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Dynamical tunneling is a quantum phenomenon where a classically forbidden process occurs that is prohib-
ited not by energy but by another constant of motion. The phenomenon of dynamical tunneling has been
recently observed in a sodium Bose-Einstein condensate. We present a detailed analysis of these experiments
using numerical solutions of the three-dimensional Gross-Pitaevskii equation and the corresponding Floquet
theory. We explore the parameter dependency of the tunneling oscillations and we move the quantum system
towards the classical limit in the experimentally accessible regime.
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[. INTRODUCTION the experiments and to investigate the relevant tunneling dy-
) S ) . namics. In particular we show how dynamical tunneling can
Cold atoms provide a system which is particularly suitedye ynderstood in a two and three state framework using Flo-
to study quantum nonlinear dynamics, quantum chaos, anget theory. We show that there is good agreement between
the quantum-classical borderland. On relevant time scalegyperiments and both Gross-Pitaevskii evolution and Floquet
the effects of decoherence and dissipation are negligiblgneory We examine the parameter sensitivity of the tunneling
This allows us to study a Hamiltonian quantum system. Onlyserioq to understand the underlying tunneling mechanisms.
recently dynamical tunneling was observed in experimentgye ajso discuss such concepts as chaos-assisted and
with ultracold atomq1,2]. “Conventional” quantum tunnel- resonance-assisted tunneling in relation to our experimental
ing allows a particle to pass through a classical energy barsgyits. Finally predictions are made concerning what can

rier. In contrast, in dynamical tunneling a constant of motionhappen when the quantum system is moved towards the clas-
other than energy classically forbids one to access a differer§icg) |imit.

motional state. In our experiments atoms tunneled back and |4 our experiments a sodium Bose-Einstein condensate

forth between their initial oscillatory motion and the motion 55 adiabatically loaded into a far detuned optical standing

180° out of phase. A related experiment was carried out byyave For a sufficient large detuning, spontaneous emission
Steck, Oskay, and Raiz¢8,4] in which atoms tunneled from 5, pe neglected on the time scales of the experiments

one unidirectional librational motion into another oppositely(160 us). This also allows us to consider the external de-

directed motion. , grees of freedom only. The dynamics perpendicular to the
. Luter and Reich[5] analyzed both experiments calculat- gtanding wave are not significant, therefore we are led to an
Ing mean momentum expectations vall_Jes and F_quuet Stat%?fectively one-dimensional system. The one-dimensional
for some of the parameter sets for which experiments Wereystem can be described in the corresponding two-
carrieq out and fqund good agreement_ with the_ observedimensional phase space which is spanned by momentum
tunneling frequencies. Averbukh, Osovski, and Moisejv g position coordinates along the standing wave. Single fre-
pointed out that it is possible to effectively control the tun—quency modulation of the intensity of the standing wave

neling period by varying the effective Planck’s constant by|eqys to an effective Hamiltonian for the center-of-mass mo-
only 10%. They showed one can observe both suppressigi,, given by

due to the degeneracy of two Floquet states and enhancement

due to the interaction with a third state in such a small inter- P2 HiQ

val. H= ot T[l - 2¢ sin(wt + ¢)]sirP(kx), (1)
Here we present a detailed theoretical and numerical

analysis of our experiments. We use numerical solutions of here the effective Rabi

; N ) frequency iQ.4=0%/6, Q
the Gross-Pitaevskii equation and Floquet theory to analyzgmmtiS the resonant Rabi frequenayis the modulation

parameterw is the modulation angular frequendy,is the
inverse spontaneous lifetimé,is the detuning of the stand-
*Electronic address: hensinge@umich.edu; Present address: Digtg wave,t is the time,p, is the momentum component of
partment of Physics, University of Michigan, 2477 Randall Labo-the atom along the standing wave, doid the wave number.
ratory, 500 East University Ave., Ann Arbor, MI 48109-1120, USA. Herel is the spatial-mean of the intensity of the unmodulated
"Electronic address: mouchet@celfi.phys.univ-tours. fr standing wavewhich is half of the peak intensityso Q)
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FIG. 1. Poincaré section for a classical particle in an amplitude-

modulated optical standing wave. Momentum and positione FIG. 2. Stroboscopic mean momentum as a function of the in-

well of the standing waveof the particle along the standing wave teraction time with the modulated standing wave measured in
9 P 9 9 modulation periodsn, for modulation parametes=0.29, scaled

are plotted stroboscopically with the stroboscopic period belnghve” depth x=1.66, modulation frequenci/2m=250 kHz, and a

Zgnua;:th%;h,ig:%iuI?;:;%éi?;% r-;h?O;esrgrirg“:glsoph;op;'?; ?:OSnTaphase shiftp=0.21X 2. (a) and(b) correspond to the two different
P ) 9 P 9 interaction timesn+0.25 andn+0.75 modulation periods, respec-

two perlod-l regions of regular motlc(represente_d in the Poincaré tively. Results from the dynamic evolution of the Gross-Pitaevskii
section as sets of closed curyéscated left and right of the center . S .

_ . equation are plotted as a solid liieircles and the experimental
along momentunp=0. Further out in momentum are two stable -

; . Lo ata are plotted as a dashed liigtamonds.
regions of motion known as librations. At the edges are bands og
regular motion corresponding to above barrier motion. It is plotted o o ]
for modulation parameter=0.20 and scaled well depta=1.20. tunneling is a coherent oscillation of the stroboscopically
observed mean momentum as shown in Fig. 2 and reported
in Ref. [1].

In Sec. Il we introduce the theoretical tools to analyze
dynamical tunneling by discussing Gross-Pitaevskii simula-
tions and the appropriate Floquet theory. We present a thor-
ough analysis of the experiments from REf] in Sec. Il

="l peall 2l 55 Wherels,=hel'/\2 is the saturation intensity.

\ is the wavelength of the standing wavg.determines the
start phase of the amplitude modulation. Using scaled vari
ables[7] the Hamiltonian is given by

H =p?2 + 2«[1 - 2 sin(T+ ¢)]sir(q/2), (2) After showing some theoretical results for the experimental
parameters we give a small overview of what to expect when

whereH =(4k*/ mw?)H, q=2kx, and p=(2k/mw)p,. some of the system parameters in the experiments are varied
The driving amplitude is given by in Sec. IV and give some initial analysis. In Sec. V we point

to pathways to analyze the quantum-classical transition for

2
_ ke _ 4Uoey (3) our experimental system and give conclusions in Sec. VI.

_ 2
k= 0 Qe 0 = YR P

wherew, =%k?/2mis the recoil frequencyr=tw is the scaled
time variable, andJ, is the well depth. The commutator of
scaled position and momentum is given by

Il. THEORETICAL ANALYSIS OF THE DYNAMIC
EVOLUTION OF A BOSE-EINSTEIN CONDENSATE
A. Dynamics using the Gross-Pitaevskii equation

L = i k'l 4 . . . . .
[p.al=i “@ The dynamics of a Bose-Einstein condensate in a time-
where the scaled Planck’s constankis8w,/w. For k=1.2 dependent potential in the mean-field limit are described by
and £=0.20 the classical Poincaré surface of section ighe Gross-Pitaevskii equatid,d]

shown in Fig. 1. Two symmetric regular regions can be ob- IW(r 1) A

served aboutg=0,p=1) and (q=0,p=-1). These regions ih——— = {— —V?2+ Virag(r' 1) + V(1 1)
correspond to oscillatory motion in phase with the amplitude Jt 2m

modulation in each well of the standing wave. In the experi- A hla )

ment[1,2] atoms are loaded in a period-1 region of regular N—— [P (r,0))° [W(r,1), (5

motion by controling their initial position and momentum

and by choosing the starting phase of the amplitude modulawhereN is the mean number of atoms in the condensate, and
tion appropriately. Classically atoms should retain their mo-a is the scattering length wita=2.8 nm for sodiumV; ,4r)
mentum state when observed stroboscopicdliye step is is the trapping potential which is turned off during the inter-
one modulation period A distinct signature of dynamical action with the standing wave an¥(r,t) is the time-
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dependent optical potential induced by the optical standinghe Gross-Pitaevskii equation, the interaction between these
wave. The Gross-Pitaevskii equation is propagated in timsingle-atom experiments is modeled by a classical field. Al-
using a standard numerical split-operator, fast Fourier tranghough ignoring quantum phase fluctuations in the conden-
form method. The size of the spatial grid of the numericalsate, the wave nature of atoms is still contained in the Gross-
simulation is chosen to contain the full spatial extent of thePitaevskii equation and dynamical tunneling is a quantum
initial condensatgtherefore all the populated wells of the effect that results from the wave nature of the atoms. The
standing wavg and the grid has periodic boundary condi- @ssumption for a common phase for the whole condensate is
tions at each sidéa few unpopulated wells are also included well justified for the experimental conditions as the time
on each sidg scales of the experiment and the lattice well depth are suffi-
To obtain the initial wave function a Gaussian test func-Si€ntly small. It will be shown in the followingsee Fig. 8

ineti i i 5
tion is evolved by imaginary time evolution to converge to that the kinetic energy is typically of the order of "lidz

" . - . which is much larger than the nonlinear term in the Gross-
the ground state of the stationary Gross-Pitaevskii equat'or\llbvitaevskii equatior%S) which is on the order of 400 Hz. The
Then the standing wave is turned on adiabatically with .

. . . experimental results, in particular dynamical tunneling,
V(r,1) approximately having the form of a linear ramp. After could therefore be modeled by a single particle Schrédinger

the adiabatic turn-on, the condensate wave function is foungquation in a one-dimensional single well with periodic

to be localized at the bottom of each well of the standinghoundary conditions. Nevertheless the Gross-Pitaevskii
wave. The standing wave is shifted and the time-dependeriquation is used to model all the experimental details of a
potential now has the form Bose-Einstein condensate in an optical lattice to guarantee
maximum accuracy. We will discuss and compare the Gross-
V(r,t) = M}Teﬁ[l - 2¢ sin(wt + ¢)]sirf(kx+ @),  (6) (F))fitgz\fklibi and the Floquet approaches be(tast paragraph
Theoretical analysis of the dynamical tunneling experi-
whereg is the phase shift which is applied to selectively loadments will be presented in this paper utilizing numerical so-
one region of regular motiofl]. The position representation lutions of the Gross-Pitaevskii equation. Furthermore we will
of the atomic wave functiofi¥’(r)|? just before the modula- analyze the system parameter space which is spanned by the
tion starts(and after the phase shifis shown in Fig. 3(t scaled well depthx, the modulation parameter, and the

=0T). scaled Planck’s constarit In fact variation of the scaled
The Gross-Pitaevskii equation is used to model the exPlanck’s constant in the simulations allows one to move the

perimental details of a Bose-Einstein condensate in an optguantum system towards the classical limit.

cal one-dimensional lattice. The experiment effectively con- _

sists of many coherent single-atom experiments. The B. Floguet analysis

coherence is reflected in the occurrence of diffraction peaks The quantum dynamics of a periodically driven Hamil-

in the atomic momentum distributiofsee Fig. 4. Utilizing tonian system can be described in terms of the eigenstates of
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z 0.1 Z standing wave calculated using
numerical solutions of the Gross-
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oms have mostly negative mo-
05 mentum(t=0.25T). After approxi-
t=225T mately five modulation periods
€ 04 : 5 most atoms populate a state with
= : = positive momentum, therefore
g- 0.3 : § having undergone dynamical tun-
= MN\/\ = neling. Corresponding experimen-
N g2 N S tal data from Ref[1] is also in-
E s cluded as insets.
g 0.1 g
z z
0 0
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the Floguet operatdf, which evolves the system in time by [1]. For certain values of the scaled well deptland modu-
one modulation period. In the semiclassical regime, the Flolation parametes there are two dominant Floquet stajes)

guet eigenstates can be associated with regions of regulérat are localized on both fixed points but are distinguished
and irregular motion of the classical map. However, whken by being even or odd eigenstates of the parity operator that
is not sufficiently small compared to a typical classical actionchanges the sign of momentum. A state localized on just one
the phase-space representation of the Floquet eigenstates fideed point is therefore likely to have dominant support on an
not necessarily match with some classigalgular or irregu- even or odd superposition of these two Floquet states:

lar) structureqg10,11]. However, initial states localized at the =

stable region around a fixed point in the Poincaré section can |W(£po)) = (| e} [ ))N2. (7)

be associated with superpositions of a small number of Flo- The stroboscopic evolution is described by repeated ap-

quet eigenstates. Using this state basis, one can reveal 3fcation of the Floquet operator. As this is a unitary opera-
analogy of the dynamical tunneling experiments and conveng,

tional tunneling in a double well system. Two states of op-

posite parity which can be responsible for the observed dy- F| ) = e 7278 g,y (8)
namical tunneling phenomenon are identified. Floquet states . . . S
are stroboscopic eigenstates of the system. Their phase spafe @€ the Floquet quasienergies. Thus at a time which is
representation therefore provides a quantum analog to tHémes the period of modulation, the state initially localized

classical stroboscopic phase space representation, ti98 *Po €volves to
Poincaré map.  (A(-i2m, —i2and_IR s
Only very few states are needed to describe the evolution () = (& “Rg)+e Nz, (©)
of a wave packet that is initially strongly localized on a re-Ignoring an overall phase and defining the separation be-
gion of regular motion. A strongly localized wave packet istween Floquet quasienergies as
used in the experimenistrongly localized in each well of
the standing wavemaking the Floquet basis very useful. In Ap=¢-— ., (10)
contrast, describing the dynamics in momentum or positioryne obtains
representation requires a large number of states so that some _
of the intuitive understanding which one can obtain in the () = (| b + T2mAdM| g V)12, (12)
Floquet basis is impossible to gain. For example, the tunnel-
ing period can be derived from the quasi-eigenenergies of thet
relevant Floquet states, as will be shown below. N=KI(2A ) (12)
For an appropriate choice of parameters the phase space
exhibits two period-1 fixed points, which for a suitable periods, the state will form the antisymmetric superposition
Poincaré section lie on the momentum axis p§,#as in Ref.  of Floquet states and thus is localized on the other fixed point
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at pg. In other words the atoms have tunneled from one ofHamiltonian. Therefore one can obtain the correct initial
the fixed points to the other. This is reminiscent of barrierstate with high precision. Furthermore, the mean-field inter-
tunneling between two wells, where a particle in one well, inaction is simulated which is not contained in the Floquet
a superposition of symmetric and antisymmetric energyapproach.

eigenstates, oscillates between wells with a frequency given

by the energy difference between the eigenstates. — y NUMERICAL SIMULATIONS OF THE EXPERIMENTS
Tunneling can also occur when the initial state has signifi- _ o _
cant overlap with two nonsymmetric states. For example, if A. Gross-Pitaevskii simulations

the initial state is localized on two Floquet states, one local- |, thjs section experimental results that were discussed in
|zeq inside the class_lcal cha_lot_lc region a_nd one inside thg previous papefl] are compared with numerical simula-
region of reg_ular motion, a distinct oscillation in th_e_strobo- tions of the Gross-PitaevskiGP) equation.
scopic evolutlor_] of the mean momentum may be visible. The | the experimenf1] the atomic wave function was pre-
frequency of this tunneling oscillation depends on the spacpared initially to be localized around a period-1 region of
ing of the corresponding quasi-eigenenergies in the Floqugkgular motion. Figure 2 shows the stroboscopically mea-
spectrum. In many cases multiple tunneling frequencies oGsyred mean momentum as a function of the interaction time
cur in the s_troboscop|c evolutlon of the mean momentuMyith the standing wave for modulation parameter0.29,
some of which are due to tunneling between nonsymmetrigegled well depthx=1.66, modulation frequencyo/27
states. _ _ , , =250 kHz, and a phase shift @f=0.21x 2. (a) and (b)
Quantum dynamical tunneling may be defined in that &orrespond to the two different interaction timas 0.25
particle can access a region of phase space in a way that gtanding wave modulation ends at a maximum of the ampli-
forbidden by the classical dynamics. This implies that ity,qe modulation and n+0.75 modulation periodéstanding
crosses a Kolmogorov-Arnold-MoserKAM) = surface  \ave modulation ends at a minimum of the amplitude modu-
[12,13. The clearest evidence of dynamical tunneling can bgation), respectively. Results from the simulatiogsslid line,
obtained by choosing the scaled Planck’s constasuffi-  circley are compared with the experimental d&tiashed
ciently small so that the atomic wave function is muchline, diamonds Dynamical tunneling manifests itself as a
smaller than the region of regular motigthe size of the coherent oscillation of the stroboscopically observed mean
wave function is given bi). Furthermore, it should be cen- momentum. This occurs in contrast to the classical prediction
tered inside the region of regular motion. However, even ifin Which atoms should retain their momentum state when
the wave packet is larger than the region of regular motiorPbserved stroboscopicallyime step is one modulation pe-
and also populates the classical chaotic region of phase spad@d). There is good agreement between experiment and
one can still analyze quantum-classical correspondence arifieory as far as the tunneling period is concerned. However,
tunneling. One assumes a classical probability distribution othe experimentally measured tunneling amplitude is smaller
point particles with the same size as the quantum wave fundhan the theoretical prediction.
tion and compares the classical evolution of this point par- It should be noted that the theoretical simulations do -nOt
ticle probability distribution with the quantum evolution of take account of any possible spatial and temporal variations
the wave packet. A distinct difference between the two evoOf the scaled well deptke.g., light intensity, which could
lutions results from the occurrence of tunneling assumingPossibly lead to the observed discrepancy. It was decided to

that the quantum evolution penetrates a KAM surface visProduce simulations without using any free parameters.
ibly. However, the uncertainty associated with the experiment

would allow small variations of the modulation parameter
and the scaled well depth There was a 10% uncertainty in
the value of the scaled well depthand a 5% uncertainty in
Using the Gross-Pitaevskii equation one can exactlythe modulation parameter (all reported uncertainties are 1
simulate the experiment because the momentum or positiostandard deviation combined systematic and statistical uncer-
representation is used. Therefore the theoretical simulatiotaintie. Both temporal and spatial uncertainty during one
can be directly compared with the experimental result. Inrun of the experiment are contained in these values as well as
contrast Floquet states do not have a straightforward experthe systematic total measurement uncertainty. It was verified
mental intuitive analog. In the Floquet states analysis on¢hat there are no important qualitative changes when varying
can compare the quasienergy splitting between the tunnelingpe parameters in the uncertainty regime for the simulations
Floguet state with the experimentally measured tunneling pepresented here. However, the agreement between experiment
riod. The occurrence of multiple frequencies in the experi-and theory often can be optimizethot always non-
mentally observed tunneling oscillations might also be ex-ambiguously, meaning that it is sometimes hard to decide
plained with the presence of more than two dominantwhich set of parameters produces the begtAitthough the
Floguet states, the tunneling frequencies being the energheoretical simulation presented does not show any decay in
splitting between different participating Floquet states. Usinghe mean momentum curve, a slight change of parameters
the Gross-Pitaevskii approach one can simulate the experirside the experimental uncertainty can lead to decay which
ment with high precision. The same number of populateds most likely caused by another dominant Floquet state
wells as in the experiment can be used and the turn-on of thehose presence leads to the occurrence of a beating of the
standing wave can be simulated using an appropriate turn-aimnneling oscillations which appears as de¢ayd revival on

C. Comparison
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longer time scales A detailed analysis of the corresponding
Floquet states and their meaning will be presented in Sec—
[l C. [An example of how a change of parameters inside thez
experimental uncertainty in the simulations can optimize the g
agreement between theory and experiment is shown in Figs<
6 and 7. Both figures are described in more detail later in this 2
section] Another reason for the observed discrepancy could §
be the evolution of noncondensed atoms that is not containe(g
in the GP approach and the interaction of noncondensed atg
oms with the condensate. With a sufficiently long adiabatic g
turn-on time of the far detuned standing wave the production
of noncondensed atoms should be negligible. The interactior <
of the condensate with noncondensed atoms should also b3
negligible due to the low atomic densityote that in the =
experiments the condensate is expanded before the standir . : . L
wave is turned on However, further studies are needed to 10 20 30 40
give an exact estimate of these effects. Time [units of modulation periods]

The position representation of the atomic wave function
|W(x)|? is plotted stroboscopically after multiples of one  FIG. 5. Mean momentum as a function of the interaction time
modulation period in Fig. 3 for the same parameters as Figwith the modulated standing wave measured in modulation periods,
2. The position of the standing wave wells is also showmn, for £=0.28, k=1.49, w/2m=250 kHz, ande=0.22X27. The
(dotted ling, their amplitude is given in arbitrary units. The points are plotted stroboscopically with an interaction timenof
position axis is scaled with the mean Thomas-Fermi diam+0.25 modulation periods which corresponds to turning off the
eter. The initial modulation phase is chosen so that the wav@anding wave at maximum. Results from the dynamic evolution of
packet should be located classically approximately at it$he Gross.-Pitaevskii equation are plotted as a;glid(ﬁireleg and
highest point of the potential welP]. Choosing this strobo- he experimental data is plotted as a dashed (ifiemonds.

scopic phase the two regions of regular motion are alwayg,q potential well as shown in Fig. 3 & 0T have “rolled”
maximally separated in position space. Using this phase fooyn the well having acquired negative momentum. Mo-
the stroboscopic plots enables the observation of dynamicghentum distributions for subsequent times illustrate the dy-
tunneling in position space as the two regions of regulahamical tunneling process. At=5.25 modulation periods
motion are located to the left and to the right of the minimummost atoms have reversed their momentum and they return to
of the potential well, being maximally spatially separated. Intheir initial momentum state at approximatety9.25T. The
contrast, in the experiments, tunneling is always observed igimulations are in reasonable agreement with the experimen-
momentum spacghe standing wave is turned off when the tally measured data.
regions of regular motion are at the bottom of the well, over- Dynamical tunneling is sensitive to the modulation pa-
lapping spatially but having oppositely directed momgas  rameter, the scaled well depth, and the scaled Planck’s con-
it is difficult to optically resolve individual wells of the stant. To illustrate this, tunneling data along with the appro-
standing wave. The first picture in Fig.(8=0T) shows the priate evolution of the Gross-Pitagvskii equation will be
initial wave packet before the modulation is turned on. Subshown for another two parameter sets. Even though this rep-
sequent pictures exemplify the dynamical tunneling processesents only a small overview of the parameter dependency
At t=2T, half the atoms have tunneled; most of the atoms aref the tunneling oscillations it may help to appreciate the
in the other region of regular motion & 5T. The atoms variety of features in the atomic dynamics. Figure 5 shows
have returned to their initial position at about9T. The the theoretical simulation and the experimental datasfor
double peak structure &&5T and the small central peak at =0.28, k=1.49, w/27=250 kHz, and ¢=0.22X27. The
t=2T could indicate that Floquet states other than the twanean momentum is plotted stroboscopically with the inten-
dominant ones are also loaded which is likely as a relativelysity modulation at maximunin+0.25 modulation periods
large Planck’s constant was used enabling the initial wavéyeing an integér The solid line(circles is produced by a
packet to cover a substantial phase space area. Gross-Pitaevskii simulation and the dashed lideamond$
Figure 4 shows simulations of the stroboscopically meaconsists of experimental data. There are approximately 3.5
sured momentum distributio¥(p)|? as bar graphs for the tunneling periods in 40 modulation periods in the theoretical
same parameters as Fig. 3. Corresponding experimental datarve. Figure 6 shows the mean momentum as a function of
from Ref. [1] are also included as insets. The momentunthe interaction time with the standing wave for modulation
distributions are plotted an+0.25 modulation periods, parametere=0.30, scaled well deptlk=1.82, modulation
wheren is an integer. At this modulation phase the amplitudefrequency w/27=222 kHz, and phase shifp=0.21X 2.
modulation is at its maximum and atoms in a period-1 regioror these parameters the tunneling frequency is larger than
of regular motion are classically at the bottom of the wellfor the parameters shown in Fig. 5.
having maximum momentum. The two period-1 regions of The simulation shows good agreement with the experi-
regular motion can be distinguished in their momentum repment. However, the theoretical mean momentum tunneling
resentation at this phase as they have opposite momenta. Amplitude is larger than the one measured in the experiment
t=0.25T the atoms which were located initially halfway up and the theoretical tunneling frequency for this set of param-
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FIG. 8. Stroboscopic evolution of mean-field energy, the kinetic

FIG. 6. Mean momentum as a function of the interaction timeenergy, and the potential energy. The energies are given i@tz
with the modulated standing wave measured in modulation periodsrgy is scaled with Planck’s constanFor comparison the mean

n, for modulation parametes=0.30, scaled well deptlx=1.82,
modulation frequencyw/27=222 kHz, and phase ship=0.21

momentum is also shown as a function of the interaction time with
the standing wavgin units of modulation periods The solid

X 2. The points are plotted stroboscopically with an interaction(circles and dasheddiamonds$ curves correspond to the two dif-
time of n+0.25 modulation periods which corresponds to turningferent interaction times+0.25 andn+0.75 modulation periods,
off the standing wave at maximum. Results from the dynamic evofespectively. The evolution is plotted for modulation parameter
lution of the Gross-Pitaevskii equation are plotted as a solid line=0.29, scaled well depthc=1.66, modulation frequency/2m
(circles and the experimental data is plotted as a dashed line=250 kHz, and a phase shif=0.21X 2.

(diamonds.

sults. Note that the experimental data is not centered at zero

eters is slightly larger than the experimentally measured onenomentum. This is also the case in the theoretical simula-
Figure 7 illustrates that one can achieve much better agregions for bothe=0.28 ande=0.30. The mean momentum
ment between experiment and simulation if one of the pacurve appears much more sinusoidal than the onesfor
rameters is varied inside the experimental regime of uncer=0.29, k=1.66, w/27=250 kHz andp=0.21X 27 (Fig. 2).
tainty. The theoretical curve in this figure is obtained usingThis could imply that the initial wave function has support
the same parameters as in Fig. 6, but the modulation paranen fewer Floquet states.

etere is reduced from 0.30 to 0.28. The tunneling amplitude

and frequency is now very similar to the experimental re-
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B. Stroboscopic evolution of the system energies

Calculating the expectation values of the relevant system
energies can give important information about the relevant
energy scales and it might also help to obtain a deeper in-
sight into the stroboscopic evolution of a Bose-Einstein con-
densate in a periodically modulated potential. Figure 8 shows
the energy, expectation values for the mean-field energy, the
potential energy, and the kinetic energy given in (dzaled
by Planck’s constantFor comparison the stroboscopic mean
momentum expectation values are also shown. The energy
and momentum expectation values are plotted stroboscopi-
cally and the solidcircles and dasheddiamond$ curves
correspond to the two different interaction times0.25 and
n+0.75 modulation periods, respectively. Figure 8 is plotted
for modulation parametee=0.29, scaled well depth¢
=1.66, modulation frequency/27=250 kHz, and a phase
shift of ¢=0.21X27 which corresponds to Fig. 2. The
mean-field energy is three orders of magnitude smaller than

FIG. 7. Mean momentum as a function of the interaction timethe potential or the kinetic energy. While the kinetic energy
with the modulated standing wave measured in modulation period$loes not show a distinct oscillation, an oscillation is clearly
n, using the same parameters as Fig. 6 but the modulation parametéisible in the stroboscopic potential energy evolution. This
¢ is reduced from 0.30 to 0.28 for the theoretical simulation. A0Oscillation frequency is not equal to the tunneling frequency

much better fit is obtained.

but it is smaller as can be seen in Fig. 8. One obtains a period
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of approximately 8.9 modulation periods compared to a tun-

neling period of approximately 10.0 modulation periods.

Considering the energy scales one should note that this os

cillation is also clearly visible in the stroboscopic evolution
of the total energy of the atoms. The origin of this oscillation
is not known yet and will be the subject of future investiga-
tion.

C. Floquet analysis for some experimental parameters

Time and spatial periodicity of the Hamiltonian allow uti-
lization of the Bloch and Floquet theorerjil,14. Because
of the time periodicity, there still exist eigenstates of the
evolution operator over one periadloquet theorem Its
eigenvalues can be written in the foen2™#n™® where ¢, is
called the quasienergy of the statads a discrete quantum
number. Due to the spatial/2-periodicity, in addition ta,
these states are labeled by a continuous quantum number, t
so-called quasi-momentumb e [-27/\, 27/ \] (Bloch theo-
rem). The quasienergy spectrug, () is therefore made of
bands labeled by (see for instance Fig. 30More precisely,
the states can be written as

| ¢n, 1‘)( )= gl mi2m (D]l ﬁq)| ‘/’n,ﬂ( ) (13

where{|i, o(7)} is now strictly periodic in space and time
(i.e., not up to a phase

The evolution of the initial atomic wave function can be
easily computed from its expansion on {kfg 5(0)) once the
Floguet operator has been diagonalized. They(7)), are
the eigenstates of the modified Floguet-Bloch Hamiltonian

H=(p+RN%2 +2«(1 - 2¢ sin Dsirk(q/2)  (14)

subjected to strictly periodic space-time boundary condi-

tions.

Dominant Floquet states may be determined by calculat-

ing the inner product of the Floquet states with the initial

atomic wave function. To obtain a phase space representatio
of Floquet states in momentum and position space one cal

calculate the Husimi o®-function. It is defined as

1
Q(a,p, ) =—[(q+ip|#)?, (15)

27K

where|g+ip) is the coherent state of a simple harmonic os-
cillator with frequencyw, chosen as/x in scaled units. The
position representatioq’|q+ip) of the coherent state

[15,19 is given by
1/4 2

up to an overall phase factor and wheve VKk/2w,. Floquet

Wo

q' -q
2A

!

<q’|q+ip>=< +ip= ¢ (16)
®

R
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FIG. 9. Phase space representations of two Floquet states for
J=0 that are involved in the dynamical tunneling are show(ajn
and(b). The Floquet states correspond to the experimental param-
eters: modulation parameter0.29, scaled well deptk=1.66, and
modulation frequency/27=250 kHz, which were utilized to ob-
tain the experimental results shown in Fig. 2. A third state, shown in
(c) also has significant overlap with the initial experimental state.

analysis will be shown for some of the experimental param-

eters which were presented in the previous section. Figure
shows contour plots of the Husimi functions of two Floquet
states with opposite paritfa) and(b)] for these parameters

&gions of regular motion and they were selected so that the
initial atomic wave function has significant overlap with
them (26% and 44%, respectivelyThe initial experimental

whose presence allows dynamical tunneling to occur. Both oftate has also significant overlép2%) with a third state
them are approximately localized on the classical period-that is shown in Fig. @). The overlap is calculated using a
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lattice is turned opand the latticep =39/m [17] if the stand-

ing wave is adiabatically turned on. It was found[id] that

it is of importance to populate a state whose quasi-
momentum average is equal to zero. Moreover, quasi-
momentum spread is also of importance. It has been shown
in [18] that if the thermal velocity distribution is too broad,
then the tunneling oscillation disappears. As can be seen in
Fig. 10 the quasi-eigenenergies of the two contributing Flo-
guet states depend on the quasi-momentoinBloch angle.

The tunneling periodwhich is inversely proportional to the
separation between these two quasi-eigenengrdiezends

on the quasi-momentum. Using a thermal atomic cloud one
obtains a statistical ensemble of many quasi-momenta as
they initially move in random directions with respect to the
optical lattice. Atoms localized in individual wells can be
described by a wave packet in the plane wave basis and
therefore they are characterized by a superposition of many
quasi-momenta. The resulting quasi-momentum width
washes out the tunneling oscillatiosee[18], Fig. 3. In

Quasienergy [units of reduced energy]

Bloch angle

FIG. 10. Quasi-eigenenergy spectrum for parameters: modula- . .
tion parametee=0.29, scaled well deptk=1.66, and modulation afact in another experiment Ste al. [3] found that the

frequencyw/2m=250 kHz. The quasi-eigenenergy is measured ir]amplltud_e of the mean momentum_osm_llaﬂons resulting from
reduced energy units and it is a function of the Bloch angle. Thef'i tunneling process bet\_’\’??n two Ilbratlona! islands of Stab_'l'
Bloch angle is equal to the quasi-momentum multiplied with thelty decreasgd when the initial momentum width of the atomic
spatial perioc\/2 of the lattice. Each line corresponds to one Flo- cloud was increased. o .
quet state labeled by [see Eq.(13)]. The quasi-eigenenergy of Figure 11 shows contour plots of Husimi functions for the
most Floquet states is strongly dependent on the quasi-momentuf@’0 dominant Floquet states for the modulation parameter
but it is not the case for the states of the tunneling doublet. Recat =0.30, scaled well depthk=1.82, and modulation fre-
that the quasi-momentur is proportional to the phase taken by a quencyw/2mw=222 kHz, which corresponds to experimental
state when spatially translated Ry 2. In other words, fixingd  results shown in Fig. 6. The states are selected to have maxi-
imposes on the states some conditions on the boundary of one alhum overlap with the initial wave packé8% and 44% In
ementary cellq,q+\/2]. If a state is localized deep inside a cell, contrast to the experimental results shown in Fig. 2 there are
changing the boundary conditioise., ) will not affect the state  only two dominant Floquet states. The quasi-eigenenergy
so much and the corresponding quasienergies appear as curves tplectrum for this set of parametefisot shown reveals a
are approximately parallel to thé axis. However, one should ex- |eve| splitting of approximately 0.15 in reduced units, the
pect a strongd-dependence for a state that spreads over at leagtz|culated tunneling period is 6 modulation periods which is
Ag~n/2. in good agreement with the experiment.
coherent state that is centered on the periodic region of reguy- When comparing thg stroboscop_|c evolution of the mean
Yfhomentum shown in Fig. @modulation parametet=0.29,

e e gl ell et =16, and mocuaton frequenay 2
P : q 9 9y sp =250 kH2 with the one shown in Fig. nodulation param-

of parameters is ShOW’? in Fig. 10. The_ quasi-eigenenergiegters:0_30 scaled well depth=1.82, and modulation fre-
are plotted as a function of the quasi-momentuioch uencyw/2mw=222 kH2, one finds that it is less sinusoidal.
angle. Each line corresponds t(.) one Floquet state labeled b his can be explained in the Floquet picture. While there are
n [see Eq.(_l3)]. The arrows point to the wo Floquet states three dominant Floquet states for the first cdsgs. 2 and 9
shown in Figs. @) and 9bj that correspond to the tunneling (three Floquet states with significant overlap with the initial

Flogue, states which I n the lassical Shaotc phase spacgPEMeNtal stae there are only two dominant Floquet
4 te p PaC&ates for the second cagdgs. 6 and 1firesulting in a more
region. Examples of phase space representations of such Fl

guet states can be found in Rgt1]. Note that the spectrum Sthusoidal tunneling oscillation.
is K periodic in quasienergies. For quasi-momentiim0 the
splitting between the two states that are shown in Fig. 9 iS  D. Loading analysis of the Floquet superposition state
approxmately 0.08 in r_educed um(e_nergy in-frequency The initial atomic wave packet is localized around the
units, [energy(27K)]). With a modulation frequencw/2m  ¢lassical period-1 region of regular motion by inducing a
=250 kHz one obtains a scaled Planck’s conskaitierefore  sudden phase shift to the standing wave. This enables the
the tunneling period,, which follows from Eq.(12) is 10  observation of dynamical tunneling. In the Floquet picture
which is in good agreement with the experiment. the observation of dynamical tunneling requires that the ini-
The quasi-momentum plays a significant role in the exdial state has support on only a few dominant Floquet states,
periments. The quasi-momentufnis approximately equal to preferably populating only two with a phase space structure
the relative velocityy between the wave packgétefore the as shown in Fig. 9. Optimizing the overlap of the initial state
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curve fore=1r is not shown but it is the same as fee=0).

The amplitude of the tunneling oscillations changes strongly
when the initial phase shiftp of the standing wave is
changed. The best overlap with the tunneling Floquet states
is obtained for the phase shift somewhere in between
0.25X 27 and 0.30< 27 which corresponds to placing the
wave packet halfway up the standing wave well. This result
is in good agreement with the structure of the tunneling Flo-
guet states as shown in Fig. 9. When changintipere is no
change in the observed tunneling period. This is to be ex-
pected as mainly the loading efficiency for the “tunneling”
Floquet states varies whenis varied. It should be noted that
the simulations are carried out for a relatively large scaled

Planck’s constarit which means that the wave packet size is
rather large compared to characteristic classical phase space
features like the period-1 regions of regular motion. This
analysis shows that the tunneling amplitude sensitively de-
pends on the loading efficiency of the tunneling Floquet
states and that there is a smooth dependency of the tunneling
amplitude on this loading parameter.

IV. PARAMETER DEPENDENCY OF THE TUNNELING
OSCILLATIONS

The scaled parameter space for the dynamics of the sys-
tem is given by the scaled well depthand the modulation
parametere. Both parameters will significantly change the
structure and number of the contributing Floquet states. It
has been found that a strong sensitivity of the tunneling fre-
quency on the system parameters is a signature of chaos-
assisted tunnelinffl1,18 where a third state associated with
the classical chaotic region interacts with the tunneling Flo-

FIG. 11. Phase space representations of two Floquet statqpuet states. A Floquet state that is localized inside a region of
whose presence can lead to the occurrence of dynamical tunnelingggmar motion that surrounds another resonance can also in-
The Floquet states correspond to the experimental parametergaract with the tunneling doublettwo tunneling Floguet
modulation parametee=0.30, scaled well depthc=1.82, and  states, this phenomenon is known as resonance-assisted tun-
mpdulation fre_quencyu/277:222 kHz,_ wh_ich were utilized to ob- neling [19].
tain the experimental results shown in Fig. 6. Comprehensively exploring the parameter space and its
associated phenomena is out of the scope of this paper. In-

with these Floguet “tunneling” states should maximize theStéad an analysis associated with our experiments will be
observed tunneling amplitude. Here we carry out analysi®resented here showing one scan of the scaled well depth
confirming this prediction. This corresponds to optimizing@nd another scan of the modulation parametaround the

the overlap of the initial experimental state with the period-1€Xperimental parameter regime. The results are shown in the
regions of regular motion. Figure 12 shows the mean atomiéorm of plots of the mean momentum as a function of the
momentum as a function of the interaction time with theinteraction time with the modulated standing wave. The solid
standing wave which is plotted for a range of the initial line (circles corresponds to an interaction time with the
phase shifty of the standing wave. The solid lingircles  standing wave oh+0.25 modulation periods and the dashed
corresponds to an interaction time with the standing wave ofine (diamond$ corresponds to an interaction time af
n+0.25 modulation periods and the dashed lidmmonds  +0.75 modulation periods.

corresponds to an interaction timerof 0.75 modulation pe- Figure 13 shows the scaled well depthbeing varied
riods. The simulations are made using the Gross-Pitaevskifom 1.10 to 1.75. The other parameters are held constant
equation for modulation parameter=0.29, scaled well (modulation parametere=0.29, modulation frequency
depth k=1.66, and modulation frequenay/27=250 kHz  w/27=250 kHz, and phase shitp=0.21X 27). The mo-
which corresponds to Fig. 2. A phase shift O corresponds mentum distribution evolution is shown to illustrate intricate
to localizing the wave packet exactly at the bottom of thechanges in the tunneling dynamics when the parameters are
well and o= corresponds to localizing it exactly at the varied. Both the tunneling frequency spectrum and the tun-
maximum of the standing wave well. Symmetry dictates thaneling amplitude are strongly dependentrOften one can

no tunneling oscillation can occur for these two loadingsee more than just one dominant tunneling frequency. For
phases. This is also shown in Fig. {the mean momentum example, fork=1.35 the two dominant tunneling frequencies

(b)
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which contribute to the tunneling oscillation have a period ofquet states as chaotic or regular, which is needed for chaos-
approximately 3.9 and 34 modulation periods. In the intervalssisted tunneling.

of approximatelyx=1.5 and 1.8 the tunneling oscillations  Another interesting feature of dynamical tunneling can be
have a more sinusoidal shape indicating the presence of ontjerived from Fig. 14. It shows that for a certain parameter
approximately two dominant tunneling states. In this intervalregime the tunneling frequency decreases with decreasing
the tunneling frequency is peakedrat 1.55 with a tunneling scaled well depth. This is the contrary of what one would
period of approximately 8.9 modulation periods. In order toexpect for spatial energy barrier tunneling. This feature has
analyze further the behavior of the tunneling frequency, webeen also observed in recent experimé¢disFloquet spectra
show the low frequencydiamond$ and the high frequency provide alternative means of analyzing the tunneling dynam-
componentsquarepof the tunneling frequency as a function ics. The dependence of the tunneling frequency on the scaled
of the scaled well deptlx in Fig. 14. The high frequency well depthx can be understood using the appropriate Floquet
component is plotted only for values &fwhere it is visible  spectrum. Figure 15 shows the quasi-eigenenergies of differ-
in the stroboscopic momentum evolution shown in Fig. 13.ent Floquet states as a function of the scaled well depth
The occurrence of multiple tunneling frequencies resultsThe Floquet states with maximum overlap are marked with
from the presence of more than two dominant Floquet statedullets. Figure 15 also shows phase space representations
The minimum of the low frequency component of the tun-(Husimi functiong of some of these Floquet states for differ-
neling frequency is due to the level crossing of two contrib-ent values ofx. The shape and structure of these Floquet
uting Floquet stategsee squares and filled circles at  states depend on the value of the scaled well depth. In fact
=1.25 in Fig. 15. The error bars result from the readout Floguet states can undergo bifurcations. This may be seen as
uncertainty of the tunneling period from the simulations.the quantum analog of classical phase bifurcations. Classical
This analysis reveals some of the intricate features of th@hase space bifurcations have been reported in[Ref. In
tunneling dynamics. Instead of a smooth parameter depethis case the shapes of the Floquet states change in such a
dency a distinct rise and fa{in the low frequency compo- way that different Floquet states have non-negligible overlap
neny in the tunneling frequency versus scaled well depthwith the initial experimental state as the scaled well depth
appears. The tunneling frequency minimum is centered ds varied. The separation between the quasi-eigenenergies of
x~1.3. Note that a rise and fall in the tunneling frequency isthe two states with maximum overlap will determine a domi-
often understood as a signature of chaos-assisted tunnelingant tunneling frequency. Note that often more than two
However, it is not a sufficient criterion for chaos-assistedstates have relevant overlap with the initial experimental
tunneling. One needs to choose an approximately ten timestates which leads to the occurrence of multiple tunneling
smaller scaled Planck’s constant to use the terminology ofrequencies.

chaos-assisted tunneliri@8]. The size of the Floquet states  Figure 16 shows effects of a variation of the modulation
is given by the scaled Planck’s constant. If the states arparametek. To obtain these simulations all other parameters
much larger than phase space features like regions of regulare held constariscaled well deptix=1.66, modulation fre-
motion, then it is impossible to make a classification of Flo-quencyw/27=250 kHz, and phase shif=0.21x 27r). For
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smaller values of the corresponding classical phase space is V. MOVING THE QUANTUM SYSTEM TOWARDS THE
mainly regular. There is no distinct oscillation at0.10 CLASSICAL LIMIT

which is centered at zero momentum. Distinct tunneling os- ) ) )
cillations start to occur at=0.14 with a gradually increasing A fundamental strength of the experiments which are dis-
tunneling frequency. While there is a tunneling period ofcussed here is that they are capable of exploring the transi-
approximately 67 modulation periods &t 0.14, the tunnel- tion of the quantum system towards the classical limit by
ing period is only approximately 7.7 modulation periods atdecreasing the scaled Planck"s consﬂant o
£=0.38. For larger values of the modulation parametére ~ Here a quantum system with mixed phase space exhibit-
oscillations become less sinusoidal indicating the presence ##9 classically chaotic and regular regions of motion is
an increasing number of dominant Floquet states. The errdpoved towards the classical limit. By adjusting the scaled
bars result from the readout uncertainty of the tunneling pePlanck’s constank of the system, the wave and particle
riod from the simulations. character of the atoms can be probed although some experi-
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0.4 mental and numerical restrictions limit the extent of this
E 035 § & quantpm—classigal probe. leis should enhance Qur.un.der—
- = standing of nonlinear dynamical systems and provide insight
G 0.3 3 & into their quantum and classical origin. It is out of the scope
% T of this paper to present anything more than a short analysis
= 025 (] 4 relevant to the experimental results. The quantum-classical
2 T & borderland is analyzed by considering the mean momentum
s 02 as a function of the interaction time with the modulated
= 015 standing wave for different values of the scaled Planck’s
g7 constank. Figure 17 shows results for modulation parameter
2 o4 3+ a8 * . £=0.29, scaled well deptk=1.66, and phase shiit=0.21
?C; - = * T X 27 which corresponds to experimental results shown in
c 005 . Fig. 2. The scaled Planck’s constdnis varied by adjusting
= 0 - 3 the modulation frequency/2# and leaving the scaled well

11 12 1f3 14 15 16 17 depth x, the modulation parameter, and the initial phase

shift ¢ constant. Results are shown for the scaled Planck’s

constantk ranging from 0.40(w/27=500 kH2 to 1.33
FIG. 14. Tunneling frequency as a function of the scaled Well(wlzTT: 150 kH2. The grror bars result from the readout un-
depth « (modulation parameter=0.29, modulation frequency certainty of th_e tunneling period from the S|mulat|on_s. As
w!/27=250 kHz, and phase shi#=0.21X 27) taken from Fig. 13. shown in previous Worl{Zl], th_e momentum of the regions
Diamonds and squares denote low and high frequency componen@f regular motion IS proporuonal to .the modulation fre-
respectively. quency. Note that this is a purely classical feature that would
disappear if the scaled momentum would be plotted instead
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FIG. 15. Floquet spectrum as a function of the scaled well deptimodulation parametes=0.29, modulation frequencw/27
=250 kHz, and phase shif=0.21X 27. The Floquet states with maximum overlap are marked by black bullets, white bullets are used for
second most overlap, and white squared bullets show third most overlap. Phase space repregéhiaiionfunctions of some of the
Floquet states for different values efare also shown.

013408-13



HENSINGERet al. PHYSICAL REVIEW A 70, 013408(2004)

0.16 0.18
E 0.14 - £ o016 x
“ L3 %5
5]
8 0.12 $ o 0.14
5 o1 ¥ 501 .
> . 3 01
& 0.08 o E 3
=] =S 0.08 $
o g + =
@ 0.06 - g ¥ ¢
‘;’ "53 0.06 FS
£ 004 F 3 g Tl
= 3 0.04 L3
£ 002 =
5 = € 002
= =
0 0
0.1 0.2 03 0.4 0.5 150 200 250 300 350 400 450
Modulation parameter Modulation frequency [kHz]

FIG. 16. Tunneling frequency as a function of the modulation  FIG. 17. Dominant tunneling frequency as a function of the
parametere (scaled well depthx=1.66, modulation frequency modulation frequencyw/27 for modulation parametee=0.29,
w/2m=250 kHz, and phase shi@=0.21x27). The error bars re-  scaled well deptk=1.66, and phase shifi=0.21x 27 which cor-
sult from the readout uncertainty of the tunneling oscillations fromresponds to experimental results shown in Fig. 2. As expected, the
the simulations. The high frequency component that is present igverall tendency consists of a decreasing of the tunneling frequency
the data for 0.06e<0.18 is not shown. as the modulation frequency increases and therefore as the scaled

Planck’s constant decreases, however, the transition is not as
of the real momentum. Intuitively one would expect the tun-Smooth as one might expect.
neling frequency to decrease as the system becomes more
classical. However, a different quite surprising phenomenon An analysis of the parameter space has shown that tunnel-
occurs. Considering the modulation frequency interval being frequency is strongly dependent on the system param-
tween 225 and 325 kHz the tunneling frequency graduallyeters scaled well deptk, modulation parametet, and the

decreases as the system becomes more classical. The sagagled Planck’s constalt While we find an approximately
applies for the interval between 150 and 175 kHz and th§near dependence of the tunneling frequency on the modu-
interval from 425 to 475 kHz. Qualitative changes occur afjation parameter for the set of experimental parameters,
approximately 200, 35@379), and 500 kHz where the tun- there js a distinct spike in the tunneling frequency as a func-
neling oscillation shows multifrequency contributions andyjon of the scaled well deptk.

the tunneling frequency then significantly increases as the However, this cannot be interpreted as a signature of

effective Planck's constant is further decreased. A more deghaps-assisted tunneling essentially because the states cannot
tailed analysis will be the subject of future study. The threepe clearly identified with chaotic or regular regions of the

intervals where the tunneling frequency decreases appear gssical phase space, therefore the notion of chaos-assisted
three arms in the graph. Ab/27=200, 350, and 375 kHz ynneling is difficult to use in this context. We note that it is

the system cannot be well described using one dominant tlimportant to decrease the scaled Planck’s constant by at least
neling frequency, therefore no data is shown at these frez order of magnitudg18] for an observation of chaos-

quencies. o o . assisted tunneling to be nonambiguous. We have simulated
The results of this first analysis indicate that the transitionyhen the system is moved towards the classical limit. A
from quantum to classical physics contains many fascinatingifyrcationlike behavior results which can be understood in

details to.be explored. The result; forthe driven pendulum ilgyms of quantum bifurcations of the contributing Floquet
atom optics shows that the transition from quantum to clasgiates.

sical dynamics is not smooth.
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