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We study the motion of a pointlike impurity in a Bose-Einstein condensate atT=0. By solving the Gross-
Pitaevskii(GP) equation in a perturbative manner we calculate the induced mass of the impurity and the drag
force on the impurity in three-, two-, and one-dimensional(1D) cases. The relationship between the induced
mass and the normal mass of fluid is found, and coincides with the result of the Bogoliubov theory. The drag
force appears for the supersonic motion of the impurity. In 1D the drag force is investigated also on the basis
of the exact Lieb-Liniger theory, using the dynamic form factor, which has been evaluated by the Haldane
method of the calculation of correlation functions. In this theory the force appears for an arbitrarily small
velocity of the impurity. The possibility of measuring the form factor in existing experiments is noted.
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I. INTRODUCTION

One of the most important peculiarities of Landau theory
superfluidity is the existence of a finite critical velocity. If a
body moves in a superfluid atT=0 with velocityV less then
vc, the motion is dissipationless. AtV.vc a drag force arises
because of the possibility of emission of elementary excita-
tions. However, both theoretical and experimental investiga-
tion in superfluid4He are difficult. The critical velocity in
4He is related to the creation of protons, for which one has
no simple theoretical description. Further, an important role
is played by complicated processes involving vortex ring
production.

The situation in low-density weakly interacting Bose-
Einstein condensed(BEC) gases is simpler. The Landau
critical velocity in this case is due to Cherenkov emission of
phonons, which can be described by mean-field theory. Due
to the presence in the theory of an intrinsic length
parameter—the correlation lengthj—the friction force for a
small body does not depend on its structure. Vortex rings in
the BEC cannot have a radius of less thanj (see[1]) and it is
reasonable to believe that probability of their creation by a
small body is small. Thus, quantitative investigation of criti-
cal velocities in BEC is very interesting and can be used to
probe the superfluidity of a quantum gas.

Recently, the existence of the critical velocity in a Bose-
Einstein condensed gas was confirmed in a few experiments.
At MIT a trapped condensate was stirred by a blue detuned
laser beam[2] and the energy of dissipation was measured.
The critical velocity was found to be smaller than the speed
of sound due to the emission of vortices. The diameter of the
laser spot in this experiment was of a macroscopic size and
was large compared to the healing length. An improved tech-
nique allowed for the measurement of the drag force acting
on the condensate in a subsequent experiment[3].

The analytical study of flow of the condensate over an
impurity is highly nontrivial, due to the intrinsic nonlinearity
of the problem arising from the interaction of the particles in
the condensate. In one dimension the dissipation could occur
at velocities smaller than predicted by Landau’s approach,

due to the emission of solitons[4]. The dependence of the
critical velocity on the type of the potential was studied both
by using a perturbative approach and numerical integration
in [5,6]. The effective two-dimensional(2D) problem was
considered in[7]. In this work generation of excitations in
the oscillating condensate, in a time-dependent parabolic trap
in the presence of a static impurity, was studied analytically.
A three-dimensional(3D) flow of a condensate around an
obstacle was calculated numerically by integration of the
Gross-Pitaevskii(GP) equation and the emission of vortices
was observed[8,9].

In this article we study ad-function perturbation moving
at a constant velocity in a condensate. We find analytically
the depletion of the superfluid fraction and the drag force.

II. THREE-DIMENSIONAL SYSTEM

Let us consider an impurity moving through a 3D conden-
sate atT=0. One of the possible realizations of this model
could be the scattering of heavy neutral molecules by the
condensate.

A. Effective mass and normal fraction

We start from the 3D energy functional of a homogeneous
weakly interacting Bose gas in the presence of ad-function
perturbation(an impurity) moving with a constant velocity
V,

E =E F "2

2m
u¹cu2 + „m − gidsr − Vtd…ucu2 +

g

2
ucu4Gd3x,

s1d

wherec is the condensate wave function,m is the chemical
potential,m the mass of a particle in the condensate, andg
=4p"2a/m and gi =2p"2b/m are particle-particle and
particle-impurity coupling constants, witha andb being the
respective scattering lengths[10]. We will assume that the
interaction with impurity is small and we will use perturba-
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tion theory. By splitting the wave function into a sum of the
unperturbed solution and a small correctioncsr ,td=f0

+dcsr ,td, and linearizing the time-dependent GP equation
with respect todc, we obtain an equation describing the time
evolution ofdc,

i"
]

] t
dc = S−

"2

2m
D − m + 2guf0u2Ddc + gf0

2dc*

+ gidsr − Vtdf0. s2d

In a homogeneous systemf0 is a constant fixed by the par-
ticle densityf0=În andm=gn=mc2.

The perturbation follows the moving impurity, i.e.,dc is a
function of sr −Vtd, so the coordinate derivative is related to

the time derivative]dcsr −Vtd /]t=−V¹W dcsr −Vtd. We shall
work in the frame moving with the impurityr 8=r −Vt, and
the subscript overr will be dropped.

Equation(2) for a perturbation in a homogeneous system
can be conveniently solved in momentum space. In order to
do this we introduce the Fourier transform of the wave func-
tion dck =ee−ik·rdcsr dd3x. Equation(2) becomes

S"k ·V −
"2k2

2m
− mc2Ddck − mc2sdc−kd* − gif0 = 0. s3d

The substitution ofk→−k and complex conjugation of(3)
give the second equation. The obtained system of linear
equations can be easily solved:

dck = gif0

"k ·V +
"2k2

2m

s"k ·Vd2 −
"2k2

2m
S"2k2

2m
+ 2mc2D . s4d

Let us calculate the energy of the perturbation. By ne-
glecting terms of the order ofgi udcu2 the energy functional
(1) becomes

E = E0 + gif0
2 +E "k ·V udcku2

d3k

s2pd3 +
gif0

2
sdc + dc*dr=0.

s5d

Here E0=Ngn/2 is the energy of the system in the ab-
sence of the perturbation. We expand the third and fourth
terms in powers ofV. To avoid the large-k divergency, one
must also introduce a renormalization of the scattering am-
plitude. It is sufficient to express the coupling constant in the
second term of Eq.(5) in terms of the scattering amplitudeb,
using the second-order Born approximation,

gi =
2p"2b

m
F1 +

2p"2b

m
E S"2k2

2m
D−1 d3k

s2pd3G . s6d

Finally, by carrying out the integration over momentum
space and consideringNimp impurities with a concentration
given byx=Nimp/N we obtain the energy per particle,

E

N
= H2pna3S1 + x

b

a
D + 8p3/2sna3d3/2xSb

a
D2J "2

ma2

+
2Îp

3
sna3d1/2xSb

a
D2mV2

2
. s7d

If we setV=0 we recover Bogoliubov’s corrections to the
energy in the presence of quenched impurities[11,12]. Note
that even if the “mean-field” energy obtained from the GP
equation in the absence of impuritiessx=0d leaves out terms
of the order ofsna3d3/2, the equations we obtain in the pres-
ence of impurities in a perturbative manner still correctly
describe the effect of the disorder up to the terms of the order
of sna3d3/2.

If VÞ0 a quadratic term in the impurity contribution to
the energy is present. It can be denoted asxm*V2/2, with

m* =
2Îp

3
sna3d1/2Sb

a
D2

m s8d

being the induced mass, i.e., the mass of particles dragged by
an impurity[13]. Applicability of the perturbation theory de-
mandsm* to be small compared tom. This gives the condi-
tion sna3d1/2sb/ad2!1. At zero temperature the interaction
between particles does not lead to depletion of the superfluid
density, and the suppression of the superfluidity comes only
from the interaction of particles with impurities. Thus(8)
defines the normal densityrn=xrm* /m.

This result is in agreement with the one obtained by the
means of Bogoliubov transformation starting from the
Hamiltonian written in the second-quantized form in the
presence of disorder[11,12].

The normal density of a superfluid is an observable quan-
tity. It was evaluated in liquid4He by measuring of the mo-
ment of inertia of a rotating liquid or by measuring of the
second-sound velocity. Both methods can be, in principle,
developed for BEC gases.

B. Drag force and energy dissipation

The force with which the impurity acts on the system is

F = −E ucsr du2¹W fgidsr dgd3x = gif¹W ucsr du2gr=0. s9d

Expanding the wave function into the sum off0 anddc
and neglecting terms of orderdc2, we obtain

F = gif0E ikfdck + sdc−kd*g
d3k

s2pd3

=E 2sgif0d2iks"2k2/2md

s"k ·V + i0d2 −
"2k2

2m
S"2k2

2m
+ 2mc2D

d3k

s2pd3 ,

s10d

where we added an infinitesimal positive imaginary part +i0
to the frequencyk ·V, according to the usual Landau causal-
ity rule. The drag force is obviously directed along to the
velocity V.
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We can carry out the integration with respect to cosq,
whereq is the angle between the momentumk and velocity
V, using the formula 1/x+ i0=Ps1/xd− ipdsxd, where P de-
notes the principal value. Due to the integration between
symmetric limits, only the imaginary part contributes to the
integral with respect to cosq. The poles in the integration
over cosq appear not for all values of momentum, but only
for

uku ø kmax= 2msV2 − c2d1/2/". s11d

Thus the energy dissipation takes place only if the impurity
moves with a speed larger than the speed of sound. Integra-
tion with respect tok, taking into account restriction(11),
finally gives

FV = 4pnb2mV2s1 − c2/V2d2. s12d

The energy dissipation,Ė=−FVV, can be evaluated by mea-
suring the heating of the gas.

For largeV the force is proportional toV2. The energy

dissipation per unit time can then be presented asĖ=−gE
with the damping rateg,nb2V.

Note in conclusion that our perturbative calculations can-
not describe processes involving the dissipation of energy
due to the creation of quantized vortex rings. Such a creation
is possible atV,c, but has a small probability for low ve-
locity and for a weak pointlike impurity.

III. LOW-DIMENSIONAL SYSTEMS

In this type of experiment the role of the impurity can also
be played by a laser beam with small enough size and inten-
sity. The Fourier components of the perturbed wave function
dck are given by the formula(4), which is derived in an
arbitrary number of dimensions. The only difference is in the
substitution ofd3k/ s2pd3, with dDk/ s2pdD in the integrals.

A. Two-dimensional system

There are different possible geometries of the experiment.
One can create a 2D perturbation in the 3D condensate. Such
a 2D impurity can be created, analogously to the MIT ex-
periment[2,3], by a thin laser beam. Such a beam creates a
cylindrical hole in the condensate, which is stirred by mov-
ing the position of the laser beam. Another possibility is to
fix the position of the laser beam along the long axis of an
elongated condensate, so that the dissipation can be studied
by shaking the trap and exciting the breathing modes. The
problem is to create a beam with a diameter that is small
compared to the correlation length. The theory can be easily
generalized for beams of finite diameter. The intensity of the
beam can be tuned to satisfy the condition of a weak pertur-
bation.

The more interesting possibility is the investigation of
true 2D condensates, which can be created in plane optical
traps, produced by a standing light wave. If the light inten-
sity is large enough, tunneling between planes is small and
the condensates behave as independent 2D systems. The im-
purity can again be created by a laser beam perpendicular to

the condensate plane. Another possibility is to use impurity
atoms, which can be driven by a laser beam, with a fre-
quency close to the atomic resonance of the impurity.

In two dimensions one hasd2k=kdkdq. The drag forceF
is different from zero only if the denominator has poles,
which means that the velocityV must be larger than the
speed of soundc. Only momenta smaller thankmax [see Eq.
(11)] contribute to the integral.

Integration for the velocitiesV.c gives us the drag force
in the 2D case,

FV
2D = gi

2n2m
2sV2 − c2d/s"3Vd, s13d

wheren2 is 2D density.
In a quasi-two-dimensional system, i.e., when the gas is

confined in the z direction by the harmonic potential
s1/2dmvz

2r2, the 2D coupling constant equalsgi

=Î2ps"2b/mazd, whereaz=Î" /mvz is the oscillator length
andb is the 3D scattering length.(We consider here only the
mean-field 2D situation. See[14], Sec. 17 for a more de-
tailed discussion.)

The calculation of the effective mass gives

m* = gi
2n2m/s4p2"2c2d. s14d

Notice again that our calculations do not take into account
the creation of vortex pairs which is possible atV,c.

B. One-dimensional system: Mean-field theory

In one dimension the integration is straightforward. The
integration(10) overk gives 2pi if V.c and zero otherwise.
So, the force isFV

1D=2gi
2n1m/"2, wheren1 is the linear den-

sity. In a quasi-one-dimensional system(i.e., a very elon-
gated trap or a waveguide) there are no excitations in the
radial harmonic confinement, and the coupling constant is
given by gi =−"2/mb1D with b1D=−a'

2 /b, where a'

=Î" /mv' and one hasF1D=2n1"2/mb1D
2 .

An interesting peculiarity is that the result does not de-
pend on the velocityV (where, of course, the velocity must
be larger than the speed of sound). The same result for thed
potential was found in[6]. Calculation of the effective mass
givesm* =gi

2n1/2"c3.
In a 1D system energy dissipation is possible atV,c due

to the creation of the “gray solitons” first considered in[15].
Nonlinear calculations[4] show that the critical velocity for
this process decreases with increasing coupling constantgi.

This theory can be checked in an experiment in a 3D
condensate. The 2D impurity can be presented by a moving
light sheet.

C. One-dimensional system: Bethe-ansatz theory

We saw in Sec. III B that for a weakly interacting impu-
rity the drag force appears only when the impurity velocityV
is larger that the Landau critical velocity, which is equal to
the velocity of soundc. The situation is, however, different
in the Bethe-ansatz Lieb-Liniger theory of a 1D Bose gas
[16]. According to this theory, excitations in the system ac-
tually have a fermionic nature. Even a low-frequency pertur-
bation can create a particle-hole pair with a total momentum
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near 2pF;2"kF="2pn1. To calculate the drag force for this
case we will use the dynamic form factor of the system
ssv ,kd (we follow the notation of[17], Sec. 87). The dissi-
pated energy atT=0 can be calculated as

Ė = −E
−`

` dk

2p
E

0

` dv

p
v

n1

2"
ssv,kduUsv,kdu2, s15d

whereUsv ,kd=2pgidsv−kVd is the Fourier transform of the
impurity potential Ust ,zd=gidsz−Vtd. One has uUsv ,kdu2
=2pgi

2tdsv−kVd, wheret is the “time of observation.” Thus
the energy dissipation per unit of time is

Ė = − FVV = −
gi

2n1V

"
E

0

` dk

2p
ksskV,kd, s16d

whereFV is the drag force. We will try to estimate the ve-
locity dependence ofFV.

For low-frequency dissipation the important values ofk
are near 2kF. According to[18],

ssv,2kFd , vsh−2d, v → 0, s17d

whereh=2"kF /mc=2p"n1/mcù2 is the characteristic pa-
rameter of a 1D Bose gas. In the mean-field limit whenn1
→`, the parameterh→`. In the opposite case of a small
density bosons behave as impenetrable particles(Girardeau
limit [19]) and the dynamic form factor coincides with the
one of an ideal Fermi gas. In this limith=2.

In the general case one can calculatessv ,kd at smallv
andk<2kF, generalizing the method of Haldane[20] for the
case of time-dependent correlation functions. Calculations
give

ssv,kd =
n1c

v2 S "v

mc2Dh

fScDk

v
D, v . 0, k . 0, s18d

wherek=2kF+Dk and the functionfsxd is

fsxd = Ashds1 − x2dh/2−1 s19d

in the intervaluxu,1 and is equal to zero atuxuù1 (see also
[21]). The constantAshd can be calculated in two limiting
cases: Ash=2d=p /4 (see [14], Sec. 17.3) and Ashd
<8p2/ fs8CdhG2sh /2dg, whereC=1.78. . . is the Euler ’s con-
stant forh@1 (details of the calculation will be published
elsewhere).

Substituting(18) into (16) we finally find velocity depen-
dence of the drag force,

FV =
G„sh/2d…

2ÎpG„sh + 1/2d…
Ashd

gi
2ni

2

"V
Sh

V

c
Dh

. s20d

Equation(20) is valid for the conditionV!c.
Thus in the Girardeau strong-interaction limitFV,V and

Bose gas behaves, from the point of view of friction, as a
normal system, where the drag force is proportional to the
velocity. On the contrary, in the mean-field limit the force is
very small and the behavior of the system is analogous to a

3D superfluid. However, even in this limit the presence of
the small force makes a great difference. Let us imagine that
our system is twisted into a ring, and that the impurity rotates
around the ring with a small angular velocity. If the system is
superfluid in the usual sense of the word, the superfluid part
must stay at rest. Presence of the drag force means that equi-
librium will be reached only when the gas as a whole rotates
with the same angular velocity. From this point of view the
superfluid part of the 1D Bose gas is equal to zero even at
T=0. Notice that in an earlier paper[22] the author con-
cluded thatrs=r at T=0 for arbitraryh. We believe that this
difference results from different definitions ofrs and reflects
the nonstandard nature of the system.

Equation(20) is equivalent to a result which was obtained
by a different method in[23], with a model consisting of an
impurity considered as a Josephson junction. Notice that the
process of dissipation, which in the language of fermionic
excitations can be described as creation of a particle-hole
pair, corresponds in the mean-field limit to creation of a pho-
non and a small-energy soliton. It seems that such a process
cannot be described in the mean-field approach in the linear
approximation.

Experimental confirmation of these quite nontrivial pre-
dictions demands a true 1D condensate, where non-mean-
field effects can be sufficiently large. Such condensates have
been investigated in previous experiments[24,25]. In other
experiments[26,27] condensates have been created in the
form of elongated independent “needles” in optical traps,
consisting of two perpendicular standing laser waves. The
role of an impurity in this case must be played by a light
sheet, perpendicular to the axis of condensates and moving
along them.

Notice also that application of the additional light waves
in experiments of this type allows one to create a harmonic
perturbation of the form

Ust,zd = U0 cossvt − kzd, k = 2kF + Dk, s21d

with small v andDk. Such potential was used in[26,27] for
experiments with a 1D condensate in a periodic lattice. How-
ever, for a small amplitudeU0, measurement of the dissipa-
tion energyQ gives, according to(15), the dynamic form
factor Ssv ,kd directly.

IV. CONCLUSIONS

We have studied the motion of an impurity through the
condensate at zero temperature by considering the perturba-
tion of a stationary solution of the GP equation. We calcu-
lated the induced mass which contributes to the mass of a
normal component. We find that the motion at small veloci-
ties is dissipationless in 1D, 2D, and 3D systems, although
movement with velocities larger than the speed of sound
leads to a nonzero drag force due to Cherenkov radiation of
phonons. The expressions for the drag force are calculated.
We used results for the dynamic form factor of the exact
Lieb-Liniger theory to investigate the velocity dependence of
the drag force in a 1D system. The form factor was calcu-
lated with the help of the Haldane method of calculations of
correlation functions. The drag force exists at an arbitrarily

G. E. ASTRAKHARCHIK AND L. P. PITAEVSKII PHYSICAL REVIEW A 70, 013608(2004)

013608-4



small velocity of motion, but is very small in the mean-field
limit. The dynamic form factor can be also directly measured
by applying a harmonic time-dependent perturbation on 1D
condensates[26,27].
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