
Landau-Zener-Stueckelberg theory for multiphoton intrashell transitions in Rydberg atoms:
Bloch-Siegert shifts and widths

Morten Førre
Laboratoire de Chimie Physique-Matière et Rayonnement, Université Pierre et Marie Curie, 11, rue Pierre et Marie Curie,

75231 Paris Cedex 05, France
(Received 16 July 2003; revised manuscript received 19 December 2003; published 13 July 2004)

We derive closed analytic expressions for intrashell transitions in Rydberg atoms exposed to linearly polar-
ized or circularly polarized periodic electromagnetic fields. The resonance energies and transition probabilities
are calculated using multichannel Landau-Zener-Stueckelberg theory. The theory provides formulas for the
resonance widths and positions for arbitrary field strength and frequency. The formulas are in excellent agree-
ment with numerical solution of the evolution equations.
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I. INTRODUCTION

The understanding of the interaction of a quantum system
with strong periodic fields is the foundation of spectroscopy.
In the field of atomic physics, the complex dynamics of a
multilevel strongly coupled atom has been and remains a
major challenge for experiment and theory. It is of practical
importance in both understanding the structure and measur-
ing the excitation modes of the system as well as controlling
or engineering the quantum states. The understanding and
control of the dynamics of quantum states in a discrete Hil-
bert space is of great importance in quantum information
technology and processing. The development of laser pulses
with intensities comparable with internal atomic electric
fields, and frequencies in the infrared and ultraviolet spec-
trum, has led to the observation of highly nonlinear phenom-
ena such as multiphoton ionization and high-order harmonic
generation[1]. In the simplest model of nonlinear interac-
tion, the processes can be modeled by an idealized two-level
atom[2–4]. This model assumes that the laser-atom coupling
is weak enough that only near-resonant transitions will occur,
and that selection rules allow us to confine the population
transfer between two levels. Then the master equation of the
system can be solved in closed analytic form. This provides
a physical qualitative understanding of the dynamics and
predicts effects such as Rabi oscillations and resonance fluo-
rescence with quantitative precision. The essence of this sim-
plification is the rotating-wave approximation in which the
internal and external fields are supposed to be nearly in
phase. Counterrotating terms in the Hamiltonian are ne-
glected to a first approximation. The neglect of these non-
resonant(virtual) transitions breaks down as the coupling
strength increases. Remaining within the framework of the
two-state approximation, the corrections that arise from the
counterrotating terms are the familiar Bloch-Siegert(BS)
shifts [5]. These virtual state corrections are extremely im-
portant in precision spectroscopy including photon-atom in-
teractions[6–10], NMR spectroscopy[11–15], electron para-
magnetic resonance spectroscopy[16], far-infrared interband
transitions in condensed matter[17,18], and continuously
driven dissipative solid-state qubits[19].

Metastable Rydberg atoms offer a unique opportunity for
accurate studies of pure but strongly driven quantum sys-

tems. The atoms have long lifetimes and very precisely de-
termined energy spectra, and thus have important practical
applications in cavity quantum electrodynamics[20] and pre-
cise magnetic field measurements[21]. The detailed dynam-
ics of the states within a single manifold, states with a com-
mon principal quantum numbern, have been studied for
single-photon processes, both theoretically and experimen-
tally [21–26]. When intense microwave fields are applied
then multiphoton transitions between Rydberg shells can be
observed directly[27–29].

In recent high-precision experiments, the Bloch-Siegert
shifts and widths of multiphoton resonances in the radio fre-
quency domain were measured[30]. The measurements were
of intrashell (samen) transitions of a Rydberg manifold of
atomic lithium. Resonances with photon numbersN up to
N=23 were detected and characterized. Our paper presents
closed analytic expressions for the resonance positions and
widths corresponding to these measurements. The theoretical
model is based on the coherent multichannel Landau-Zener-
Stueckelberg model[31–33]. It is explicitly time dependent
and general in the sense that it can describe multiphoton
absorption dynamics for linear and circular polarization of
the oscillating field and arbitrary alignment of an external
static electric field. An important advantage of the model is
that, as long as intershell mixing can be neglected, the results
are valid for strong fields where perturbative methods break
down. Our results are in excellent agreement with the obser-
vations reported[30].

II. MULTIPHOTON RESONANCES: NUMERICAL
SIMULATIONS

The nonrelativistic Hamiltonian of a hydrogenic one-
electron atom interacting with a time-dependent electric field
can be written as,

H = −
1

2
¹2 −

1

r
+ Fstd · r , s1d

whereF is the electric field perturbation, and the dipole ap-
proximation is made. Atomic unitss"=e=me=1d. Suppose
that the electron is localized to a single Rydberg manifoldn,
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with degeneracyn2, and let us takeFstd=fFxcosvt ,0 ,F0

+Fzsin vtg. Thus Fz=0 corresponds to linear polarization
andFz= ±Fx to circular polarization. For perturbations in the
presence of a static electric field, the most suitable basis is
the set ofn2 orthonormal parabolic stateshun,k,mlj where
k=n1−n2=−n+ umu+1, −n+ umu+2, . . . ,n− umu−2, n− umu−1
is the parabolic quantum number, andm=−n+1,−n
+2, . . . ,n−2,n−1 the projection of the orbital angular mo-
mentum along the static field direction. Restricting the Hil-
bert space to this basis is justified on time scales much
shorter than the natural lifetime, and for field strengths such
that neighboring Starkn-manifolds do not overlap, that is,
Fn2!n−3 [34]. Moreover, only frequencies of the external
field v much lower than the characteristic frequency between
neighboring manifolds are considered, that is,v!n−3. In the
experiments of interest, carried out by Fregenalet al. [30],
the parameters were such thatn=25, F0=6 V/cm, and
0, s2pd−1v,300, and these conditions were satisfied for all
the values of interest.

For a weak fieldF0, the energy shifts of the field-free
degenerate manifold are given by the linear Stark effect;
DEnkm= 3

2nF0k. In Fig. 1 a schematic drawing of the energy
levels and the direct transitions between the levels, forn
=25, are shown. In experimental studies, the state in the
n-manifold with largest dipole moment and highest or lowest
energy, which is also nondegenerate, can be populated by
resonant narrowband excitation from the 2s ground state. In
the case of interest this corresponds toun,k,ml= u25,24,0l.
The initial conditions, prior to the application of the oscilla-
tory field, are that this state is fully occupied and the other
states are empty. The system can then evolve under the os-
cillating external field.

An exact one-to-one connection between the dynamics of
a single Rydberg manifold perturbed by electromagnetic
fields and two independent spin-1/2 systems was established
some years ago[35,36] and later generalized to arbitrary
initial states[26,37]. The theory has been compared with
experiment[21,30] and is now considered to be valid for a
large class of problems. Letck,mstd be the time-dependent
state amplitudes on each Stark stateun,k,ml. From this
theory the probability of remaining in the initial Stark state
u25,24,0l with time is given by the simple formula[21]

Ps25,24,0dstd = uc24,0stdu2 = f1 − pstdg2n−2, s2d

where pstd is the corresponding transition probability be-
tween eigenstates of the coupled two-state system,

i
d

dt
Sc1

c2
D = SH11 H12

H21 H22
DSc1

c2
D , s3d

with H11=−H22=s3/4dnsF0+Fzsin vtd and H12=H21

=s3/4dnFxcosvt. Prior to the detailed discussion of the
physical and analytic aspects of our model, let us consider
some results of the numerical integration of these equations.
The treelike pairwise coupling of states is shown in Fig. 1. In
general, for low-frequency excitationsv! s3/2dnF0, the
transitions will be nonresonant and require multiphoton ex-
citation through a sequence of virtual states. This leads to
Bloch-Siegert shifts of the energy spectrum characteristic of
non-resonant transitions. Suppose that the initial conditions
are c24,0st=0d=1 and ck,mst=0d=0 for all other states. We
consider the transfer of population from this state due to a
short pulse, 10 cycles, of linear or circularly polarized radio-
waves in the megahertz region. Results for the probability of
remaining in the initial state(adiabatic probability) with re-
spect to variation in the frequency of excitation are shown in
Fig. 2. The upper figure indicates the frequency dependence
of the probability for linear polarization, while the lower
figure considers the example of circular polarization. A regu-
lar pattern of resonances corresponding to absorption of a
discrete number of photons appears:N"v=Enk8m8−Enkm,
with N=1,2,3, . . ..Referring to Fig. 2, for the parameters
chosen, the low-frequency(higher-orderN) transitions are
not saturated, while the population is completely depleted for
the N=4 andN=3 transitions after 10 cycles. According to
symmetry selection rules[38], the linearly polarized field
sFz=0d couples only an odd number of photons, while the
circularly polarized field allows both even and odd photon
resonances. Furthermore, the position of the resonances is
shifted according to the polarization and coupling strength.
For example, theN=5 resonance is at a higher frequency for
linear polarization. Our paper is concerned with a detailed
description of these energy shifts. The strength(area of the
central maximum) of the resonances decreases rapidly with
increasingN. The number of sideband oscillations is propor-
tional to the pulse duration. The relevant experimental pa-
rameter is the full width at half maximum FWHM of the
resonance envelope rather than the central peak, as indicated
in Fig. 3.

III. LANDAU-ZENER-STUECKELBERG MODEL

Recall that the solution to the general problem of in-
trashell dynamics is exactly described by the evolution of the

FIG. 1. The energy spectrum of the Stark-splitn=25 manifold due to a static fieldF0. The energy levels are equidistant and defined with
respect to the center of the band byEk,m=3/2nF0k. The nondegenerate initial statek=n−1,m=0 is indicated with bold lines in the energy
spectrum and the dominantN-photon transitions for circular and linear polarizations are denoted by arrows.
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state amplitudes in the coupled two-level system Eq.(3)
[26]. For the Landau-Zener-Stueckelberg[31,39,40] model
H11=−H22=at/2 while H12=H21

! =d. This model is some-
times termed the linear model corresponding to thet depen-
dence of the diagonal energies, and for this Hamiltonian the
coupled equations can be solved exactly to yield the transi-
tion probabilities between the states. The Landau-Zener-
Stueckelberg Hamiltonian has proved to be applicable to a
large class of problems and is in many cases the only exist-
ing realizable model, due to its simplicity. The amplitudes
c1,2 are termed the diabatic coefficients because of the cross-
ing H11=H22 at t=0. We define the unitary(rotation) U such
that astd=Ustdcstd, so that

iȧ = fUHU† − iU†U̇ga, s4d

with the adiabatic HamiltonianHa=UHU†− iU†U̇. Choosing
U to diagonalizeH gives: H11

a =E1
astd=Îsat/2d2+d2 and

H22
a =E2

astd=−E1
astd. Furthermore, a nonadiabatic coupling

H12
a =H21

a!=−iad/ sa2t2+4d2d appears on the off-diagonal ele-
ments. The adiabatic transition probabilityp= ua2s+`du2 from
the initial stateais−`d=di1 is given by the formula[31]

p = e−2pd2/a. s5d

If a multilevel system exists in which couplings are between
pairs of states, and each pseudocrossing is isolated(sepa-
rated) from the others, then the system can be represented as
a series of coupled two-level systems[32,41,42]. However,
in applying the two-level formula, one must take proper ac-
count of the phase of the coefficient in order to account for
interference effects. TheS matrix connects the adiabatic am-

plitudes beforestd and afterst8d the avoided crossing, that is,
a8=Sa, and it is given by[33]

Sa1st8d
a2st8d

D = SÎ1 − pe−iV8 − Îp

Îp Î1 − peiV8
DSa1std

a2std
D , s6d

whereV8=V+FS, with V the dynamical phase

V =E
t

t8
uE1,2

a stdudt s7d

andFS the Stokes phase

FSsa,dd =
p

4
+

d2

a
Sln

d2

a
− 1D − argGS1 + i

d2

a
D . s8d

IV. RYDBERG RESONANCES

A. Circular polarization

An in-plane circularly polarized fieldsFz=Fxd was re-
cently used by Fregenalet al. [30] to drive multiphoton in-
trashell transitions in the radio frequency domain, for highly
excited Rydberg atoms. Consider the Hamiltonian in Eq.(3),
for Fz=Fx, rewritten in the adiabatic basis,

Ha =1
e

2
Î1 + a2 + 2a sin vt

i

2

avsa + sin vtd
1 + a2 + 2a sin vt

−
i

2

avsa + sin vtd
1 + a2 + 2a sin vt

−
e

2
Î1 + a2 + 2a sin vt2 ,

s9d

wherea;Fx/F0 ande;3nF0/2. The adiabatic terms(diag-
onal elements) now oscillate so that the closest approach of
the terms occurs whenever sinvt=−1, that is at the follow-
ing times: tc=3p / s2vd+2pq/v sq=0,1,2, . . .d. This is the
region where nonadiabatic coupling will be most effective.
The adiabatic energy spectrum in Fig. 4 represents a multi-

FIG. 2. The probability of the atom remaining in the initial state
un,k,ml= u25,24,0l following a 10-cycle pulse of radio frequency
radiation in the presence of a static fieldF0=6 V/m. The frequency
dependence of the probability is shown for both linear and circular
polarizations. Upper figure: results for linear polarization withFx

=3.5 V/cm. Lower figure: results for circular polarization withFz

=Fx=1.5 V/cm. The resonances are labeled by the photon number
N corresponding to the energy gap:DE=N"v.

FIG. 3. Definition of the envelope, the width(FWHM), and the
resonance frequency of a multiphoton resonance.
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level system with many identical avoided crossings appear-
ing periodically in time. Consider the Taylor expansion of
the Hamiltonian neart< tc. Comparing with the linear
Landau-Zener-Stueckelberg(LZS) model in the adiabatic
representation, the following correspondence is clear:a
;evÎa andd;es1−ad /2. The LZS approximation is accu-
rate for a.0.2 andv!e. Since the transition pointstc are
separated by a field period, the isolated two-state model can
be used to calculate the depletion of the initial state for each
cycle. The final transition matrix afterK periods of the field
can then be written as a product of totallyK S matrices, so
that afterK cycles(transitions) the probabilityPadsv ,Kd of
remaining in the initial adiabatic state becomes

Padsv,Kd = 1 −
1

4h1 + fs1 − pd/pgsin2V8j
ul+

K − l−
Ku2,

s10d

with

l± = Î1 − p cosV8 ± iÎp + s1 − pdsin2V8.

The phaseV8=V+FS is defined by Eqs.(7) and (8). The
phase(or action) V8 generates additional oscillations within
the central envelope(see Figs. 2 and 3). In the context of
atomic collisions these are usually referred to as Stueckel-
berg oscillations.

The envelope functionWsvd has a Lorentz line shape

Wsvd = 1 −
1

1 + fs1 − pd/pgsin2V8
, s11d

with the line center atV8=Np for integerN. Therefore, the
resonance frequency is defined by the transcendental equa-
tion

v =
2e

Np − FSsvd
s1 + adESp

2
,

2Îa

1 + a
D . s12d

HereEsp /2 ,kd is the complete elliptic integral of the second
kind [43]. The equation can be solved by iteration to give the
simple result

vres=
pe

Np − FSsv0d
S1 +

1

4
a2 +

1

64
a4 + Osa6dD . s13d

We have here assumed thatFS is a slowly varying function
of v near the resonancev0, wherev0 is found from Eq.(13)
by putting FS=0. Note that the Stokes phase can be ne-
glected for largeN.

The energy shifts due to the Stokes phase correction can
be investigated further. The scaled energy shiftsDBS
;Nvres/e−1 versus scaled harmonic field strengtha
=Fx/F0 are shown in Fig. 5 forN=10. Results for the ana-
lytic model with FS=0 and FSÞ0 are presented. Since
FS.0, the shifts increase when it is included. The exact
result coming from numerical solution of the Schrödinger
equation is in close agreement with the analytical estimates.

From Eq. (11), the expression for the full width at half
maximum of the resonance corresponding to anN-photon
resonance is

GN =
2vres

Np
Î p

1 + p
. s14d

Therefore,

FIG. 4. Typical energy spectrum for the two adiabatic states
(full curve), including the three first avoided crossings and the cor-
responding Landau-Zener-Stueckelberg approximation(dashed
curves). The arrows indicates that the spectrum continues periodi-
cally in time.

FIG. 5. Variation of scaled Bloch-Siegert shiftsDBS;Nvres/e
−1 with respect to field strengtha=Fx/F0 for a circularly polarized
field sFz=Fxd and for N=10. Analytic results[(Eq. (13)] with FS

=0 (full curve) andFSÞ0 (dashed curve), respectively. Numerical
(exact) results from the direct integration of the coupled equations
are indicated by *.
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GN .5
2vres

N
S3nFx

4vres
DN

, N ø 2,

2vres

Np
e−pes1 − ad2/4vresÎa, N . 2,

s15d

with p=psvresd. Sincee /vres.N the width is almost inde-
pendent of the static fieldF0. The widths forN=1,2 have
been derived by first making the phase transformation
sc1,c2d→ sei3nFx/s4vdcos vtc18 ,e−i3nFx/s4vdcos vtc28d, to remove the
oscillating terms from the diagonal of the coupling matrix in
Eq. (3). Keeping only terms involving one- and two-photon
resonances, the widths are accurately obtained from pertur-
bation theory[2,44]. The FWHM sGN

nd of a Rydberg reso-
nance is closely related to the two-state width by Eq.(2),

GN
n =Î 1

21/s2n−2d − 1
GN. s16d

In Fig. 6 we have compared the analytical and exact(numeri-
cal) widths GN/vres for values ofN from N=1–20. A very
high degree of agreement is achieved, illustrating that the
analytic formulas Eqs.(14) and (15) are extremely accurate
in the range of physical interest 0øa,1. In the limit a
→0, GN→0, and the lines are sharp for long pulses. How-
ever, for a pulse of finite durationDT and forp!1 the prob-
ability that the initial state survives is given by

Padsv,Kd = 1 − ps1 − cos 2KVd/s1 − cos 2Vd + Osp2d,

for FS=0. Since lima→0Padsvres,Kd=1−K2p, then the
FWHM becomes

lim
a→0

GN =
4Î2

NDT
. s17d

B. Linear polarization

The case with a linearly polarized fieldsFz=0d has been
widely studied due to its prevalence in optics[2,3,10,45]. In
the adiabatic basis,

Ha =1
e

2
Î1 + a2cos2vt −

i

2

av sin vt

1 + a2cos2vt

i

2

av sin vt

1 + a2cos2vt
−

e

2
Î1 + a2cos2vt2 , s18d

with a;Fx/F0 and e;3nF0/2 as before. Coupling occurs
periodically at timestc=p / s2vd+pq/v sq=0,1,2, . . .d. Ac-
cordingly, we have sinvt. ±17v2st− tcd2/2 and cosvt
.vst− tcd near each avoided crossing. Once again the
Hamiltonian corresponds to the linear model in the adiabatic
representation with the parametersa=eva andd=e /2. This
in turn gives the transition probabilityp, the Stokes phase
FS, and the conditions for resonance. The LZS approxima-
tion is accurate fora@1/Î2 andv!e. In the weak-coupling
limit sa,2d the probability of transition at resonance be-
comes[2] psvresd=4p2/ hfsN−1d /2g ! j4f3nFx/ s16vresdg2N.

In the strong-coupling region, the probabilityPadsv ,Kd of
remaining in the initial state afterK rotations of the field has
the form

Padsv,Kd = 1 −
1

4h1 + fs1 − pd/pgcos2V8j ul+
K − l−

Ku2,

s19d

with

l± = s1 − pdcos 2V8 + p ± if4ps1 − pdsin2V8 + s1

− pd2sin22V8g1/2.

Note that there are two avoided crossings for each period of
the field, i.e., totally 2K crossings. Hence for finite timesDT
there are twice as many LZS crossings for the linearly polar-
ized field as for the circularly polarized field. From Eq.(19)
the envelope function that encloses the resonances becomes

Wsvd = 1 −
1

1 + fs1 − pd/pgcos2V8
. s20d

The resonance condition isV8=Np /2, whereN is odd, i.e.,

vres=
2e

Np − 2FSsv0d
Î1 + a2ESp

2
,

a

Î1 + a2D
=

pe

Np − 2FSsv0d51 +
1

4
a2 −

3

64
a4 + Osa6d, a ø 1,

2

p
a, a @ 1.

s21d

To second order ina the resonance frequency is similar for

FIG. 6. WidthsGN/vres (FWHM) (for infinitely long pulse du-
ration) vs scaled harmonic field strengtha=Fx/F0 for different
photon numbersN, and for a circularly polarized fieldsFz=Fxd. Full
curve shows the analytical result[(Eq. (14)] and * the exact numeri-
cal results.
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the two different polarizations(linear and circular). On the
other hand, the fourth-order correction differs in magnitude
and sign, from +1/64a4 for circular polarization to −3/64a4

for linear polarization. To check the validity of the resonance
formula we have compared it with earlier derivations by
Shirley [2], Ahmad and Bullough[46] and Duvall, Valeo,
and Oberman[3]. In those derivations the correctionFS was
not considered. In the limitN@1, whenFS can be neglected,
then our results are in complete agreement. For small values
of a the LZS approximation for the Stokes phase is less
accurate, and Eq.(21) should be used with caution. In this
limit one can setFS=0 since lima→0FS=0.

Results for the scaled Bloch-Siegert shiftDBS versus
scaled harmonic field strengtha=Fx/F0 are shown in Fig. 7
for N=7. The shift becomes significant for strong coupling.
However, even for high values ofN sN=7d, the importance
of the Stokes phase is clearly visible. Only when this correc-
tion is taken into account do we obtain complete agreement
between theory and exact numerical calculations. The suc-
cess for strong coupling reflects the fact that the LZS model
is more realistic in this limit. Note that the shift increases
linearly with the coupling parameter in the range,2a / sp
−2FS/Nd for a@1.

Returning to the FWHM of theN-photon resonance, we
have that

GN =
4vres

Np
Î p

1 + p
, s22d

so that

GN .5
8vres

NFSN − 1

2
D!G2S 3nFx

16vres
DN

, N ø 5,

4vres

Np
e−pe/4vresa, N ù 5.

s23d

Note that the choice of approximation defined by the value
of N corresponds toa,2. Thus the expression in Eq.(23)
appropriate toNø5 and Nù5 is equivalent toa,2 and
a.2, respectively(see Fig. 8). The upper expressionsN
ø5d is based on Shirley’s result[2], which deviates signifi-
cantly from our result forN@5. On the other hand, forN
@5 we obtain complete agreement with Duvall, Valeo, and
Oberman[3]. Numerical simulations show that Eqs.(22) and
(23) are indeed accurate for allN.

Note that the proportionality factor in Eq.(22) is twice
that for circular polarization[Eq. (14)]. This is simply a con-
sequence of the fact that there are twice as many avoided
crossings per cycle. Note also that Eq.(11) gives resonances
for all integer N, in contrast to the oddN criterion for a
linearly polarized field, in agreement with conservation laws
for angular momentum[38].

In Fig. 8 the scaled widthsGN/vres versus scaled har-
monic field strengtha=Fx/F0 are shown and compared with
exact numerical widths for selected values ofN. For N=5
both formulas valid forNø5 andNù5 are shown for com-
parison. Together the two analytical expressions cover all
values ofN.

Again for a pulse of finite durationDT the width ap-
proaches the value 4Î2/sNDTd for a→0. This is identical
with the result for circular polarization[Eq. (17)]. It follows
from the expansion

Padsv,Kd = 1 − ps1 − cos 4KVd/s1 + cos 2Vd + Osp2d

under the condition thatFS<0.

FIG. 7. Same as Fig. 5 for a linearly polarized oscillating field
sFz=0d and forN=7. Analytical shifts[(Eq. (21)] with FS=0 (full
curve) and FSÞ0 (dashed curve), respectively. Exact numerical
shifts shown by *.

FIG. 8. Same as Fig. 6 for a linearly polarized oscillating field
sFz=0d. Full curve shows the analytical widths[Eq. (23)] and * the
exact numerical widths. ForN=5 both the formulas valid forN
ø5 (full curve) andNù5 (dashed curve), respectively, are shown
for comparison.
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V. CONCLUSION

In conclusion, simple analytical formulas for the widths
and positions of multiphoton intrashell resonances in hydro-
-genic atoms are derived and compared with numerical
calculations. A very good agreement is achieved. The theo-
retical results are also in close agreement with recent re-
lated experiments[30]. The formulas are valid for arbitrary
photon orders, and cover the entire scale of field intensities,
ranging from the weak perturbative limit to strong fields.
This consistency opens the opportunity for applications
in applied multiphoton high-precision technology. The theo-
retical results may serve as a tool kit for probing limitations
and possibilities in photonics and in discrete-variable quan-

tum systems with obvious applications in quantum informa-
tion.
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