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Landau-Zener-Stueckelberg theory for multiphoton intrashell transitions in Rydberg atoms:
Bloch-Siegert shifts and widths
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We derive closed analytic expressions for intrashell transitions in Rydberg atoms exposed to linearly polar-
ized or circularly polarized periodic electromagnetic fields. The resonance energies and transition probabilities
are calculated using multichannel Landau-Zener-Stueckelberg theory. The theory provides formulas for the
resonance widths and positions for arbitrary field strength and frequency. The formulas are in excellent agree-
ment with numerical solution of the evolution equations.

DOI: 10.1103/PhysRevA.70.013406 PACS nuniber32.80.Rm, 33.80.Rv, 33.66q

I. INTRODUCTION tems. The atoms have long lifetimes and very precisely de-

The understanding of the interaction of a quantum systerfermined energy spectra, and thus have important practical
with strong periodic fields is the foundation of spectroscopy@PpPplications in cavity quantum electrodynamiiz8] and pre-
In the field of atomic physics, the complex dynamics of aCise magnetic field measuremefid]. The detailed dynam-
multilevel Strong|y Coup|ed atom has been and remains g:s of the states within a single manifold, states with a com-
major challenge for experiment and theory. It is of practicalmon principal quantum number, have been studied for
importance in both understanding the structure and measusingle-photon processes, both theoretically and experimen-
ing the excitation modes of the system as well as controllingally [21-2§. When intense microwave fields are applied
or engineering the quantum states. The understanding aritden multiphoton transitions between Rydberg shells can be
control of the dynamics of quantum states in a discrete Hil-observed directlyj27—-29.
bert space is of great importance in quantum information In recent high-precision experiments, the Bloch-Siegert
technology and processing. The development of laser pulsesifts and widths of multiphoton resonances in the radio fre-
with intensities comparable with internal atomic electric guency domain were measurggd]. The measurements were
fields, and frequencies in the infrared and ultraviolet specof intrashell(samen) transitions of a Rydberg manifold of
trum, has led to the observation of highly nonlinear phenomatomic lithium. Resonances with photon numbatsip to
ena such as multiphoton ionization and high-order harmonigy=23 were detected and characterized. Our paper presents
generation[1]. In the simplest model of nonlinear interac- closed analytic expressions for the resonance positions and
tion, the processes can be modeled by an idealized two-levglidths corresponding to these measurements. The theoretical
atom([2-4]. This model assumes that the laser-atom couplingnodel is based on the coherent multichannel Landau-Zener-
is weak enough that only near-resonant transitions will occurstueckelberg moddB1-33. It is explicitly time dependent
and that selection rules allow us to confine the populatiorand general in the sense that it can describe multiphoton
transfer between two levels. Then the master equation of thghsorption dynamics for linear and circular polarization of
system can be solved in closed analytic form. This provideshe oscillating field and arbitrary alignment of an external
a physical qualitative understanding of the dynamics andtatic electric field. An important advantage of the model is
predicts effects such as Rabi oscillations and resonance flughat, as long as intershell mixing can be neglected, the results
rescence with quantitative precision. The essence of this sinare valid for strong fields where perturbative methods break

plification is the rotating-wave approximation in which the down. Our results are in excellent agreement with the obser-
internal and external fields are supposed to be nearly igations reported30].

phase. Counterrotating terms in the Hamiltonian are ne-

glected to a first approximation. The neglect of these non-

resonant(virtual) transitions breaks down as the coupling Il. MULTIPHOTON RESONANCES: NUMERICAL
strength increases. Remaining within the framework of the SIMULATIONS

two-state approximation, the corrections that arise from the
counterrotating terms are the fam|I_|ar Bloch-SiegeBS) . electron atom interacting with a time-dependent electric field
shifts [5]. These virtual state corrections are extremely im- .

. gy . : . can be written as,
portant in precision spectroscopy including photon-atom in-

The nonrelativistic Hamiltonian of a hydrogenic one-

teractiong6-10, NMR spectroscopyl1-195, electron para- 1,

magnetic resonance spectroscp§], far-infrared interband H=- EV Ty +F() -, 1)
transitions in condensed mattgt7,18, and continuously

driven dissipative solid-state qubit$9]. whereF is the electric field perturbation, and the dipole ap-

Metastable Rydberg atoms offer a unique opportunity forproximation is made. Atomic unitéi=e=m,=1). Suppose
accurate studies of pure but strongly driven quantum systhat the electron is localized to a single Rydberg manifgld
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FIG. 1. The energy spectrum of the Stark-spkt25 manifold due to a static fieldy. The energy levels are equidistant and defined with
respect to the center of the band By,,=3/2nFok. The nondegenerate initial stasken-1,m=0 is indicated with bold lines in the energy
spectrum and the dominahkphoton transitions for circular and linear polarizations are denoted by arrows.

with degeneracyn?, and let us takeF(t)=[F,coswt,0,F, d{c Hy Hip (o
+Fsin wt]. Thus F,=0 corresponds to linear polarization 'a( >:<H H )( >
andF,=xF, to circular polarization. For perturbations in the 2 e
presence of a static electric field, the most suitable basis #ith  H;;=—H,,=(3/4n(Fo+Fsinwt) and Hip,=Hy,
the set ofn? orthonormal parabolic state$n,k,m)} where =(3/4)nFcoswt. Prior to the detailed discussion of the
k=n;—n,=-n+|m|+1, -n+|m[+2, ... ,n—-|m-2, n—|m[-1 physical and analytic aspects of our model, let us consider
is the parabolic quantum number, angh=-n+1,-n some results of the numerical integration of these equations.
+2,...n-2,n-1 the projection of the orbital angular mo- The treelike pairwise coupling of states is shown in Fig. 1. In
mentum along the static field direction. Restricting the Hil-general, for low-frequency excitations <(3/2)nF,, the
bert space to this basis is justified on time scales muclyansitions will be nonresonant and require multiphoton ex-
shorter than the natural lifetime, and for field strengths sucleitation through a sequence of virtual states. This leads to
that neighboring Stark-manifolds do not overlap, that is, Bloch-Siegert shifts of the energy spectrum characteristic of
Fn?<n~3 [34]. Moreover, only frequencies of the external non-resonant transitions. Suppose that the initial conditions
field @ much lower than the characteristic frequency betweerare ¢y, ((t=0)=1 and ¢, (t=0)=0 for all other states. We
neighboring manifolds are considered, thakissn™. Inthe  consider the transfer of population from this state due to a
experiments of interest, carried out by Fregeethl. [30], short pulse, 10 cycles, of linear or circularly polarized radio-
the parameters were such that25, Fp=6 V/cm, and waves in the megahertz region. Results for the probability of
0< (27w < 300, and these conditions were satisfied for allremaining in the initial stat¢adiabatic probability with re-
the values of interest. spect to variation in the frequency of excitation are shown in
For a weak fieldF,, the energy shifts of the field-free Fig. 2. The upper figure indicates the frequency dependence
degenerate manifold are given by the linear Stark effectpf the probability for linear polarization, while the lower
AEnkm:gnFOk- In Fig. 1 a schematic drawing of the energy figure considers the example of circular polarization. A regu-
levels and the direct transitions between the levels,rfor lar pattern of resonances corresponding to absorption of a
=25, are shown. In experimental studies, the state in thdiscrete number of photons appeai$tw=Ewmw ~Enkm
n-manifold with largest dipole moment and highest or lowestwith N=1,2,3,....Referring to Fig. 2, for the parameters
energy, which is also nondegenerate, can be populated hosen, the low-frequencghigher-orderN) transitions are
resonant narrowband excitation from the dround state. In  not saturated, while the population is completely depleted for
the case of interest this correspondgrigk,m)=|25,24,0. the N=4 andN=3 transitions after 10 cycles. According to
The initial conditions, prior to the application of the oscilla- Symmetry selection ruleg38], the linearly polarized field
tory field, are that this state is fully occupied and the othe(F,=0) couples only an odd number of photons, while the
states are empty. The system can then evolve under the osircularly polarized field allows both even and odd photon
cillating external field. resonances. Furthermore, the position of the resonances is
An exact one-to-one connection between the dynamics o$hifted according to the polarization and coupling strength.
a single Rydberg manifold perturbed by electromagnetid-or example, th&=5 resonance is at a higher frequency for
fields and two independent spin-1/2 systems was establishdiciear polarization. Our paper is concerned with a detailed
some years ag$35,3q and later generalized to arbitrary description of these energy shifts. The stren@ttea of the
initial states[26,37. The theory has been compared with central maximum of the resonances decreases rapidly with
experiment[21,30 and is now considered to be valid for a increasingN. The number of sideband oscillations is propor-
large class of problems. Le (t) be the time-dependent tional to the pulse duration. The relevant experimental pa-
state amplitudes on each Stark statek,m). From this rameter is the full width at half maximum FWHM of the
theory the probability of remaining in the initial Stark state resonance envelope rather than the central peak, as indicated
|25,24,0 with time is given by the simple formulg21] in Fig. 3.

Ps.24.0(1) = [Caa D2 =[1 - p() "2, 2 IIl. LANDAU-ZENER-STUECKELBERG MODEL

()

) C2

where p(t) is the corresponding transition probability be-  Recall that the solution to the general problem of in-
tween eigenstates of the coupled two-state system, trashell dynamics is exactly described by the evolution of the
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FIG. 3. Definition of the envelope, the widtRWHM), and the
FIG. 2. The probability of the atom remaining in the initial state resonance frequency of a multiphoton resonance.
In,k,my=125,24,0 following a 10-cycle pulse of radio frequency
radiation in the presence of a static fi€lg=6 V/m. The frequency
dependence of the probability is shown for both linear and circulalpIItudeS before7) and after(r') the avoided crossing, that s,

polarizations. Upper figure: results for linear polarization with a'=Sa and it is given by{33]

=3.5 V/cm. Lower figure: results for circular polarization wit , —i0/ —Jn

=F,=1.5 V/cm. The resonances are labeled by the photon number (al(T )> ( vi- pe ‘P )(a1(7)> (6)
(1) ay(7)

N corresponding to the energy gapE=NAw. Vp V1- péQ'

) , where()’ =Q +dg, with ) the dynamical phase
state amplitudes in the coupled two-level system B).
[26]. For the Landau-Zener-Stueckelbdi?fl,39,4Q model LI

Hi,=-H,,=at/2 while H;,=H3},=d. This model is some- Q:J |EZ (1)t (7)
times termed the linear model corresponding tottldepen- 7

dence of the diagonal energies, and for this Hamiltonian thand ®¢ the Stokes phase

coupled equations can be solved exactly to yield the transi- 5 ) 5

tion probabilities between the states. The Landau-Zener- Pya,d) = T, d_<|nd_ - 1) - argF(l +id_>_ (8)
Stueckelberg Hamiltonian has proved to be applicable to a 4 a\ a a

large class of problems and is in many cases the only exist-

ing realizable model, due to its simplicity. The amplitudes

¢y o are termed the diabatic coefficients because of the cross- IV. RYDBERG RESONANCES

ing H{;=H,, att=0. We define the unitargrotation) U such

thata(t)=U(t)c(t), so that A. Circular polarization
B R An in-plane circularly polarized fieldF,=F,) was re-
ia=[UHU"-iU"U]a, (4 cently used by Fregenat al. [30] to drive multiphoton in-

trashell transitions in the radio frequency domain, for highly
excited Rydberg atoms. Consider the Hamiltonian in By.
for F,=F,, rewritten in the adiabatic basis,

with the adiabatic Hamiltoniaki®=UHU'-iU'U. Choosing
U to diagonalizeH gives: H},=E(t)=/(at/2)?+d? and
H3,=E5(t)=—Ej(t). Furthermore, a nonadiabatic coupling

H{,=H31=-iad/(a%?+4d?) appears on the off-diagonal ele- € > . | _aw(a+sinot)
12—7721 . . " . 5 —V1l+a“+2asSinwt —

ments. The adiabatic transition probabilfiy |a,(+)|? from 2 21 +d?+ 2a sin wt

the initial statea,(—©)=4; is given by the formuld31] H*= ,

i aw(a+ sin wt)

€ 2 -
-2rd?a T 51+ a2+ 2a sin ot —5v1+a + 2a sin wt
p=e-" (5) a a sinw

If a multilevel system exists in which couplings are between ©
pairs of states, and each pseudocrossing is isol@epda- wherea=F,/Fyande=3nF,/2. The adiabatic term@iag-
rated from the others, then the system can be represented amal elementsnow oscillate so that the closest approach of
a series of coupled two-level systeli82,41,42. However, the terms occurs whenever sit=-1, that is at the follow-

in applying the two-level formula, one must take proper ac-ing times:t.=3x/(2w)+27q/» (q=0,1,2,..). This is the
count of the phase of the coefficient in order to account foregion where nonadiabatic coupling will be most effective.
interference effects. Th® matrix connects the adiabatic am- The adiabatic energy spectrum in Fig. 4 represents a multi-
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FIG. 4. Typical energy spectrum for the two adiabatic states FIG. 5. Variation of scaled Bloch-Siegert shifigs=Nawyed €
(full curve), including the three first avoided crossings and the cor-—1 with respect to field strengta=F,/F for a circularly polarized
responding Landau-Zener-Stueckelberg approximatiolashed  field (F,=F,) and for N=10. Analytic results(Eq. (13)] with ®g
curvey. The arrows indicates that the spectrum continues periodi=0 (full curve) and®gs+ 0 (dashed curvg respectively. Numerical
cally in time. (exacy results from the direct integration of the coupled equations
are indicated by *.

level system with many identical avoided crossings appear-

ing periodically in time. Consider the Taylor expansion of 2e T 2a
the Hamiltonian neart=t.. Comparing with the linear 0= ,\h_r_—q)s(w)(l +a)E| -, ———
Landau-Zener-Stueckelber@.ZS) model in the adiabatic

representation, the following correspondence is clear:

=ewVa andd=e€(1-a)/2. The LZS approximation is accu- HereE(w/2 k) is the complete elliptic integral of the second
rate fora>0.2 andw<e. Since the transition points are  kind [43]. The equation can be solved by iteration to give the
separated by a field period, the isolated two-state model casimple result

be used to calculate the depletion of the initial state for each

cycle. The final transition matrix afté¢ periods of the field

(12)

can then be written as a product of totakyS matrices, so _ me 1, 14 6 )
that afterK cycles(transitiong the probabilityP,{ w,K) of “res” N — Dg(wp) (1 A T e O@)). (13
remaining in the initial adiabatic state becomes
1 We have here assumed thhg is a slowly varying function
Padw,K) =1 " ML+ p)lplsitQy NS =\, of w near the resonanaay, wherew is found from Eq(13)
P/p]si } by putting ®s=0. Note that the Stokes phase can be ne-
(100 glected for largeN.
with The energy shifts due to the Stokes phase correction can

be investigated further. The scaled energy shifigg
— L —_— =Nuw,/€-1 versus scaled harmonic field strength
A:=V1-pcosQ £ip+(1-p)sirQ’. =F,/F, are shown in Fig. 5 foN=10. Results for the ana-
lytic model with ®s=0 and &5#0 are presented. Since
. , Y. I ~  ®>0, the shifts increase when it is included. The exact
phase(or action ()" generates additional oscillations within eyt coming from numerical solution of the Schrédinger

the central envelopesee Figs. 2 and)3In the context of  equation is in close agreement with the analytical estimates.
atomic collisions these are usually referred to as Stueckel- "£rom, Eq.(11), the expression for the full width at half

berg oscillations.
The envelope functioM(w) has a Lorentz line shape

The phase)’=Q+dg is defined by Eqs(7) and (8). The

maximum of the resonance corresponding toNwphoton
resonance is

1
W(w)=1- , 11
(@) 1+[(1 - p)/plsirfQ’ (11) r :2wres p 19
N V_l+p'

N
with the line center af)’ =N for integerN. Therefore, the
resonance frequency is defined by the transcendental equa-
tion Therefore,
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FIG. 6. WidthsI'y/ wes (FWHM) (for infinitely long pulse du-
ration) vs scaled harmonic field strengih=F,/F, for different
photon numbersl, and for a circularly polarized fiel(F,=F,). Full
curve shows the analytical res{{Eq. (14)] and * the exact humeri-
cal results.

Zwres<3an)N N2
N \dwes , '

Zwrese—qre(l - a)2/4wres\:", N> 2,
N7

Iy= (15)

with p=p(wed. Since e/ w,es=N the width is almost inde-
pendent of the static fiel&,. The widths forN=1,2 have

been derived by first making the phase transformation

(Clacz) N (eiSnFX/(4w)cos wtci,e—i3nFX/(4w)cos wtCé), to remove the

PHYSICAL REVIEW A 70, 013406(2004)

42

m_. (17)

IimIy=

a—0

B. Linear polarization

The case with a linearly polarized fiel&,=0) has been
widely studied due to its prevalence in opt{&3,10,4%. In
the adiabatic basis,

€ 55— i aw sin ot
1+ a’cowt ST o 3.
2 21+ a’cofwt

H2=
i aw Sin ot € 55 '
- =1 + d?cofwt

E 1 + a’cofwt 2

(18

with a=F,/Fy and e=3nF,/2 as before. Coupling occurs
periodically at timed.=#/(2w)+7q/® (q=0,1,2,..). Ac-
cordingly, we have simt=+1% w?(t—t,)%/2 and coswt
=w(t-t;) near each avoided crossing. Once again the
Hamiltonian corresponds to the linear model in the adiabatic
representation with the parametersewa andd=e€/2. This
in turn gives the transition probabilitp, the Stokes phase
dg, and the conditions for resonance. The LZS approxima-
tion is accurate forw>1/12 andw<e. In the weak-coupling
limit («<2) the probability of transition at resonance be-
comes[2] p(wred =472 /{[(N-1)/2]! }[3nF,/ (16w,ed I?N.

In the strong-coupling region, the probabil®y{w,K) of
remaining in the initial state afté¢ rotations of the field has
the form

1 |}\K
4{1 +[(1 -p)/pJcogQ’'}"*

Paw,K) =1~ -2K?,

(19

oscillating terms from the diagonal of the coupling matrix in With

Eq. (3). Keeping only terms involving one- and two-photon
resonances, the widths are accurately obtained from pertur-

bation theory[2,44. The FWHM (I'y) of a Rydberg reso-
nance is closely related to the two-state width by &),

M=\ sgmg—T
N~ 21/(2n—2) -1 N-

In Fig. 6 we have compared the analytical and exaomeri-
cal) widths I'y/ w,es for values ofN from N=1-20. A very

(16)

A =(1-p)cos 2)' +p+i[4p(1-p)sirtQ’ + (1
- p)?sirt2Q' 142,

Note that there are two avoided crossings for each period of

the field, i.e., totally K crossings. Hence for finite timesT

there are twice as many LZS crossings for the linearly polar-

ized field as for the circularly polarized field. From E@9)

the envelope function that encloses the resonances becomes

1

1+[(1-p)/plcogQ’”

W(w) =1 (20)

high degree of agreement is achieved, illustrating that thghe resonance condition 3'=N=/2, whereN is odd, i.e.,

analytic formulas Eqs(14) and(15) are extremely accurate

in the range of physical interest<Oa<<1. In the limit «

—0, 'y—0, and the lines are sharp for long pulses. How-

ever, for a pulse of finite duratioAT and forp<1 the prob-
ability that the initial state survives is given by

P.d®,K)=1-p(1-cos XO)/(1-cos A) +O(p?),

for ®g=0. Since lim_oPadfwesK)=1-K?p, then the
FWHM becomes

—L 1+ a’E m @ )
Wres™ N — 2(1)3((1)0) " “ 2 ' V1+ az

1 3
1+-a?-—a*+0(a®, a<1,
_ TE 4 64
" N - 2d 2
m s(wo) —a, a>1.
T
(21)

To second order i the resonance frequency is similar for
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FIG. 8. Same as Fig. 6 for a linearly polarized oscillating field
(F,=0). Full curve shows the analytical widtligg. (23)] and * the
exact numerical widths. FON=5 both the formulas valid foN
<5 (full curve) andN=5 (dashed curve respectively, are shown
for comparison.

FIG. 7. Same as Fig. 5 for a linearly polarized oscillating field
(F;=0) and forN=7. Analytical shifts[(Eq. (21)] with ®g=0 (full
curve) and ®g# 0 (dashed curve respectively. Exact numerical
shifts shown by *.

r

. o . . Bwres 3nF N
the two different polarizationglinear and circular On the N-1 2(16w ) , N=5,
other hand, the fourth-order correction differs in magnitude NM_)lJ res
and sign, from +1/64* for circular polarization to —3/64* Iy =9 2 (23)
for linear polarization. To check the validity of the resonance Ahes reine » _
formula we have compared it with earlier derivations by N7 € %, N=5.
Shirley [2], Ahmad and BullougH46] and Duvall, Valeo, .

and Obermarf3]. In those derivations the correctignswas ~ Note that the choice of approximation defined by the value
not considered. In the limM> 1, when® can be neglected, ©f N cor_respondi tar~2. Lhu; the expression in E@3)
then our results are in complete agreement. For small valugPPropriate toN<5 andN=5 is equivalent toa<2 and

of a the LZS approximation for the Stokes phase is Iess”>2,’ respectively(s_ee I’:ig. 8. The upper e>.<pressi.o (N
accurate, and Eq21) should be used with caution. In this =<5) is based on Shirley's resu[2], which deviates signifi-

limit one can setbs=0 since lim, ,®s=0 cantly from our result foN>5. On the other hand, foX
Results for thes scaled Blocﬁ(-)Si?ege.rt shifs versus =5 We obtain complete agreement with Duvall, Valeo, and
scaled harmonic field strength=F,/F, are shown in Fig. 7 Oberman(3]. Numerical simulations show that Eq&2) and

for N=7. The shift becomes significant for strong coupling.(23) are indeed accurate for &l

. _ ) Note that the proportionality factor in E@22) is twice
However, even for high values & (N=7), the importance that for circular polarizatiofiEq. (14)]. This is simply a con-

of the Stokes phase is clearly visible. Only when this COITeCgequence of the fact that there are twice as many avoided

tion is taken into account do we o_btain Compl_ete agreemergrossmgs per cycle. Note also that Efjl) gives resonances
between theory and exact numerical calculations. The sugg, g integer N, in contrast to the oddN criterion for a

cess for strong coupling reflects the fact that the LZS modefinearly polarized field, in agreement with conservation laws
is more realistic in this limit. Note that the shift increases¢, angular momentuni3s).

linearly with the coupling parameter in the rang&@a/ (7 In Fig. 8 the scaled width& /.. versus scaled har-

—20g/N) for a>1. monic field strengthuv=F,/F, are shown and compared with
Returning to the FWHM of the\-photon resonance, we exact numerical widths for selected valueshf For N=5
have that both formulas valid foN<5 andN=5 are shown for com-
parison. Together the two analytical expressions cover all
values ofN.
Again for a pulse of finite duratiolAT the width ap-
= does | P 22) proaches the value\2/(NAT) for a— 0. This is identical
NTONm Va4 p’ with the result for circular polarizatiofEg. (17)]. It follows
from the expansion

P.dw,K)=1-p(1-cos KO)/(1+cos ) + O(p?)

so that under the condition thabg=0.
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V. CONCLUSION

In conclusion, simple analytical formulas for the widths

and positions of multiphoton intrashell resonances in hydro-
-genic atoms are derived and compared with numerical

PHYSICAL REVIEW A 70, 013406(2004)

tum systems with obvious applications in quantum informa-
tion.
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