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Soliton and phonon production by an oscillating obstacle
in a quasi-one-dimensional trapped repulsive Bose-Einstein condensate
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We use the one-dimensionélD) Gross-Pitaevskii equation to investigate the dynamical evolution of a
dilute repulsive Bose-Einstein condenséd&C) confined in an elongated static nonharmonic trap and stirred
by an oscillating Gaussian obstacle moving at uniform speed in alternate direction. Direct numerical solutions
of this equation show that above a critical obstacle velocity, the motion of the obstacle creates gray solitons and
phonons. At first, when the velocity of the obstacle increases, the dissipation also increases. But the dissipation
reaches a maximal value and then decreases dramatically and vanishes at high obstacle velocities. Our results
at low obstacle velocities are similar to those previously obtained experimentally and by simulations in the case
of vortice and phonon production in 3D and 2D trapped repulsive BEC's. But at high obstacle velocities, we
show that the quasi-1D trapped repulsive BEC behaves as a quasisuperfluid medium with disappearance of
gray soliton and phonon excitations. This extends previous results and provides the main dependence of the
phenomenon on the obstacle characteristics.
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I. INTRODUCTION such a condensate wave function can be accurately described
. . e . . Dby the nonlinear Schrédinger equati@iLSE), also known
Since the discovery of superfiuidity in helium [1], in as the Gross-Pitaevskii equati@®PE) [10]. This has al-

tensive exper |ment_al gnd theoretical efforts. ha}ve been d%wed for direct quantitative comparisons between theory
voted to the investigation of elementary excitations and SUznd experimenf12]. The stability of large BEC's requires

perfluidity in quantum Bose gases. Rem""rk""blerepulsive interparticle interactior{positive a).

developments in this field have led to new concepts such as Two different directions have recently attracted particular

the critical velocity first introduced by Landa] in his  jyereqt One of them is the study of BEC's in reduced di-
famous criterion, phonons and speed of sound predicted b%ensionality Indeed, development of the trapping tech-
Bogoliubov [3], quantized vortices proposed by Feynman . j ‘ N . :

[4]gand otkEe]rquowever stron iﬁtef article %nteréctionsmques has allowed for the realization of very anisotropic
Wit’hin superfluid liquid heiium plgus the?mal and quantum geometries, where the confinement is so strong in one or two

fluctuati ) de the f i f tisfact .~ 'spatial directions that at low temperatures the transversal
uctuations, impede the formulation of a satistactory micro-, i is “frozen” and does not contribute to the dynamics
scopic theory that can be able to explain from first principles

: - . : ~of the system. The mean-field energy, due to binary interpar-
ltgiir;i%?ﬁ?fm of superfluidity and production of vortices MNticle interactions, becomes smaller than the typical trapping

. . o energy in these directions. In this way, dilute repulsive
With the successful experimental realization of Bose'BEC’s have been realized in one dimensia®) and 2D on

Einstein condensatg8EC's) [5—7] in trapped dilute alkali 23Na [14] and in 1D on’Li [15]. Another trend is the study

vapors, remarkable experimental studies of the dynamlcaéf the creation of elementary excitatiofrtices, solitons,

proFertu?s ?f BECf’sthhave be%n pen"(ormed. Irf1 par(?gulg}r, Il\rjl]l nd phononsand dissipation in BEC’s. The critical velocity
portant teatures ot these condensates were found in the nd dissipation in these systems were studied theoretically

experiment on the interference of two independently pre—[16,1ﬂ and experimentally first by Ramaet al. [18] by

pared condensat¢8]. In the JILA experimen{9] in a dilute . — )
and almost pure BEC at zero temperatie=0), it was rsr;\?(\antEg focused laser beam through a cigar-shaped repul

found that only binary elastic interparticle collisions are rel- In recent experimental developments, vortices were real-
evant and can be characterized by a single parameter: tr??ed in repulsive BEC'§19,20, while gray solitons have
s-wave scattering length denotedThese latter results have o generated in 3D repulsive BEC's by phase imprinting
constituted a direct verification of the Bogoliubov approaChtechniques on sodiurfNa [21] and on rubidiun®’Rb [22]
Or]: weakly |fr_1t(|eéact|ng B'ose .gas{a?»] ang Jlus't_llfleg the U.SGIOf Theoretically, gray solitons and phonons creation by a poten-
the mean-field approximation to model the dynamical ang;y| gpstacle moving at a uniform speed in a quasi-1D infinite
guantum properties of a dilute B_EC near zero temperat_ure. uid have also been studig@3-25. Early confining traps
very remarkable consequence is that the time evolution ere well approximated by harmonic potentigd—13, but
more general ones are now in ugb]. Very recently, the
dynamical evolution of a repulsive BEC confined in a
*Electronic address: azizrad@hotmail.com quasi-1D static nonharmonic trap has been numerically stud-
and radouani@Ips.ens.fr ied and revealed that the reflection of a gray soliton by the
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n 1
for0<(t——><—

parabolic boundaries of the nonharmonic trap gives rise to (t n)
vit—7—_ )
f 2f

the emission of phonong7,28. In the present work, we

consider a very elongated dilute repulsive BEC confined in a x(t) = (4)
static nonharmonic trap. In order to create elementary exci- _ v(t _ D) +4a for 1 < (t _ D) < 1
tations of soliton and phonon types, we stir this trapped con- 2f f f’

densate by an oscillating Gaussian obstgale external lo- wheren is the number of completed oscillations, is the

calized repulsive potential The speed of the obstacle ) ) .
through the condensate is constant but its direction reverséy! plitude (hali of th_e dlst_ance between motion ex”e)“?a
andv, expressed as=4af, is the constant obstacle velocity.

periodically. We numerically solve the 1D GPE that de- .
. : . - e note thatW(x,t) represents the laser beam used in the
ri h namical evolution of this tr nden . ' ; S
scribes the dynamical evolution of this trapped conde Satéipenment of Ramaet al. [18]. For this 1D description to

and investigate the superfluidity and dissipation in this lid. the healina lenath of th d i tl
quasi-1D trapped condensate at different constant obstacf%e valid, the healing leng § of the condensaté must larger
velocities an the mean interparticle separatiom Blong thex axis of

This work is organized as follows: In Sec. II, the model the BEC—i.e.,p¢>1—and also larger than the mean half

describing the dynamical evolution of the trapped quasi-l[fad'aI widthR, of this elongated BEC—i.e£>R, [27,29.
BEC stirring with the oscillating obstacle in the Gaussian

form and the numerical procedure are presented. Our nu- B. Numerical procedure

merical results are presented in Sec. lll. They consist in the

identification of elementary excitations created by the motion We present briefly our numerical procedure. The initial

of the oscillating Gaussian obstacle through the quasi-l[?ond'tIon is built from the ground state of the 1D GF.

) . . . (1)] which is the stationary solutioA, of this equation with
trapped BEC and in the exploration of superfluid and d|$5|-( : . _ . .
pative behaviors of this condensate for different obstacle ved stationary Gaussian obstatiéx, 0) at t=0. It is obtained

locities. Section IV is devoted to a discussion of these resultdY m[[n'én'Z!Phgéhi Qross—Pnaevsku energy functiordlas-
and to the conclusions of the present work. soclated wi ql):

1
Il. DYNAMICAL DESCRIPTION H :f dx{|VA|2 + §(|A|2 -1)2+UX,0(A2-1)|. (5)

A. Model and oscillating obstacle o ) ) ]
The minimization ofH is performed by integrating to relax-

The dynamical evolution of the condensate wave functionyion the 1D real Ginzburg-Landau equatidRGLE) [with
can be accurately modeled by the usual dimensionless 19y 0)=V/(x)+W(x,0)]

GPE:

#R=-4d,R-R+RR+U(x,0)R, 6

iGA=— 0 A— A+ |APA+UX DA, (1) ‘ X .0 ©
) ) ) starting from an initial conditiony(x) of the Gaussian form

where A is the complex field amplitude of the condensate,;,

wave function, p=|A|? the time-dependent density of the
condensatéwith N=[dx|A|? the total number of atoms in the X=Xo\?

trapped BEG, and U(x,t) the 1D static nonharmonic trap Y(X) = Y0) €xpl - '

V(x) superimposed upon the time-dependent oscillating ) .

Gaussian obstacl&\V(x,t) with U(x,t)=V(x)+W(x,t). We  With %5=0.5,%=100, ando,=30. This provides the real and

chooseV(x) as a flat potential with parabolic boundaries: ~ Stable ground-state wave functié®, which constitutes our
initial condition Ag(Ag=Ry). A finite-difference Crank-

p
X=X Nicholson scheme is then used to evolve . startin
(—1> for 0 < x < xq, €D 9

o1

L from this initial condition. We checked that the total number
of atoms in the trapped condensate is conserved for all our
V(x)=910 forxy<x<(-x), (2 [ymerical results.

2
(ﬂ) for (1 —x) < x <1,
\ L Il. NUMERICAL RESULTS
wherel is the width of V(x) (I is larger thanx;, x;=27, |
=200 andL (length,L=6.9) characterizes the smoothness of
V(x). The oscillating Gaussian obstadéx, t), initially cen-

tered atx,, is expressed as

The shape of(x,t) varies with the parametel&, and o
as can be seen from E(), whereas the value of its velocity
v depends on amplitude and frequencyf (with v=4af).
The 1D GPE[Eq. (1)] has been integrated at various fre-
X = X(t) = Xo guencies associated with different obstacle velocities and for
- || () different obstacle parameteW§, and o. In Fig. 1, we first

present numerical solutions of E€L) (with Wy=0.5, o=5,

whereW, and o are the obstacle depth and width, respec-and «=5) at four frequencies associated with different ob-
tively. The oscillatory uniform motion of th&V(x,t) is ob-  stacle velocitiesy=0.16, 0.625, 1.40, 3.36. As expected for
tained by takingx(t) in the following triangular form as a obstacle velocities below a critical valuev. (e.g., forv
function of the timet: =0.16,v.,=0.28, the oscillatory uniform motion of\V(x,t)

W(X,t) = Woexp{ - (

o

013602-2



SOLITON AND PHONON PRODUCTION BY AN... PHYSICAL REVIEW A 70, 013602(2004)

(a) produced almost no excitations in the condenggig. 1(a)].
—————T— In contrast, when exceeds, the obstacle uniform motion
] produces gray solitons and phonons which are successively
emitted to the right and left of the obstadleigs. Xb) and
1(c)]. We note that the soliton velocities are greater than that
of the obstaclgfor example, in Fig. (b), v=0.625,vjiton

% =0.92. The increase of first leads to the increase of total

emission of solitons and phonofBig. 1(c)] as previously

L reported in 2D and 3D repulsive condensates. However, fur-
150 200 ther increase i reveals a different phenomenon. When
exceeds a given valug =1.4 for Fig. 1), gray soliton emis-
sion reaches a maximum at1.4 [Fig. 1(c)] and then dis-
) appears progressiveljFig. 1(d)], and finally almost com-
' . ' ] pletely vanishes at high velocitiesv=4,5,10. The
progressive disappearance of gray solitons in the condensate
depends on the obstacle velocity and is accompanied by an

M increase of emitted phonons. This numerical observation can

be partially understood by taking into account the relation
] between the depth of a gray soliton and its velocitg?
1 ;/ \)/\ \: +\2=2 (see Ref.[27]). This indicates that a gray soliton

/ ! \ ] which is steady in the obstacle frame disappears fod and

0 50 100 150 200 transforms into phonons, because its velocitgxceeds the
x speed of sound defined as=+2 [Fig. 1(d)].

As for phonons, the emission first is only due to the
abrupt change of the obstacle velocity at motion extrema,;
T T T ] then, it increases with the increasevoéind finally also com-
pletely disappears at high velocity.

W In order to further quantify these results and investigate

|Al

dissipation at different obstacle velocities and for various

. parameter values oV, and o, we have computed both the
k total energyE of the condensatgeq. (5)] and the associated
% mean rate of energy dissipati¢dE/dt) for different obstacle
velocities. This mean rate is obtained by a linear regression
¥ analysis of the energy-time data and represents the variation
in time of the condensate total energy. In Fig. 2, we plotted
(d) (dE/dt) associated with different obstacle velocitigsack
6 . , : circleg and forWy=0.5, 0=5, ande=5. This figure shows
sk 1 that below a critical velocityy,=0.28, the total energ¥
/ \ remains constant in tim&(dE/dty=0). But for v>uvq,
=< 4 “_// —~ \_\‘ ] (dE/dt) increases approximately linearly with attains an
3 :/ N E upper limit, and then decreases and vanishes at high obstacle
2 N
—~
1 ~
O I3

\_ velocities. The decrease ¢dE/dt) is exponential for high
% obstacle velocities, as can be seen in the inset of Fig. 2.

, L In order to make contact with previous results, we first
50 100 150 200 examine the dependence @E/dt) and the critical velocity

x ve on the depthw, and separately on the widitr of the
oscillating obstaclaV(x,t) (with Wy<1). We plot in Fig. 3

a=5) obtained at four frequencigs=0.0080, 0.03125, 0.0700, and the_energy Increase "%S a f_unCtlon ‘jf ObStad? velacityr
0.1666 which correspond to the constant obstacle velocities Wop=0.30, 050 9'75‘,’V'th 0=5 anda—5)..The figure S_hOWS .
=0.16, 0.625, 1.40, and 3.36, respectively. These four figures, ithat the dissipation in the condensatgmcrease; with an in-
which |A| is plotted as a function of positior, indicate that the ~Ccréase of the obstacle depith. The critical velocity value
oscillatory obstacle motiofv=0.16,v,=0.28, wherey, is the criti- associated with every curvey.=0.10,0.28,0.47 can be

cal velocity) does not create excitations forc v, (), but that this ~ €valuated by extrapolation. The critical velocity is found to
motion produces elementary excitations of gray soliton and phonolepend on\,. In the inset\W, is plotted as a function aof .
types forv>uv. v=0.625(b) andv=1.40(c). We note that these by using directly the preceding evaluated values\gfand
excitations disappear progressively at high obstacle velocities—fov.. The different values obtained are compared to a previous
example,y=3.36(d). prediction valid forWy<1 ando>1 [23]:

FIG. 1. Solution modulug| of Eq. (1) (with Wp=0.5,0=5, and
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FIG. 2. The mean rat@E/dt), which represents the increase of V

the condensate energy by the oscillating obstacle motion, is plotted .
as a function of different constant obstacle velocitteack circles, FIG. 4. Dependence of the mean red/dt) and critical veloc-

with Wy=0.5, 0=5, anda=5. This figure shows thaidE/dt)=0 ity vc on the widtho of the oscillating obstacl&V(x,t) for fixed
for velocity valuesy below a critical velocitys,=0.28. Foro>v,, ~ dePthWo<1 and amplitudea>2 (here W=0.5 anda=5). The
it increases approximately linearly with the increase odttains its t_hree curves correspondl respectively,ote 1 (black squares o
upper limit, and then decreases progressively and tends to zero 38 (Plack circles, and o=5 (black triangles We note that the

high obstacle velocitiet >4). The decrease ofdE/dt) with the dissipation represented K@E/dt) and the critical velocity, in-
increase ob is exponential as shown in the inset. crease with the decrease@fThe increase of favors the suppres-

sion of gray solitons and phonons in the condensate at high obstacle

2 3/ p2\18 velocities.

Wo = 2o\ +1. (7) ) ]
Figure 4 represents the dependencg¢d/ dt) for a fixed

depthWy<1 and amplitudex>2 (hereW,=0.5, «=5), on

This inset illustrates that the numerically values obtained the Widt,ha of the oscillating obstacl@(x, t). In this “Qure’
W, and v, are in good agreement with those theoretically<dE/dt> is plotted as a function of the obstacle veloait§yor

predicted by Eq(7). o=1, 3, 5. We note that as decreases, both the dissipation
represented bydE/dt) and the critical velocityv, in the
04 ' : : ' ' condensate increase. The increaserdhvors the suppres-
: ' ! 1.0 ‘ ! sion of gray solitons and phonons in the condensate at high
- : I obstacle velocities.
0.8 | y
0.3 - 06 F 1 - _ . .
A i ; 04 i N Analytical |nterpretat.|on of ermssmn suppression
5 Tl i at high velocity
o 0.2+ g 02 1- Th tial d E/dt) at high obstacle ve-
g Y S The exponentia ec_:rease(an‘ ) at high obstacle ve
—9 N @’,"Q. \ 00 05 1.0 1.5 locities (see inset of Fig. Rcontrasts with previous results
s P ) ) Vv ’ ) reported in two and three dimensions. We provide here a
0.1F #é ‘\9\\ o T simple explanation of this effect modeled upon classic cal-
B ; ,‘ ’,0"’“0\‘ .\.@L\ | culations of radiation of capillary-gravity waves by a moving
.’ ’ ‘0\"2\ obstacle[30]. An estimate of the radiation emitted by a par-
0 = ticle is also provided in Ref.31], but without consideration
0 1 2 3 4 5 of the high-velocity behavior in 1D.
Vv We can linearize Eq.1) for small oscillations in the form
A=1+75(xt), (8

FIG. 3. Dependence of the mean réat&/dt) and critical veloc-
Ity Ve ON the depth\N0<1 of the OSCi”ating ObStaClW(X,t) for where 7 is a small perturbation(n< 1, and n(X,t)

fixed width o>1 and amplitudex>2 (hereo=5, a=5). We find -, axfj(kx- wt)]). This leads to the well-known dispersion
thatv.=0.10 for Wy=0.75 (dashed circles v,=0.28 for Wy=0.50 relation

(black circles, andv.=0.47 forWy=0.30(black diamondg In the

inset, the preceding valu€s. with error bar$ are compared to the W= k\s“'kz +2 9)
equationWp=v?/4-3(v?/2)3+1. The three values af, directly .
evaluated and represented by error bars are in good agreement wid provides the wave phase velocitfk) = w/k=yk?+2.
those predicted theoreticalljine). Dissipation is dominated by waves that appear steady in the
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obstacle frame and satis€yk) =v. This determines the wave high velocity is much less prononced for nonsmooth poten-
number of the emitted phonons as tials like those considered in RgR5], since their singulari-
ties lie on the reak axis.

k=1\v?-2.
Now, the emission rate of phonons of wavelengtlis IV. DISCUSSION AND CONCLUSION.
proportional to the Fourier transfor®(a,k) of the modulus In this paper, we have analyzed the creation of elementary

of the superfluid wave function modulatidi(x/o) due to  excitations produced by an oscillating obstacle through a
the moving obstacle. Considering an obstacle moving at staguasi-1D trapped repulsive Bose condensate. We have shown
tionary speed [23], P(x/o) is approximately obtained as that the creation of excitations, gray solitons, and phonons
_1/a depends on the obstacle velocity and on the obstacle shape.
p(f) ~ {1 - 4VM} (11)  We have confirmed previous calculations of critical veloci-

o v? ties in 1D[23]. We have found that the dissipation increases
For v>12, Eq.(10) can be approximately written ds=v, with the increase Qf the obs_tacle vel(_)uty value, like in the
and the wavelength of the emitted phonons becomes mucgmafe oftthellfo:mfﬁlon of vorfucesi_prewouslr)]/ stu?[&d,;?h tit
shorter than the length scale of the potential. So ut contrarily 1o the case ot vortices, we have found that |

attains an upper limit and then decreases exponentially with
~ X the obstacle velocity increase. At high obstacle velocity, the
P(o,k) = f exp(ikx)P(—)dxoc exp(— Bok) fork>1 dissipation vanishes and the repulsive condensate behaves as
7 a quasisuperfluid. This absence of dissipation already noted
(12 in Ref. [25] is reminiscent of that previously described for
the motion of a smooth potential with>1 [32] at fixed
velocity as interpreted in Ref33]. In both cases, dissipation
P(o,k) = exp(— Bov), (13)  suppression comes because the wavelength of the emitted
phonons is short compared to that of the stirring potential.

or

where 8=1/In(v?/4W,) and W, is the prefactor of the expo-

nential in Eq.(3). Here B8 depends on the shape Bf and ACKNOWLEDGMENTS
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