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We use the one-dimensional(1D) Gross-Pitaevskii equation to investigate the dynamical evolution of a
dilute repulsive Bose-Einstein condensate(BEC) confined in an elongated static nonharmonic trap and stirred
by an oscillating Gaussian obstacle moving at uniform speed in alternate direction. Direct numerical solutions
of this equation show that above a critical obstacle velocity, the motion of the obstacle creates gray solitons and
phonons. At first, when the velocity of the obstacle increases, the dissipation also increases. But the dissipation
reaches a maximal value and then decreases dramatically and vanishes at high obstacle velocities. Our results
at low obstacle velocities are similar to those previously obtained experimentally and by simulations in the case
of vortice and phonon production in 3D and 2D trapped repulsive BEC’s. But at high obstacle velocities, we
show that the quasi-1D trapped repulsive BEC behaves as a quasisuperfluid medium with disappearance of
gray soliton and phonon excitations. This extends previous results and provides the main dependence of the
phenomenon on the obstacle characteristics.
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I. INTRODUCTION

Since the discovery of superfluidity in helium II[1], in-
tensive experimental and theoretical efforts have been de-
voted to the investigation of elementary excitations and su-
perfluidity in quantum Bose gases. Remarkable
developments in this field have led to new concepts such as
the critical velocity first introduced by Landau[2] in his
famous criterion, phonons and speed of sound predicted by
Bogoliubov [3], quantized vortices proposed by Feynman
[4], and others. However, strong interparticle interactions
within superfluid liquid helium, plus thermal and quantum
fluctuations, impede the formulation of a satisfactory micro-
scopic theory that can be able to explain from first principles
the mechanism of superfluidity and production of vortices in
liquid helium.

With the successful experimental realization of Bose-
Einstein condensates(BEC’s) [5–7] in trapped dilute alkali
vapors, remarkable experimental studies of the dynamical
properties of BEC’s have been performed. In particular, im-
portant features of these condensates were found in the MIT
experiment on the interference of two independently pre-
pared condensates[8]. In the JILA experiment[9] in a dilute
and almost pure BEC at zero temperaturesT=0d, it was
found that only binary elastic interparticle collisions are rel-
evant and can be characterized by a single parameter: the
s-wave scattering length denoteda. These latter results have
constituted a direct verification of the Bogoliubov approach
of weakly interacting Bose gases[3] and justified the use of
the mean-field approximation to model the dynamical and
quantum properties of a dilute BEC near zero temperature. A
very remarkable consequence is that the time evolution of

such a condensate wave function can be accurately described
by the nonlinear Schrödinger equation(NLSE), also known
as the Gross-Pitaevskii equation(GPE) [10]. This has al-
lowed for direct quantitative comparisons between theory
and experiment[12]. The stability of large BEC’s requires
repulsive interparticle interactions(positivea).

Two different directions have recently attracted particular
interest. One of them is the study of BEC’s in reduced di-
mensionality. Indeed, development of the trapping tech-
niques has allowed for the realization of very anisotropic
geometries, where the confinement is so strong in one or two
spatial directions that at low temperatures the transversal
motion is “frozen” and does not contribute to the dynamics
of the system. The mean-field energy, due to binary interpar-
ticle interactions, becomes smaller than the typical trapping
energy in these directions. In this way, dilute repulsive
BEC’s have been realized in one dimension(1D) and 2D on
23Na [14] and in 1D on7Li [15]. Another trend is the study
of the creation of elementary excitations(vortices, solitons,
and phonons) and dissipation in BEC’s. The critical velocity
and dissipation in these systems were studied theoretically
[16,17] and experimentally first by Ramanet al. [18] by
moving a focused laser beam through a cigar-shaped repul-
sive BEC.

In recent experimental developments, vortices were real-
ized in repulsive BEC’s[19,20], while gray solitons have
been generated in 3D repulsive BEC’s by phase imprinting
techniques on sodium23Na [21] and on rubidium87Rb [22].
Theoretically, gray solitons and phonons creation by a poten-
tial obstacle moving at a uniform speed in a quasi-1D infinite
fluid have also been studied[23–25]. Early confining traps
were well approximated by harmonic potentials[11–13], but
more general ones are now in use[26]. Very recently, the
dynamical evolution of a repulsive BEC confined in a
quasi-1D static nonharmonic trap has been numerically stud-
ied and revealed that the reflection of a gray soliton by the
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parabolic boundaries of the nonharmonic trap gives rise to
the emission of phonons[27,28]. In the present work, we
consider a very elongated dilute repulsive BEC confined in a
static nonharmonic trap. In order to create elementary exci-
tations of soliton and phonon types, we stir this trapped con-
densate by an oscillating Gaussian obstacle(an external lo-
calized repulsive potential). The speed of the obstacle
through the condensate is constant but its direction reverses
periodically. We numerically solve the 1D GPE that de-
scribes the dynamical evolution of this trapped condensate
and investigate the superfluidity and dissipation in this
quasi-1D trapped condensate at different constant obstacle
velocities.

This work is organized as follows: In Sec. II, the model
describing the dynamical evolution of the trapped quasi-1D
BEC stirring with the oscillating obstacle in the Gaussian
form and the numerical procedure are presented. Our nu-
merical results are presented in Sec. III. They consist in the
identification of elementary excitations created by the motion
of the oscillating Gaussian obstacle through the quasi-1D
trapped BEC and in the exploration of superfluid and dissi-
pative behaviors of this condensate for different obstacle ve-
locities. Section IV is devoted to a discussion of these results
and to the conclusions of the present work.

II. DYNAMICAL DESCRIPTION

A. Model and oscillating obstacle

The dynamical evolution of the condensate wave function
can be accurately modeled by the usual dimensionless 1D
GPE:

i]tA = − ]xxA − A + uAu2A + Usx,tdA, s1d

where A is the complex field amplitude of the condensate
wave function,r= uAu2 the time-dependent density of the
condensate(with N=edxuAu2 the total number of atoms in the
trapped BEC), and Usx,td the 1D static nonharmonic trap
Vsxd superimposed upon the time-dependent oscillating
Gaussian obstacleWsx,td with Usx,td=Vsxd+Wsx,td. We
chooseVsxd as a flat potential with parabolic boundaries:

Vsxd =5S
x − x1

L
D2

for 0 ø x ø x1,

0 for x1 ø x ø sl − x1d,

Sx − l + x1

L
D2

for sl − x1d ø x ø l ,

s2d

where l is the width ofVsxd (l is larger thanx1, x1=27, l
=200) andL (length,L=6.9) characterizes the smoothness of
Vsxd. The oscillating Gaussian obstacleWsx,td, initially cen-
tered atx0, is expressed as

Wsx,td = W0expF− Sx − xstd − x0

s
DG , s3d

whereW0 and s are the obstacle depth and width, respec-
tively. The oscillatory uniform motion of theWsx,td is ob-
tained by takingxstd in the following triangular form as a
function of the timet:

xstd =5vSt −
n

f
D for 0 , St −

n

f
D ,

1

2f
,

− vSt −
n

f
D + 4a for

1

2f
, St −

n

f
D ,

1

f
,

s4d

where n is the number of completed oscillations,a is the
amplitude (half of the distance between motion extrema),
andv, expressed asv=4af, is the constant obstacle velocity.
We note thatWsx,td represents the laser beam used in the
experiment of Ramanet al. [18]. For this 1D description to
be valid, the healing lengthj of the condensate must larger
than the mean interparticle separation 1/r along thex axis of
the BEC—i.e.,rj@1—and also larger than the mean half
radial widthR' of this elongated BEC—i.e.,j@R' [27,29].

B. Numerical procedure

We present briefly our numerical procedure. The initial
condition is built from the ground state of the 1D GPE[Eq.
(1)] which is the stationary solutionA0 of this equation with
a stationary Gaussian obstacleWsx,0d at t=0. It is obtained
by minimizing the Gross-Pitaevskii energy functionalH as-
sociated with Eq.(1):

H =E dxFu¹Au2 +
1

2
suAu2 − 1d2 + Usx,0dsuAu2 − 1dG . s5d

The minimization ofH is performed by integrating to relax-
ation the 1D real Ginzburg-Landau equation(RGLE) [with
Usx,0d=Vsxd+Wsx,0d]

]tR= − ]xxR− R+ R2R+ Usx,0dR, s6d

starting from an initial conditiongsxd of the Gaussian form
with

gsxd = g0HexpF− Sx − x0

s1
D2GJ ,

with g0=0.5,x0=100, ands1=30. This provides the real and
stable ground-state wave functionR0, which constitutes our
initial condition A0sA0=R0d. A finite-difference Crank-
Nicholson scheme is then used to evolve Eq.(1) starting
from this initial condition. We checked that the total number
of atoms in the trapped condensate is conserved for all our
numerical results.

III. NUMERICAL RESULTS

The shape ofWsx,td varies with the parametersW0 ands
as can be seen from Eq.(3), whereas the value of its velocity
v depends on amplitudea and frequencyf (with v=4af).
The 1D GPE[Eq. (1)] has been integrated at various fre-
quencies associated with different obstacle velocities and for
different obstacle parametersW0 and s. In Fig. 1, we first
present numerical solutions of Eq.(1) (with W0=0.5, s=5,
and a=5) at four frequencies associated with different ob-
stacle velocities,v=0.16, 0.625, 1.40, 3.36. As expected for
obstacle velocitiesv below a critical valuevc (e.g., for v
=0.16, vc=0.28), the oscillatory uniform motion ofWsx,td
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produced almost no excitations in the condensate[Fig. 1(a)].
In contrast, whenv exceedsvc, the obstacle uniform motion
produces gray solitons and phonons which are successively
emitted to the right and left of the obstacle[Figs. 1(b) and
1(c)]. We note that the soliton velocities are greater than that
of the obstacle[for example, in Fig. 1(b), v=0.625,vsoliton

=0.92]. The increase ofv first leads to the increase of total
emission of solitons and phonons[Fig. 1(c)] as previously
reported in 2D and 3D repulsive condensates. However, fur-
ther increase inv reveals a different phenomenon. Whenv
exceeds a given value(v=1.4 for Fig. 1), gray soliton emis-
sion reaches a maximum atv=1.4 [Fig. 1(c)] and then dis-
appears progressively[Fig. 1(d)], and finally almost com-
pletely vanishes at high velocitiessv=4,5,10d. The
progressive disappearance of gray solitons in the condensate
depends on the obstacle velocity and is accompanied by an
increase of emitted phonons. This numerical observation can
be partially understood by taking into account the relation
between the depthl of a gray soliton and its velocityc2

+l2=2 (see Ref.[27]). This indicates that a gray soliton
which is steady in the obstacle frame disappears forl=0 and
transforms into phonons, because its velocityc exceeds the
speed of sound defined ascs=Î2 [Fig. 1(d)].

As for phonons, the emission first is only due to the
abrupt change of the obstacle velocity at motion extrema;
then, it increases with the increase ofv and finally also com-
pletely disappears at high velocity.

In order to further quantify these results and investigate
dissipation at different obstacle velocities and for various
parameter values ofW0 and s, we have computed both the
total energyE of the condensate[Eq. (5)] and the associated
mean rate of energy dissipationkdE/dtl for different obstacle
velocities. This mean rate is obtained by a linear regression
analysis of the energy-time data and represents the variation
in time of the condensate total energy. In Fig. 2, we plotted
kdE/dtl associated with different obstacle velocities(black
circles) and forW0=0.5, s=5, anda=5. This figure shows
that below a critical velocityvc=0.28, the total energyE
remains constant in timeskdE/dtl.0d. But for v.vc,
kdE/dtl increases approximately linearly withv, attains an
upper limit, and then decreases and vanishes at high obstacle
velocities. The decrease ofkdE/dtl is exponential for high
obstacle velocities, as can be seen in the inset of Fig. 2.

In order to make contact with previous results, we first
examine the dependence ofkdE/dtl and the critical velocity
vc on the depthW0 and separately on the widths of the
oscillating obstacleWsx,td (with W0,1). We plot in Fig. 3
the energy increase as a function of obstacle velocityv for
W0=0.30, 0.50, 0.75(with s=5 anda=5). The figure shows
that the dissipation in the condensate increases with an in-
crease of the obstacle depthW0. The critical velocity value
associated with every curvesvc=0.10,0.28,0.47d can be
evaluated by extrapolation. The critical velocity is found to
depend onW0. In the inset,W0 is plotted as a function ofvc
by using directly the preceding evaluated values ofW0 and
vc. The different values obtained are compared to a previous
prediction valid forW0,1 ands@1 [23]:

FIG. 1. Solution modulusuAu of Eq. (1) (with W0=0.5,s=5, and
a=5) obtained at four frequenciesf =0.0080, 0.03125, 0.0700, and
0.1666 which correspond to the constant obstacle velocitiesv
=0.16, 0.625, 1.40, and 3.36, respectively. These four figures, in
which uAu is plotted as a function of positionx, indicate that the
oscillatory obstacle motion(v=0.16,vc=0.28, wherevc is the criti-
cal velocity) does not create excitations forv,vc (a), but that this
motion produces elementary excitations of gray soliton and phonon
types forv.vc: v=0.625 (b) and v=1.40 (c). We note that these
excitations disappear progressively at high obstacle velocities—for
example,v=3.36 (d).
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W0 =
v2

4
−

3

2
Sv2

2
D1/3

+ 1. s7d

This inset illustrates that the numerically values obtained of
W0 and vc are in good agreement with those theoretically
predicted by Eq.(7).

Figure 4 represents the dependence ofkdE/dtl for a fixed
depthW0,1 and amplitudea.2 (hereW0=0.5, a=5), on
the widths of the oscillating obstacleWsx,td. In this figure,
kdE/dtl is plotted as a function of the obstacle velocityv for
s=1, 3, 5. We note that ass decreases, both the dissipation
represented bykdE/dtl and the critical velocityvc in the
condensate increase. The increase ofs favors the suppres-
sion of gray solitons and phonons in the condensate at high
obstacle velocities.

Analytical interpretation of emission suppression
at high velocity

The exponential decrease ofkdE/dtl at high obstacle ve-
locities (see inset of Fig. 2) contrasts with previous results
reported in two and three dimensions. We provide here a
simple explanation of this effect modeled upon classic cal-
culations of radiation of capillary-gravity waves by a moving
obstacle[30]. An estimate of the radiation emitted by a par-
ticle is also provided in Ref.[31], but without consideration
of the high-velocity behavior in 1D.

We can linearize Eq.(1) for small oscillations in the form

A = 1 +hsx,td, s8d

where h is a small perturbation(h!1, and hsx,td
=h0expfiskx−vtdg). This leads to the well-known dispersion
relation

v = kÎk2 + 2 s9d

and provides the wave phase velocitycskd=v /k=Îk2+2.
Dissipation is dominated by waves that appear steady in the

FIG. 2. The mean ratekdE/dtl, which represents the increase of
the condensate energy by the oscillating obstacle motion, is plotted
as a function of different constant obstacle velocities(black circles),
with W0=0.5, s=5, anda=5. This figure shows thatkdE/dtl.0
for velocity valuesv below a critical velocityvc=0.28. Forv.vc,
it increases approximately linearly with the increase ofv, attains its
upper limit, and then decreases progressively and tends to zero at
high obstacle velocitiessv.4d. The decrease ofkdE/dtl with the
increase ofv is exponential as shown in the inset.

FIG. 3. Dependence of the mean ratekdE/dtl and critical veloc-
ity vc on the depthW0,1 of the oscillating obstacleWsx,td for
fixed width s@1 and amplitudea.2 (heres=5, a=5). We find
that vc=0.10 for W0=0.75 (dashed circles), vc=0.28 for W0=0.50
(black circles), andvc=0.47 forW0=0.30 (black diamonds). In the
inset, the preceding values(vc with error bars) are compared to the
equationW0=v2/4− 3

2sv2/2d1/3+1. The three values ofvc directly
evaluated and represented by error bars are in good agreement with
those predicted theoretically(line).

FIG. 4. Dependence of the mean ratekdE/dtl and critical veloc-
ity vc on the widths of the oscillating obstacleWsx,td for fixed
depth W0,1 and amplitudea.2 (here W0=0.5 anda=5). The
three curves correspond, respectively, tos=1 (black squares), s
=3 (black circles), and s=5 (black triangles). We note that the
dissipation represented bykdE/dtl and the critical velocityvc in-
crease with the decrease ofs. The increase ofs favors the suppres-
sion of gray solitons and phonons in the condensate at high obstacle
velocities.
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obstacle frame and satisfycskd=v. This determines the wave
number of the emitted phonons as

k = Îv2 − 2. s10d

Now, the emission rate of phonons of wavelengthk is

proportional to the Fourier transformP̃ss ,kd of the modulus
of the superfluid wave function modulationPsx/sd due to
the moving obstacle. Considering an obstacle moving at sta-
tionary speedv [23], Psx/sd is approximately obtained as

PS x

s
D . F1 − 4

Wsx,0d
v2 G−1/4

. s11d

For v@Î2, Eq. (10) can be approximately written ask.v,
and the wavelength of the emitted phonons becomes much
shorter than the length scale of the potential. So

P̃ss,kd =E expsikxdPS x

s
Ddx~ exps− bskd for k @ 1

s12d

or

P̃ss,kd ~ exps− bsvd, s13d

whereb=Îlnsv2/4W0d andW0 is the prefactor of the expo-
nential in Eq.(3). Here b depends on the shape ofP and
comes from the complex singularity of Eq.(11) closed to the
real axis. In the range of velocities considered,b depends
very weakly onv and Eq.(12) explains the exponential sup-
pression of emission at high velocities observed in Fig. 2. It
also explains why an increase ins favors this suppression as
seen in Fig. 3 since this further increases the moving poten-
tial length scale as compared to the wavelength of the emit-
ted phonons. The estimate given by Eq.(13) is of course
only valid for a smooth potential. Dissipation suppression at

high velocity is much less prononced for nonsmooth poten-
tials like those considered in Ref.[25], since their singulari-
ties lie on the realx axis.

IV. DISCUSSION AND CONCLUSION.

In this paper, we have analyzed the creation of elementary
excitations produced by an oscillating obstacle through a
quasi-1D trapped repulsive Bose condensate. We have shown
that the creation of excitations, gray solitons, and phonons
depends on the obstacle velocity and on the obstacle shape.
We have confirmed previous calculations of critical veloci-
ties in 1D[23]. We have found that the dissipation increases
with the increase of the obstacle velocity value, like in the
case of the formation of vortices previously studied[17,18],
but contrarily to the case of vortices, we have found that it
attains an upper limit and then decreases exponentially with
the obstacle velocity increase. At high obstacle velocity, the
dissipation vanishes and the repulsive condensate behaves as
a quasisuperfluid. This absence of dissipation already noted
in Ref. [25] is reminiscent of that previously described for
the motion of a smooth potential withs@1 [32] at fixed
velocity as interpreted in Ref.[33]. In both cases, dissipation
suppression comes because the wavelength of the emitted
phonons is short compared to that of the stirring potential.
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