wells, thgor of the BH system in the vicinity of the zero-temperature
phase transition has important potential applications in quanphase transition in 1D, 2D and 3D, including thermal effects
tum information processing5,6] or Heisenberg-limited and characteristic scaling behavior in both the superfluid and
matter-wave interferometrf7], both of which require optical thermal regions.
lattices with regular filling. Although techniques to eliminate
Iattic;e defects hgve been desigqsqj an important issue_ for I EINITE-TEMPERATURE NUMBER ELUCTUATIONS
the |r.n.plementat|on of .theS(_a apphcauqns under experlmental IN THE LIMIT OF STRONG CONFEINEMENT
conditions are fluctuations in the particle number per site at
finite T. In this work we analyze these fluctuations by study- We consider al-dimensional cubic lattice dil nonlinear

ing the finite-temperature BH model. oscillators characterized by the following Hamiltonian:
The zero-temperature BH model has been extensively in- - ~ R
vestigated in the past by methods such as the Gutzwiller H = uN = Hpop+ Ho, (1)

projection ansatf9], the strong-coupling expansi¢h0-13, ) . LA o

and Quantum Monte-CarlpL4—18, as well as with various Whereu is the chemical pOtem'?NfTEAk N Is tAr]rerperator
mean-field approachésee, e.g.[1,19,2Q). A very powerful ~ Of the total number of atoms, amgl=a,a, with &, & being
numerical technique in the case of one spatial dimension iH’_‘e usual bosonic creat|on. and anmhﬂanqn pairs. The lattice
the density matrix renormalization gro®MRG) [21],  Sites are numbered with ad-dimensional index k
which is used to calculate first- and second-order,, am-  —iKi,"".Kg, while =, means summation over all lattice
plitude and number-numbecorrelationg22]. Less attention ~ Sites. The first term,

has been paid to the nonzero temperature properties of the A Ata L Afa

BH system. We note here that the quantum phase transition Haop=~I2 (448 + &8y, (2)
exists in the strict sense only &t=0. For finiteT the com- D

pressibility, i.e., the change of the particle number per siteon the right-hand-side afl) is the hopping Hamiltonian]

with the chemical potential, is always nonzero and thus only=0; the sum extends over nearest neighbors and we assume
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cyclic boundary conditions. The second term on the rightwent unnoticed in Ref[24].) On the other hand, locgbn-
hand-side of(1), Ho=y Hy(f), is a sum of the nonlinear Site) quantities should become independent of the size of the
site Hamiltonians system when it becomes large enoughermodynamic
limit). In fact, our DMRG simuzlations show that E)
Hoy () = Eﬁk(ﬁk 1) - iy = g(ﬁk _H2+ const, (3) equally holds ifzPNny(ng+1) = U2
2 2 B. The superfluid
wheren=u/U+1/2 is thefilling. The quantum averaging

; i : In the superfluid phase, one has to account for states with
is defined in the standard manner ag---)

A the total number of quanta different frolNm. In the limit of
=ZTrePH-#N(- )], whereZ=Tr e #-#VM s the statis-  zero hopping, an arbitrary eigenstate is a product staje,
tical sum andB=1/T is the inverse temperature. Note that =II,|n,),. With n close to a half integer, it suffices to keep
oscillator units withz =kg =1 are used throughout this paper. only two states for each sitén,) and |ny+1), effectively
While elaborate methods are needed if we wish to exactlyurning bosons into fermion&5]. We shall call the subspace
pinpoint lobe boundaries or calculate long-range correlaof states withn,=ng,ny+1, the f-subspace. In this subspace
tions, local quantities, such as the average number of atomse introduce standard fermionic creation and annihilation
and the number fluctuations, may be obtained at a lesser cosiperatorst, &/ +&/¢.= 8. To make the relation between the
We develop such methods separately for the Mott insulatobosonic and fermionic states unambiguous, we assume that
and superfluid phases and then continue by deriving interpall sites are enumerated in a particular linear order, and that
lating formulae covering both regions. this order is always maintained when adding “fermions”
to the system. For example for a bosonic state
with ng+1 bosons at first two sites ang, bosons at all
others,  [ng+1,ng+1,Ng, "+, N =E5CiNg, Ng, Ny, * ** , Ng) =
To zero order in the hopping, the ground state of the Mott—é{éyno,no,no, -++,Ng). This eliminates the sign uncertainty
insulator is|0);-o=II,|no)x, Whereny=roundn), cf. Eq.(3).  emerging from anticommutivity of fermionic operators at
A first-order perturbative correction to this state will contain different sites. In 1D, it is then straightforward to check that
all states that are found frofl),-, by moving one atom to a within the f-subspace,
neighboring site. All such “single-hop” states are eigenstates - - At At L ata
of H, with the same relative enerdy, resulting in an espe- 1~ u#N'= AEY &&= J(no+ 1) (/¢ +&/e,) + const,
cially simple expression for the ground state to first order in K )
J [24]. Up to second order we find (7)

A. The Mott insulator

1 5 where AE=U(1/2+ny—n)=Uny—u. Furthermore, all local
0y = a(l - GHhop>|0>J=O+ O(Hop» (4) (on-site averages may be reexpressed in fermionic terms by
simply replacingf, — &/&+no. The latter replacement holds
where « is a normalization factor. By direct calculation we irrespective of dimensionality, this unfortunately being not
then find the case for Eq(7). The reason is that confining bosons to
N two local states introduces pseudofermigisping rather
(0l 0) = o, than fermions proper: we find fermionjanticommuting be-
havior at each site while retaining boso@mmmuting re-
2_ Ala A M2 22Fny(ny+ 1) lations between sites. On the other hand, the distinction be-
on*=(0[f0) —(0[n|0)* = U2 : ®)  tween fermions and i
pseudofermions ceases to be of

. i , . importance if their density is low. This means that EQ.is
wherez=2d is the number of nearest neighbors in the 'att'ce-exact at the phase transition points, remaining a valid ap-

These formulas are expected to be a good approximatioproximation close to these. With this reservation, projection
deep in the Mott-insulator phase, where a large energy 9apnig thef-subspace makes the Hamiltonian linear so it can

sxis;s agd dthe thermal occupation of higher levels can bgg girectly diagonalizegomitting the additive constant
isregarded.

It is worth noting that,.if staying within the perturbation ﬂ_ﬂﬁ/:E (E, + - +E, )?FT‘., (8)
approach, these expressions cannot be extended to the ther- | ! d

modynamic limitN— . To demonstrate this, consider the 0. _ : _ :
following formula thus obtained for the normalization con- where |={l, - l¢h  @=2a(I-1/N, E,=AE/d=2)(ng

stanta: +1)cos o, andﬂ are related t@, by ad-dimensional discrete
Fourier transforn{see Appendix A for detai)s The average
a2<1 +i<O|H2 p|0>) -1 on-site particle number and number fluctuations are then ex-
u? ho ' pressed by the average number of fermions per site,
(O HpoJ0) = zPNy(ng + 1). (6) (A =g+ An,
These results hold only izPNny(ny+1)<U?, therefore - r o
making the thermodynamic limit impossibl€This problem (N> = {(ng + G &) ) = g + (2ny + 1)An,
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on? = (Af) — (A2 = An(1 - An). 9
For An we readily find(8=1/T)
d 2
d 1
An= (H f _‘Ps) d . (10)
s1Jo 27/ 1+expB_, E,
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Lo+L’ oscillators, and then trace out the states bbscilla-
tors, resulting in an optimized basis for a blocklgf sites.
We found this to yield much better results than starting from
an open-ended block by simply selecting its lowest eigen-
states. The full details of the algorithm will be discussed
elsewhere.

A word of caution is necessary here. While borrowing

much of the technical side of the DMRG method, our ap-
proach is conceptually different, the difference residing in
the importance of temperature. Similar to other
renormalization-group methods, DMRG relies on the fact
that the dimension of the physically relevant subspace of the
. full Hilbert space does not grow with the system size. For

The relations(s), (9), and(10) are found under mutually  finite temperatures this can only be true until the thermal
exclusive conditions. Equatiai®) follows if we assume that .o relation length is reached. Consequently we only grow the
only the ground state is important and retain the first nonvaggck up to a size comparable to the thermal correlation
nishing correction to its wave function; with only one level length and must simply stop as soon as the probability loss
being important, temperature is of no concern. Converselyyacomes unacceptable. We use periodic rather than open
Egs.(9) and(10) ignore corrections fo the eigenstate wave-p,ndary conditions based on the same argument. For the
functions yet account for energy shifts; with many levelsiemneratures considered here, the maximum block length
being accounted for, thermal properties are retained. Thgsached in this way is long enough so that finite-size effects
question we now address is whether a relation can be deriveg s unimportant. For higher temperatures, a combination of
that covers both insulator and superfluid regions, plus, evegiychastic and DMRG techniques can be used, which we are
more importantly, the crossover regigwhich is naturally developing and will present in a later work.
termed the thermal regionlt would be natural to include The results of our calculations using both DMRG and
perturbative corrections to all “fermionic” states, but this ré-nerturbative approaches in 1D are summarized in Fig. 1,
sults in some intractable algebra. It turns out, however, thayhere we plot average on-site numbers and number fluctua-
for J<U, simple interpolating formulas between the two {ions for three cross sections along the axis, for J
above results may be found that apply not only to the insu=g o1y 0.02J, 0.08J. Each plot shows data for two tem-
lator and superfluid regions, but also to the thermal CrossOVeferatures:T=0.01U and T=0.001U. The top and bottom
region between them. Namely, rows of plots represent, respectively, the on-site population
(A and number fluctuationdn?=(AZ)- (A2 To gain more
insight into the thermal region, the middle row of plots
shows the differencé&n between the on-site population and
the nearest integer value. A=0.001U, the insulator region
is clearly defined byAn abruptly falling to zero. AtT
=0.01U, Anis a smooth function vanishing asgoes deeper
into the insulator region. A similar effect is seen for the on-
site number fluctuations. AT=0.001U, the phase transition
points are well defined, whereas®t0.01U the boundaries
of the insulator phase are “eroded” so tifat is a visually
smooth function ofu.

Comparing the DMRG to perturbative results, we see that
the latter provide a surprisingly good description of the quan-
tities in question. Fod=0.01U (left column of the plots we

ind a very good agreement between the perturbative and
MRG results. This agreement is good fbxr0.02J (center
column becoming only fair atJ=0.08J (right column.
A\Iote that, even in the latter case, the error is mostly in po-
sitioning the thermal region between the insulator and super-
fluid phases. Away from the thermal region, the results of the
perturbative approach show good agreement with the DMRG
results, both for the superfluid and for the insulator.

This formula holds in the thermodynamic limN— o; in
more than 1D, it also implies that eithdn<1 or 1-An
<1.

Interpolating between the insulator and the superfluid

(M) =ng+ An,

2zF(ng+ An)(ng+ An+ 1)
U2

on?=An(1-An)+ , (1D

whereAn is given by Eq.(10). The idea behindl1l) is rela-
tively simple: for smallJ, the quantum contributioib) is

negligible in the thermal an¢even more spthe superfluid
regions, while in the insulator regiod\n=0 (or 1), so that
(112) coincides with(5).

IIl. RESULTS AND DISCUSSION
A. Comparison with a 1D DMRG calculation

To verify these results in one spatial dimension, we use
finite-temperature version of the DMRG approg@i]. At
the core of our approach is the following block-doubling
algorithm: assuming that we know the optimized states for
block of lengthL, we can then find eigenstates of a ring of
three such blockg&recall that we use periodic boundary con-
ditions) and calculate the thermatmatrix. Tracing over the
states of one block yields thg-matrix of a double-sized
block. Diagonalizing thip-matrix and taking a certain num-
ber of eigenstates corresponding to the largest eigenvalues
results in the optimized basis for a block of length. Zhe ) _
loss of probability is assessed by summing the neglected 1. Making An computable in 2D and 3D
eigenvalues; if this loss becomes unacceptable the iterations Equation(10) expresses\n as ad-dimensional integral,
are stopped. To initiate the algorithm, we start from a ring ofwhich is of little use in numerics except in 1D. Luckily,

B. Behavior of An in the vicinity of zero-temperature
phase transition
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FIG. 1. Average number and number fluctuations veysusr two temperature$T=0.01U,0.001J) and three values of the hopping
parameterJ=0.01U,0.02J,0.08J). Top row, on-site populatiom=¢(f,); middle row, differenceAn betweer i) and the nearest integer;
bottom row, on-site number fluctuationsaﬁ2:<ﬁ§>—<ﬁk>2. The lines show perturbative result§T=0.001J, solid line; T
=0.01U, dashed ling the markers show results of DMRG calculatidiis=0.00J, diamondsT=0.01U, circles. Open markers are used
for An<O0.

irrespective of dimensionality, this integral can be replacednital Eq. (10) is more suitable for this purpose thah3).
by one that is 1D. As shown in Appendix B, Firstly, consider the limit of zero temperature. As- 0, the

1 g ) integrand in Eq(10) turns into a step function, so that
An==+ PJ _ye—iyAE/aO—y (12)

2 W 2 k sinhy/k’

d 2 ng d
Anfroo=| I —S)a(—EE ) (14)
where P denotes the principal valudy is the Bessel func- fr-o (Fl o 2 o

tion, 0=2J(ng+1), and k=Bao/7=2LBI(ny+1)/ . Being a

Fourier-transform of a singular function, this result is alsoThis integral equals 0 unle$AE|<da, or, equivalently,
not quite suitable for numerical use. To remove the singular-

ity, we note thatly(0)=1; adding and subtracting 1 frod§ |Ung— u| < 2dJ(ng+ 1). (15)
yields:
1 gy By -1 This condition defines a superfluid “bay” situated between
An= + | —=eWAReZ—_—  (13)  the insulator lobes with the filling factorg andng+1. The
1+ PAE L, o csinhylet (D g 1actord andfo

bay boundaries are gi,=Uny+2dJ(nyg+1). In Fig. 2, we
The integrand here is a continuous function vanishing expopIOt the msu_lator lobe boundarl_es as predicted by our ap-
nentially aty=+, which makes the numerics much easier.proaCh' The _msert ShOW.S those in 2D found by.means of the
Nevertheless, computing this integral for large valuescof Stong-coupling expansiofiLl]. Our results are in obvious

remains a challenge. Some details on using relatib®sand agreemt'an'g with the latter, especially for s_maller values of
(13) as k— o may be found in the appendix. J/U. This is also the case for the phase diagrams in 1D as

well as in the limit of infinite number of dimension&See,
e.g., [11] for results of the strong-coupling expansion and
Quantum Monte-Carlg.
At u=u_ (for examplg, we can use the approximation
Having expressedn in a computable form, we now wish cos<psz1—go§/2 in Eqg. (14), making the integral, up to a
to derive some analytic approximations. We note that théactor, the volume of a-dimensional sphere. We thus obtain

2. The limit of zero temperature and thermal effects
at the phase transition
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FIG. 2. Phase diagram of the BH model as predicted by our 1 \ , , \
approach. The dimensionless variabtEBU and /U are chosen /
so as to make the diagram independent of dimensiondlity is an
artifact of our approximations The inset shows the same in 2D 0.8 T-0.01
found by means of the strong-coupling expansion in Ref]. The e
scale of the inset matches that of the main graph. 06l
di2 3
2 - U N
M p R ol d=2
An‘T:O”usM_ = dF(d/Z) 477J(n0 + l)
(16) 0.2r g=1 :
d=3
Figure 3 shows the overall behavior Ah when u crosses /
the superfluid region. The upper plot correspondsTto 0= 05 0 05 1

=0.001 (k=12.73 and the bottom one tor=0.01 («

=1.273. Each plot showsg\n as a function ofw in 1D, 2D,

and 3D. More specifically, we plakn versus a scaled and FIG. 3. The overall behavior ofn as a function ofu, in 1D,
shifted variableé=u/2dJ(ny+1)—ny; the zero temperature 2D, and 3D, for two temperature$=0.001J (top) and T=0.01U
phase transition points and the center of the superfuid ba{pottom. We plot An versus a scaled and shifted variabg,
are até=+1 and£=0, respectively. Figure 4 is a blowup of =u/2dI(ng+1)—-ng ; the zero-tfemperature phase transition points
Fig. 3 in a vicinity of the phase transition point&t—1. As ~ and the center of the superfluid bay arefatt1 andé=0, respec-
can be seen from the figures, the overall behavidkfs a tively. For T=0.01U, all traces of _the phase_ transition are erased by
function of . changes dramatically, depending on both tem-thermal effects. Change of the line stylid to dotted serves to
perature and dimensionality. At=0.001, the phase transi- remind the reader that in 2D and 3D our results apply onlyrifis

tion remains qualitatively defined, as well as the characterisS™! 0" close 10 1; the same applies to Figs. 4 and 5.

tic (u—u-)%? scaling ofAn at the phase-transition point. At state. Understanding what causes these discrepansies is

T=0.01, all these details are washed out. Another observasubject for further work.

tion is that thermal effects are more pronounced for lower

dimensionality; e.g., aff=0.001, the thermal effects are

small except in 1D. Another case when E@10) may be approximated, result-
Comparing our results to Ref23] we see a number of ing in additional physical insight, is the “thermal tail” an

qualitative as well as quantitative differences. In our ap-when u goes inside an insulator lobe. To be specific, con-

proach, the insulator and superfluid phases exist only at zergider the lobe situated below the superfluid bay, with filling

temperature. At a finite temperature, the superfluid, insulatorn,, which corresponds tu<u_. At T=0, in this region

and thermal regions are defined only qualitatively. FurtherAn=0. If T#0, but is large enough, then fer< u_ we can

more, there is no critical temperature of any kind. Thermalmake the approximation:

effects “switch on” smoothly; strictly speaking, they are not d

negligible unless the temperature is exactly zero. This ap- 1 ~ exp(—,BE E ) (17)

pears to be in contrast to Fig. 4 of RE23], which shows a 1+ eXp'BEil E, =

critical temperature for a superfluid-normal phase-transition. °

Another discrepancy is with, e.g., Fig. 10 of the same work;The integrand being thus factorized, the intedfd)) is eas-

which shows that the density dependslifior the insulator ily calculated, resulting in

3. The thermal region
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0.5

0.4r e
T=0.01 ! ”
0.31

An
An

0.2r

d=2

0.1y

d=3

FIG. 4. An as a function ofu in the vicinity of the zero- FIG. 5. The “thermal tail” ofAn as a function ofu. Solid lines
temperature phase transition poi&t—1. (See the caption to Fig. 3 are as in Fig. 3; dashed lines represent the asymptotic approxima-
for more detailg. Solid lines are as in Fig. 3; dashed lines representtion, Eq. (18). The zero-temperature phase transition point i§ at
the zero-temperature approximatior{u—u_)%?, cf. Eq.(16). The  =-1.(See the caption to Fig. 3 for more detailote that the “tail”
temperature effects decrease with increasing dimensionality. seemingly vanishing faster for larger dimensionality is an artifact of

using the scaled variablg
Anlrso e, = €PUTHIG2I BN+ 1] (18)
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APPENDIX A: DIAGONALIZING THE HOPPING
OPERATOR

We start from writing[cf. Egs.(2) and(7)],

We have developed a simple perturbative approach to the > @l +efe) = elAds,. (A1)
finite-temperature BH model, allowing one to estimate such (kly k.|

important quantities as the average number of bosons per site )1 e 1 , :

and its fluctuations. This approach gives good results also im 1,D’ Akl =1 'f k=I+1(mod _N)' and 0 otherW|se. This ma-
the “thermal” region around thezero-temperatujephase trix is diagonalized by the discrete Fourier-transform,

IV. SUMMARY

transition point. In 1D, we were able to verify this approach 1 2@kk-1(1-1)

by a finite-temperature version of the density matrix renor- Uq = ,—NGXDT, (A2)
malization group technique. A very good agreement was '

found, especially in the limit of strong confinement. so that

013611-6
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2a(l-1
[UA(l)Z/IT]H = 25k| COSM, (AS)
and
N 2m(1 - 1)
ata ata ~in w(l -
> (@l +8c) = 2ff, cos———, (A4)
K | |
(K1) =1 N
Whereﬂ:Z":':l Uy S In higher dimensionalities,
AP = AV T+T® AY,
A=AV T T+I0 AV T+ToTeo AV,
(AS5)

and so on. In dimensionality the hopping term is diagonal-
ized by thed-dimensional discrete Fourier-transforf¥
=URU® - U (d time9, leading to Eq(8).

APPENDIX B: EVALUATING EQ. (10) FOR AN
ARBITRARY NUMBER OF DIMENSIONS

We rewrite Eq.(10) as[with o=2J(ng+1)],

= (2 (27 de d
An= 28| x- AE+ CoS s | .
f_m 1+e8x<$1 0o 2m Ugi ¥

(B1)

PHYSICAL REVIEW A 70, 013611(2004

2w
do. .
f S sz (o), (B3)

0 2T

where Jy is the Bessel function. Finally, using the fact that
(with P denoting the principal valye

+wdly), (B4)

f+oo dx ei)(y ~ E,P 1
. 1+e® iB" sinhmylp
and with the change of variable—y/ o, we arrive at

*® d
An= } + Pf+ ﬂe‘iyAE/(rM

, B5
2 L 2 K sinhy/k (B5)

where k= Bo/ 7m=2BJ(ny+1)/ 7. Furthermore, removing the
singularity by adding and subtracting 1 fro]gl yields

1 oy By -1
An= + —2 giyAElgc SO0~ B6
N= 1+ e f_m 2mic K Sinhy/k (B6)
The integrand here,
Jy) -1
W -1 (B7)
sinhy/x

is continuous while vanishing exponentially yat +oc.
In the limit of extremely low temperatures, the first term
in Eq. (B6) becomes close to a step function. This near-

Expressing the Dirac delta in the standard way as a Fouriekingularity is an artifact and hence has to be compensated by

transform,

d +o

5(X - AE+ 0.2 cos (Ps> = j ﬂeiy(x—AEﬂrEdS:1 cos tps),
s=1 o 27T

(B2)

allows us to calculate the integrals over ths,

a similar near-singularity in the second term. However, this
only affects the calculation afn in the vicinity of AE=0. In

this region, our results apply only in 1An aroundAE=0 is
featureless and exhibits very little change with temperature,
thus being of no physical intereétf., Fig. 5. What is im-
portant is that, in the vicinity of the phase transition, Eq.
(B6) works well for all temperatures, even when- .
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