
Probing many-body states of ultracold atoms via noise correlations

Ehud Altman, Eugene Demler, and Mikhail D. Lukin
Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 10 June 2003; published 6 July 2004)

We propose to utilize density-density correlations in the image of an expanding gas cloud to probe complex
many-body states of trapped ultracold atoms. In particular, we show how this technique can be used to detect
superfluidity of fermionic gases and to study spin correlations of multicomponent atoms in optical lattices. The
feasibility of the method is investigated by analysis of the relevant signal to noise ratio including experimental
imperfections.
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Much of the excitement in the field of Bose-Einstein con-
densation(BEC) is due to the clear demonstration it provides
of the wave character of matter. The condensed state of
bosons involves macroscopic occupation of a delocalized
single particle state. Consequently, it is characterized by
sharp density peaks in the freely expanding gas cloud after it
is released from the trap[1]. Patterns that appear when two
or more superfluid clouds interfere[2], are a direct probe of
the single particle coherence, amplified by macroscopic oc-
cupation.

Recent experiments open intriguing directions for study-
ing many-body phenomena beyond single particle coherence.
For example, observation of the superfluid to Mott-insulator
transition[3], as well as experiments involving ultracold fer-
mions near a Feshbach resonance[4], address strongly cor-
related states of matter. The most intriguing aspect of such
systems is the existence of nontrivial correlations and com-
plex order that defy a description in terms of(single particle)
matter waves. Accordingly, they cannot be characterized
simply by the density profile of an expanding cloud. For
example, the localized atoms in Mott states of the optical
lattice display a vanishing interference pattern[3], which can
hardly reveal detailed properties of the quantum state. Like-
wise, superfluidity of paired fermions is not evident as a
coherence peak in the density profile[5], and detecting the
order parameter presents a considerable challenge. Observa-
tion of some theoretically proposed “exotic” many-atom
states[6,8,9] may prove even more elusive.

In this letter, we show that the quantum nature of certain
strongly correlated states can be revealed byspatial noise
correlations in the image of the expanding gas. This is simi-
lar in spirit to measurements of nonclassical correlations of
light in optical systems[11] and temporalcurrent noise in
mesoscopic conductors[10]. In analogy to quantum optics,
this technique allows us to study matter waves that lack
single particle coherence. Specifically we show:(i) Fermi-
onic atoms released from the trap would display a clear sig-
nature of superfluidty in their density correlations. Further-
more, detailed properties of the fermionic superfluidity can
be studied, such as pairing symmetry, and BCS to BEC
crossover[12]; (ii ) Atoms released from a Mott-insulating
state of the optical lattice display sharp(Bragg) peaks in the
density-density correlation function as a consequence of
quantum statistics;(iii ) These peaks can be used to probe
spin correlations of multicomponent bosons on optical lat-

tices. In particular, spin ordered Mott states proposed for
two-component bosons[7,8] can be detected. Finally, we
verify the experimental feasibility of the proposed measure-
ments.

Before proceeding, we note that earlier proposals to detect
fermionic superfluidity relied on dynamical response of the
cloud[13], inelastic scattering of light to induce and measure
excitations [14,16], or to microscopically image the pair
wave function in the trap[15]. In contrast, the present tech-
nique provides a direct probe of the pair coherence as well as
information on the pairing symmetry. We point out a recent
experiment that analyzed real-space density correlations in
interfering copies of a condensate, split by a Bragg pulse
[17].

We proceed by formulating a detection scheme for atoms
released from a single macroscopic trap. Suppose, for sim-
plicity, that the system is initially in some pure stateuFl. In
a typical experimental setup, the trapping potential is turned
off suddenly, and the atoms evolveindependentlyunder the
influence of the free propagatorU0std. This is valid provided
that the free-atom collision cross section is not too large.
Such conditions can be achieved for example by switching
the magnetic field to values far from the Feshbach resonance
when turning off the trap[4].

In such time of flight experiments, the column integrated
density of the expanding cloud is measured by light absorp-
tion imaging [18]. The images are commonly analyzed by
comparing to theoretical predictions for the density expecta-
tion value, given by

kn̂asr dlt = kFuU0
†stdca

†sr dcasr dU0stduFl, s1d

whereca is the field operator for bosons or fermions anda
denotes an internal atomic quantum number(spin). At finite
temperature, the expectation value in(1) is replaced by a
thermal average. After a long time of flight, the density dis-
tribution becomes proportional to the momentum distribution
in the initial trapped stateknsr dlt<sm/htdkn̂Qsr dl. The wave
vectorQsr d=mr / s"td defines a correspondence between po-
sition in the cloud and momentum in the trap.

It is important to realize that in each experimental image,
a single realization of the density is observed, not the expec-
tation value. Equation(1) is still meaningful, because the
density is a self-averaging quantity. Each bins in the image
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represents a substantial number of atomsNs, while the
atomic noise scales asOsÎNsd. However, sinceNs is not
macroscopic, the density fluctuations are visible. They are
characterized by the correlation function

Gabsr ,r 8d = kn̂asr dn̂bsr 8dlt − kn̂asr dltkn̂bsr 8dlt. s2d

In analogy with Eq.(1) this can be related to ground state
momentum correlations

Gabsr ,r 8d ~ kn̂Qsr dan̂Qsr8dbl − kn̂Qsr dalkn̂Qsr8dbl. s3d

The proportionality constant issm/"td2d, whered is the di-
mensionality. We shall be concerned primarily with pure
density-density correlationsGsr ,r 8d=oab Gabsr ,r 8d, which
do not require state-selective measurement. In practice, it
may be more convenient to consider the quantityDnsr ,r 8d
;nsr d−nsr 8d, whose fluctuations are closely related to
Gsr ,r 8d. If knsr dlt=knsr 8dlt, then

kDnsr ,r 8d2lt = Gsr ,r d + Gsr 8,r 8d − 2Gsr ,r 8d. s4d

Fermionic superfluids. As a specific example, we now
consider superfluid states of fermionic atoms. Such superflu-
ids sustain macroscopic coherence and their transport prop-
erties are similar to their bosonic counterparts. However, the
average density profile of the expanding cloud would not
reveal their superfluid nature. The second-order coherence
(3), on the other hand, is a direct probe of pair correlations in
momentum space. It is therefore particularly adept to detect
the condensed state of fermions, which is defined by a mac-
roscopic occupation of zero-momentum pairs. This would be
seen as pronounced correlations of density fluctuations be-
tween diametrically opposite sides of the cloud.

As an illustration consider first a system at zero tempera-
ture described by a BCS-like ground state

uFBCSl = p
k

suk + vkak↑
† a−k↓

† du0l. s5d

Note that this wave function can describe weak, as well as
tightly bound pairs for whichuk andvk have a wide momen-
tum distribution[12]. The average density profile of the ex-
panding cloud(1) is proportional to the BCS momentum
distribution functionkn̂sr dlt=2uvQsr du2, which is qualitatively
indistinguishable from a Fermi distribution atT=TC [4].

The essential difference between these states lies in the
two-particle correlations. For every atom with momentumk
in the BCS state, there is another one at exactly −k. Indeed,
a straightforward application of(3) for the BCS state gives

Gsr ,r 8d = nssr dd̃sr + r 8d, s6d

where nssr d=2uuQsr du2uvQsr8du2. d̃sr +r 8d is a sharply peaked
function of r +r 8, a direct analogue of thefirst-order coher-
ence peak signaling BEC. In a finite system, the peak width
,"t /mL is set by the spatial extent of the system, while its
precise form depends on the details of the superfluid wave
function in the trap. However,nssr d the weight of the peak at
r +r 8=0, is of completely general applicability. It simply
counts the number of zero momentum pairs with specified
individual momenta. The angular average ofnssr d gives the

radial part of the pairing wave function. This is plotted for
the BCS state in Fig. 1(a) (dashed). The solid line as well as
other plots in Fig. 1 depict the experimentally observable
column integrated functions.

Pairing symmetries other thans-wave, would be detected
by higher angular harmonics in the pair distributionnssr d.
The ability to detectdx2−y2 pairing [Fig. 1(b)] is of particular
interest in light of recent proposals to realize a Hubbard
model of fermions on an optical lattice[14]. Such experi-
ments may resolve a key issue in the understanding of high
TC superconductivity in cuprates.

In practice, it may be more convenient to measure the
fluctuations ofDnsr ,r 8d which does not require exact knowl-
edge of the average. Noting that the state(5) is an eigenstate
of Dnsr ,−r d with eigenvalue zero, we havekDnsr ,−r d2l
;0 at T=0. Well away fromr +r 8=0 kDnsr ,r 8d2l,nQsr ds1
−nQsr dd+nQsr8ds1−nQsr8dd, which is nonzero on the smeared
Fermi surface of a Fermi liquid(at T.0) and for a BCS
state. A sharp dip, whose width"t / smLd is limited by the
system size, appears aroundr 8=r in the superfluid state
[Figs. 1(c) and 1(d)].

How the correlation dip changes when the temperature is
raised, depends on the type of low energy excitations avail-
able to the system. In a weakly coupled BCS superfluidsD
!eFd, quasiparticle excitations are dominant at low tempera-
tures. Since these are pair breaking excitations, the pairing
dip will gradually diminish with temperature and finally van-
ish atT=Tc. At strong coupling on the other hand, the domi-

FIG. 1. Fermionic superfluid. (a) Angle integrated weight of the
correlation peak at diametrically opposite points. Solid line is the
column integrated result relevant to experiment.(b) Weight of the
correlation peak fordx2−y2 pairing, which may be expected in a
realization of the Hubbard model on an optical lattice.(c) and (d)
depict kDnsr ,r 8d2l at T.0 (superfluid fraction 0.7). r is fixed on
the Fermi surface. In(c) r 8 is varied along the same diameter while
in (d) r 8 it is varied around the Fermi surface so that the relative
angle betweenr and r 8 is u. Dashed line corresponds to BEC of
tightly bound pairs, whereas the solid line is the BCS limit at the
same temperature. The width of the narrow dip,"t / smLd is limited
by the system’s size.
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nant low energy excitations are collective Bogoliubov-
Anderson modes. These describe bound pairs, excited to
nonzero center of mass momentum. In direct analogy with
BEC, we expect a wide background dip associated with pair-
ing correlations at nonzero center of mass momentum. Thus,
the behavior of the correlation dip atT.0, can be used as a
probe of the pairing regime. Here we assume that even at
strong pairing, close to a Feshbach resonance, the atoms ex-
pand without interactions once the trap is shut off. One can
avoid collisions in the expansion by tuning the magnetic field
away from resonance, or by transferring the atoms into an-
other pair of hyperfine sublevels upon release. The sudden
approximation, implicit in formulas(3) and (4), holds pro-
vided the change is applied over a sufficiently short time
scalet!" /D, whereD is the pairing gap.

Optical lattice. We now consider atoms initially confined
to an optical lattice. Calculation ofknsr dl and knsr dnsr 8dl
involves operating on the lattice stateuFl with
Ustd†csr dUstd. In normal ordered expectation values, this op-
erator can be safely replaced by its projection into the lowest
Bloch band,Asr ,td;oi wisr ,tdaia [19]. Here,wisr ,td is the
free evolution of a Wannier wave function, initially centered
around the lattice site atRi and aia=edrwisr ,0dcasr d is a
particle annihilation operator at this site. At long times
wisr ,td~e−iQsr d·Ri times a Gaussian envelope, which we shall
approximate by a square of the same widthW="t / sa0md. a0

is the width of the Wannier state on the lattice. Now,kna
ˆ sr dlt

can be related to the off-diagonal correlation function in the
ground state[19]

kn̂asr dlt < kn̂Qsr dl ;
1

Wdo
i,j

eisRi−R jd·Qsr dkaia
† ajal. s7d

The wave vectorQsr d now defines a correspondence be-
tween position in the cloud and the quasimomentum on the
lattice. G can also be written in terms of correlations in the
lattice state:

Ga,bsr ,r 8d ,
1

W2d o
ii8 j j 8

eiRii 8·Qsr d+iR j j 8·Qsr8dkaia
† ajb

† aj8bai8al

+ dabdsr − r 8dknasr dlt − knasr dlknbsr 8dl. s8d

Here, dsr −r 8d is a trued-function originating from normal
ordering in the continuum. Note that formulas(7) and (8)
hold for bosons and fermions.

In the superfluid state of bosons, wherekai
†ajl= uCu2,

nsr ,td exhibits Bragg peaks atQsr d corresponding to recip-
rocal lattice vectorsG. In the Mott state, on the other hand,
kai

†ajl<di j , and there is no interference pattern innsr ,td.
The Mott state, however, displays nontrivial correlations

in the second-order correlation function(8) associated with
atom number fluctuations. To illustrate their origin, and to
make contact with the Hanbury-Brown-Twiss effect in quan-
tum optics, we first apply(7) and (8) to the “toy” model of
two atoms localized in two wells. For an initial Fock state
uFl=a1

†a2
†u0l it gives:

Gsr ,r 8d =
2

W2dh cosFm

"t
sr − r 8dG , s9d

whereh=1s−1d for bosons(fermions). The oscillations re-
flect a two-body interference effect that amounts to bunching
in the case of bosons and antibunching for fermions, as in the
textbook example[11,20]. Figure 2 shows how these oscil-
lations develop into coherent Bragg peaks with increasing
lattice size. A fermionic insulating state will display similar
evolution with peaks replaced by dips.

Note that the Bragg peaks in the second-order coherence
do not reflect reduced number fluctuations in the Mott state,
but rather the permutation symmetry of the wave function. In
particular, a thermal Bose gas on a lattice would exhibit the
same coherent peaks. However, in a Mott state with non-
trivial internal structure, the noise correlations can reveal
complex order, as we now illustrate.

Let us consider for example Mott states of two-
component bosons(or fermions) with exactly one atom per
site. Since the motional degrees of freedom are frozen,(8)
can be written in terms of a pseudospin correlation function.
In particular, the pure density-density correlations in the
cloud are given by

Gsr ,r 8d =
h

2

N

WdS2pa0

l
Dd

o
G

d̃dSr − r 8 +
"t

m
GD

+ 2ho
i j

eifQsr d−Qsr8dg·Ri jkSi ·Sjl, s10d

where Si =
1
2aai

† sW ababi are the pseudospin-1
2 operators,h=

+s−d1 for bosons(fermions), l is the lattice spacing andN
the number of sites. This expression constitutes one of our
main results. While the first term in(10) is just a remaining
signature of quantum statistics, the second corresponds to the
static spin structure factor. Thus observation of density cor-
relations in the expanding cloud provides experimental ac-
cess to the spin correlation function in the trap. Indeed, vari-
ous possible spin orders have been predicted for two-
component systems[7,8] that may be probed using our
method. Figure 2 illustrates this for the case of a one-
dimensional antiferromagnet, characterized by weak singu-
larities [logarithmic in case ofSUs2d symmetry] in the den-
sity correlations at half the reciprocal lattice vectors.

FIG. 2. (a) Normalized density correlations, in the Mott state for
a chain of 2, 4, and 40 sites.(b) Density correlations for an antifer-
romagnetic Mott chain of two-component bosons. The weak singu-
larities (broad peaks) reflect power-law correlations in the one-
dimensional system.
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Antiferromagnetism in higher dimensions would be seen as
sharp Bragg peaks at these points. A counterflow superfluid
[7,8], characterized byx−y ferromagnetic order, can be de-
tected by applying a magnetic field gradient shifting the cor-
relations to a finite wave vector.

Experimental issues. To observe the proposed effects, two
criteria must be met:(i) the atomic noise should be observ-
able in an experiment and(ii ) correlated fluctuations should
rise, in a statistical sense, above the uncorrelated noise.

In a typical experiment, the cloud is integrated over nar-
row cylinders whose basess correspond to the spatial reso-
lution. The noise of detected probe-photons in a bin of areas
is a sum of contributions from atomic and laser light fluctua-
tions. The latter is fundamentally limited by photon shot
noise. The atomic noise exceeds the photon shot noise, pro-
vided the number of photons per bin in the incoming pulse,
ps.exps2kdkNsl / shk2d, wherek is the optical depth of the
cloud, which should be chosen close to unity, andh is the
photondetection efficiency. The practical limitation on the
number of photons is associated with photon recoil, which
results in image blurring. Under standard conditions,
10–100 photons per atom can be scattered in a measurement
time of 10ms without blurring the image on the scale of
10 mm [18], indicating that detection of atomic noise is pos-
sible. A typical cloud ofN=107 6Li atoms [21] will reach
optical depthk,1 after expansion to about 1 mm. There-
fore, each 10mm bin will contain about 103 atoms. The
atomic noise contribution will cause bin-to-bin variation in
the optical absorption at the level of few percent, which is
detectable with current technology.

We now verify that in the case of a fermionic superfluid,
the correlated fluctuations rise, in a statistical sense, above
the background. For fixedr , the value ofDnsr ,r 8d2 will ex-
hibit fluctuations of ordernssrd as we varyr 8. Therefore, the
dip at r +r 8=0, also of magnitude,nssrd, may be observed
only after averaging a number of such plots corresponding to
independent choices ofr . However, different positionsr
yield independent results only if they correspond to distinct
momenta in the trap. Thus, the number of independent posi-
tions on the two-dimensional image, is limited by momen-
tum quantization in the trap toOsN2/3d, whereN is the total
number of atoms. Consequently the background statistical
fluctuations can be averaged toN−1/3 of the dip magnitude
making it observable in a single image measurement. Similar
considerations apply to Mott states in an optical lattice.

In conclusion, we demonstrated that spatial noise correla-
tions in the image of an expanding gas cloud released from a
trap, can reveal key properties of strongly correlated states of
cold atoms. We anticipate that a similar technique can be
used to observe signatures of more exotic states such as spin
liquids and valence bond solids.

Note added in proof.Recently, experimental results
closely related to the theoretical proposal described here
were reported by Hadzibabicet al. [22].
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