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Motion of a heavy impurity through a Bose-Einstein condensate
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We study the motion of a pointlike impurity in a Bose-Einstein condensale=at By solving the Gross-
Pitaevskii(GP) equation in a perturbative manner we calculate the induced mass of the impurity and the drag
force on the impurity in three-, two-, and one-dimensiofidD) cases. The relationship between the induced
mass and the normal mass of fluid is found, and coincides with the result of the Bogoliubov theory. The drag
force appears for the supersonic motion of the impurity. In 1D the drag force is investigated also on the basis
of the exact Lieb-Liniger theory, using the dynamic form factor, which has been evaluated by the Haldane
method of the calculation of correlation functions. In this theory the force appears for an arbitrarily small
velocity of the impurity. The possibility of measuring the form factor in existing experiments is noted.
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I. INTRODUCTION due to the emission of solitor{g]. The dependence of the

One of the most important peculiarities of Landau theorycitical velocity on the type of the potential was studied both
superfluidity is the existence of a finite critical velocity. If a Dy using & perturbative approach and numerical integration
body moves in a superfluid @=0 with velocityV less then in [5,6]. The effective two-dimensionaD) problem was
ve, the motion is dissipationless. At>uv, a drag force arises considered in(7]. In this work generation of excitations in
because of the possibility of emission of elementary excitathe oscillating condensate, in a time-dependent parabolic trap
tions. However, both theoretical and experimental investigain the presence of a static impurity, was studied analytically.
tion in superfluid*He are difficult. The critical velocity in A three-dimensiona(3D) flow of a condensate around an
“He is related to the creation of protons, for which one habstacle was calculated numerically by integration of the
no simple theoretical description. Further, an important roleGross-Pitaevski(GP) equation and the emission of vortices
is played by complicated processes involving vortex ringwas observeds,9].
production. In this article we study a&-function perturbation moving

The situation in low-density weakly interacting Bose- at a constant velocity in a condensate. We find analytically
Einstein condensedBEC) gases is simpler. The Landau the depletion of the superfluid fraction and the drag force.
critical velocity in this case is due to Cherenkov emission of
phonons, which can be described by mean-field theory. Due
to the presence in the theory of an intrinsic length

parameter—the correlation Ieng&w—the friction force fo'r a  Letus consider an impurity moving through a 3D conden-
small body does not depend on its structure. Vortex rings isate atT=0. One of the possible realizations of this model

the BEC cannot have a radius of less tifasee[1]) and itis  could be the scattering of heavy neutral molecules by the
reasonable to believe that probability of their creation by acondensate.

small body is small. Thus, quantitative investigation of criti-
cal velocities in BEC is very interesting and can be used to _ ,
probe the superfluidity of a quantum gas. A. Effective mass and normal fraction
Recently, the existence of the critical velocity in a Bose- \We start from the 3D energy functional of a homogeneous
Einstein condensed gas was confirmed in a few experimentgeakly interacting Bose gas in the presence @fanction
At MIT a trapped condensate was stirred by a blue detuneg@erturbation(an impurity moving with a constant velocity
laser beani2] and the energy of dissipation was measuredy/,
The critical velocity was found to be smaller than the speed 22
of sound due to the emission of vortices. The diameter of the E :f |:§n|v¢/|2 + (- gar - VO)|yf2 + g|¢|4 X,

Il. THREE-DIMENSIONAL SYSTEM

laser spot in this experiment was of a macroscopic size and

was large compared to the healing length. An improved tech- 1)
nique allowed for the measurement of the drag force acting
on the condensate in a subsequent experirf&nt where s is the condensate wave functiom,is the chemical

The analytical study of flow of the condensate over anpotential,m the mass of a particle in the condensate, gnd
impurity is highly nontrivial, due to the intrinsic nonlinearity =4w4%a/m and g,=27A°b/m are particle-particle and
of the problem arising from the interaction of the particles inparticle-impurity coupling constants, witnandb being the
the condensate. In one dimension the dissipation could occuiespective scattering lengtli$0]. We will assume that the
at velocities smaller than predicted by Landau’s approachinteraction with impurity is small and we will use perturba-
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tion theory. By splitting the wave function into a sum of the E 5 b 32 a3 [P 2| 2
unperturbed solution and a small correctiahr ,t)=d, N |emal 1txy )+ 8 (na’)™x 3 [ma
+6y(r,t), and linearizing the time-dependent GP equation —
with respect tosy, we obtain an equation describing the time . 2V’7T(na3)l,2 b\?mV? @
evolution of 6y, 3 X 2

p 52 If we setV=0 we recover Bogoliubov’s corrections to the

ih— o= <_ —A-pu+ 29|¢o|2) S+ gdady’ energy in the presence of quenched impurifleEs12. Note
Jt 2m that even if the “mean-field” energy obtained from the GP
+g;8(r = V1) . ) equation in the absence of impuritieg=0) leaves out terms

of the order of(na®)®?, the equations we obtain in the pres-
ence of impurities in a perturbative manner still correctly
describe the effect of the disorder up to the terms of the order
of (na®)?3~2.

If V#0 a quadratic term in the impurity contribution to
the energy is present. It can be denotegyasV?/2, with

In a homogeneous systedy is a constant fixed by the par-
ticle density¢y=vn and u=gn=mc.

The perturbation follows the moving impurity, i.&y is a
function of (r —V1t), so the coordinate derivative is related to

the time derivative)Sy(r —Vt)/ st=-VV sys(r —Vt). We shall

work in the frame moving with the impurity’ =r —Vt, and . 2\"77 312 P 2

the subscript over will be dropped. m = T(na) PALL
Equation(2) for a perturbation in a homogeneous system

can be conveniently solved in momentum space. In order t§€ing the induced mass, i.e., the mass of particles dragged by

do this we introduce the Fourier transform of the wave func-an impurity[13]. Applicability of the perturbation theory de-
tion Sys = [k sy(r)dPx. Equation(2) becomes mandsm to be small compared to. This gives the condi-

tion (na®)¥3(b/a)><1. At zero temperature the interaction
1212 between particles does not lead to depletion of the superfluid
(ﬁk V- — = mg) S —mME(S_)" - gipp=0. (3)  density, and the suppression of the superfluidity comes only
2m from the interaction of particles with impurities. Thig8)
The substitution ok— —k and complex conjugation ¢8)  defines the normal densify,=xpm /m.

give the second equation. The obtained system of linear 1hiS resultis in agreement with the one obtained by the
equations can be easily solved: means of Bogoliubov transformation starting from the

Hamiltonian written in the second-quantized form in the
presence of disordgd1,12.

8

ik -V + @ The normal density of a superfluid is an observable quan-
Sth = ot 4) tity. It was evaluated in liquidHe by measuring of the mo-
Y= Gido #2k? [ B2k ' ment of inertia of a rotating liquid or by measuring of the
(hk .V)2—%(%+Zm ) second-sound velocity. Both methods can be, in principle,

developed for BEC gases.
Let us calculate the energy of the perturbation. By ne-
glecting terms of the order af;| 54> the energy functional

(1) becomes B. Drag force and energy dissipation
The force with which the impurity acts on the system is
d*k  gi¢
E=E+-2+Jhk-V5 2—— + Z0(5y+ 5 )=, - .
ot O Gyt (O o F=— [ 100 a0 1d% = glF D (©)

(5)
Expanding the wave function into the sum &f and 6y

Here E;=Ngn/2 is the energy of the system in the ab- and neglecting terms of orde/?, we obtain
sence of the perturbation. We expand the third and fourth .
d>k

terms in powers o¥/. To avoid the largée divergency, one ax

must also introduce a renormalization of the scattering am- (2m)®

plitude. It is sufficient to express the coupling constant in the 9 oo 3
second term of E(5) in terms of the scattering amplitudbe - f 2(gi o) ik (K T2m) d°k

using the second-order Born approximation, (ik -V +i0)2 - %(% + 2mcz> (2m?*

gi:2ﬂ%2b{1+2ﬂ*ﬁ2bf<@>‘l ok } © (10)

3
m m 2m /. (2m) where we added an infinitesimal positive imaginary paé +
Finally, by carrying out the integration over momentum to the frequenck -V, according to the usual Landau causal-
space and considering;y,, impurities with a concentration ity rule. The drag force is obviously directed along to the
given by x=Nin,/N we obtain the energy per particle, velocity V.

F= gi¢0f ik[ 8 + (89)]
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We can carry out the integration with respect to dos
whered is the angle between the momentlknand velocity
V, using the formula {+i0=P(1/x)-i7d(x), where P de-

PHYSICAL REVIEW A 70, 013608(2004)

the condensate plane. Another possibility is to use impurity
atoms, which can be driven by a laser beam, with a fre-
quency close to the atomic resonance of the impurity.

notes the principal value. Due to the integration between In two dimensions one hafk=kdkdd. The drag force
symmetric limits, only the imaginary part contributes to theis different from zero only if the denominator has poles,
integral with respect to co8. The poles in the integration which means that the velocity must be larger than the
over cost appear not for all values of momentum, but only speed of sound. Only momenta smaller thaky,. [See Eq.
for (11)] contribute to the integral.

Integration for the velocitie¥ > c gives us the drag force
in the 2D case,
Thus the energy dissipation takes place only if the impurity 2D _ 2 2 _ 2\/(#3
moves with a speed larger than the speed of sound. Integra- RV = gingm (V2 = GHI(E),
tion with respect tok, taking into account restrictiofill), = wheren, is 2D density.
finally gives In a quasi-two-dimensional system, i.e., when the gas is
confined in thez direction by the harmonic potential
(1/2_)mw§r2, the 2D coupling constant equalsg;
=v2m(h?b/ma,), wherea,=\%/mw, is the oscillator length
andb is the 3D scattering lengtliWe consider here only the
mean-field 2D situation. Seg4], Sec. 17 for a more de-
tailed discussion.

The calculation of the effective mass gives

m’ = gZn,m/(47%h%c?).

K| < Knax= 2m(V2 = )Y/, (11)

(13

Fy = 4mnb?mVA(1 - c?/V?)?. (12
The energy dissipatiorE:—FVV, can be evaluated by mea-
suring the heating of the gas.

For largeV the force is proportional t&/. The energy

dissipation per unit time can then be presentedEasyE
with the damping ratey~ nb?V.

Note in conclusion that our perturbative calculations can-
not describe processes involving the dissipation of energy . . . i
due to the creation of quantized vortex rings. Such a creatioﬁ'o'[Ice again that our calculations do not take into account
is possible aV<c, but has a small probability for low ve- the creation of vortex pairs which is possible\at c.
locity and for a weak pointlike impurity.

(14)

B. One-dimensional system: Mean-field theory

In one dimension the integration is straightforward. The
integration(10) overk gives 2 if V>c and zero otherwise.

In this type of experiment the role of the impurity can also 5o, the force iFP=2g?n,m/#2, wheren, is the linear den-
be played by a laser beam with small enOUgh size and |nterg'|ty In a quasi_one_dimensionaj Systqim” a very elon-
sity. The Fourier components of the perturbed wave functiorbated trap or a waveguiiehere are no excitations in the
oy are given by the formula4), which is derived in an radial harmonic confinement, and the coupling constant is
arbitrary number of dimensions. The only difference is in thegiven by g,=-#2/mbyp with le:-ai/b, where a;
substitution ofd®k/(2m)*, with d°k/(2m)® in the integrals. = \7/mw, and one ha&'P=2n,72/mtz,,

An interesting peculiarity is that the result does not de-
pend on the velocity (where, of course, the velocity must
be larger than the speed of soyn@ihe same result for thé

There are different possible geometries of the experimenfpotential was found ifi6]. Calculation of the effective mass
One can create a 2D perturbation in the 3D condensate. Sugfiyes m’ :gfnl/zﬁc?»_

a 2D impurity can be created, analogously to the MIT ex-  |n a 1D system energy dissipation is possibl&/atc due
periment[2,3], by a thin laser beam. Such a beam creates g the creation of the “gray solitons” first considered11%].
cylindrical hole in the condensate, which is stirred by mov-Nonlinear calculation$4] show that the critical velocity for
ing the position of the laser beam. Another possibility is tothis process decreases with increasing coupling congtant
fix the pOSition of the laser beam along the IOng axis of an This theory can be checked in an experiment in a 3D

elongated condensate, so that the dissipation can be studiggndensate. The 2D impurity can be presented by a moving
by shaking the trap and exciting the breathing modes. Th@ght sheet.

problem is to create a beam with a diameter that is small
compared to the correlation length. The theory can be easily
generalized for beams of finite diameter. The intensity of the
beam can be tuned to satisfy the condition of a weak pertur- We saw in Sec. lll B that for a weakly interacting impu-
bation. rity the drag force appears only when the impurity velodity
The more interesting possibility is the investigation of is larger that the Landau critical velocity, which is equal to
true 2D condensates, which can be created in plane optic#he velocity of sounct. The situation is, however, different
traps, produced by a standing light wave. If the light inten-in the Bethe-ansatz Lieb-Liniger theory of a 1D Bose gas
sity is large enough, tunneling between planes is small anfll6]. According to this theory, excitations in the system ac-
the condensates behave as independent 2D systems. The itmally have a fermionic nature. Even a low-frequency pertur-
purity can again be created by a laser beam perpendicular tzation can create a particle-hole pair with a total momentum

IIl. LOW-DIMENSIONAL SYSTEMS

A. Two-dimensional system

C. One-dimensional system: Bethe-ansatz theory
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near pg=2hak-=A2mn,. To calculate the drag force for this 3D superfluid. However, even in this limit the presence of
case we will use the dynamic form factor of the systemthe small force makes a great difference. Let us imagine that
o(w,k) (we follow the notation of17], Sec. 87. The dissi-  our system is twisted into a ring, and that the impurity rotates
pated energy af =0 can be calculated as around the ring with a small angular velocity. If the system is
superfluid in the usual sense of the word, the superfluid part
“do m 5 must stay at rest. Presence of the drag force means that equi-
2w _w_cr(“’ KU (w.K) (15 Jibrium will be reached only when the gas as a whole rotates
with the same angular velocity. From this point of view the

whereU(w,k)=2mg;8(w—kV) is the Fourier transform of the Superfluid part of the 1D Bose gas is equal to zero even at
impurity potential U(t,2)=g;8(z-Vt). One has|U(w,k)2 ~ T=0. Notice that in an earlier papg22] the author con-

=2mg %t 5(w—kV), wheret is the “time of observation.” Thus cluded thaips=p at T=0 for arbitrary». We believe that this
the energy dissipation per unit of time is difference results from different definitions pf and reflects

the nonstandard nature of the system.
) g?nyV [ dk Equation(20) is equivalent to a result which was obtained
E=-FWV=- 'TJ k(T(kV K, (16) by a different method ii23], with a model consisting of an
0 impurity considered as a Josephson junction. Notice that the
process of dissipation, which in the language of fermionic
excitations can be described as creation of a particle-hole
pair, corresponds in the mean-field limit to creation of a pho-
non and a small-energy soliton. It seems that such a process
cannot be described in the mean-field approach in the linear
o0, 2k) ~ 072, w0, (17) approximation. _ _ _ .
Experimental confirmation of these quite nontrivial pre-
where 7=2#k:/mc=2n#in,/mc=2 is the characteristic pa- dictions demands a true 1D condensate, where non-mean-
rameter of a 1D Bose gas. In the mean-field limit wingn  field effects can be sufficiently large. Such condensates have
— oo, the parametet;— . In the opposite case of a small been investigated in previous experimefﬂé,Za. In other
density bosons behave as impenetrable partighisardeau  experiments[26,27 condensates have been created in the
limit [19]) and the dynamic form factor coincides with the form of elongated independent “needles” in optical traps,
one of an ideal Fermi gas. In this limij=2. consisting of two perpendicular standing laser waves. The
In the general case one can calculate,k) at smalle  role of an impurity in this case must be played by a light
andk= 2kg, generalizing the method of Haldaf0] for the ~ sheet, perpendicular to the axis of condensates and moving

case of time-dependent correlation functions. Calculationglong them. o N _
give Notice also that application of the additional light waves

in experiments of this type allows one to create a harmonic

hiw \7 [ cAk erturbation of the form
o-(wk)—%< "’)f(c—), ©0>0 k>0, (18 '

whereF,, is the drag force. We will try to estimate the ve-
locity dependence dfy,.

For low-frequency dissipation the important valueskof
are near Re. According to[18],

me?/ '\ w Ut,2)=Ug codwt —ka), k=2ke+Ak,  (21)
wherek=2k:+Ak and the functiorf(x) is with small @ and Ak. Such potential was used [26,27 for
experiments with a 1D condensate in a periodic lattice. How-
f(x) = A(m)(1 -x0) 7>t (19)  ever, for a small amplitud&),, measurement of the dissipa-

] ) ) tion energyQ gives, according tql15), the dynamic form
in the intervallx| <1 and is equal to zero @t/ =1 (see als0  factor S(w, k) directly.

[21]). The constanfA(7) can be calculated in two limiting
cases: A(p=2)=m/4 (see [14], Sec. 17.3 and A(%)

~8m2/[(8C)M?(7/2)], whereC=1.78... is the Euler s con- V. CONCLUSIONS

stant for >1 (details of the calculation will be published  we have studied the motion of an impurity through the

elsewherg condensate at zero temperature by considering the perturba-
Substituting(18) into (16) we finally find velocity depen-  tion of a stationary solution of the GP equation. We calcu-

dence of the drag force, lated the induced mass which contributes to the mass of a

normal component. We find that the motion at small veloci-

__ I((2) A )9| i ( Y)" (20) ties is dissipationless in 1D, 2D, and 3D systems, although

2\5’7_Tr((7,+ 1/2)) AV movement with velocities larger than the speed of sound

leads to a nonzero drag force due to Cherenkov radiation of

Equation(20) is valid for the conditionv<c. phonons. The expressions for the drag force are calculated.
Thus in the Girardeau strong-interaction lirkiyj~V and  We used results for the dynamic form factor of the exact
Bose gas behaves, from the point of view of friction, as alLieb-Liniger theory to investigate the velocity dependence of
normal system, where the drag force is proportional to thehe drag force in a 1D system. The form factor was calcu-
velocity. On the contrary, in the mean-field limit the force is lated with the help of the Haldane method of calculations of
very small and the behavior of the system is analogous to aorrelation functions. The drag force exists at an arbitrarily
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