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Pendular-limit representation of energy levels and spectra
of symmetric- and asymmetric-top molecules
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We report theoretical investigations pertaining to spectroscopy of pendular-state molecules, which are sub-
jected to the large electrostatic interaction between the molecular dipole and a strong external field. After an
appropriate coordinate transformation and a power-series expansion with an order paxatineteepresents
the degree of pendular condition, the zeroth-order Hamiltonian for the pendular limit has been derived. Mo-
tions of asymmetric tops in a high field are well described as two-dimensional anisotropic harmonic oscilla-
tions, and pendular-state quantum numbers have been introduced to label the energy levels. By using pertur-
bative treatments, energies up to tk®order are represented analytically with the pendular-state quantum
numbers. Symmetry considerations are also accomplished by using the group theory appropriate to dipolar
rigid bodies of symmetric and asymmetric tops in a uniform electric field. Energy levels and wave functions
are classified into irreducible representations of the groups and selection rules for optical transitions are
described. Energy-level correlations between the field-free and pendular conditions are also discussed on the
basis of the group theoretical considerations. For symmetric and asymmetric tops, pendular-limit selection
rules on the quantum numbers are derived by expanding the transition-dipole operaigrar@htransition
strengths are analytically evaluated for all the excitation configurations with each of the transition types.
Utilities of the present formulation have been verified by the comparison with exact model calculations based
on the matrix diagonalization with a free-rotation basis set.
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[. INTRODUCTION 30 kV/cm field and reported a drastic evolution of the spec-
When a dinolar molecule is in an electric field. the rota-tra from that of a field-free condition. Thereafter, pendular
P ' .~ states have been applied to many studies for steric effects of

tion of the molecule is disturbed by Stark effects. If the in- reactiong[4], controls of molecular orientatiofs—11], mea-

teraction between the electric dipole moment and the field i urements of electric dipole momerfts2—15, determina-

Iarggr than the molecular rotathnal Eenergy, .the m,OIECU|a[ions of transition-dipole orientatiorf46,17, superfluid he-
rotation changes to a pendulumlike libration in the interacq; droplet spectroscopidd8-23, and so or{24—-29

tion potential, and a molecular orientation is confined in a o, the theoretical side, investigations on polar molecules
Iaboratory frame. Since the situation 1s far different from in a strong electric field has been frequently conducted for
free rotating picture, perturbative treatments based on thﬁlore than 70 years. Brouwg29] studied Stark-effect cor-

picture are Hnsuita'ble. SUCh. a condition_ is palled as "’}‘ "PeTections for a linear molecule up to the fourth order of an
dular state.” The first experimental realization of the PeN-glectric field in 1930. In 1947, Hughe80] derived a repre-

dular orientation” was accomplished by Loesch and Rémggniation for energy levels of linear rotors in an arbitrary
scheid[1] in 1990, while techniques of applying an electiic giacyric field using the continued fraction method. For
f!eld to gas-phase molecules _have been utilize.d.for a Iongymmetric-top molecules, SchligB1] reported the corre-
time to ob§erve Stark eﬁect; In spectra. Combining a rOt?’sponding representation in 1955. Although the results of
t!onal cooling by a SUpersonic expansion and a de elecm(|‘=|ughes and Schlier give accurate solutions in an arbitrary
field of 30 kv/cm, the_y orlentec_j Ci mol_ecules na Iat_)o_- field, their complicated higher-order terms seldom provide
ratory frame and studied a steric effect in reactive coII|S|on§:lear physical pictures of a strong field case. Exact solutions

of P; Ztoms ,Yt‘)'ith t?e cHl rr?qleculjals.dTheydterrlneq tlgzlare also provided by numerical calculations, such as diago-
method as a “brute force technique.” Independently, in nalization of a Hamiltonian matrix constructed by a free-

Friedrich and Herschbadi2] reported laser-induced fluores- rotor basis set. Because the nature of the pendular states is

cence observations of ICl molecules in fields up 10¢ gitterent from that of free rotation, the resultant wave
20 kv/cm and confirmed that lower rotational states Wergnqions are represented by highly mixed linear combina-
9escr|bed e "as a pendulumhke libration. The name Ofy,g of the free-rotation bases, and gross features of energy
pendular state” was mtro_duced by them. Strqngly bound1evels and spectral pattern for the pendular state can not be
pendular states_ were realized by Blpek al. [3] n 1992’ expected until the inspection of the numerical outputs. Thus,
who measured infrared spectra of a linear HCN trimer in thqt is difficult to deduce the physical significance of pendular
states from their phenomenological discussions.
In 1957, Peter and Strandberg investigated analytical rep-
*Electronic address: ohshima@kuchem.kyoto-u.ac.jp resentations suitable for the pendular-limit condition from a

1050-2947/2004/70)/01340319)/$22.50 70013403-1 ©2004 The American Physical Society



R. KANYA AND Y. OHSHIMA PHYSICAL REVIEW A 70, 013403(2004)

differential equation of a strong field limit about polar angle symmetry group suitable to a rigid asymmetric top in a uni-

0 [32]. They have shown that the motion of a linear rotor inform electric field is constructed to classify the pendular-

a strong electric field is well described as two-dimensionaktate energy levels. In terms of the presently developed
isotropic harmonic oscillation. Similar treatments were per-pendular-limit formalism and symmetry group consideration,
formed by von Meyenn in 197{B3], and by Bulthuiset al. ~ gptical selection rules pertaining to the pendular-state quan-
in 1994[34]. For symmetric tops, the corresponding resulttym numbers are discussed, and approximate representations
was reported by Maergoiz and Tr¢85] in 1993 using an o transition dipole matrix elements are derived for all the
extended procedure of the Peter and Strandberg study. In thg cjiation configurations with each of the transition types. In
case of an asymmetric top, on the other hand, itis impossiblge: )1 the similar considerations are described for
to reduce the Schrodinger equation into a One'd'mens'oréymmetric-top molecules. In Sec. IV, in order to verify the

ggg&:ﬁﬂ?&%ﬁiﬂ%Sta%f'ig?nuié: i';?glepfgézzﬁ'ogefggsee %lfove-mentioned results and their utilities, the derived ana-
q : y Iytical formulations for energy levels and line strengths are

this difficulty, there have been no work that derive COITe- ~ssessed by the comparison with numerical results from the
sponding pendular-limit representations for asymmetric tops. y P

Most of the spectroscopic results on molecules in a pengiirect diagonalization of the Hamiltonian matrix. This is fol-
dular state[2,3,8-10,12,14,17,36,8have been analyzed in 0Wed by a brief conclusion in Sec. V.
terms of numerical simulations for individual spectra. In par-
ticular, several groups have discussed selection rules associ-
ated with the pendular-state spectroscopy. For linear mol-

ecules, Roset al. [36] derived the selection rules in terms of | this section, we mainly describe the pendular state of a
a quantum number of pendular vibration from their results Ofspecific asymmetric-top mo'ecu|e Whose e|ectric d|p0|e mo-
numerical calculations. Mooret al. [37] inspected the re- ment,u, is parallel to one of the principal axes. In this paper,

sults of their calculations on a near-prolate asymmetric tORye call such an asymmetric top as a specified asymmetric

and introduced a concept of a “pendular group number,” detop. General asymmetric tops will be briefly discussed in
noted byn, in order to classify eigenstates. They succeededec. || G.

in finding a selection rule about for several types of exci-

tation configurations. However, it seems difficult to extend

these selection rules applicable to generalized conditions be- A. Energy levels and wave functions

cause they have been discovered from the phenomenological First, we define an axis system. We choosdright-

considerations on the results of their simulations. For furtheﬁanded space-fixed axis whosé component directs to the

development of spectroscopy in a strong field, a firm theog,erna| electric field vectok. A (right-handegl molecular-

retical ground should be provided to the derivation of seleCtjyaq axes are defined as follows: the directiorz & parallel

tion rules and the palculgtlon ,Of line strengths._ _to u, and thex,y axes are identical to the other principal
_ Symmetry consideration with group theory is so benefi-gyas For example, molecular-fixedindy axes corresponds

cial for classification of energy levels and derivation of se-i; thea andb principal axes, respectively, jflic. In this axis

lection rules for interactions and optical transitions. For Asystem, Hamiltonian of a polar asymmetric top in a uniform
molecule in an electric field, ordinary treatments using mta'electric’field is

tion groups do not hold because of spatial anisotropy. In
1975, Watson derived symmetry groups for rovibronic levels H= B2+ By]?/ +B,)2 — e cos 0, (1)

of a molecule in a uniform electric or magnetic fi¢RB]. He

developed the theory in terms of molecular symmetrywhereB,, B,, andB3, are the rotational constants around the
groups, whose symmetry operations are constructed by ay y, andz axes, respectively,, Iy, andj, are the molecular-
inversion through the center of mass and permutations dfixed components of the total angular momentym,
identical nuclei. Though his basic idea is universal, the origi-
nal results cannot be utilized for a rigid body of symmetric or
asymmetric tops, where no nucleus is defined. Thus, some
modification should be introduced to classify pendular-state
energy levels of symmetric- and asymmetric-top molecules. . ( 9 1 9 )

II. ASYMMETRIC TOP IN PENDULAR STATES

j.=—i cos (cotai—ii>—isin i (2a)
= X dx sin@ag Xao'

=i cosxi, (2b)

The present paper aims to establish foundations for de- jy=isinx|lcot——-——— Py,

scribing characteristics of molecules in the pendular state and Ix sin6i¢
spectroscopy related to them, which have not been fully ex-
plored as mentioned above by the preceding experimental 2 __. 9 (20)

==1—,
and theoretical studies. The organization of the paper is as Jz Jd

TOHOWS' A comprghenswe conS|d¢rat|on on I|m|t|ng b?ha\{'whereqs, 0, x are Euler angles. The reduction of Edj) with
iors of asymmetric-top molecules in a strong electric field iSte energy unit of B.+5.,)/2 yields
described in Sec. Il. We first derive wave functions and cor- oy

responding eigenvalues in the high-field limit by adopting an - . . )

appropriate coordinate transformation. Pendular-state quan- H=oustoyly+oq; - FCOS 0, 3)
tum numbers for asymmetric tops are introduced for the first

time, and the implication of the results is discussed. Then, ahereoy (g=X,y,2) and\ are
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After the above-mentioned variable transformation of
(¢,0,x)— (#,X,y),

J J
= (82
dp Y
2 2
— = x—t+ty—, 8b
d60 \’)\(x2+y2)< JX y&y) (8b)
FIG. 1. Variable definitions. 9 9 9 9
Pavialravil Gt (80)
dx dy “Ix ay
2
oy= By , (43 are obtained. The trigonometric functions @appearing in
By+ B, Egs.(2) are also transformed, and expanded into the power
series of\. After the procedure, transformed Hamiltonian of
By + B, Eq. (3) is arranged according to the orderXfThe leading
A= T (4b)  term is in the order ok 2 as
gy is a reduced rotational constant about thexis. o, and |3|)\_2: - 32 9)
A

ay ranges from 0O to 2, while,> 0. \ is the most important
parameter in this paper, which represents the degree of pefys term represents the zero-point shift, which is constant
dular condition. Asue becomes larger than the rotational 5 independent of the rotational constants. This result is
constantsh approaches to zero. We introduce an index forrgagonable from the fact that the interaction potential is ex-

asymmetry,o, as pressed as -2 ca® \? in Eq.(3), which has a limiting value
o= (oy-ay)l2, (5) of z—IZ/)_\2 when the whole molecules are oriented along the
electric field.
which ranges from -1 to 1. In the symmetric-top case, The terms of the\™ order are described as
=0. oy and oy, are represented by the single parametexs ~ .
follows: oy=1+0, oy=1-0. Hy-1=N"thj, (10

Next, we transform the variables, i.e., the Euler angles,
into new variables that are suitable to describe the penduldnere
vibration. It is important to choose properly a variable trans- . P
formation for a clear description of pendular states of an hS:_O'yﬁ +X2—Uxﬁ+y2- (11)
asymmetric top. The nature of pendular vibrations around the y
x axis is not the same as that around yteis because of the Equation(11) represents a two-dimensional anisotropic har-
difference betwee, and B, of asymmetric-top molecules. monic oscillator, which is independent @f. We consider

placement in the molecular-fixed axis system. Here, we The form of Eq.(11) enables us to treat the three coordi-

adopt the following transformation: nates(i,x,y), separately. An ordinary procedure for a prob-
y=d+yx (6a) lem of harmonic oscillators yields
EQ = 2oy v+ ) + 2o vy + 3) (12
X=Tr COSp, (6b) Py Ay *e e
for the eigenvalue oh. The corresponding zeroth-order
Y=r sinp, (6c)  wave function is represented as
where [ vy =N, o Hy (03" 5%0H, (o)
2 6 X2 v
r=—=tan-, 7 xXexp - —5 - =75 | €M, 13
W 2 (ra p[ 20,7 2037 (19
whereH,(£) stands for a Hermite polynomial. The relation of
p=mT—X. (7b) ; 5
As shown in Fig. 1p determines the direction efmeasured jz=- 'ﬁ =- i(y—w (14)

from the x axis, andr stands for the reduced magnitude of
the e displacement, which ranges from zero to infinity. Thus,shows that the quantum numbmrin Eg. (13) is identical to
the orientation ofu in the space-fixed axis is interpreted as the quantum number for rotation around thexis.v andv,
the position ofe in the molecular-fixecky plane. in Egs.(12) and(13) express quantum numbers for harmonic
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vibrations along thex andy axes, respectively. The constant
vi,vy in Eq. (13) is defined as

It should be noted that the basis set|af,v,,m) is not
orthonormal. Since a volume element of the integral of this
case is represented as

2 2

Ny o, = (2 vy NP, oy ! 0')1(/40)1,/4)_1/2. (15 +y

-2
dv = sin 0 de do dX:)\(l+X x) dy dx dy,

Sincehj is independent of, the zeroth-order wave function (16)
would be an arbitrary function of. We chooseg™” on the

grounds that it is an irreducible representation of a groughe orthogonal relation of Hermite polynomials does not lead
appropriate to an asymmetric top in an external uniformto an orthogonality Ofvx,vy,m) Then, ha is proved to be a
field, as will be shown in Sec. Il B. non-Hermite operator as follows:

*

f|v)'(,v)',,m')*h8|v;,v;ﬁ,n‘{’>dv— {f|v;,vg,n'{'>h8|v)’(,v§,mf>* dv :(E,()(')/)v"m'_Eu’u’m')f|vx' vy, M
X"y’

vl mydv£0.

17

Similarly, x, y, p,, andp, are found to be non-Hermite op-
erators, whilee*'¥ are Hermite operators. The volume ele-
ment,dv, can be expanded in as

1 1)
+ -+
272

1
<Uxavy 1 m|py|vxvvy1m>_ i 20 1/2 Uy

(20d)
X+y? o 3(C+yH? _ _
dv=(1- > N+ 16 A=+ I\ dy dx dy The nonzero matrix elements &f'¥ are
+1|etY] =1. (21
22 302+ D)2 (Vyvy, Mz 1e" v, vy,m)
:(1— y)\+ ( y) A2 dv (18) L. A
2 16 Hereafter, the strict integral of an operatbis expressed as
wheredv’ is the volume element in the strong-field limit, Jloy,vy,m')y Aoy, vf, m")dv, wheredv of Eq.(16) is used as
volume element. On the other hand,

namely\ — 0. Therefore, in the strong-field Iimitux,uy,m) the

can be regarded as orthonormal and we can figat, y, p,,  Vx:Uy:M'[Alv},vy,n") denotes an integral in the strong-
and ﬁy as Hermite operators, where field limit, wheredv’ is used. The relation of

J ' :
P=—i—, (193 flvx, vy, M) Aloy,v},m')av
ax
X2+y2 -2
R 9 =(v),v.,m <1+ )\) oo’y (22
py=—i—. (19b) Sl 4 Avkoey

aay
_ _ _ _holds between the two expressions.
Matrix elements of these operators are derived analytically in  The A% term of the expanded Hamiltonian is

the case by using the recursion formula of Hermite polyno-

mials. The nonzero matrix elementsfy, p,, andp, are |:I>\o = (fl + %fz) + o), -1)2- %(x2 +y?)2, (23

[ 172 1/2
1 1 h
(vx £ 1vy,MIX|vy, vy, M) = gL( Uy + ) , wnere
2 2°2 S
(208 I=xpy—yP (24a
12 1 1)\ ?1=(Uxxf3y‘UyYf3><)12a (24b)
Lo, m=| %o+ 323) | Fy=— (s - oyl + (b + oyl (24
(20b) 2= (O-XXR/ O'yypx) (O'yxpx nypy)u: (249
0=xp,+ypy. (240

Due to the nonorthonormality of the zeroth-order wave func-
tions, careful treatments are necessary to utilize a perturba-
tion theory. In the present case, matrix elements can be ex-

1 11
<Ux 1vy,m|px|vx,vy,m)— Fyz Ux+5i5 ,

(200
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TABLE I. Euler angle transformations under symmetry opera- B. Symmetry considerations

tions ofK(spatia) and Do, In this section, symmetry considerations for pendular

states are described. In the case of free rotation of an asym-
metric top, the spatial three-dimensional pure rotation group,

Operation ¢ transformation 6 transformation y transformation

E b 09— 0 X— X denotedK(spatia), and molecular rotation group @, can
cZ(5) b B+ 0— 0 X— X be used. In a uniform electric field, however, it is impossible
1z to use eitheiK(spatia) or D, because of the interaction be-

C.%(m) ¢—2a—¢ 0— m—0 X—x+m .

tween u and e. Therefore, some suitable group should be
Co(m) p—¢ 0—0 X x*+m constructed.
Cy(m) b— p+ 0—m—0 X—~X First, we seek symmetry operations for the full Hamil-
Cy(m) p— ot O0—m—0 X—T=X tonian of Eq.(1). Apparently, the identity operatoE, is a

symmetry operation. Among the symmetry operations in
K(spatia), arbitrary rotations around th& axis, denoted
panded into the power series bf see Eqs(18) and(22).  CZ(8) where § is an arbitrary angle, are still symmetry op-
The perturbation theory in this situation is discussed brieﬂyerations because of the isotropy around Zhaxis. A|th0ugh

in Appendix A. The first-order perturbation treatment yieldsany rotation around other spatial axes is not a symmetry

the correction to the energy as operation, we consider rotations about arbitrary axes in the
XY plane, and express agz(w) wherea denotes the angle
o__ Oy 1\2 oy 1\2 measured from th&X axis to the rotation axis. As for the

By o,m(\) == g\Uxto ) ~g\wt; operations oD,,  rotation around the axis, C,(), is still

a symmetry operation whiler rotations around th& andy
1( 4o, L ap 1/2)<v +}>(U N 1) axes, denote@,(w) and C,(w), respectively, are not. From
X y

+ f— —
2\ %0} 7%y 2 2 the Euler angle transformations depicted in Table |,
1 C.A(mCy(m) and C,*(m)Cy(m) become symmetry opera-
+ oM — 9z _ iy 25 tions. As a result, it can be derived that the following sym-
7 (25) ;
2 16 metry operations form a group:

The effect of thez-axis rotation appears in E(R5) aso,nv. {E,C(m),C4(9),CH(9)C(m).C, Z(”)Cx(”)*ciz(”)cy(w)}'
SinceE,, ,, m(A°) is independent of, va,vy,m(XO) does not (27)
approach to zero even in_ a s_trong-field I|m_it. Th_ere_:fo_re, the{Nherea‘ and « are arbitrary angles.

energy-level representation in a strong-field limit is ex- According to the relations among the operators, e.g.,

pressed up to the® order as
[C.AmCUm]'CHSC, HmCm]=CH(~8) (28)

A—0 =—£+2—01L/2<v }) ZUi/2<v }) the symmetry operators can be divided into classes. The
VelyM N2\ X2 Y2 character table of this group is shown in Table II. Transfor-
‘E 0O 26) mation of ¢, x, X, andy under the symmetry operations is
Usoby M also indicated in the table. In addition, symmetriex,of, z,

TABLE Il. Character table for an asymmetric top in a uniform external field.

C4(0) CHO)Cym)

E  C{m  CA-9  CH-9)Cfm  =C(mCAm  =CymC,*m)
d— b 1) R0 ¢xo T—p+2a T—p+2a
X— X x+m X x+m =X X
— 7 Y+ Yo Y+t d —+2a 7=+ 2a
X— X -X X -X -X X
y— y -y y -y y -y
(0*,A) 1 1 1 1 1 1 z
(07,A) 1 1 1 1 -1 -1 ]Z, ]Z
(M,A)? 2 2 2 cosMé§ 2 cosMé 0 0
©o.B 1 -1 1 -1 1 -1 v, i
(0.,B) 1 -1 1 -1 -1 1 X Jy
(M,B)? 2 -2 2 cosMé -2 cosMé 0 0
™M=1,2,3,....
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TABLE Ill. Symmetry of pendular-state wave function, TABLE IV. Symmetry of the field-free basis.
g, vy, M.
Configuration Symmetry
m , Symmetr
(Ux Uy) y y m:0’ k=0 (0+,A)
0 (even, eveh (0*,A) m=0, k=even®s=0 (0%,A)
0 (odd, odd (0,A) m=0, k=even®s=1 (07,A)
0 (even, oddl (0%,B) m=0, k=o0dd,s=0 (0*,B)
0 (odd, even (07,B) m=0, k=o0dd,s=1 (07,B)
everf (even, evepor (odd, odd (jm|,A) m# 0, k=even (jm|,A)
everf (even, odgl or (odd, even (jm|,B) m# 0, k=odd (jm|,B)
odd (even, evepor (odd, odd (jm|,B) %20
odd (even, odgl or (odd, even (jm|,A) '
m#0. |:|>\1 = )\[%1?3 + %5?4 - %1%5 + %fe‘ %f7 + %fB + 1_16(X2 +y?)?],
jx Jy 1» andjz are shown at the last column. Symmetry of (313
other operators are as followd™, B) for Rf( (0*,B) for Rf, (X2 + y?)T2
" e me o =AY (n=2),  (31h)
and(1,B) for j7, whereR,, Ry, andj; are the ladder operator AP 4n+l n=2),
of the vibration along the, y axes and the rotation around
the Z axis, respectively. They are represented as where
R = ol/%p, + ix, (293 fa= (0@ + ayy?)]3, (323
~ P 2 212 4 12
R;,+ — a-ijzf)yi |y, (29b) f4 - ((TXX + O'yy )(I +Uu ), (32b)
" ) Fo= 2 4 213
JE = etll,b (290) f5 (UXX Uyy )IJZ! (32C)
Table Il reveals that the zeroth-order wave functions of Egs. ?6 = oxy(li— i)jz, (32d)

(13) are irreducible representations, and their symmetries are
summarized in Table III.

Finally, we discuss symmetry of the basis set of free ro-
tation. If we denote the wave function of a free-rotating sym- S, o
metric top as|j,k,m);, where the subscripf is added to fg=io(x*-y9)l. (32f)

avoid confusion, the symmetrized basis set is expressed a$e kinetic contributions are exactly expressed by the expan-

f,= oxy@-il, (320

follows: sion up to thex! order. Equation31b) and the last term of
(i) m=0,k=0:j,0,0), (309
TABLE V. Symmetry correlation between the field-free and
(i) m= 0k # 0[], [k, 0,9 finite-field cases.
={li.K, 0+ (= Dj,~ K. 032, (30b) Zero field
|j K |m|>f K(spatia) D, Finite field
(i) m# 0:<|j,—k,— |m|>f)’ (300 m=0, j=even A (0*.A)
o ) ~ m=0, j=even B, (07,A)
wheres=0 or 1, and symmetry of the basis is summarized in | ._, j=even B (0*,B)
Table IV. From Table IV, the symmetry correlation can be _0’ __ BX (0‘,B)
derived between the finite-field case and field-free case, m: ’J_:even y B
whereK (spatia) andD, groups are defined. The results are M0 =odd A A
shown in Table V. m=0, j=odd B, (0",A)
m=0, j=odd By (07,B)
C. Higher-order correction terms m=0.] =Od.d By (0°.8)
o _ m# 0, anyj A (Im[,A)
In Sec. Il A, Hamiltonian of Eq(3) was_gxp?lnded |rC1)to m+0, anyj B, (Im[,A)
the power series of, and only the terms af ™, )f , and\ m#0, any] B, (m|,B)
are considered. The higher-order terms, dendtedfor \", m+0, anyj B, (Iml,B)

are
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Eq. (31a come from the anharmonicity of the interaction sary to describe the potential. For such cases, a nonperturba-
cosine potential. Sinck is sufficiently small in a strong-field tive method with the pendular-limit formalism, which will be
condition, a perturbative treatment is effective to includedescribed in the next section, is appropriate.
higher-order Hamiltonians of Eqé31).

For larger vibrational quantum numbets,,, the pertur- D. Nonperturbative treatments
bative treatment becomes inadequate for reproductions of en-

ergy levels. This comes from the state congestion of high Herei weldescrlbe; alternzitl_ve dr_nethodl_fort_reprodtjr::ué)ns_t(r)]f
energy levels and the ill convergence in thexpansion of energy levels, namely a matrix diagonalization method wi

the cosine potential. The dipole-field interaction potential isthe pendular-!|m|t formahsm_. As discussed in Sec. Il A, the
pendular basis se}bx,vy,m> is not orthonormal. Thus, we

expanded as ] :
P should solve a generalized eigenvalue problem to calculate

2 2 (1-(+y)N4 energy levels from a Hamiltonian matrix constructed by the
T 32%08 0=- N\ 1+ 02 +yIN/4 basis set, and this procedure requires complicated matrix op-
) ) s erations. Then, we introduce an alternative basis set, i.e., an
_ 3(1 XY (x“+y9) \2 orthonormal pendular basis st,,vy, M), as
A2 2 8 242
2(52 + y2)K [V Uy Mo . = (1 + )\>|vx,vy,m>, (34)
— et (- 1)k%)\k+... . (33

where|vy,v,,m) is defined in Eq(13). The [vy,vy, M), is
This expansion is appropriate only fof,y~0, namely orthonormal in the integral with the exact volume element of
around the minimum of the potential. High, states have Eqg. (16). It should be noted that this basis is not an eigen-
substantial probability density even at-, namelyx,y  function of the zeroth-order Hamiltonian, while it nearly be-
~ oo, and thus extraordinary higher-order terms are necedhaves as an eigenfunction in the pendular limit.

2.2 \-2
~ X“+y oy(vx+ D(vy +2) oy Ux(vx = 1)
h(a)|vxaUya m>o.n.: El(;?(),vy,m|vxavya m>o.n.+ )\(1 + 4 )\) |: . 2 . |Ux + 210y1m>0.n._ . 2X |Ux - 2yvam>o.n.
o (vy+ (v, +2) o (vy—1)
Y 5 [,y + 2,Myg n= ——FF— 5 g0y = 2,Mn |- (35

Because differentials ofvx,vy,m>0,n. with x,y can be ¢£is parallel to theZ axis, u is used.ur (F=X,Y,Z) can be
transformed into nondifferential forms using the recursionexpressed in terms of the direction cosine matfike, 6, y),
formula of Hermite polynomials, matrix elements of the full and the molecule-field transition dipole by
Hamiltonian are evaluated by numerical calculations on
Gauss-Hermite quadratures. After a diagonalization of the
Hamiltonian matrix, energy levels and wave functions are =S D 6,y)
obtained. In this procedure, as the numbers of the basis func- i gory.z Fglr O X0 Mg,
tions and the grid points in the quadratures become larger, -
we have more precise values. Because obtained wave func-
tions are represented by the orthonormal pendular basis s

Vr;']r;'feh alts Srlé't?gtee fg; t:ﬂ'eteferg?:tli%;!ng;' tn'ssig;?cr?:tl:j; '(5)]Lhe transition dipole, respectively. The transformation prop-
pendulaepstaries than the mZtrix diagonaliga%?on method witli;erty of the direction cosine matrix_ elements can be derived
the free-rotation basis set rom Euler angle transformations in Table Il. Therefore, the
' symmetry of eachx,y,z component ofur can be deter-
mined, and is shown in Table VI. Combining Tables Ill and
VI, selection rules in terms of the zeroth-order wave func-
First, we discuss the selection rules of optical transitiongion, Eq.(13), are derived as listed in Table VILI.
for the full Hamiltonian of Eq(3). Because of anisotropy of As shown in Table VI, the pair ofix and uy constructs
the space, symmetry of the transition dipole operator dedoubly degenerated representations. Thus, it is enough to
pends on the direction df in the space-fixed frame, whefe  consider onlyuy for the transition in the& L e configuration.
stands for an electric vector of an electromagnetic wave. FoWWe expressu, component ofug as ugg, WhereF=X,Y,Z
the case thaf is parallel to theX or Y axis, the transition and g=x,y,z. Then, (¢,6,x)— (¢,X,y) transformation of
dipole operator is expressed ag or uy, respectively. When  uzq yields

(36)

%\tlhere,ux, My, andu, denoted thex,y, andz components of

E. Selection rules
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TABLE VI. Symmetries of transition dipoles. TABLE VIIl. Contribution of transition dipole (uzg to
transitions.
Transition
dipole Transition type Symmetry Transition
dipole Order ofx
Mx (=)
1z Ky (0*,B) N2 (1,00
1z (0*,A) Hzx NG (1,0,0,(1,2,0,(3,0,0
Mx (1,B)
(Mx) ity (1,B) A2 (0,1,0
Ky iz (1,A) Hzy N2 (0,1,0,(0,3,0,(2,1,0
= - u, Sin 6 cos A? 0,00
TR, i M (0,0,0,(0,2,0,(2,0,0
N : :
= AX| 1 == +y?) + — (P +y?)2 =],
Mx [ ZXHY)+ (YY)
(379

Similarly, uxg is expressed as

Hzy = pry SIN 6 SIn x Hxx= Mx(COS ¢ COS 6 COS y — Sin ¢ sin y)

N PR ST S S TR
_,U«y\)\Y|:1 4(X +y9)+ 16(X +y9) ) :%(|:(ei¢+e—iz/f)_{(x+iy)ei¢+(x_iy)e—i¢}
37b
o X{A—)\—Z(xz+y2)+-~-H (393
Mzz= p COS O 2 8 ,
- 1—§(X2+ 2)+)\_2(X2+ 2)2_”, (37C) . .

Mz > y 8 y : Hxy = My(— COS ¢ COS B Sin x — Sin ¢ COS x)
Contributions of each term of Eq&37) to Fransitions can be {I(elw e )- y{(x+ ,y)elw+ (x—iy)e” i
deduced from Eq920) and(21), and their results are sum- 2
marized in Table VIII. Matrix elements of the leading terms A A2
are as follows: X157 E(Xz YA+, (39b)

(g1 WUy m|MZx|vxaUy: m)

1/2 1/2 i
o 11 Mxz= My COS ¢ SIn 6
= ’K/U*x|:_é_(vx 2 2):| ) (383 e
“ZVK{(H iy)e + (x—iy)e™}
1/2 1/2
log 1 1
(vyvy £ 1,Muz vy, ,m)Z\r’K,u {L<v +—i—)} , A A2
) B T2\ 272 X 1—Z(x2+y2)+E(x2+y2)2—-~- . (399
(38b)

B 38 Again, contributions of each term of EqR9) to transitions
(U Uy, M 7V Uy, ) = . (389 (an be deduced as summarized in Table IX. Matrix elements

of the leading terms are as follows:
TABLE VII. Selection rules orvy,vy,m).

)72
Transition <UXva1 m=x 1|,uxX|vx,vy, m) = ?X (409
dipole Transition type Selection rulédv,,Av,,Am)
o (odd, even, D "
Uz My (even, odd, D (vx,vy,m+ 1|,uxy|vx,vy,m) —2¥ (40b)
My (even, even, D
My (even, even, tflor (odd, odd, £1 M /
(MX) Ky (even, even, +jlor (odd, odd, +} (U + Loy, m= 1 uxvy,vy,m) = W 5 ) oy 2(U><+ 172,
Ky o (even, odd, +1 or (odd, even, *1
: (400
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TABLE IX. Contribution of transition dipole (uxg) to
transitions.

Transition

dipole Order ofn
A0 (0,0,

MXX )\1 (07011)1(0121:01(2101])
A0 (0,0,

MXy )\1 (0101])1(0121:01(2101])
A2 (0,1,2,(1,0,1

Bxz \32 (0,1,2,(0,3,1,(1,0,1,

1,2,9,(2,1,1,(3,0,0

Nz
(vy = luy,m* 1|MXZ|vavam> = \”)\EZ\’ 0_;/21))(/2’

(40d)

(Vyvy + 1M Ly vy, vy, m) = wK%Z\/ oy vy + 112,

PHYSICAL REVIEW A 70, 013403(2004)

:)\1/2 (1/2) 232, (3/2) +)\5/2 (5/2) .. (45)

for wzx pmzy OF uy, We call the situations oi(f|,u(°)||
+0(=0) and <f|,uF/2)||)¢0( 0) as the aIIowec(forbldder)
transitions at the Iowest order. When a transition is forbidden
at the lowest order, the leading contributions to the transition
strength are the order af or A3 for Eq. (44) type or Eq.(45)
type transitions, respectively.

As depicted in Eq(13), the zeroth-order wave function
depends on the rotational constantg. On the other hand
andy are dependent on the paramelgrsee Eqgs(6) and
(79). Thus, if a final state has different, or A from those of
an initial state, analytical representations of matrix elements,
like Egs.(20) and(21), cannot be applied. Up to this point,
therefore, we have assumed thgt, and\ do not change
between the initial and final states. However, sometimes this
approximation does not hold, in particular for electronic tran-
sitions. We discuss the method for such cases in the restric-
tion that the direction ofx does not change.

We introduce parameted andd, as follows:

HMrg

_ o] —xf\/_

(463
|\’UJ + )\f\,
RS (46b)
- I ’
Ao+ Aol

(409 wherei and f stand for initial and final states, respectively.
dyy ranges -kd, <1, andd,, equals to zero itryy @and
(0,0y— 1M+ 1|ijvx,vy,m>:—l\&&zv 172, J2. do not change. In the case of=0" andaJ 0' dy |s iden-
2 tical to d,. Additional new parametensx and O'y are defined
(40f) as
[ [T % |2
N+ Ao,
F. Calculations of transition intensity oy = ('/—.f—m , (479
.. . o . 7\iV0'I +)\f\/§
The transition intensity is obtained by - X -
2 2.2 \-2 2 i T ]
% ’ X<+ ) ) [ 5f 2
‘ f W) e Wyav | = <~1ff|(1 ' x) w0 o= | RUEANGOy | (47b)
| Aoy, + ApVo) |
41 . . .
(4 Using the above parameters, new variabley are defined
where[1+(x?+y?)\/4]? is expanded as as
x2+y2 -2 X2+y2 3(X2+y2)2 5 X X
-1 _ _ i _ (1 g2
(1+ 7 A 1 > A+ 16 N (a‘y)l"‘_(l d,) 0)1/,4, (489
(42
| W) is composed of zeroth-order wave functions, ( ?’)‘1/4 =(1 _dy)1/2%1 (48b)
O-X O-X
W=y +A X2 Cle) + A2 CEls) + --+, (43
| i 2 19 % 19 43 Then, x; andys yield
where the indexs denotes a set ofvy,vy,m). C”) is the X ~(1+d )1/2L (493
coefficient ofnth-order wave function derived by’ the pertur- (ay) M4 <
bation theory. The transition dipole operators, which appear
in Egs.(37) and(39), are also expanded into the power series Vi o
of A\, and we formally express them as follows: = (1+dy) 1,4 (49b)
© D 42 ()
Mrg= Hrg H Nurg T A + (44 Making use of the relation of EqB4), |vx,viy,mi), which is

for uzz pxx OF My and

a function ofx;, y;, and ¢, is transformed into
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Co dod  dyy? X v 1ol
|v',u',m>=exp{ : J_}N S (Nl
x 0y 2037 2052 | S0 T plx-p) gl (vy— Q)
i i X vix—p Uiy_q i
X[2{(1 -d)"? - 1J]»P[2{(1 - dy)"> - 1]y q(m) (%) Ip.g,m), (50
y X
where|p,q,m) is a function ofx, y, and . Similarly, |v;,v;,mf> yields
dx? dyz} X MRy
fof o Af\— _ X _ Yy -1 x* Yy
Uy, U ,m>—exp{ Nyt ,r 2 2 (Npg)
Dty 2037 2037 ] g0 0T plg-p ! al (vy - o)
f f X vip y ”;_q
X[2{(1 +dy*? - 1J]>P[2{(1 +dy) >~ 1}]”v‘q<m) (W‘) p.q,m"). (51)
y X

Becauseury does not contain any differential operator, the iy into a power series of, we obtain the terms of the order
exponential factors of eXpdo®/ (2079 +dy?/(203%)] In of \72, A\, A0, and\" (n=1,2,3, ..) identical to Eqs(9),
Egs.(50) and(51) are canceled by each other in calculations(10), (23), and(31), respectively. Therefore, zeroth-order en-
of (v}, v}, M upglvy, v}, m). Then, we can derivef|uqyi) ergy and wave functions are the same as those discussed in
even in the case that,, and\ change at the transitions. It Sec. Il A. However, terms of the™/2 and A\ order appear
should be noted thdp,q,m) in Egs. (50) and (51) corre-  in the power series of, and expressed as

sponds to the pendular-state wave functionsdgy defined

; . 1 A A A SN
in Egs. (47) and\ represented as = ey iz =D + (2= D= cyduz =D
A\

A= % (52)
N+ N +(jz= DR, (553
In ordinary circumstancesd, | <1 is satisfied, and then N
~ AY ~ ~ Ay 2 -~ 2 -~ - ~
[2{(1 + dx)1/2 - 1}]”>f<_p[2{(1 + dy)1/2 — 1}]v§,—q Hyv2= Z[sz{(zsz -xl+ yu)(JZ -+ (]Z - I)(ZX]Z - xl
= ()R 53 + Y0} 6, A(2yi, — yi - x) G, =)+ (G-
Therefore, the series through abguandq can be truncated - N~
with a good accuracy. X(2yjz =yl =xU3]. (55b)

Because all the diagonal matrix elementsHyfi. are zero,

|:|>\—1/2 has no effect on energy levels in first order. Thus, the

In the case of pendular states of a general asymmetric topost influential energy correction is the order X, and
whoseu is not parallel to any principal axis of inertia, the represented as

method described above should be revised. Since the frame-

G. General asymmetric top

. S . . 2 _ 2
work of the discussion is almost the same, we just outline theEv )= 9y, 3¢y, oy~ oy <UX+ }) | o
proc_edures. o o % 8 20, 4oy-oy 2 8
First, the principal axes of inertia are transformed to a ) )
new molecular-fixed axis system, where thexis is parallel N 3Cx ox— oy }(v N }) }( 4o,
to u, by the axis rotation in Euler anglésh, 6o, xo). Then 20, Adoy-o, ]\ 2 2\ o0}
Hamiltonian of the asymmetric top is expressed as
— 32512 )| 4 2 0y + 204
- R . 2 an oaa Ox Oy 12 12\ Cyz,
_ o) ~2 2 & Al Al gy O, 40'y Oy
H_O-xe+0-y]y+0-ZJz )\2C056+Cyz(lyjz+Jsz) y 5
(o ) 32
aaaa +C vyt vyt +|0,—

+ Cplldxt 12 (59) Zaoy-a,) [\ 2)J\Y 2 2 oy
whereaoyy » Cy» C; @and\ depend on the constant angles of EZLZ o, 1 3 (_:ZLZ 50, + oy
(¢, 00, x0)- Because onlyp, and 6, are sufficient to define . m’ - o E* 8\ o 4o -o
the newz axis, the arbitrary anglg, is fixed so as to elimi- Zy ooy
nate thej,j, cross term in the derivation of E¢54). After L Gox Doyt Uz)_ (56)
the variable transformation of Eq&) and the expansion of oy 4doy—oy
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TABLE X. Character table for a general asymmetric top in a “ 0
uniform external field. | =- I(?_p' (580
E C(9) C4(-9) The form of Eq.(57) shows that the zeroth-order represen-
‘s s tation of a pendular-state symmetric top is a two-dimensional
¢ ¢ ¢ ¢ isotropic harmonic oscillator. Then, the zeroth-order energy
= ¥ Y+ ¥=9 is expressed as
0 1 1 1 © —o0 4
M* 1 gvs giMé Eim=20+1). (59
M- 1 oMo gMs As shown in Eq(59), the zeroth-order energy is determined

by only a vibrational quantum number
The zeroth-order wave functions are expressed as

The symmetry group should be also revised. Because the
symmetry operations are onfg and C%(+4), the character
table of a general asymmetl’ic tOp in a uniform exte-rn-al fleld\NhereLg(g) is an associated Laguerre po|yn0mia|, ans a
becomes as shown in Table X. Whi&" andM™ are distinct  quantum number for the vibrational angular momentum, i.e.,
irreducible representations, the time reversal symmetry
causes an extra degeneracy betwd&hand M~, called a flv,l,m)zllv,l,m>. (61)
separably degenerate. The selection rule is rather trivial: . ] ] o
transitions ofuy and uy areAm=+1, and a transition oft, We choose™ for an arbitrary function ofy for the similar

P o
[o,1,my =N, rlle”r /ZL‘(!+|||)/2(r2)e”pelmw’ (60)

is Am=0. reason discussed in Sec. Il A. The constdpt is defined as
o1,
IIl. SYMMETRIC TOP IN PENDULAR STATES N 2 ) 62
vl = 3
In this section, we describe a theory of pendular-state ZMZML“')!J
spectroscopy for symmetric-top molecules. Since an analyti- 2

cal representation of energy levels for symmetric-top mol- L . i
ecules in the pendular limit was reported previoysy], we | of Eg. (580 is identical to the operator defined by Eqg.
mainly describe symmetries, selection rules, and transitiofi24d). | is expressed as
intensities, which are newly derived in this study. Because a

modification of the theory into a linear-rotor version is i= jz= iz (63)
;t(r)erl]ightforward, it is not mentioned in the following discus- and the vibrational quantum numblesatisfies

' l=m-k, (64)

A. Energy levels and wave functions wherek is a projection of angular momenturj,in the field-

For th ; f nsistent description throuah tthifree condition on the molecularaxis. The basis ofv,l,m)
orthe purpose ot a consistent descriptio ougnou not orthonormal in the same manner of asymmetric tops,

paper, we show analytical reprgsentations of wave functionand this problem can be handled by a similar way described
and energy levels for symmetric-top molecules in the PeNs Sec. Il A

dular limit, whose expressions are slightly different from the The A° term of the Hamiltonian is represented as
previous one$35].

The similar procedure to the case of an asymmetric top . rzﬁo 3, =~ ) it D7 (65
givesH,-2 as Eq.(9). The term ofA ! is =50 4r * 0777 (20, = Dljz + (0= DI7 (69

19/( 9 1 P and the first-order correction to the energy is expressed as
R R 1 R R
v [ rar\ ar) r?ap? E,im(\%) == 5 + 1%+ 0,0 - (20, - Ymk+ (o, - )1~ 3,
=NUPLp o J=A R, (57) (66)

E, m(\? provides the energy-level splittings aboutand|.
wherer, p, and ¢ have been defined in Eq&a), (7b), and

(6a), respectivelyr,, p,, and| are defined as B. Symmetry considerations
_ In this section, we describe a symmetry group appropriate
r,=re*”, (5839 to a symmetric top in a uniform electric field. In the case of

a symmetric top, an arbitrary rotation around thaxis is a
) symmetry operation. Here we dendlg d) as the rotation by

P, = etip(_ ii + lf>, (58b) an angle ofs. Then, Euler angles are transformed@yd) as
- ar r (¢,0,x)— (¢, 0, x+ ). Next, we introducer rotations about
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TABLE XIl. Character table for a symmetric top in a uniform TABLE XIl. Symmetry of pendular-limit wave function,

external field. [v,1,m).
CH8+7)CA-7) m,| Symmetry
Z(_ S 1z 1z
E CA(-6 Y)CZ(V) Ca (W)Cﬂ () m=0, 1=0 0,0*

d— 1) P (5+7) 7=+ 2 m=0,|#0 O,1h
X— X XFy -x+28 m#0,1=0 (Im,0)
— v Yt d T i+2a+23 m-1>0 (|, 1)
p— p pEy -¢+2p m-1<0 (Il 1)~
(0,0* 1 1 1 zZr
0,07 1 1 -1 izi.  ergy. Thus, an adiabatic symmetry correlation between the
(0,L)® 2 2 cosLy 0 quantum number in a free rotation,and that in the pendular
(M,0)° 2 2 cosM S 0 limit, v, can be derived using the relation of E§4). In the
(M,L)*aP 2 2 cogM5+L7) 0 pendular condition, the approximate quantum numbers
(M,L)-2P 2 2cosMo-Ly) 0 represented as
1=1,223,... v=[I|+2n, (69
’M=1,2,3,....

wheren=0,1,2,... is anumbering of eigenstates counted
from the lowest state in @m|,|I|)* levels. Using the number,

n, the angular momentum quantum number in the field-free
condition is expressed as

an arbitrary axis in thety plane,C_*(w), wherea stands for
the angle measured from tleaxis to the rotation axis in the
xy plane. Then, the operations ﬁiz(w)cgz(w) become
symmetry operations for arbitrary angles @fand 8, and
Euler angles are transformed &9, 6,x)— (7—¢+2a,6, 2
-x+2B). As a result, symmetry operations are as follows:

+kl+|m-k
jo mrkrimoK (70)

Therefore, the correlation betweém,|,m) and (j,k,m) are
represented as

{E.CH)CLy),CA(mCsA(m)}, (67)
wherea and g are arbitrary angles, and likewis&andy are v=2j=[m+K|, (71
arbitrary angles excepé=7y=0. After the classification of
these operators with the similar procedure to E2f), the I=m-k. (72)

character table for a symmetric top in a uniformAeIectricA fieldhis explicit correspondence enables us to label the eigen-

is derived as listed in Table XI. Symmetries®f, j;, andj,  states in terms ofv,l,m) or (j,k,m) in arbitrary fields. The

are also depicted in the table. Symmetries of the other opergdentical correlation has been reported for linear rotors

tors are(0, 1) for (x,y), (Jx,jy), (r,r-), and(p,,p-), (0,0*  [32,34 and for symmetric top$35].

for r.p=, and so on. Table XIl shows that the zeroth-order Finally, a symmetry correlation between symmetric tops

wave function of Eq(60) is an irreducible representation. It and asymmetric tops is discussed. Because the symmetry op-

is noted that the pair db,l,m) and|v,-I,—-m) forms a dou- erations of symmetric-top molecules include those of

bly degenerated representation except forrttyd =0 states. asymmetric-top molecules, a symmetry correlation between
The symmetrized basis set of a free rotating symmetrisymmetric- and asymmetric-top molecules can be obtained,

top is expressed as follows: and the results are shown in Table XIV.

(i) m=k=0j,0,0y, (6839 C. Nonperturbative treatments
A new approach similar to the method discussed in Sec.
(i) m+ 0 ork 0'( 1.k, m)¢ ) (68b) Il D is available. An orthonormal pendular basis set is repre-
\Jj,—k—m) /)" sented as

We can easily derive the symmetry of a field-free basis of
Eqgs.(68) with the relation of Eq(64). The results are shown

TABLE XIll. Symmetry of the field-free basis.

in Table XII. The symmetry correlation between the  configuration Symmetry
pendular-state and the field-free energy levels is also ob
tained by the relation of Eq64). m=0, k=0 0,07

In the free rotation of a symmetric top, the energy order- m=0,k#0 0,k
ing of the samek, m) levels are explicitly determined, i.e., m+0, k=m (Iml,0)
the higherj state is in higher energy. In the pendular limit, on . (m-k)>0 (Iml,|m=k|)*
the other hand, the energy ordering of the sdhmm) levels m-(m-k) <0 (|m],|m=K))~

are also determined, i.e., the highestate is in higher en-
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TABLE XIV. Symmetry correlation between symmetric and

PHYSICAL REVIEW A 70, 013403(2004)

TABLE XVI. Selection rules orfv, |, m).

asymmetric tops.

Transition Selection rule

Symmetric tops Asymmetric tops dipole Transition type (Am, Al)

(0,07 (0",A) Hz (x> ) (0,1

(0,07 (07,7 Mz (0,0

(O,L), L=even (0+,A)€B(0_,A) (1.0) part of (uy. 1) (+1.0)

(O.L). L=odd @.Be@.5 (MX (1,2)* part of ( y) (+1,+2)

(M,0), M=even (M,A) My P Hoxo fy (:1':1

(M,0), M=odd (M,B) Hz *1,£D)

(M,L)*, M+L=even (M,A)

(M,L)*, M+L=odd (M,B) Thus, considerations about only, are sufficient, wheré&
=X,Y,Z. In the light of symmetries of zeroth-order wave
functions discussed in Sec. lll B, the selection rules in terms

r? of |v,I,m) can be derived as depicted in Table XVI.
[CARNE (1 + Z)‘>|v’|’m>’ (73) The representations fqug, are as follows:

where|v,l,m) is defined in Eq(60). In the similar way to

the asymmetric-top case, matrix elements of the full Hamil-
tonian are numerically calculated by Gauss-Laguerre quadra-
tures, and diagonalization of the obtained Hamiltonian ma-
trix gives energy levels and wave functions represented by
the orthonormal pendular basis set. Because the adiabatic
quantum number correlation between a free rotation and the
pendular limit is definite in the case of symmetric tops, as
shown in Eqs(71) and(72), the assignment on the pendular-
state quantum numbers is straightforward from &§) even

in the matrix diagonalization method with the free-rotation

/

A - - A
Bzx= o (€0 + e"”)r{l - } . (742
2 4
A
Mzz= Mz 1_Er o (74b)

1 \
I Gl e"‘”){Z—Er2+ ] (749

basis set. In this respect, the method using the free-rotation TABLE XVII. Contribution of transition dipole (kg 1O

basis set is easier to utilize than the method using the orth@ransitions.

normal pendular basis set.

Transition Order of
D. Selection rules dipole \ Contribution(|Av | ,Al,Am)
The transition dipole operatou=(F=X,Y,Z), is the same N2 (1,+£1,0
as that discussed in Sec. Il E. Therefore, the transformation 372 (1,£1,0,(3,%#1,0
property of ur is derived from the Euler angle transforma- Hax A2 (1,+1,0,(3,+1,0,(5,+1,0
tions in Table XI. The resultant transformation property de- : :
termines the symmetry ofir as shown in Table XV. It is o
worth noting that thex,y components of uy, uy) forms re- A (0,0,0
ducible representation, and can be divided into two irreduc- A (0,0,0,(2,0,0
ible representationg1,0) and(1,2)*. Hereafter,(1,0) part 22 \? (0,0,0,(2,0,0,(4,0,0
of upgy is denoted aw(plg’o), and ,LLSQ'Z) stands for the1,2)* : :
part, whereF=X,Y and g=x,y. Because it is arbitrary to \O 0.0+
determine thex andy axes in the case of a symmetric top, N 0.0 +,J) ’(; 0+
the pair of ug, and ur, is doubly degenerate; see Table XV. (-9 A
xx A2 (0,0,%+1,(2,0,+1,(4,0,+)
TABLE XV. Symmetries of transition dipoles. : :
Al (0,£2,%1,(2,%2,+
Transition @€,2* A2 0.42 +1) (2.2 +1) (4. +2 +1
dipole Transition type Symmetry  Fxx ) (0,x2,2.( o £1.(4,£2,2]
iy (Mx:/-Ly) (011) )\1/2 (1’ +1,+
Ha ©.0 A3/ (1,£1,%2D,(3,%1,%
i ) 1002 M N2 (1,£1,5D,(2,£1,£0,(5,+1, D
(MY) Kz " : :
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1 ~ N, A2 [lo£l+2
Mgél.x,z) :Zﬂx(é(dﬁ‘zp)_'_eI(l/ﬁ'zp))|:5r2_§r4+...:|, <U+1,Ii1,mi 1|,U«XZ|U,|,m>:_\‘/X&Z U ,
2 2
(749 (750
!K )\ J— I
\V . .
Pxe=— o € 4 @ WP ] — =2 (=11 +1,m# 1 ugv,|,m) = - N2y |2
2 4 2 2
(74e (75f)
Contributions of each term of Eq$74) to transitions are Calculations of transition strength are carried out with the
summarized in Table XVII. The leading terms of same procedure discussed in Sec. Il F. In the situations.that
@I, ml weglo’,I', M) are as follows: changes in a transition, a similar discussion to Sec. Il F is

possible, and we describe it briefly. A new variablés in-

— +1+2 troduced b
(v+1,|il,m|,uzX|v,I,m):\f')\%\/UT, (759 Y
r=(1-d)r, (768

lo 71 - 1/2
(=1, %1,mluzpdv,l,m)= \Kﬂ( U%' (75h) re=(1+d)"r. (76b)

2 Then,d satisfies
(,l £ 1,m|uzv,l,m) = u,, (750 d= )\i_7\f. 77
N+ N
Ime 2] &O 1 my = 75 Using the relation of EqB8), |v',1',m), which is a function
w ool my 2 (759 of r;, p, andy, yields
|

- , RCEDY: (- d)P _ _ N

o', £ [, m)=e""2N, (1 9" X {('\lv‘—p,l”p)_l p! (r=)Pl' = p, 2 (I +p),m) |, (78)
p=0 ' J

wherer, is defined in Eq(58a), and|v'-p, =(]I'| +p),m') is a function ofr, p, and . Similarly, [v7,1T,m") becomes
w2 & T
a2 f i}

jof, £ 1], m)=e N1+ )2 S {(Nvf-p,nup) M (] +p)m) | (79)

p:O . .

The wave functiong —p, =(|l|+p),m) in Egs.(78) and(79)  reproduced by the analytical representations, and assign-
correspond to those for defined as Eq52). From the same ments of states and transitions are easily performed in terms
reason discussed in Sec. Il F, the factoref/2 in Eq.(78)  ©of pendular-state quantum numbers.

ande @2 in Eq. (79) are canceled out to each other in cal-
culations of(v", I, mf| ugglv), v}, M), and the series through
aboutk can be truncated with a good accuracy in the case of
|d|<1. Therefore, the calculation of the transition oscillator ~ Energy-level representation of asymmetric-top molecules

A. Energy levels

strength becomes possible. in a strong-field limit is shown in Eq26). Since the corre-
spondence between thg,y,z) axis and the(a,b,c) axis
IV. UTILITY OF THE PENDULAR-LIMIT EORMALISM depends on the direction @f, energy levels change not only

with oy, , but also with the direction of. Suppose an asym-
In this section, we show usefulness of the present analytimetric top molecule of whichu directs to theb axis, thex
cal expressions. Numerical calculations of energy levels andndy axes correspond to tteanda axes, respectively. This
spectra for molecules in pendular states are carried out wittype of molecules represents the nature of pendular states of
the matrix diagonalization method, which provides practi-asymmetric tops most clearly because of the large difference
cally exact results, and they are compared with results fronbetweeno, and o, (note o= oy in the symmetric-top cage
the analytical representation. We demonstrate that gross fe@therefore, molecules witjallb can be regarded as a typical
tures of energy levels and spectra in pendular states are wetiodel for an asymmetric top in a pendular state. Figueg 2
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200 (a) {b) (c) Because the energy-level representation of symmetric-top
1T =1 1T _ [ T——_=—== molecules in a strong-field limit has been reported previously
#ﬂ :#: :EEEI__ [35], energy level comparison is not shown in this paper.
= ©4 -M/_- 1 __== - Similar to the case of asymmetric tops, state assignments in
5 150';2?_@;53/;' fﬂ;/_"fé);f T—=- terms ofv, |, andm are very useful to discuss energy-level
T (o,i_/_'/_ﬂ {fea ——~ } " __=— structures.
S Wi = lup A - =
f: 100_(|’T(/.L2/_/Jﬁ- tg,_z)_/_/—/— I et ¥ B. Spectra
g 0 K] 11 —
@ mr/—/_/J 4_@‘1)__/_/— = Next we compare analytically derived spectra with simu-
é s0] N _'W'I/_/—/i'_ ] e lations by the matrix diagonalization method using the free-
) 1) o rotation basis set. The size of basis set in the matrix diago-
] - nalization is set sufficiently large. Applying the theory
0 ] [ ] described in Sec. Il, basic structures and assignments of
012345 012345 012345 peaks in pendular-state spectra are discussed for several tran-
|ml |m | sition types classified in terms of the transition dipole opera-

. tor, ugg- Because our prime interest is on the evaluation of
FIG. 2. Energy levels of an asymmetric top reproduced@y  electronic transitions of large rigid molecules in a strong
the analytical representatiotl) the analytical representation with fie|d, rotational constants of the initial and final states are

the second-order energy correction, gogthe matrix diagonaliza-  fixed to be the same, and only changes in the following

tion method. The energy levels of differejm| are separately de- el calculations. It is assumed thatlirects to theb axis
picted. The model parameters are described in the text. Levels With,4 that\"=0.055.\" =0.050.0.=0.5. 0. =1.5. ando.=1.0
. il . 1Y X =~y y ~y Z Yy

the same,,v, are denoted a@,,v,) and connected by thin lines in
(a) and(b). All energies are measured from the potential minimum
of —2/\?=-800.0.

where double and single primes denote the ground and the
excited states, respectively. The ground-state population is
assumed as a Boltzmann distributiorEge,,,,=30.0. All the
shows the energy levels derived from E2p) for a molecule ~ SPectra presented herein are generated by the convolution of
with wllb, wheres,=0.5, 0,=1.5,0,=1.0, and\=0.05. All many lines with the linewidth of 0.1, for the sake of com-
energies are expressed in a unit reduced by the averag®@rison of gross spectral features from different calculations.
rotational constant3,+8,)/2=(C+A)/2. In this condition, As discussed in Sec. Il E, there are six different types of
the fundamental frequencies of pendular vibrations along th€Xcitation. For each of the three types of transitions, namely
x andy axes are @/4/\~49.0 and 2-2/\~28.3, respec- Hz Fo and uy types, two distinct configurationgparallel,
tively. The zero-point shift is —2=-800, and Ray’s asym- 4z and perpendicularey) exist. Since it is verbo;e to Qe—
metry parameter, is zero. In lower-energy region, levels scribe all types of spectra, we concentrate our discussion on
with the same,, v, are represented &s,,v,) and connected the 11z, spectrum. The functional form qiz, are presented

by thin lines in Fig. 2a). The results of numerical calcula- " Ed- (378. Considering the leading term of it, t,he gross
tions with the matrix diagonalization method using the free-SPECtrum feature comes frorv,=v, 1,0, =vy,m =)
rotation basis set are depicted in Figcj2 where the energy transitions. The matrix element of a transition dipole mo-
levels are regarded as accurate. Comparing Figg.@nd ~ Ment, (uzy, is approximated as shown in E¢383. The

2(c), the analytical representation of E@6) reproduces rea- corresponding transition energyE, up to thex® order can
sonably the exact energy levels. Furthermore, it can be sedif evaluated from Eq$25) and(26),

that the state assignments in terms of the pendular-state 25112 1 1

quantum numbers,, v,, andm are appropriate to describe E=Ay* —’L + (—, - 7)[0}1,/2(2%{ +1)

the energy levels. Note that the numerical calculations with A AN

the free-rotation basis set consider omyas a conserved o o 1 1

quantity. While Eq.(26) properly reproduces the gross fea- + oy (2v§ +1)]+ f(vﬁﬁ + > * 5)

tures of energy levels, some discrepancies appear in Fig. 2.

These discrepancies originate from the neglect of the higher- 1/ Ao, 2 e\ .. 1

order corrections. Their contribution becomes larger espe- 5 01/201/2_3‘& o N\oy*s ) (80)
cially in the state-congested highy,v, levels. Even in low oy

vy, vy levels, discrepancies become apparent at higévels. where

This is due to the neglect of Coriolis coupling as the second- ' .

order correction. Thegenergy levels incIch)iing the corrections Bo==2[(\)2= (). (81)
perturbatively up to the second order are shown in H).2 Applying the above-mentioned model parametefs,~

For example, the Coriolis coupling between tfis1) and -138.8 and PI\’)"*-(\")"1]~ 3.6 are obtained. Correspond-
(1,0 states lowers th€0, 1) level down and lifts th€1,0)  ing spectrum is depicted in Fig(&, and it is compared with
level up asm increases. Similarly, th€0,2) levels are the exact spectrum, Fig(§. We can see that the exact spec-
pushed down and thél,1) levels are lifted up. These cor- trum is well predicted by the analytical representation, and
rections provide better match up of the results by the preserihe spectral features can be explained in terms of the
pendular formalism to the accurate calculations. pendular-state quantum numbers as follows: The series of
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251 (a) 30 (a) 30! (b) 30{ (c)
%(5) 25 25 25
i 20 4, type 20 20
1. 1. 1.
(1):(5) 1.2 1.2 1.3
00 Frrebi i o D D -
—200 180- 160 140 120 100 —80 -60 -40 3'—5 00 -150 -100 50 3'—5200 -150 -100 50 3'—5 00 -150 —100 —50
25 (b) 3:0 3:0 3:0
%(5) 25 25 25
. 20 e 20 20
10 15 AP 15 15
14 1. 1.
8(5) " # o.g o.g o.g
"""" LIMRMLE B R B TryrorroT 0.04 o.o,4n-__jh..; o.o,ﬂ%
—200 180 160-140-120-100 -80 -60 -40 = 00 -150 -100 -50 1—200 -150 -100 -50 - 00 -150 -100  -50
00 00 00
%(5) (C) 80 80 80
i3 o, #atee p p
8(5) . L‘ 20 20 20
i hn | |
—200 180 60 140 120 100 -80 —60 —40 —Ozoo -150 -100 50 —.;oo -150 -100 -50 —%oo -150 -100 -50
( d) i/ m=1 "_2 V",;o AVX— +-| Spectral Shift (reduced unit) Spectral Shift {reduced unit) Spectral Shift {reduced unit)
y P .
v, ,,_0 / Vx':? FIG. 4. Calculated spectra of an asymmetric top fgy type
" ML/ a transitions(g=x,y,2) from (a) the analytical representatiof) the
60 85 . ;30 %5 50 analytical representation with the second-order energy correction,

and (c) the matrix diagonalization. The model parameters are the

Spectral Shift (reduced unit) same as those used in Fig. 3.

FIG. 3. Calculated spectra of an asymmetric top farA type
transition from(a) the analytical representatioth) the analytical
representation with the second-order energy correction(@rthe
matrix diagonalization(d) An expanded view of the\v,=+1,
Avy=0 region in(c). The model parameters are described in the
text.

V. CONCLUSION

Theoretical descriptions for the pendular-state spectros-
copy of rigid symmetric- and asymmetric-top molecules
have been reported in terms of a pendular-limit formalism.
An energy-level representation of asymmetric-top molecules
in the pendular limit has been derived analytically, and it has
lines started at —86 and —180 ake,=+1 andAv,=-1tran-  been found that the pendular states of asymmetric-top mol-
sitions, respectively, and their progressions are transitionecules are well described as two-dimensional anisotropic
with differentvy | states. While the gross features are similarharmonic oscillator. Using the pendular-limit energy formu-
to one another, Fig.(d) fails to reproduce additional small las and wave functions, selection rules and transition
splittings appearing in Fig. (8). This discrepancy comes strengths for symmetric- and asymmetric-top molecules in a
from the Coriolis coupling. As discussed in Sec. IV A, the strong-field condition have been derived analytically.
analytical energy representation of E6) does not contain  Throughout the theoretical considerations, we have used the
the effect of Coriolis interaction, and the discrepancy in ensymmetry groups for rigid bodies of symmetric- and
ergy grows up asn increases. For example, the Coriolis asymmetric-tops in a uniform electric field, which have been
interaction between thel,0) and(0, 1) levels lifts the(1,0)

level up asm increases, see Fig.(l®. Thus, the(1,0) 5 (a) 5 5] (c)
(0,0 transitions shift to the blue side a¥ increases, and 3 : .
it results in a blue-shaded tail of tH&,0)« (0,0 transi- 2] Mt 2 2
tions, as shown in Fig.(8). The red-shaded tail of th&v, . J . .
=-1 transitions can be explained in the same way of the 20 -150 -to0 50 -20 -5 -100 -8 -20 -1 -100 50
Av,=+1 transitions. This consideration is quantitatively : : :
verified by Fig. 3b), which is calculated with the second- oy o 3 3
order correction to the energy and the analytical representa f f f
tion for transition oscillator strengths. ol ol ol
The other types of spectra can be well explained by a =200 150 -100 -50 -200 -150 100 -5 -200 ~-150 -100 50
similar procedure, and the comparison of spectra is depictegy, oz om
in Figs. 4 and 5. In each type of transition, the analytical 015} , ¢, o8 015
results well reproduce the exact spectra in the pendular stat¢? s ” o
and the all structures can be completely assigned in terms om 000 0.00
-200 -150 -100 -50 -200 -150 -100 -50 -200 -150 100 —50

the pendular-state quantum numberg,v,, andm. We also

. . . . Spectral Shift (reduced unit)
carried out the same consideration for the case of symmetric- o

Spactral Shift (reduced unit)

Spectral Shift (reduced unit)

top molecules, and comfirmed that the pendular-limit formal-  F|G. 5. Calculated spectra of an asymmetric top /igg, type

ism for symmetric tops, which is described in Sec. lll, is transitions(g=x,y,z) from (a) the analytical representatioth) the
very useful for prediction and explanation of spectra in theanalytical representation with the second-order energy correction,
pendular state. and(c) the matrix diagonalization.
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newly developed in this study. The utility of the analytical O (1) () O C1(0) (O ger
representations for energy levels and transition strengths is em HY ey dv=[ on" HV ¢ dv
verified by comparing with the exact numerical calculations
by matrix diagonalization. DO

y 9 + f O SR Oy
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where the perturbation order bII“'k is j+k. From Eqs(A5)
nd(A6) the following relation |s obtained:

After the usual procedure of the normal perturbation

APPENDIX A: PERTURBATION THEORY theory, the first-order perturbation is represented as

Schrddinger equation is expressed as 1) _ (10
) EP=HRLO, (A8a)
He, - Epen=0, (A1) (1:0
~ . . . . . 1 —
whereH is a full Hamiltonian,g, is an eigenfunction, an,, Chmn= £0 TnEm) (m#n), (A8b)
is an eigenvalue. Therd, ¢, andE, are expanded as fol- " "
lows: ch=-1gh (A8c)
H=HO+HY +H@ + ... (A28)  The second-order perturbation is expressed as
k#n 10) (1 0)
O 4 oD 4 @ 4 . A2b 2) _ 420 Hi”Hi
Pr=@n Ten oy (A2b) E@ = HQO 4 2 E<° E(O) , (A9a)
E,=EQ+EP+E?D+ .- (A20)
. .(Q) - k#n 1;0)14(1;0) 1;04(1;0
where the superscripts denote orders of perturbatpﬁ%s c@ = E H( )H( _ ann)Hfm :
an eigenfunction ofH©, and E is eigenvalue ofH, e (E(O)—E(O)(E(O)—Eﬁ?)) (EY - EV)?
namely, 2 0) H(l 0 311)
+ m# n), A9b
HO 0 = EO O (A3) Eff” -gQ (m=n) (A3D)
<pf1‘) is represented as ket D0y
0 0o c@ = §(§11>)2 qﬂa M—H
en’ = E Chiei (A4) - ghTn Ego - E(ko)
i
. ) kin | (1 O)|
Here, we regard the basis set @f not to be completely ——E (A9c)
o) (EO -2
orthonormal but to be near orthonormell™ are not neces-

sarily Hermite operators. If an exact volume elemeiut, is 0 0 Q"0 i
expanded agv=(1+sY+s?+--.)dv’, wheredv' is an ap- ThereforeE andC) are expressed withl,, ', ands( oy
proximated volume element with which integralsgf’ sat-  both of which are matrix elements mtegrated W

isfy the orthonormal condition, overlap integrals are ex-resultant energy-level representations are the same as the re-

panded as sults of the normal perturbation theory.
J¢>m ) dv = f@;’)*(pﬁ?) dv’ +f 0"V gy’ APPENDIX B: FORMULAS OF SPECIAL FUNCTIONS
1. Hermite polynomials
+f 00" POy’ + - The generating function of Hermite polynomidts(é) is
- D@y ... - tn
6m,n + inn"' Snn*' ) (A5) e2t§“2 = 2 Hn(f)ﬁ (B1)
where the superscripts also denote orders of perturbation. = '
Matrix elements oH') are represented by If &+ is substituted fog of Eq. (B1),
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o]

=2 L“(&)—. (B5)

n=a

(_ t) ae—t§/(1 -t)

. E_ ta2te—t2
ngoHn(é"' 77) nl _e2 7162 (1 _t)a+1

By the substitution o+ 7 for &,

_120 kzé e - o (-t)2etddo
—E[Euw G }ts 2 ey =g e
S Sl s (2“_1‘;;1?@1‘”
is yielded. Then, _;JE # a+,(§)
Ha(é+7) = Ekl( g @ (B3) ot |

is obtained. Therefore,

) k-« 77' k

—E 2@ g (B8
j=0

Thus, Eq.(B7) is derived,

Hy(aé) = 2 —————2(a- D" H(E (B4
k=0 K! ( K)! ek
Le A atk
can be derived. La(§+m) = g T (&) (B7)
Then,
2. Associated Laguerre polynomials )

The generating function of associated Laguerre polynomi- L(aé) = E v [(a-1)¢] |_a+k(§) (B8)

alsL;(¢) is k!
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