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We study the motion of two atoms trapped at distant positions in the field of a driven standing-wave high-
Q optical resonator. Even without any direct atom-atom interaction the atoms are coupled through their
position dependent influence on the intracavity field. For sufficiently good trapping and low cavity losses the
atomic motion becomes significantly correlated and the two particles oscillate in their wells preferentially with
a 90° relative phase shift. The onset of correlations seriously limits cavity cooling efficiency, raising the
achievable temperature to the Doppler limit. The physical origin of the correlation can be traced back to a
cavity mediated crossfriction, i.e., a friction force on one particle depending on the velocity of the second
particle. Choosing appropriate operating conditions allows for engineering these long range correlations. In
addition this cross-friction effect can provide a basis for sympathetic cooling of distant trapped clouds.
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I. INTRODUCTION

It is a well established fact, both theoretically and experi-
mentally, that light forces on atoms are substantially modi-
fied within resonant optical cavities[1–8]. Possible experi-
mental realizations range from single atoms or ions[9,10] in
microscopic super cavities to several thousand[11,12] or up
to a million atoms[5,13] in a high-Q ring cavity. Applica-
tions of these systems include possible implementations of
quantum information processing setups[14,15], and con-
trolled nonclassical light sources[16,17] as well as possibili-
ties for trapping and cooling of atoms and molecules. The
basic physical mechanism in these setups can be traced back
to the backaction of the atoms on the field. They act as a
moving refractive index and absorber, modifying the inten-
sity and phase of the intracavity field, which in turn governs
their motion. This coupled dynamics is at the heart of cavity
enhanced trapping and cooling.

It is clear that if a single atom is able to change the field,
it will influence other atoms in the same field irrespective of
their distance. This introduces long range atom-atom interac-
tions, which are widely tailorable by suitable choices of cav-
ity geometries and operating conditions. On one hand these
interactions are useful and can be used to implement bipartite
quantum gates[14]. On the other hand they play a decisive
role in the scaling properties of cavity enhanced cooling
[18,19]. For perfectly correlated atoms, the change of refrac-
tive index induced by one atom can be compensated by a
second atom, so that the effective atom-field backreaction
can be strongly reduced. For several atoms in a ring cavity
this effect only allows a weak damping of relative motion,
while the center of mass motion is strongly damped[20].
This model is closely related to the so-called collective
atomic recoil laser(CARL), where the kinetic energy of an
atomic beam leads to gain into the counterpropagating mode
of a single side pumped ring resonator[21]. Effects were
also found in the study of the coupling of two Bose-
condensates in a cavity[22].

Several limiting cases for N atoms commonly interacting
with a cavity mode have already been studied. For the case

of N strongly trapped atoms in a standing wave cavity mode,
it is possible to derive a set of coupled equations for the total
kinetic and potential energy as well as the field amplitude
[23], which exhibit collective, damped oscillations ending in
highly correlated steady states. This approach, however, does
not give much insight into the details of the individual dy-
namics and correlations. In the opposite limit of N untrapped
atoms moving in the cavity field, numerical simulations
show little influence of atom-atom correlations and cooling
proceeds independent of the atom number[18] for proper
rescaling of the cavity parameters.

Recently, an approach for several atoms in a single mode
cavity has been developed, which concentrates on the effect
of the N−1 other particles on the cooling properties of a
single one[19]. This, in principle, makes it possible to study
the combined optical potential and friction forces. It has been
recently proposed theoretically[24] and confirmed experi-
mentally[25], that if the atoms are pumped directly from the
side(as opposed to pumping the cavity), the buildup of spa-
tial correlations within a cloud of trapped atoms can lead to
superradiant light scattering and enhanced cooling behavior.
The theoretical results in this case are based on numerical
simulations of the semiclassical equations of motion for a
large numberN@1 of particles[24]. This clearly demon-
strates collective effects, but does not give much quantitative
insight in the buildup and role of atom-atom correlations.

The central goal of the present work is to study the basic
physical mechanisms responsible for the motional correla-
tions and to develop quantitative measures of the established
steady state correlation. For this we restrict ourselves to the
simplest nontrivial example, namely two atoms strongly
coupled to a single standing wave field of a cavity. The en-
ergy loss is compensated by cavity pumping, and large de-
tuning from the atomic transition is taken to ensure low
atomic saturation. Moreover, the motion of the atoms is only
followed along the cavity axis. As we will see, this contains
most of the essential physics but still allows us to derive
analytical expressions for many relevant quantities. Most of
the analytical results are valid for the more generalN-atom
case.
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The paper is organized as follows: after presenting our
model and the approximations used in Sec. II, we analyti-
cally discuss the central physical mechanisms present in Sec.
III. In Sec. IV we quantify the results using numerical simu-
lations, which are then analyzed in more detail in Sec. V.

II. THE MODEL

Let us start by outlining the system which is shown in Fig.
1. We considerN=2 two-level atoms with transition fre-
quency vA strongly coupled to a single mode of a high-
finesse cavity with frequencyvC. The system is driven by a
coherent laser field of frequencyv and amplitudeh injected
into the cavity through one of the mirrors. The model and its
theoretical treatment follow closely Ref.[1]. Coupling to the
environment introduces a damping via two channels. First,
the atoms spontaneously emit with a rate of 2g into the
vacuum outside the cavity. Second, the cavity photons decay
with rate 2k via the output coupler mirror of the cavity. The
atoms can move freely in the cavity, however, for the sake of
simplicity, their motion is restricted to the cavity axis
(dashed line in Fig. 1).

Applying the standard Born-Markov approximation the
dynamics are governed by a quantum master equation

ṙ = −
i

"
fĤ,rg + Lr. s1d

Using rotating-wave and dipole approximations the
Hamiltonian and the Liouville operators in an interaction
picture read[1]

Ĥ = o
k=1

N F p̂2
k

2m
− "DAŝk

zG − "Dcâ
†â − i"hsâ − â†d

− i"o
k=1

N

fgsx̂kdŝk
†â − g*sx̂kdâ†ŝkg , s2ad

L%̂ = ks2â%̂â† − â†â%̂ − %̂â†âd

+ go
k=1

N F2E d2uNsudŝke
−ikAux̂k%̂eikAux̂kŝk

†

− ŝk
†ŝk%̂ − %̂ŝk

†ŝkG . s2bd

The atomic and cavity field detunings are defined asDA=v

−vA andDC=v−vC, respectively. The annihilation and cre-
ation operators of the cavity field areâ andâ†, while ŝk and
ŝk

† are the lowering and raising operators of thekth atom.
The Hamiltonian consists of the motional and internal energy
of the atoms, the self-energy of the cavity field, the classical
(laser) pump, and the Jaynes-Cummings-type interaction be-
tween the atoms and the field. The position dependence of
the coupling constant is due to the spatial structure of the
field mode:gsxkd=g0fsxkd, where in our standing-wave cav-
ity fsxkd=cosskCxkd, with kC=2p /l being the cavity wave
number. The Liouvillean operator includes the effect of cav-
ity losses and of the spontaneous emissions on the combined
atom-cavity field density operator%̂. This latter is given by
the last term, where the integral goes over the directions of
photons spontaneously emitted by the atomic dipole, having
expected wave numberkA=vA/c and angular distribution
Nsud.

We consider cold atoms but with a temperature well
above the recoil limitkBTrec="kA

2 / s2Md, where M is the
mass of one atom. In this limit the atomic coherence length
is smaller than the optical wavelength and the position and
momentum of the atoms can be replaced by their expectation
values and treated as classical variables. We still keep the
quantum nature of the internal variablesâ andŝk. Moreover,
if the atoms move much less than a wavelength during the
equilibration time of the internal variables

v ! lk,lg, s3d

we can adiabatically separate the “fast” internal from the
“slow” external dynamics as in standard laser cooling mod-
els [26].

A. The internal dynamics

For given positions of the atomsxk the internal atomic
dynamics can be rewritten in the form of quantum Langevin
equations. For low saturation, i.e., whenkŝ†ŝl!1, we can
approximate the operatorŝz by −1/2(this is called bosoniza-
tion of the atomic operators). The resulting Heisenberg-
Langevin equations then reduce to the following set of
coupled linear differential equations:

d

dt
â = siDC − kdâ + o

k

g*sxkdŝk + h + ĵ, s4ad

d

dt
ŝk = siDA − gdŝk − gsxkdâ + ẑk. s4bd

The noise operatorsĵ and ẑk appear as a result of the cou-
pling to the external vacuum through the cavity mirrors and
through spontaneous emission. They contain the annihilation
operators of the external vacuum modes, and therefore give 0
when acting on the environment’s state. Their second-order
correlation functions are as follows:

kĵst1dĵ†st2dl = 2kdst1 − t2d, s5ad

kẑkst1dẑm
† st2dl = 2gdkmdst1 − t2d, s5bd

while all other correlations vanish.

FIG. 1. The setup. The motion of two two-level atoms in a
far-detuned, high-Q optical cavity is studied. The cavity is pumped
by a strong laser beam, almost on resonance with the cavity mode.
Atomic motion is discussed along the cavity axis only.
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The steady state expectation values of the internal vari-
ablesâ and ŝk obtained from the Heisenberg-Langevin Eqs.
(4) then read

kâl = h
g − iDA

D8
, s6ad

kŝll = − h
gsxld
D8

. s6bd

HereD8 is the reduced determinant of the Bloch matrix

D8 = siDC − kdsiDA − gd + o
l

gsxld2. s7d

Since the factor 1/D8 appears in both expectation values and
in later formulae as well, it is worthwhile to rewrite it to
reveal its resonance structure with respect to the cavity de-
tuning

1

D8
=

1

siDA − gd
1

isDC − Ud − sk + Gd
, s8d

where

U =
DAol

g2sxld

DA
2 + g2 = U0o

l

f2sxld, s9d

and

G =
gol

g2sxld

DA
2 + g2 = G0o

l

f2sxld, s10d

and we usedgsxd=g0fsxd. It is clearly seen that each atom
broadens the resonance at most byG0 and displaces it byU0.

B. The external dynamics

The motion of the atoms is governed by the force operator

F̂k =
i

"
fp̂k,Ĥg = i"f¹gsxkdŝk

†â − ¹ g*sxkdâ†ŝkg. s11d

SinceF̂k is normally ordered, its expectation value is easily
obtained upon insertion of the stationary solution(6) of the
internal variables. For a moving atom this expression is only
approximately valid: there will be a time lag in the internal
dynamics with respect to the atom’s current position, and

hence, we will include corrections toF̂k to first order in the
atomic velocities.

The slow evolution of the centers of mass of the atoms,
smoothed out on the time scalet<maxh1/k ,1 /gj is de-
scribed by the coupled Langevin equations

ẋk = pk/M , s12ad

ṗk = fk + o
m=1

N

bkmpm/M + Jk. s12bd

In these equationsfk=kF̂kl are the vectors giving the steady
statev=0 contribution of the force, whilebkm are the tensors

describing the first order corrections to the force acting on
atomk. Jk denotes the Langevin noise forces due to photon
recoil. They correspond to random kicks along the cavity
axis with zero average and second moments given by
kJkJml=Dkm. Note that the matrixDkm, representing the
strength of the Langevin noise, depends on the time-varying
atomic positions. It represents the quantum fluctuations of

the force due to the factkF̂k+ F̂mlÞ kF̂kl + kF̂ml. It is by the
addition of the noise termsJk that we tailor our classical
force to give the same second-order expectation values as its
quantum counterpart[1].

III. INTERACTION CHANNELS

The Hamiltonian(2) contains no direct coupling between
the two atoms: these only arise indirectly due to coupling to
the same field mode. Interestingly the atom-atom interaction
appears in all the three types of forces present in classical
equations of motion(12). First, the steady state forcefk de-
pends on the positions of both atoms via the steady state
intensity. Second, not only does the friction coefficient on
one atom depend on the position of the other, but the friction
matrix has off-diagonal terms as well. This means that apart
from ordinary viscous frictionsṗk~vkd a strange phenom-
enon, which we call crossfriction(ṗk~vl, for l Þk) is also
present. Here the velocity of one atom influences the friction
experienced by the other atom. Third, the Langevin noise
term on one atom has an expected magnitude influenced by
the position of the other, and the noise termsJk are directly
correlated as well. Hence, we get joint “kicks” on both atoms
leading to correlated motion. In the following we will ana-
lyze these interaction channels in more detail.

A. Steady state force f

Formally the expectation valuefk of the force operator
looks very similar to the case of free-space Doppler cooling

fk = − "
DA

DA
2 + g2kâ†âl¹kg

2sxkd. s13d

However, it additionally depends on the positions of the
other atoms via the cavity field intensity. This dipole force is
conservative and can be derived from a potential. The poten-
tial looks more complicated than in free space as it contains
the dynamical nature of the cavity field, but still can be given
in closed form[19]:

V =
"DAuhu2

DAk + DCg
arctan

gk − DADC + ol
g2sxld

DAk + DCg
. s14d

To show the effects of dynamic field adjustment, we plot
this potential for two typical cases in Fig. 2. For the experi-
mental parameters used in an experiment at MPQ in Garch-
ing [27] (Garching parameters), k=g /2, g0=5g, and for a
detuning DA=−50g (upper graph) the effective interaction
between the atoms is relatively weak and the potential re-
sembles the familiar “egg-carton” surface proportional to
sin2skCx1d+sin2skCx2d. For a somewhat stronger atom-field
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couplingg0=20g (lower graph in Fig. 2) the atomic interac-
tion is quite obvious and the shape of the potential of the
second atom strongly depends on the position of the first
atom and vice versa. Basically in this second case either both
atoms are trapped, or both are free.

The peculiarg0 dependence of the interaction and the
trapping effects can be understood physically by looking at
formula (13). The atoms see each other through the cavity
field kâ†âl. As we saw in formulae(8)–(10), the field is in
resonance whenUsx1,x2d is approximately DC± sG+kd.
Each atom can shiftU in this far-detuned case by approxi-
matelyU0<g0

2/DA, whereas the cavity linewidth is approxi-
mately k+gg0

2/DA
2. Using the MPQ parametersU0,k, and

therefore the backaction of the atoms on the cavity field is
weak. In the large-g0 case,U0.k, but G0,k, meaning that
the atoms can shift the cavity resonance significantly more
than a linewidth. Hence, if one of the atoms leaves its trap it
will shift the cavity out of resonance and cause the other
atom to be released as well. Moreover, the amplitude of the
force is proportional to the cavity field, which in the large-g0
case decreases faster with the distance from the trapping
point. This implies that less work needs to be done to free an
atom: the potential is smaller, despite the same maximum
light shift.

Let us now analyze the interaction in a more quantitative
way. We start from the limiting case of neglecting the atomic

backaction on the field(i.e., we assume a constant field in-
tensity). This corresponds to the force(13):

f l <
"uhu2

2DAk2¹lg
2sxld, s15d

one obtains in the limit of very large atom-field detuning. We
can now find corrections from the cavity-mediated interac-
tion to this force by expanding the potential(14) in a power
series. Setting the driving field to resonance,DC=U0−k, the
potential Eq.(14) to second order ing /DA reads

V <
"uhu2

k
Hp

4
− FS1 +

p

4
D +

g0
2

2kg
o
l=1

N

f2sxldG g

DA

+ FS1 +
p

4
D − S1 +

p

2
DN + S g0

2

2kg
D2

3So
l=1

N

f2sxldD2GS g

DA
D2J . s16d

To first order in the small parameter we have a sum of single-
atom potentials, giving the egg-carton shape. The corrections
to this are given by terms of higher order in our expansion
parameter, of which we give the first nontrivial term here.
Note that since it is not simply the distance of the atoms
upon which the potential depends, the interatomic force be-
tween them—as can be read out from the above formula—is
not a “force” in the sense of Newton’s third law.

B. Forces linear in velocity: Friction and crossfriction

To lowest order in the adiabatic separation of the internal
and external dynamics we used the steady state values of the
internal variables for fixed positions of the atoms to calculate
the above potentials. As a next step we can include correc-
tions for â and theŝk linear in the velocityvm of each atom,
which should be valid for low velocities. As described in
Ref. [1] this leads to a friction matrixbkm as first order
correction tofk.

We obtain the following explicit formula for the friction
matrix:

bkm= 2"¹kgsxkd + ¹mgsxmd
h2

uD8u2
g

2DA

DA
2 + g2dkm

+ "¹kg
2sxkd + ¹mg2sxmd

h2

2uD8u2
IS 1

D82H2s1 + xd

3FsiDA − gd2 − o
l

gsxld2G + s1 + 3xdD8JD , s17d

where x=siDA+gd / siDA−gd is a complex factor of unit
modulus, which for large atomic detuning,DA@g, becomes
approximatelyx<1. This formula differs somewhat from
that obtained by Fischeret al. [19] by a slightly different
approach. The most important difference is that we find a
matrix symmetricin the indiceskm. This is important be-
cause it is these off-diagonal terms that couple the velocities
of the atoms, and have a decisive influence on the buildup of

FIG. 2. Potential as a function of atomic positions.The potential
(14) is plotted as a function of positions of the two atoms. In(a) the
Garching parameterssk=g /2 , g0=5gd are used, in(b) g0 was in-
creased fourfold. In the first case, the potential is well approximated
by a sum of two single-particle potentials. In the second case, it is
seen that either both atoms are trapped or both are free. The trap is
deeper for smaller couplings.
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correlated motion. We defer detailed discussion of the for-
mula (17) to Sec. V.

C. Random forces due to quantum noise

Spontaneous emission and cavity decay introduce quan-
tum noise into the atomic motion. These heat up the system
and generally tend to decrease motional correlations of the
atoms. Following the line of reasoning briefly mentioned at
the end of Sec. II and discussed in more detail in Ref.[1], we

can calculate the influence of the noise operatorsĵ and ẑ of
Eq. (4) on the dynamics. ForN atoms we arrive at the fol-
lowing simple formula:

Dkm= 2"2¹kgsxkd + ¹mgsxmd
h2

uD8u2
gdkm

+ 2"2¹kgsxkd2 + ¹mgsxmd2 h2

uD8u2
DA

kDA + gDC

uD8u2
.

s18d

This is a simple extension of the corresponding formula for
one atom given in Ref.[1]. Let us remark here, that the
diagonal part of this diffusion matrixDkm has been also
found by Fischeret al. [19]. Surprisingly, one also obtains
off-diagonal terms, which have not been considered before.
These terms lead to correlated kicks on the atoms, which can
add to the atom-atom correlations, rather than destroying
them.

Spontaneous emission adds recoil noise, which gives an
extra term to the noise correlation matrix of the form

Dkm
sp = dkm2"2kA

2u2̄h2gsxd2

uD8u2
g. s19d

HerekA=vA/c is the expected wave number of the emitted

photons andu2̄ is the correction factor coming from the spa-
tial distribution of the photons, in our caseū2=2/5. As ex-
pected, spontaneous emission, being a single-atom process,
induces no correlations between the atoms.

IV. NUMERICAL SIMULATIONS OF THE CORRELATED
ATOMIC MOTION

Having discussed the qualitative nature of the combined
atom field dynamics, we now turn to numerical simulations
for some quantitative answers. We numerically integrate the
Langevin equations(12), varying the ratio of the cavity loss
rate to the linewidth of the atomk /g as well as the relative
coupling strengthg0/g. Note that the relative magnitude of
radiation pressure and dipole force can be changed by vary-
ing the detuning between pump frequency and the atomic
resonance. As we are interested in cooling and trapping the
atoms we fix the cavity frequency atDC=NU0−k to ensure
efficient cooling[1,28]. The pump power is always chosen to
keep the atomic saturation low and approximately at
skŝk

+ŝkl,0.1d at all times.
Typical trajectories of atom pairs are shown in Fig. 3. The

atomic positionsfx1stnd ,x2stndg are plotted at regular time
intervals tn. For better visibility the coordinate is always

measured from the nearest trapping point. In the left column
the detuning was chosensDA=−50gd, with the cavity param-
eters of the MPQ group at Garching[27] sk=g /2 ,g0=5gd.
The first 50ms are displayed in the figure on the top, and the
first 3 ms in the one on the bottom. Both atoms localize
during the first 50ms to within 1/4 of a wavelength around
respective trapping centers, a sign of cooling and trapping by

FIG. 3. Typical trajectories in coordinate space. In the left col-
umn, in(a) and(b), the parameters of the Garching group are used,
in the right column, in(c) and(d), we considered a better resonator
sk=0.1g , g0=10gd and larger detuningsDA=−10 000gd. In both
cases the first 50ms, in (a) and(c), and the first 3 ms, in(b) and(d),
are shown. The coordinate is the distance from the nearest trappping
point.
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the cavity. In the right column, the detuning is chosen much
larger sDA=−104gd with stronger atom-field couplingsk
=g /10,g0=10gd. In this case the relative importance of
spontaneous emission is strongly reduced. The cooling in the
cavity is faster and both atoms reach a steady state rapidly.

The appearance of a circular structure is the striking fea-
ture of the right column. This indicates that the motion of the
atoms is correlated. Both atoms move sinusoidally about
their respective trapping points, with some noise but in such
a way that the relative phase of the two oscillations is likely
to be +90° or −90°.

To quantify the correlation between the atomic oscillators
we define their oscillator phases. This is computed in the
simulation using the trap frequency, which is

vtrap= Î2"uDAukŝ†ŝlkC
2/M , s20d

if both atoms are well trapped. HerekC is the resonator mode
wave number, andkŝ†ŝl is the saturation of either atom at
the trapping point. This formula can be derived by expanding
the potential(14), and substituting our particular choice ofh
andDC.

The measured time evolution of the oscillator phases for
the MPQ parameters(left column) and the “improved” pa-
rameters(right column) are shown in Fig. 4. For each param-
eter set, representative runs shown in Fig. 3 are used, and the
oscillator phases of atom 1(upper row), atom 2 (middle
row), and the phase difference(lower row) are displayed.
The rapid oscillation of the atoms(the period is 2.9ms for
the Garching parameters and 0.17ms for the idealized ones)
means that the time evolution of the phases is too fast to be
followed on the timescale shown, in the upper and middle
rows only “noise” is seen. The phase difference, however,
evolves more slowly. This effect is more pronounced for the

second parameter set, where the dipole force dominates.
Moreover, in this second case, the phase difference clearly
stabilizes around +90° or −90°, with random jumps in be-
tween, as expected from the results shown in Fig. 3.

What is left is to define a single number that quantifies the
strength of the time averaged correlations. For this we
sample the distributions of the oscillation phases and the
phase difference over time to create the histograms shown in
Fig. 5. As we expect, the distribution of the phases is rela-
tively flat for both parameters sets. However, there is a sig-

FIG. 4. The phases of the atomic oscillations and the relative phase. The time evolution of the oscillator phases of the first(upper row)
and second(middle row) atoms is shown, with the phase difference(bottom row). On the left the parameter set of the Garching experiments
is used, on the right a better cavity is taken with larger atomic detuning, as in the text. The phases of the atoms evolve too fast on this time
scale, only noise is seen. The phase difference is slower, with the improved parameter set it appears to stabilize at +90° and −90°.

FIG. 5. The distribution of the phasessF1,F2d and the relative
phasesF12d. For the Garching parameter set, in(a), the distribu-
tions are flat. Slight peaks inF1 andF2 at 0° and ±180° signal fast
and free atoms. With the improved parameters, in(b), the trapping
is better. Strong peaks at ±90° inF12 indicate correlation of atomic
motion. The strength of these peaks is quantified by their width,
both for the phase(noise) and the phase difference(signal).
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nificant difference in the distribution of the relative phase:
we find very pronounced peaks around +90° and −90° for
the second parameter set.

The asymmetry in these peaks is a numerical artefact due
to the finite sampling time. It is strongly diminished if we
average over several different initial conditions. A parameter
that measures the magnitude of the correlation is the widthW
of these peaks, defined throughW2=suDf u−90°d2, where the
overbar denotes averaging over time and over several trajec-
tories with different initial conditions. Subtracting this width
from the width of the flat distribution we get the signal
strengthS=51.96°−W, which can be obtained directly dur-
ing the simulation.

Let us point out here, that this measureS of motional
correlation is useful only if the atoms are well trapped. In
fact, fast atoms freely moving along the lattice generate
peaks in the single atom phase distributions off1 or f2
around 0° or 180°. We therefore monitor the single atom
distributions simultaneously and measure the widths of the
peaks around 0° and 180° in the same way as we did for the
signalS. If the “noise strength” is too large,(.10°, an arbi-
trary value), we declare our correlation measure unusable.

A. Scanning the parameter space

Having defined a suitable measure of correlation between
the motion of two atoms in the same cavity, we are in the
position to quantitatively investigate the parameter depen-
dence of this phenomenon. To this end, we ran the simulation
program for cavity decay rates of 1/50g,k,5g and cou-
pling strengths g,g0,100g, at atomic detunings of
−104g,DA,−50g (at detunings of higher magnitude the
atoms move too rapidly and adiabaticity does not hold). The
results are plotted in Fig. 6.

At atomic detunings of 100g or less, the atoms are cooled
but generally not trapped by the cavity, except for a small
region ofg0,5g andk,g. In that case the motion of two
atoms will not be correlated. For detunings as large as
5000g, the cavity field traps and cools the atoms for any
considered values of the parameters. The correlation be-
comes apparent forg0.40k, and grows weaker ifg0 is fur-
ther increased.

B. Correlation and cooling

A decisive advantage of cavity cooling of an atom is the
fact that it needs little spontaneous emission[28]. It has been
argued that this is a single atom effect and correlations es-
tablished between the atoms’ motion will decrease efficiency
or even turn off cooling[23] for a trapped thermal ensemble.
On the other hand, in some simulations for very weakly
bound atoms, this effect seemed not to play any role[18].

In our model we can now study the effect of correlations
on cavity cooling in a very controlled way for a large range
of parameters. We performed several runs of our simulation
with different cavity parameters and at different detunings,
comparing the equilibrium temperature for one and two at-
oms in the cavity. Our results are plotted in Figs. 7(one
atom) and 8(two atoms). All shades of gray show tempera-

tures below Doppler temperature"g, while black denotes
temperatures above that value.

Putting one atom into the cavity(Fig. 7), we find that
sub-Doppler cooling is achieved in the good-coupling regime
g0.k ,g. In that regime, the final temperature does not de-
pend ong0, but is approximately proportional tok, as ex-
pected from previous work[26,29]. Here one has to be cau-

FIG. 6. Correlation vsk and g0 at various detunings. At small
detuningsuDAu,100g the atoms are cooled but not trapped, corre-
lation cannot be measured. At higher detunings trapping is good
enough, and the correlation strength measured as described in the
paper is shown in with shades of gray.
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tious of the results, since if the atom’s kinetic energy is only
a few times the ground-state energy of the harmonic trap
potential, the validity of the semiclassical approximation can
be questioned.

Interestingly, the temperature plots look different if we
load two atoms into the cavity(Fig. 8). At moderately large
detunings,DA=−50g and DA=−100g, temperatures are the
same as in the single-atom case. In these cases the atoms are

cooled, but not trapped, by the cavity field. At larger detun-
ings,DA=−500g and larger, we see regions in the plot where
“extra heating” compared to the single-atom case is ob-
served. This effect is most prominent at extremely large de-
tuningsDA=−5000g andDA=−104g, where fork,g a new
structure appears in the temperature plots. This points to the
highly reduced efficiency of cavity cooling: whereas for a

FIG. 7. One atom in the cavity: final temperature vsk and g0,
for different atomic detunings. Temperature is shown in units of"g
with shades of gray. Black denotes temperature above the Doppler
limit of "g.

FIG. 8. Two atoms in the cavity: final temperature vsk and g0,
for different atomic detunings. Temperature is shown in units of"g
with shades of gray, as in Fig. 7. For low atomic detuning
uDAu,100g the temperature is the same as in the one-atom case.
For large atomic detuning new structures appear in the plots.
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single atom a better resonator(lower k) implies lower final
temperature, if there are two atoms in the cavity, decreasing
k can increasethe temperature.

Comparison of the temperature plots in Figs. 7 and 8 with
the plots of the correlation strength in Fig. 6 reveals strong
similarities. Indeed one sees that the excess heating caused
by the presence of the other atom coincides with the buildup
of correlations in the motion. In other words, the correlation
established between two atoms results in a loss of efficiency
of cavity cooling, with final temperatures pushed up to the
Doppler limit.

C. The origin of correlation: Numerical tests

As we have seen earlier, the motion of the atoms becomes
correlated due to the cavity-mediated crosstalk. This interac-
tion occurs via the force, via the friction, and via the diffu-
sion as well. We would like to know which of these interac-
tion channels is responsible for the correlation. In our
simulation we can conveniently answer this question if we
artificially weaken only particular channels of interaction and
measure the correlation.

The interaction can be eliminated from the deterministic
force using the approximation(15). Friction and diffusion
contain interaction at various levels. On the one hand, cross-
friction and crossdiffusion are direct interactions between the
atoms. On the other hand—through the determinantD8—the
positions of both atoms influence the friction and diffusion
constants for the other atoms. This parametric interaction
was not analyzed, but does not seem to play a prominent
role. Both crossfriction and crossdiffusion can be eliminated
by simply suppressing the off-diagonal terms in the friction
and diffusion matrices.

The elimination of the interaction can be made continuous
with mixing parameters 0øyF ,yb ,yDø1, giving the force,
the friction, and the diffusion with the following formulae:

F8 = yFF + s1 − yFdF0, s21d

bkm8 = ybbkm+ dkms1 − ybdbkm; s22d

Dkm8 = yDDkm+ dkms1 − yDdDkm. s23d

We show an example of what this gives for detuningDA=
−5000g, decay ratek=0.5g and couplingg0=30g in Fig. 9.
The results of these investigations are quite unanimous. It
can be seen that linearization of the potential has no system-
atic effect on correlation strength, and correlations are
slightly enhanced if the noise is decorrelated. If crossfriction
is eliminated, however, all correlations disappear. We can
therefore conclude that the dominant effect leading to corre-
lated motion is related to crossfriction.

V. THE ORIGIN OF CORRELATION: ANALYTICAL
EXPANSION FOR DEEP TRAPPING

The emergence of motional correlations between trapped
atoms can be examined analytically using the formulas pre-
sented in Sec. III. Both friction and diffusion matrices have
an “isotropic” term proportional todkm, which acts on each

atom separately, and an “interaction” term, containing cross-
friction and crossdiffusion. The latter can be rewritten in the
following form, using the notationgk=gsxkd:

2"h2

uD8u2
Pshxljd1¹1g1

2

A
¹NgN

2 2 + s¹1g1
2
¯ ¹NgN

2d, s24d

where the prefactorP depends on the positions of all atoms
symmetrically.

For well-trapped atomsxk!l (xk denoting the distance of
atomk from the nearest trapping site), the coupling constants
can be approximated as

gk = gsxkd = g0cosskCxkd < g0s1 − 1
2kC

2xk
2d . s25d

Substituting these into the interaction parts of the matrices
(24) yields

8"h2

uD8u2
Pshxljdg0

4kC
4r21x1/r

A
xN/r

2 + sx1/r ¯ xN/rd, s26d

where the “radius”,r =solxl
2d1/2, is the distance of the system

from the origin in the coordinate space. This matrix is a
projector to the vectorsx1, . . . ,xNd, and hence, the interaction
terms affect only the “radial” motion.

In the well-trapped case we can write the friction and
diffusion matrices to second order in the coordinatesxl as:

bkm= b0dkm+ b1xkxm, s27d

Dkm= D0dkm+ D1xkxm. s28d

The following notation is used:

b0 = 2"
h2

uD08u
2gg0

2kC
2 2DA

DA
2 + g2kC

2xk
2, s29d

D0 = 2"2 h2

uD08u
2gg0

2kC
2S2

5
+

3

5
kC

2xk
2D , s30d

FIG. 9. Correlation for various interaction channel strengths.
The interaction via the conservative, the friction, and the diffusion
forces is weakened by the mixing ratiosyF, yb, andyD, as described
in the text. The correlation strength was then measured using our
correlation parameter. Crossfriction is seen to play the dominant
role in the establishment of correlation.
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b1 = 2"
h2

uD08u
2g0

4kC
4IS 1

D08
2hD08s1 − 3xd+ s31d

2s1 − xdFsiDA − gd2 − o
l

gsxld2G , s32d

D1 = 2"2 h2

uD08u
2g0

4kC
44

kDA + gDC

uD08u
2 , s33d

whereD08 stands for the Bloch determinantD8 defined in Eq.
(7), evaluated at the trapping site. Near the trapping site allxk
go to zero, and onlyD0 remains finite. This prevents the
atoms from stopping completely: they are “heated out” from
the trapping sites themselves. At some distance from the
trapping sites the interaction terms become important as
well, in the coordinate space this induces extra diffusion and
friction in the radial direction. Providedg0 is high enough,
radial friction is enhanced much more than radial diffusion,
leading to a “freezing out” of the radial mode, i.e., a motion
at approximately constant distance from the origin.

VI. CONCLUSIONS

As pointed out in several previous papers, the motion of
particles in a cavity is coupled quite generally through the
field mode. This implies the buildup of motional correlations,
which we have investigated here in more detail. In general
we found that in steady state these correlations are hard to
see directly and it is difficult to find good qualitative mea-
sures to characterize them. Mostly they are strongly per-
turbed by various diffusion mechanisms. However, they still
play an important role in the dynamics and thus can be ob-
served indirectly. As one consequence they can lead to a
significant change(increase) in the steady temperature,
which directly relates to trapping times and localization

properties. This poses limits to cavity induced cooling for
large particle numbers.

From the various mechanisms at work, crossfriction turns
out to be the most important. It creates correlation and leads
to a fast thermalization of two distant particles without direct
interaction. Hence, this mechanism should prove vital for the
implementation of sympathetic cooling of distant ensembles
coupled by a far off-resonant cavity field. In order to get
efficient coupling the two species should have comparable
oscillation frequencies, so that correlation buildup and ther-
malization is fast. The finesse of the cavity should also be
large (long photon lifetime).

The second important coupling mechanism, which works
via the joint steady state potentials, was suggested for use in
the implementation of conditional phase shifts[14]. It can be
viewed as a cavity-enhanced dipole-dipole coupling. Al-
though this contribution will become more important for
larger atom-field detunings, the conditions for this part to
dominate the dissipative crossfriction seem rather hard to
achieve in practice. Finally, we found that the noise forces
acting on different atoms contain nonlocal correlations too.
These are particularly important for large detunings and rela-
tively low photon numbers, where spontaneous emission is
strongly reduced. As a result they could seriously perturb
bipartite quantum gates in cavities.

ACKNOWLEDGMENTS

The authors would like to thank A. Vukics for helpful
discussions. This work was supported by the National Scien-
tific Research Fund of Hungary(OTKA) under Contract
Nos. T043079 and T034484 and through Project 12 of SFB
Quantenoptik in Innsbruck of the Austrian FWF. P.D. ack-
owledges support by the Hungarian Academy of Sciences
(Bolyai Programme).

[1] P. Domokos and H. Ritsch, J. Opt. Soc. Am. B20, 1098
(2003).

[2] V. Vuletić, H. W. Chan, and A. T. Black, Phys. Rev. A64,
033405(2001).

[3] S. J. van Enk, J. McKeever, H. J. Kimble, and J. Ye, Phys.
Rev. A 64, 013407(2001).

[4] P. Münstermannet al., Phys. Rev. Lett.84, 4068(2000).
[5] D. Kruseet al., Phys. Rev. A67, 051802(2003).
[6] A. C. Doherty, A. S. Parkins, S. M. Tan, and D. F. Walls, Phys.

Rev. A 56, 833 (1997).
[7] T. W. Mossberg, M. Lewenstein, and D. J. Gauthier, Phys.

Rev. Lett. 67, 1723(1991).
[8] P. Maunzet al., Nature(London) 428, 50 (2004).
[9] A. B. Mundt et al., Phys. Rev. Lett.89, 103001(2002).

[10] G. R. Guthöhrleinet al., Nature(London) 414, 49 (2002).
[11] A. T. Black, H. W. Chan, and V. Vuletić, Phys. Rev. Lett.91,

203001(2003).
[12] J. A. Saueret al., e-print quant-ph/0309052.

[13] D. Kruse, C. von Cube, C. Zimmermann, and P. W. Courteille,
Phys. Rev. Lett.91, 183601(2003).

[14] A. Hemmerich, Phys. Rev. A60, 943 (1999).
[15] A. Griessner, D. Jaksch, and P. Zoller Phys. Rev. A.(unpub-

lished).
[16] J. McKeeveret al., Nature(London) 425, 268 (2003).
[17] A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett.89,

067901(2002).
[18] P. Horak and H. Ritsch, Phys. Rev. A64, 033422(2001).
[19] T. Fischeret al., New J. Phys.3, 11.1 (2001).
[20] M. Gangl and H. Ritsch, Phys. Rev. A61, 043405(2000).
[21] R. Bonifacio, G. R. M. Robb, and B. W. J. McNeil, Phys. Rev.

A 56, 912 (1997).
[22] D. Jakschet al., Phys. Rev. Lett.86, 4773(2001).
[23] M. Gangl and H. Ritsch, Phys. Rev. A61, 011402(1999).
[24] P. Domokos and H. Ritsch, Phys. Rev. Lett.89, 253003

(2002).

ASBÓTH, DOMOKOS, AND RITSCH PHYSICAL REVIEW A70, 013414(2004)

013414-10



[25] H. W. Chan, A. T. Black, and V. Vuletić, Phys. Rev. Lett.90,
063003(2003).

[26] P. Domokos, T. Salzburger, and H. Ritsch, Phys. Rev. A66,
043406(2002).

[27] T. Fischeret al., Phys. Rev. Lett.88, 163002(2002).
[28] P. Horaket al., Phys. Rev. Lett.79, 4974(1997).
[29] P. Domokos, P. Horak, and H. Ritsch, J. Phys. B34, 187

(2001).

CORRELATED MOTION OF TWO ATOMS TRAPPED IN A… PHYSICAL REVIEW A 70, 013414(2004)

013414-11


