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We report theoretical investigations pertaining to spectroscopy of pendular-state molecules, which are sub-
jected to the large electrostatic interaction between the molecular dipole and a strong external field. After an
appropriate coordinate transformation and a power-series expansion with an order parameterl that represents
the degree of pendular condition, the zeroth-order Hamiltonian for the pendular limit has been derived. Mo-
tions of asymmetric tops in a high field are well described as two-dimensional anisotropic harmonic oscilla-
tions, and pendular-state quantum numbers have been introduced to label the energy levels. By using pertur-
bative treatments, energies up to thel0 order are represented analytically with the pendular-state quantum
numbers. Symmetry considerations are also accomplished by using the group theory appropriate to dipolar
rigid bodies of symmetric and asymmetric tops in a uniform electric field. Energy levels and wave functions
are classified into irreducible representations of the groups and selection rules for optical transitions are
described. Energy-level correlations between the field-free and pendular conditions are also discussed on the
basis of the group theoretical considerations. For symmetric and asymmetric tops, pendular-limit selection
rules on the quantum numbers are derived by expanding the transition-dipole operators onl, and transition
strengths are analytically evaluated for all the excitation configurations with each of the transition types.
Utilities of the present formulation have been verified by the comparison with exact model calculations based
on the matrix diagonalization with a free-rotation basis set.
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I. INTRODUCTION

When a dipolar molecule is in an electric field, the rota-
tion of the molecule is disturbed by Stark effects. If the in-
teraction between the electric dipole moment and the field is
larger than the molecular rotational energy, the molecular
rotation changes to a pendulumlike libration in the interac-
tion potential, and a molecular orientation is confined in a
laboratory frame. Since the situation is far different from a
free rotating picture, perturbative treatments based on the
picture are unsuitable. Such a condition is called as a “pen-
dular state.” The first experimental realization of the “pen-
dular orientation” was accomplished by Loesch and Rem-
scheid[1] in 1990, while techniques of applying an electric
field to gas-phase molecules have been utilized for a long
time to observe Stark effects in spectra. Combining a rota-
tional cooling by a supersonic expansion and a dc electric
field of 30 kV/cm, they oriented CH3I molecules in a labo-
ratory frame and studied a steric effect in reactive collisions
of K atoms with the CH3I molecules. They termed the
method as a “brute force technique.” Independently, in 1991,
Friedrich and Herschbach[2] reported laser-induced fluores-
cence observations of ICl molecules in fields up to
20 kV/cm and confirmed that lower rotational states were
described well as a pendulumlike libration. The name of
“pendular state” was introduced by them. Strongly bound
pendular states were realized by Blocket al. [3] in 1992,
who measured infrared spectra of a linear HCN trimer in the

30 kV/cm field and reported a drastic evolution of the spec-
tra from that of a field-free condition. Thereafter, pendular
states have been applied to many studies for steric effects of
reactions[4], controls of molecular orientation[5–11], mea-
surements of electric dipole moments[12–15], determina-
tions of transition-dipole orientations[16,17], superfluid he-
lium droplet spectroscopies[18–23], and so on[24–28].

On the theoretical side, investigations on polar molecules
in a strong electric field has been frequently conducted for
more than 70 years. Brouwer[29] studied Stark-effect cor-
rections for a linear molecule up to the fourth order of an
electric field in 1930. In 1947, Hughes[30] derived a repre-
sentation for energy levels of linear rotors in an arbitrary
electric field using the continued fraction method. For
symmetric-top molecules, Schlier[31] reported the corre-
sponding representation in 1955. Although the results of
Hughes and Schlier give accurate solutions in an arbitrary
field, their complicated higher-order terms seldom provide
clear physical pictures of a strong field case. Exact solutions
are also provided by numerical calculations, such as diago-
nalization of a Hamiltonian matrix constructed by a free-
rotor basis set. Because the nature of the pendular states is
far different from that of free rotation, the resultant wave
functions are represented by highly mixed linear combina-
tions of the free-rotation bases, and gross features of energy
levels and spectral pattern for the pendular state can not be
expected until the inspection of the numerical outputs. Thus,
it is difficult to deduce the physical significance of pendular
states from their phenomenological discussions.

In 1957, Peter and Strandberg investigated analytical rep-
resentations suitable for the pendular-limit condition from a*Electronic address: ohshima@kuchem.kyoto-u.ac.jp
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differential equation of a strong field limit about polar angle
u [32]. They have shown that the motion of a linear rotor in
a strong electric field is well described as two-dimensional
isotropic harmonic oscillation. Similar treatments were per-
formed by von Meyenn in 1970[33], and by Bulthuiset al.
in 1994 [34]. For symmetric tops, the corresponding result
was reported by Maergoiz and Troe[35] in 1993 using an
extended procedure of the Peter and Strandberg study. In the
case of an asymmetric top, on the other hand, it is impossible
to reduce the Schrödinger equation into a one-dimensional
differential equation aboutu. Thus, a simple extension of the
above-mentioned method is inadequate. Probably because of
this difficulty, there have been no work that derive corre-
sponding pendular-limit representations for asymmetric tops.

Most of the spectroscopic results on molecules in a pen-
dular state[2,3,8–10,12,14,17,36,37] have been analyzed in
terms of numerical simulations for individual spectra. In par-
ticular, several groups have discussed selection rules associ-
ated with the pendular-state spectroscopy. For linear mol-
ecules, Rostet al. [36] derived the selection rules in terms of
a quantum number of pendular vibration from their results of
numerical calculations. Mooreet al. [37] inspected the re-
sults of their calculations on a near-prolate asymmetric top
and introduced a concept of a “pendular group number,” de-
noted byn, in order to classify eigenstates. They succeeded
in finding a selection rule aboutn for several types of exci-
tation configurations. However, it seems difficult to extend
these selection rules applicable to generalized conditions be-
cause they have been discovered from the phenomenological
considerations on the results of their simulations. For further
development of spectroscopy in a strong field, a firm theo-
retical ground should be provided to the derivation of selec-
tion rules and the calculation of line strengths.

Symmetry consideration with group theory is so benefi-
cial for classification of energy levels and derivation of se-
lection rules for interactions and optical transitions. For a
molecule in an electric field, ordinary treatments using rota-
tion groups do not hold because of spatial anisotropy. In
1975, Watson derived symmetry groups for rovibronic levels
of a molecule in a uniform electric or magnetic field[38]. He
developed the theory in terms of molecular symmetry
groups, whose symmetry operations are constructed by an
inversion through the center of mass and permutations of
identical nuclei. Though his basic idea is universal, the origi-
nal results cannot be utilized for a rigid body of symmetric or
asymmetric tops, where no nucleus is defined. Thus, some
modification should be introduced to classify pendular-state
energy levels of symmetric- and asymmetric-top molecules.

The present paper aims to establish foundations for de-
scribing characteristics of molecules in the pendular state and
spectroscopy related to them, which have not been fully ex-
plored as mentioned above by the preceding experimental
and theoretical studies. The organization of the paper is as
follows. A comprehensive consideration on limiting behav-
iors of asymmetric-top molecules in a strong electric field is
described in Sec. II. We first derive wave functions and cor-
responding eigenvalues in the high-field limit by adopting an
appropriate coordinate transformation. Pendular-state quan-
tum numbers for asymmetric tops are introduced for the first
time, and the implication of the results is discussed. Then, a

symmetry group suitable to a rigid asymmetric top in a uni-
form electric field is constructed to classify the pendular-
state energy levels. In terms of the presently developed
pendular-limit formalism and symmetry group consideration,
optical selection rules pertaining to the pendular-state quan-
tum numbers are discussed, and approximate representations
of transition dipole matrix elements are derived for all the
excitation configurations with each of the transition types. In
Sec. III, the similar considerations are described for
symmetric-top molecules. In Sec. IV, in order to verify the
above-mentioned results and their utilities, the derived ana-
lytical formulations for energy levels and line strengths are
assessed by the comparison with numerical results from the
direct diagonalization of the Hamiltonian matrix. This is fol-
lowed by a brief conclusion in Sec. V.

II. ASYMMETRIC TOP IN PENDULAR STATES

In this section, we mainly describe the pendular state of a
specific asymmetric-top molecule whose electric dipole mo-
ment,m, is parallel to one of the principal axes. In this paper,
we call such an asymmetric top as a specified asymmetric
top. General asymmetric tops will be briefly discussed in
Sec. II G.

A. Energy levels and wave functions

First, we define an axis system. We choose a(right-
handed) space-fixed axis whoseZ component directs to the
external electric field vector,e. A (right-handed) molecular-
fixed axes are defined as follows: the direction ofz is parallel
to m, and thex,y axes are identical to the other principal
axes. For example, molecular-fixedx andy axes corresponds
to thea andb principal axes, respectively, ifm ic. In this axis
system, Hamiltonian of a polar asymmetric top in a uniform
electric field is

Ĥ = Bxĵx
2 + Byĵ y

2 + Bzĵz
2 − me cosu, s1d

whereBx, By, andBz are the rotational constants around the
x, y, andz axes, respectively.ĵ x, ĵ y, and ĵ z are the molecular-
fixed components of the total angular momentum,j ,

ĵ x = − i cosxScot u
]

] x
−

1

sin u

]

] f
D − i sin x

]

] u
, s2ad

ĵ y = i sin xScot u
]

] x
−

1

sin u

]

] f
D − i cosx

]

] u
, s2bd

ĵ z = − i
]

] f
, s2cd

wheref, u, x are Euler angles. The reduction of Eq.(1) with
the energy unit ofsBx+Byd /2 yields

Ĥ = sxĵx
2 + syĵ y

2 + szĵz
2 −

2

l2cosu, s3d

wheresg sg=x,y,zd andl are
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sg =
2Bg

Bx + By
, s4ad

l =ÎBx + By

me
, s4bd

sg is a reduced rotational constant about theg axis. sx and
sy ranges from 0 to 2, whilesz.0. l is the most important
parameter in this paper, which represents the degree of pen-
dular condition. Asme becomes larger than the rotational
constants,l approaches to zero. We introduce an index for
asymmetry,s, as

s = ssx − syd/2, s5d

which ranges from −1 to 1. In the symmetric-top case,s
=0. sx andsy are represented by the single parameters as
follows: sx=1+s, sy=1−s.

Next, we transform the variables, i.e., the Euler angles,
into new variables that are suitable to describe the pendular
vibration. It is important to choose properly a variable trans-
formation for a clear description of pendular states of an
asymmetric top. The nature of pendular vibrations around the
x axis is not the same as that around they axis because of the
difference betweenBx andBy of asymmetric-top molecules.
Thus, new variables should determine the direction of dis-
placement in the molecular-fixed axis system. Here, we
adopt the following transformation:

c = f + x, s6ad

x = r cosr, s6bd

y = r sin r, s6cd

where

r =
2
Îl

tan
u

2
, s7ad

r = p − x. s7bd

As shown in Fig. 1,r determines the direction ofe measured
from the x axis, andr stands for the reduced magnitude of
thee displacement, which ranges from zero to infinity. Thus,
the orientation ofm in the space-fixed axis is interpreted as
the position ofe in the molecular-fixedxy plane.

After the above-mentioned variable transformation of
sf ,u ,xd→ sc ,x,yd,

]

] f
=

]

] c
, s8ad

]

] u
=

1 +
x2 + y2

4
l

Îlsx2 + y2d
Sx

]

] x
+ y

]

] y
D , s8bd

]

] x
=

]

] c
+ y

]

] x
− x

]

] y
s8cd

are obtained. The trigonometric functions ofu appearing in
Eqs. (2) are also transformed, and expanded into the power
series ofl. After the procedure, transformed Hamiltonian of
Eq. (3) is arranged according to the order ofl. The leading
term is in the order ofl−2 as

Ĥl−2 = −
2

l2 . s9d

This term represents the zero-point shift, which is constant
and independent of the rotational constants. This result is
reasonable from the fact that the interaction potential is ex-
pressed as −2 cosu /l2 in Eq. (3), which has a limiting value
of <−2/l2 when the whole molecules are oriented along the
electric field.

The terms of thel−1 order are described as

Ĥl−1 = l−1ĥ0
a, s10d

where

ĥ0
a = − sy

]2

] x2 + x2 − sx
]2

] y2 + y2. s11d

Equation(11) represents a two-dimensional anisotropic har-
monic oscillator, which is independent ofc. We consider

Ĥl−1 as the zeroth-order Hamiltonian.
The form of Eq.(11) enables us to treat the three coordi-

natessc ,x,yd, separately. An ordinary procedure for a prob-
lem of harmonic oscillators yields

Evx,vy,m
s0d = 2Îsysvx + 1

2d + 2Îsxsvy + 1
2d s12d

for the eigenvalue ofĥ0
a. The corresponding zeroth-order

wave function is represented as

uvx,vy,ml = Nvx,vy
Hvx

ssy
−1/4xdHvy

ssx
−1/4yd

3expF−
x2

2sy
1/2 −

y2

2sx
1/2Geimc, s13d

whereHnsjd stands for a Hermite polynomial. The relation of

ĵ Z = − i
]

] f
= − i

]

] c
s14d

shows that the quantum numberm in Eq. (13) is identical to
the quantum number for rotation around theZ axis.vx andvy
in Eqs.(12) and(13) express quantum numbers for harmonic

FIG. 1. Variable definitions.
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vibrations along thex andy axes, respectively. The constant
Nvx,vy

in Eq. (13) is defined as

Nvx,vy
= s2vx+vy+1lp2vx ! vy ! sx

1/4sy
1/4d−1/2. s15d

Sinceĥ0
a is independent ofc, the zeroth-order wave function

would be an arbitrary function ofc. We chooseeimc on the
grounds that it is an irreducible representation of a group
appropriate to an asymmetric top in an external uniform
field, as will be shown in Sec. II B.

It should be noted that the basis set ofuvx,vy,ml is not
orthonormal. Since a volume element of the integral of this
case is represented as

dv = sin u df du dx = lS1 +
x2 + y2

4
lD−2

dc dx dy,

s16d

the orthogonal relation of Hermite polynomials does not lead

to an orthogonality ofuvx,vy,ml. Then,ĥ0
a is proved to be a

non-Hermite operator as follows:

E uvx8,vy8,m8l* ĥ0
auvx9,vy9,m9ldv− FE uvx9,vy9,m9lĥ0

auvx8,vy8,m8l* dvG*

=sEvx9,vy9,m9
s0d − Evx8,vy8,m8

s0d d E uvx8,vy8,m8l* uvx9,vy9,m9ldvÞ0.

s17d

Similarly, x, y, p̂x, and p̂y are found to be non-Hermite op-
erators, whilee±ic are Hermite operators. The volume ele-
ment,dv, can be expanded inl as

dv = S1 −
x2 + y2

2
l +

3sx2 + y2d2

16
l2 − ¯Dl dc dx dy

=S1 −
x2 + y2

2
l +

3sx2 + y2d2

16
l2 − ¯Ddv8, s18d

where dv8 is the volume element in the strong-field limit,
namelyl→0. Therefore, in the strong-field limit,uvx,vy,ml
can be regarded as orthonormal and we can treatĥ0

a, x, y, p̂x,
and p̂y as Hermite operators, where

p̂x = − i
]

] x
, s19ad

p̂y = − i
]

] y
. s19bd

Matrix elements of these operators are derived analytically in
the case by using the recursion formula of Hermite polyno-
mials. The nonzero matrix elements ofx, y, p̂x, and p̂y are

kvx ± 1,vy,muxuvx,vy,ml = Fsy
1/2

2
Svx +

1

2
±

1

2
DG1/2

,

s20ad

kvx,vy ± 1,muyuvx,vy,ml = Fsx
1/2

2
Svy +

1

2
±

1

2
DG1/2

,

s20bd

kvx ± 1,vy,mup̂xuvx,vy,ml = ± i F 1

2sy
1/2Svx +

1

2
±

1

2
DG1/2

,

s20cd

kvx,vy ± 1,mup̂yuvx,vy,ml = ± i F 1

2sx
1/2Svy +

1

2
±

1

2
DG1/2

.

s20dd

The nonzero matrix elements ofe±ic are

kvx,vy,m± 1ue±icuvx,vy,ml = 1. s21d

Hereafter, the strict integral of an operatorÂ is expressed as

euvx8 ,vy8 ,m8l*Âuvx9 ,vy9 ,m9ldv, wheredv of Eq. (16) is used as
the volume element. On the other hand,

kvx8 ,vy8 ,m8uÂuvx9 ,vy9 ,m9l denotes an integral in the strong-
field limit, wheredv8 is used. The relation of

E uvx8,vy8,m8l*Âuvx9,vy9,m9ldv

=kvx8,vy8,m8uS1 +
x2 + y2

4
lD−2

Âuvx9,vy9,m9l s22d

holds between the two expressions.
The l0 term of the expanded Hamiltonian is

Ĥl0 = s f̂1 + 1
2 f̂2d + szs ĵ Z − l̂d2 − 1

4sx2 + y2d2, s23d

where

l̂ = xp̂y − yp̂x, s24ad

f̂1 = ssxxp̂y − syyp̂xd ĵ Z, s24bd

f̂2 = − ssxxp̂y − syyp̂xdl̂ + ssyxp̂x + sxyp̂ydû, s24cd

û = xp̂x + yp̂y. s24dd

Due to the nonorthonormality of the zeroth-order wave func-
tions, careful treatments are necessary to utilize a perturba-
tion theory. In the present case, matrix elements can be ex-
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panded into the power series ofl, see Eqs.(18) and (22).
The perturbation theory in this situation is discussed briefly
in Appendix A. The first-order perturbation treatment yields
the correction to the energy as

Evx,vy,msl0d = −
sy

8
Svx +

1

2
D2

−
sx

8
Svy +

1

2
D2

+
1

2
S 4sz

sx
1/2sy

1/2 − 3sx
1/2sy

1/2DSvx +
1

2
DSvy +

1

2
D

+ szm
2 −

sz

2
−

1

16
. s25d

The effect of theZ-axis rotation appears in Eq.(25) asszm
2.

SinceEvx,vy,msl0d is independent ofl, Evx,vy,msl0d does not
approach to zero even in a strong-field limit. Therefore, the
energy-level representation in a strong-field limit is ex-
pressed up to thel0 order as

Evx,vy,m
l→0 = −

2

l2 +
2sy

1/2

l
Svx +

1

2
D +

2sx
1/2

l
Svy +

1

2
D

+ Evx,vy,msl0d. s26d

B. Symmetry considerations

In this section, symmetry considerations for pendular
states are described. In the case of free rotation of an asym-
metric top, the spatial three-dimensional pure rotation group,
denotedK(spatial), and molecular rotation group ofD2 can
be used. In a uniform electric field, however, it is impossible
to use eitherK(spatial) or D2 because of the interaction be-
tween m and e. Therefore, some suitable group should be
constructed.

First, we seek symmetry operations for the full Hamil-
tonian of Eq.(1). Apparently, the identity operator,E, is a
symmetry operation. Among the symmetry operations in
K(spatial), arbitrary rotations around theZ axis, denoted
CZsdd whered is an arbitrary angle, are still symmetry op-
erations because of the isotropy around theZ axis. Although
any rotation around other spatial axes is not a symmetry
operation, we considerp rotations about arbitrary axes in the
XY plane, and express asCa

'Zspd wherea denotes the angle
measured from theX axis to the rotation axis. As for the
operations ofD2, p rotation around thez axis,Czspd, is still
a symmetry operation whilep rotations around thex and y
axes, denotedCxspd and Cyspd, respectively, are not. From
the Euler angle transformations depicted in Table I,
Ca

'ZspdCxspd and Ca
'ZspdCyspd become symmetry opera-

tions. As a result, it can be derived that the following sym-
metry operations form a group:

hE,Czspd,CZsdd,CZsddCzspd,Ca
'ZspdCxspd,Ca

'ZspdCyspdj,

s27d

whered anda are arbitrary angles.
According to the relations among the operators, e.g.,

fCa
'ZspdCxspdg−1CZsddfCa

'ZspdCxspdg=CZs− dd s28d

the symmetry operators can be divided into classes. The
character table of this group is shown in Table II. Transfor-
mation of f, x, x, and y under the symmetry operations is
also indicated in the table. In addition, symmetries ofx, y, z,

TABLE I. Euler angle transformations under symmetry opera-
tions of K(spatial) andD2.

Operation f transformation u transformation x transformation

E f→f u→u x→x

CZsdd f→f+d u→u x→x

Ca
'Zspd f→2a−f u→p−u x→x+p

Czspd f→f u→u x→x+p

Cxspd f→f+p u→p−u x→−x

Cyspd f→f+p u→p−u x→p−x

TABLE II. Character table for an asymmetric top in a uniform external field.

CZsdd CZsddCzspd
E Czspd CZs−dd CZs−ddCzspd `CxspdCa

'Zspd `CyspdCa
'Zspd

f→ f f f±d f±d p−f+2a p−f+2a

x→ x x+p x x+p p−x −x

c→ c c+p c±d c+p±d −c+2a p−c+2a

x→ x −x x −x −x x

y→ y −y y −y y −y

s0+,Ad 1 1 1 1 1 1 z

s0−,Ad 1 1 1 1 −1 −1 ĵ Z, ĵ z
sM ,Ada 2 2 2 cosMd 2 cosMd 0 0

s0+,Bd 1 −1 1 −1 1 −1 y, ĵ x
s0−,Bd 1 −1 1 −1 −1 1 x, ĵ y
sM ,Bda 2 −2 2 cosMd −2 cosMd 0 0

aM =1,2,3, . . ..
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ĵ x, ĵ y, ĵ z, and ĵ Z are shown at the last column. Symmetry of

other operators are as follows:s0−,Bd for R̂x
±, s0+,Bd for R̂y

±,

ands1,Bd for ĵ Z
±, whereR̂x

±, R̂y
±, and ĵ Z

± are the ladder operator
of the vibration along thex, y axes and the rotation around
the Z axis, respectively. They are represented as

R̂x
± = sy

1/2p̂x ± ix, s29ad

R̂y
± = sx

1/2p̂y ± iy , s29bd

ĵ Z
± = e±ic. s29cd

Table II reveals that the zeroth-order wave functions of Eqs.
(13) are irreducible representations, and their symmetries are
summarized in Table III.

Finally, we discuss symmetry of the basis set of free ro-
tation. If we denote the wave function of a free-rotating sym-
metric top asu j ,k,ml f, where the subscriptf is added to
avoid confusion, the symmetrized basis set is expressed as
follows:

sid m= 0,k = 0:u j ,0,0l f , s30ad

sii d m= 0,k Þ 0:u j ,uku,0,sl f

=hu j ,uku,0l f + s− 1dsu j ,− uku,0l fj/Î2, s30bd

siii d mÞ 0:S u j ,k,umul f

u j ,− k,− umul f
D , s30cd

wheres=0 or 1, and symmetry of the basis is summarized in
Table IV. From Table IV, the symmetry correlation can be
derived between the finite-field case and field-free case,
whereK (spatial) andD2 groups are defined. The results are
shown in Table V.

C. Higher-order correction terms

In Sec. II A, Hamiltonian of Eq.(3) was expanded into
the power series ofl, and only the terms ofl−2, l−1, andl0

are considered. The higher-order terms, denotedĤln for ln,
are

Ĥl1 = lf 1
4 f̂3 + 1

16 f̂4 − 1
4 f̂5 + 1

2 f̂6−
1
4 f̂7 + 1

8 f̂8 + 1
16sx2 + y2d3g,

s31ad

Ĥln = lns− 1dn+1sx2 + y2dn+2

4n+1 sn ù 2d, s31bd

where

f̂3 = ssxx
2 + syy

2d ĵ Z
2, s32ad

f̂4 = ssxx
2 + syy

2dsl̂2 + û2d, s32bd

f̂5 = ssxx
2 + syy

2dl̂ ĵ Z, s32cd

f̂6 = sxysû − id ĵ Z, s32dd

f̂7 = sxysû − idl̂ , s32ed

f̂8 = issx2 − y2dû. s32fd

The kinetic contributions are exactly expressed by the expan-
sion up to thel1 order. Equation(31b) and the last term of

TABLE III. Symmetry of pendular-state wave function,
uvx,vy,ml.

m svx,vyd Symmetry

0 (even, even) s0+,Ad
0 (odd, odd) s0−,Ad
0 (even, odd) s0+,Bd
0 (odd, even) s0−,Bd
evena (even, even) or (odd, odd) sumu ,Ad
evena (even, odd) or (odd, even) sumu ,Bd
odd (even, even) or (odd, odd) sumu ,Bd
odd (even, odd) or (odd, even) sumu ,Ad

amÞ0.

TABLE IV. Symmetry of the field-free basis.

Configuration Symmetry

m=0, k=0 s0+,Ad
m=0, k=even,a s=0 s0+,Ad
m=0, k=even,a s=1 s0−,Ad
m=0, k=odd,s=0 s0+,Bd
m=0, k=odd,s=1 s0−,Bd
mÞ0, k=even sumu ,Ad
mÞ0, k=odd sumu ,Bd

akÞ0.

TABLE V. Symmetry correlation between the field-free and
finite-field cases.

Zero field

K(spatial) D2 Finite field

m=0, j =even A s0+,Ad
m=0, j =even Bz s0−,Ad
m=0, j =even Bx s0+,Bd
m=0, j =even By s0−,Bd
m=0, j =odd A s0−,Ad
m=0, j =odd Bz s0+,Ad
m=0, j =odd Bx s0−,Bd
m=0, j =odd By s0+,Bd
mÞ0, any j A sumu ,Ad
mÞ0, any j Bz sumu ,Ad
mÞ0, any j Bx sumu ,Bd
mÞ0, any j By sumu ,Bd
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Eq. (31a) come from the anharmonicity of the interaction
cosine potential. Sincel is sufficiently small in a strong-field
condition, a perturbative treatment is effective to include
higher-order Hamiltonians of Eqs.(31).

For larger vibrational quantum numbers,vx,y, the pertur-
bative treatment becomes inadequate for reproductions of en-
ergy levels. This comes from the state congestion of high
energy levels and the ill convergence in thel expansion of
the cosine potential. The dipole-field interaction potential is
expanded as

−
2

l2cosu = −
2

l2S1 − sx2 + y2dl/4

1 + sx2 + y2dl/4
D

=−
2

l2S1 −
x2 + y2

2
l +

sx2 + y2d2

8
l2

−¯+ s− 1dk2sx2 + y2dk

4k lk + ¯D . s33d

This expansion is appropriate only forx,y,0, namely
around the minimum of the potential. Highvx,y states have
substantial probability density even atu,p, namely x,y
, ±`, and thus extraordinary higher-order terms are neces-

sary to describe the potential. For such cases, a nonperturba-
tive method with the pendular-limit formalism, which will be
described in the next section, is appropriate.

D. Nonperturbative treatments

Here, we describe alternative method for reproductions of
energy levels, namely a matrix diagonalization method with
the pendular-limit formalism. As discussed in Sec. II A, the
pendular basis setuvx,vy,ml is not orthonormal. Thus, we
should solve a generalized eigenvalue problem to calculate
energy levels from a Hamiltonian matrix constructed by the
basis set, and this procedure requires complicated matrix op-
erations. Then, we introduce an alternative basis set, i.e., an
orthonormal pendular basis set,uvx,vy,mlo.n., as

uvx,vy,mlo.n.= S1 +
x2 + y2

4
lDuvx,vy,ml, s34d

where uvx,vy,ml is defined in Eq.(13). The uvx,vy,mlo.n. is
orthonormal in the integral with the exact volume element of
Eq. (16). It should be noted that this basis is not an eigen-
function of the zeroth-order Hamiltonian, while it nearly be-
haves as an eigenfunction in the pendular limit.

ĥ0
auvx,vy,mlo.n.=Evx,vy,m

s0d uvx,vy,mlo.n.+ lS1 +
x2 + y2

4
lD−2Fsysvx + 1dsvx + 2d

2
uvx + 2,vy,mlo.n.−

syvxsvx − 1d
2

uvx − 2,vy,mlo.n.

+
sxsvy + 1dsvy + 2d

2
uvx,vy + 2,mlo.n.−

sxvysvy − 1d
2

uvx,vy − 2,mlo.n.G . s35d

Because differentials ofuvx,vy,mlo.n. with x,y can be
transformed into nondifferential forms using the recursion
formula of Hermite polynomials, matrix elements of the full
Hamiltonian are evaluated by numerical calculations on
Gauss-Hermite quadratures. After a diagonalization of the
Hamiltonian matrix, energy levels and wave functions are
obtained. In this procedure, as the numbers of the basis func-
tions and the grid points in the quadratures become larger,
we have more precise values. Because obtained wave func-
tions are represented by the orthonormal pendular basis set,
which is suitable for the pendular limit, this procedure is
more appropriate on interpretations of physical nature of
pendular states than the matrix diagonalization method with
the free-rotation basis set.

E. Selection rules

First, we discuss the selection rules of optical transitions
for the full Hamiltonian of Eq.(3). Because of anisotropy of
the space, symmetry of the transition dipole operator de-
pends on the direction ofE in the space-fixed frame, whereE
stands for an electric vector of an electromagnetic wave. For
the case thatE is parallel to theX or Y axis, the transition
dipole operator is expressed asmX or mY, respectively. When

E is parallel to theZ axis,mZ is used.mF sF=X,Y,Zd can be
expressed in terms of the direction cosine matrix,Fsf ,u ,xd,
and the molecule-field transition dipole by

mF = o
g=x,y,z

FFgsf,u,xdmg, s36d

wheremx, my, andmz denoted thex,y, andz components of
the transition dipole, respectively. The transformation prop-
erty of the direction cosine matrix elements can be derived
from Euler angle transformations in Table II. Therefore, the
symmetry of eachx,y,z component ofmF can be deter-
mined, and is shown in Table VI. Combining Tables III and
VI, selection rules in terms of the zeroth-order wave func-
tion, Eq. (13), are derived as listed in Table VII.

As shown in Table VI, the pair ofmX and mY constructs
doubly degenerated representations. Thus, it is enough to
consider onlymX for the transition in theE'e configuration.
We expressmg component ofmF as mFg, whereF=X,Y,Z
and g=x,y,z. Then, sf ,u ,xd→ sc ,x,yd transformation of
mZg yields

PENDULAR-LIMIT REPRESENTATION OF ENERGY… PHYSICAL REVIEW A 70, 013403(2004)

013403-7



mZx = − mx sin u cosx

=mx
ÎlxF1 −

l

4
sx2 + y2d +

l2

16
sx2 + y2d2 − ¯G ,

s37ad

mZy = my sin u sin x

=my
ÎlyF1 −

l

4
sx2 + y2d +

l2

16
sx2 + y2d2 − ¯G ,

s37bd

mZz= mz cosu

=mzF1 −
l

2
sx2 + y2d +

l2

8
sx2 + y2d2 − ¯G . s37cd

Contributions of each term of Eqs.(37) to transitions can be
deduced from Eqs.(20) and (21), and their results are sum-
marized in Table VIII. Matrix elements of the leading terms
are as follows:

kvx ± 1,vy,mumZxuvx,vy,ml

= ÎlmxFsy
1/2

2
Svx +

1

2
±

1

2
DG1/2

, s38ad

kvx,vy ± 1,mumZyuvx,vy,ml = ÎlmyFsx
1/2

2
Svy +

1

2
±

1

2
DG1/2

,

s38bd

kvx,vy,mumZzuvx,vy,ml = mz. s38cd

Similarly, mXg is expressed as

mXx = mxscosf cosu cosx − sin f sin xd

=
mx

2
Fseic + e−icd− hsx + iydeic + sx − iyde−icj

3Hl

2
−

l2

8
sx2 + y2d + ¯JG , s39ad

mXy = mys− cosf cosu sin x − sin f cosxd

=
my

2
Fiseic − e−icd− yhsx + iydeic + sx − iyde−icj

3Hl

2
−

l2

8
sx2 + y2d + ¯JG , s39bd

mXz= mz cosf sin u

=
mz

2
Îlhsx + iydeic + sx − iyde−icj

3F1 −
l

4
sx2 + y2d +

l2

16
sx2 + y2d2 − ¯G . s39cd

Again, contributions of each term of Eqs.(39) to transitions
can be deduced as summarized in Table IX. Matrix elements
of the leading terms are as follows:

kvx,vy,m± 1umXxuvx,vy,ml =
mx

2
, s40ad

kvx,vy,m± 1umXyuvx,vy,ml = ± i
my

2
, s40bd

kvx + 1,vy,m± 1umXzuvx,vy,ml = Îl
mz

2
Îsy

1/2svx + 1d/2,

s40cd

TABLE VI. Symmetries of transition dipoles.

Transition
dipole Transition type Symmetry

mx s0−,Bd
mZ my s0+,Bd

mz s0+,Ad

smX

mY
d

mx s1,Bd
my s1,Bd
mz s1,Ad

TABLE VII. Selection rules onuvx,vy,ml.

Transition
dipole Transition type Selection rulessDvx,Dvy,Dmd

mx (odd, even, 0)

mZ my (even, odd, 0)

mz (even, even, 0)

smX

mY
d

mx (even, even, ±1) or (odd, odd, ±1)

my (even, even, ±1) or (odd, odd, ±1)

mz (even, odd, ±1) or (odd, even, ±1)

TABLE VIII. Contribution of transition dipole smZgd to
transitions.

Transition
dipole Order ofl ContributionsuDvxu , uDvyu , uDmud

l1/2 s1,0,0d
mZx l3/2 s1,0,0d ,s1,2,0d ,s3,0,0d

A A

l1/2 s0,1,0d
mZy l3/2 s0,1,0d ,s0,3,0d ,s2,1,0d

A A

l0 s0,0,0d
mZz l1 s0,0,0d ,s0,2,0d ,s2,0,0d

A A
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kvx − 1,vy,m± 1umXzuvx,vy,ml = Îl
mz

2
Îsy

1/2vx/2,

s40dd

kvx,vy + 1,m± 1umXzuvx,vy,ml = iÎl
mz

2
Îsx

1/2svy + 1d/2,

s40ed

kvx,vy − 1,m± 1umXzuvx,vy,ml = − iÎl
mz

2
Îsx

1/2vy/2.

s40fd

F. Calculations of transition intensity

The transition intensity is obtained by

UE uC fl*mFuCildvU2

=UkC fuS1 +
x2 + y2

4
lD−2

mFuCilU2

,

s41d

wheref1+sx2+y2dl /4g−2 is expanded as

S1 +
x2 + y2

4
lD−2

= 1 −
x2 + y2

2
l +

3sx2 + y2d2

16
l2 − ¯ .

s42d

uCl is composed of zeroth-order wave functions,

uCil = uil + lo
s

Ci,s
s1dusl + l2o

s

Ci,s
s2dusl + ¯ , s43d

where the indexs denotes a set ofsvx,vy,md. Ci,s
snd is the

coefficient ofnth-order wave function derived by the pertur-
bation theory. The transition dipole operators, which appear
in Eqs.(37) and(39), are also expanded into the power series
of l, and we formally express them as follows:

mFg = mFg
s0d + lmFg

s1d + l2mFg
s2d + ¯ s44d

for mZz, mXx, or mXy, and

mFg = l1/2mFg
s1/2d + l3/2mFg

s3/2d + l5/2mFg
s5/2d + ¯ s45d

for mZx, mZy, or mXz. We call the situations ofkf umFg
s0duil

Þ0s=0d and kf umFg
s1/2duilÞ0s=0d as the allowed(forbidden)

transitions at the lowest order. When a transition is forbidden
at the lowest order, the leading contributions to the transition
strength are the order ofl2 or l3 for Eq. (44) type or Eq.(45)
type transitions, respectively.

As depicted in Eq.(13), the zeroth-order wave function
depends on the rotational constantssx,y. On the other hand,x
and y are dependent on the parameterl, see Eqs.(6) and
(7a). Thus, if a final state has differentsx,y or l from those of
an initial state, analytical representations of matrix elements,
like Eqs.(20) and (21), cannot be applied. Up to this point,
therefore, we have assumed thatsx,y and l do not change
between the initial and final states. However, sometimes this
approximation does not hold, in particular for electronic tran-
sitions. We discuss the method for such cases in the restric-
tion that the direction ofm does not change.

We introduce parametersdx anddy as follows:

dx =
li

Îsy
i − l f

Îsy
f

li
Îsy

i + l f
Îsy

f
, s46ad

dy =
li

Îsx
i − l f

Îsx
f

li
Îsx

i + l f
Îsx

f
, s46bd

where i and f stand for initial and final states, respectively.
dx,y ranges −1,dx,y,1, anddx,y equals to zero ifsx,y andl
do not change. In the case ofsx

i =sx
f andsy

i =sy
f , dx is iden-

tical to dy. Additional new parameterssx andsy are defined
as

sx = F sli + l fdÎsx
i sx

f

li
Îsx

i + l f
Îsx

f G2

, s47ad

sy = F sli + l fdÎsy
i sy

f

li
Îsy

i + l f
Îsy

f G2

. s47bd

Using the above parameters, new variablesx, y are defined
as

xi

ssy
i d1/4 = s1 − dxd1/2 x

sy
1/4, s48ad

yi

ssx
i d1/4 = s1 − dyd1/2 y

sx
1/4. s48bd

Then,xf andyf yield

xf

ssy
f d1/4 = s1 + dxd1/2 x

sy
1/4, s49ad

yf

ssx
fd1/4 = s1 + dyd1/2 y

sx
1/4. s49bd

Making use of the relation of Eq.(B4), uvx
i ,vy

i ,mil, which is
a function ofxi, yi, andc, is transformed into

TABLE IX. Contribution of transition dipole smXgd to
transitions.

Transition
dipole Order ofl ContributionsuDvxu , uDvyu , uDmud

l0 s0,0,1d
mXx l1 s0,0,1d ,s0,2,1d ,s2,0,1d

A A

l0 s0,0,1d
mXy l1 s0,0,1d ,s0,2,1d ,s2,0,1d

A A

l1/2 s0,1,1d ,s1,0,1d
mXz l3/2 s0,1,1d ,s0,3,1d ,s1,0,1d,

s1,2,1d ,s2,1,1d ,s3,0,1d
A A
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uvx
i ,vy

i ,mil=expF dxx
2

2sy
1/2 +

dyy
2

2sx
1/2GNvx

i ,vy
i o
p=0

vx
i

o
q=0

vy
i

sNp,qd−1 vx
i ! vy

i !

p ! svx
i − pd ! q ! svy

i − qd!

3f2hs1 − dxd1/2 − 1jgvx
i −pf2hs1 − dyd1/2 − 1jgvy

i −qS x

sy
1/4Dvx

i −pS y

sx
1/4Dvy

i −q

up,q,mil, s50d

whereup,q,mil is a function ofx, y, andc. Similarly, uvx
f ,vy

f ,mfl yields

uvx
f ,vy

f ,mfl=expF−
dxx

2

2sy
1/2 −

dyy
2

2sx
1/2GNvx

f ,vy
f o
p=0

vx
f

o
q=0

vy
f

sNp,qd−1 vx
f ! vy

f !

p ! svx
f − pd ! q ! svy

f − qd!

3f2hs1 + dxd1/2 − 1jgvx
f−pf2hs1 + dyd1/2 − 1jgvy

f −qS x

sy
1/4Dvx

f−pS y

sx
1/4Dvy

f −q

up,q,mfl. s51d

BecausemFg does not contain any differential operator, the
exponential factors of expf±dxx

2/ s2sy
1/2d±dyy

2/ s2sx
1/2dg in

Eqs.(50) and(51) are canceled by each other in calculations
of kvx

f ,vy
f ,mfumFguvx

i ,vy
i ,mil. Then, we can derivekf umFguil

even in the case thatsx,y andl change at the transitions. It
should be noted thatup,q,ml in Eqs. (50) and (51) corre-
sponds to the pendular-state wave functions forsx,y defined
in Eqs.(47) andl represented as

l =
2lil f

li + l f
. s52d

In ordinary circumstances,udx,yu!1 is satisfied, and then

f2hs1 ± dxd1/2 − 1jgvx
f−pf2hs1 ± dyd1/2 − 1jgvy

f −q

<s±dxdvx−ps±dydvy−q. s53d

Therefore, the series through aboutp andq can be truncated
with a good accuracy.

G. General asymmetric top

In the case of pendular states of a general asymmetric top
whosem is not parallel to any principal axis of inertia, the
method described above should be revised. Since the frame-
work of the discussion is almost the same, we just outline the
procedures.

First, the principal axes of inertia are transformed to a
new molecular-fixed axis system, where thez axis is parallel
to m, by the axis rotation in Euler anglessf0,u0,x0d. Then
Hamiltonian of the asymmetric top is expressed as

Ĥ = sxĵx
2 + syĵ y

2 + szĵz
2 −

2

l2cosu + cyzs ĵ yĵ z + ĵ zĵ yd

+ czxs ĵ zĵ x + ĵ xĵ zd, s54d

wheresx,y,z, cyz, czx, andl depend on the constant angles of
sf0,u0,x0d. Because onlyf0 and u0 are sufficient to define
the newz axis, the arbitrary anglex0 is fixed so as to elimi-
nate theĵ xĵ y cross term in the derivation of Eq.(54). After
the variable transformation of Eqs.(6) and the expansion of

Ĥ into a power series ofl, we obtain the terms of the order
of l−2, l−1, l0, andln sn=1,2,3, . . .d identical to Eqs.(9),
(10), (23), and(31), respectively. Therefore, zeroth-order en-
ergy and wave functions are the same as those discussed in
Sec. II A. However, terms of thel−1/2 andl1/2 order appear
in the power series ofl, and expressed as

Ĥl−1/2 =
1
Îl

fczxhp̂ys ĵ Z − l̂d + s ĵ Z − l̂dp̂yj− cyzhp̂xs ĵ Z − l̂d

+ s ĵ Z − l̂dp̂xjg, s55ad

Ĥl1/2 =
Îl

4
fczxhs2xĵZ − xl̂ + yûds ĵ Z − l̂d+ s ĵ Z − l̂ds2xĵZ − xl̂

+ yûdj− cyzhs2y ĵZ − yl̂ − xûds ĵ Z − l̂d+ s ĵ Z − l̂d

3s2y ĵZ − yl̂ − xûdjg. s55bd

Because all the diagonal matrix elements ofĤl−1/2 are zero,

Ĥl−1/2 has no effect on energy levels in first order. Thus, the
most influential energy correction is the order ofl0, and
represented as

Evx,vy,msl0d=− Fsy

8
+

3cyz
2

2sy
·

sy − sx

4sy − sx
GSvx +

1

2
D2

− Fsx

8

+
3czx

2

2sx
·

sx − sy

4sx − sy
GSvy +

1

2
D2

+ F1

2
S 4sz

sx
1/2sy

1/2

− 3sx
1/2sy

1/2D−
4

sx
1/2sy

1/2Scyz
2 sy + 2sx

4sy − sx

+ czx
2 sx + 2sy

4sx − sy
DGSvx +

1

2
DSvy +

1

2
D+ Fsz −

czx
2

sx

−
cyz

2

sy
Gm2 −

sz

2
−

1

16
+

3

8
Scyz

2

sy
·

5sy + sx

4sy − sx

+
czx

2

sx
·

5sx + sy

4sx − sy
D . s56d
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The symmetry group should be also revised. Because the
symmetry operations are onlyE and CZs±dd, the character
table of a general asymmetric top in a uniform external field
becomes as shown in Table X. WhileM+ andM− are distinct
irreducible representations, the time reversal symmetry
causes an extra degeneracy betweenM+ and M−, called a
separably degenerate. The selection rule is rather trivial:
transitions ofmX andmY areDm= ±1, and a transition ofmZ
is Dm=0.

III. SYMMETRIC TOP IN PENDULAR STATES

In this section, we describe a theory of pendular-state
spectroscopy for symmetric-top molecules. Since an analyti-
cal representation of energy levels for symmetric-top mol-
ecules in the pendular limit was reported previously[35], we
mainly describe symmetries, selection rules, and transition
intensities, which are newly derived in this study. Because a
modification of the theory into a linear-rotor version is
straightforward, it is not mentioned in the following discus-
sions.

A. Energy levels and wave functions

For the purpose of a consistent description throughout this
paper, we show analytical representations of wave functions
and energy levels for symmetric-top molecules in the pen-
dular limit, whose expressions are slightly different from the
previous ones[35].

The similar procedure to the case of an asymmetric top

gives Ĥl−2 as Eq.(9). The term ofl−1 is

Ĥl−1 = l−1F−
1

r

]

] r
Sr

]

] r
D −

1

r2

]2

] r2 + r2G
=l−1fp̂+p̂− + r+r−g=l−1ĥ0

s, s57d

wherer, r, andc have been defined in Eqs.(7a), (7b), and

(6a), respectively.r±, p̂±, and l̂ are defined as

r± = re±ir, s58ad

p̂± = e±irS− i
]

] r
±

i

r
l̂D , s58bd

l̂ = − i
]

] r
. s58cd

The form of Eq.(57) shows that the zeroth-order represen-
tation of a pendular-state symmetric top is a two-dimensional
isotropic harmonic oscillator. Then, the zeroth-order energy
is expressed as

Ev,l,m
s0d = 2sv + 1d. s59d

As shown in Eq.(59), the zeroth-order energy is determined
by only a vibrational quantum numberv.

The zeroth-order wave functions are expressed as

uv,l,ml = Nv,lr
ul ue−r2/2Lsv+ul ud/2

ul u sr2deilreimc, s60d

whereLq
psjd is an associated Laguerre polynomial, andl is a

quantum number for the vibrational angular momentum, i.e.,

l̂ uv,l,ml = l uv,l,ml. s61d

We chooseeimc for an arbitrary function ofc for the similar
reason discussed in Sec. II A. The constantNv,l is defined as

Nv,l =Î Sv − ul u
2

D!

2lp2FSv + ul u
2

D!G3 , s62d

l̂ of Eq. (58c) is identical to the operator defined by Eq.

(24a). l̂ is expressed as

l̂ = ĵ Z − ĵ z s63d

and the vibrational quantum numberl satisfies

l = m− k, s64d

wherek is a projection of angular momentum,j , in the field-
free condition on the molecularz axis. The basis ofuv , l ,ml
is not orthonormal in the same manner of asymmetric tops,
and this problem can be handled by a similar way described
in Sec. II A.

The l0 term of the Hamiltonian is represented as

Ĥl0 =
r2

2
ĥs

0 −
3

4
r4 + szĵZ

2− s2sz − 1dl̂ ĵ Z + ssz − 1dl̂2 s65d

and the first-order correction to the energy is expressed as

Ev,l,msl0d = − 1
8sv + 1d2 + szm

2 − s2sz − 1dml+ ssz − 5
8dl2 − 3

8 ,

s66d

Ev,l,msl0d provides the energy-level splittings aboutm and l.

B. Symmetry considerations

In this section, we describe a symmetry group appropriate
to a symmetric top in a uniform electric field. In the case of
a symmetric top, an arbitrary rotation around thez axis is a
symmetry operation. Here we denoteCzsdd as the rotation by
an angle ofd. Then, Euler angles are transformed byCzsdd as
sf ,u ,xd→ sf ,u ,x+dd. Next, we introducep rotations about

TABLE X. Character table for a general asymmetric top in a
uniform external field.

E CZsdd CZs−dd

f→ f f+d f−d

c→ c c+d c−d

0 1 1 1

M+ 1 eiMd e−iMd

M− 1 e−iMd eiMd
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an arbitrary axis in thexy plane,Ca
'zspd, wherea stands for

the angle measured from thex axis to the rotation axis in the
xy plane. Then, the operations ofCa

'ZspdCb
'zspd become

symmetry operations for arbitrary angles ofa and b, and
Euler angles are transformed assf ,u ,xd→ sp−f+2a ,u ,
−x+2bd. As a result, symmetry operations are as follows:

hE,CZsddCzsgd,Ca
'ZspdCb

'zspdj, s67d

wherea andb are arbitrary angles, and likewise,d andg are
arbitrary angles exceptd=g=0. After the classification of
these operators with the similar procedure to Eq.(28), the
character table for a symmetric top in a uniform electric field
is derived as listed in Table XI. Symmetries ofz, r, ĵ Z, and ĵ z
are also depicted in the table. Symmetries of the other opera-
tors ares0,1d for sx,yd, s ĵ x, ĵ yd, sr+,r−d, andsp̂+, p̂−d, s0,0d+

for r±p̂7, and so on. Table XII shows that the zeroth-order
wave function of Eq.(60) is an irreducible representation. It
is noted that the pair ofuv , l ,ml and uv ,−l ,−ml forms a dou-
bly degenerated representation except for them= l =0 states.

The symmetrized basis set of a free rotating symmetric
top is expressed as follows:

sid m= k = 0:u j ,0,0l f , s68ad

sii d mÞ 0 or k Þ 0:S u j ,k,ml f

u j ,− k,− ml f
D . s68bd

We can easily derive the symmetry of a field-free basis of
Eqs.(68) with the relation of Eq.(64). The results are shown
in Table XIII. The symmetry correlation between the
pendular-state and the field-free energy levels is also ob-
tained by the relation of Eq.(64).

In the free rotation of a symmetric top, the energy order-
ing of the samesk,md levels are explicitly determined, i.e.,
the higherj state is in higher energy. In the pendular limit, on
the other hand, the energy ordering of the samesl ,md levels
are also determined, i.e., the higherv state is in higher en-

ergy. Thus, an adiabatic symmetry correlation between the
quantum number in a free rotation,j , and that in the pendular
limit, v, can be derived using the relation of Eq.(64). In the
pendular condition, the approximate quantum number,v, is
represented as

v = ul u + 2n, s69d

where n=0,1,2, . . . is anumbering of eigenstates counted
from the lowest state in asumu , ul ud± levels. Using the number,
n, the angular momentum quantum number in the field-free
condition is expressed as

j =
um+ ku + um− ku

2
+ n. s70d

Therefore, the correlation betweensv , l ,md and s j ,k,md are
represented as

v = 2j − um+ ku, s71d

l = m− k. s72d

This explicit correspondence enables us to label the eigen-
states in terms ofsv , l ,md or s j ,k,md in arbitrary fields. The
identical correlation has been reported for linear rotors
[32,34] and for symmetric tops[35].

Finally, a symmetry correlation between symmetric tops
and asymmetric tops is discussed. Because the symmetry op-
erations of symmetric-top molecules include those of
asymmetric-top molecules, a symmetry correlation between
symmetric- and asymmetric-top molecules can be obtained,
and the results are shown in Table XIV.

C. Nonperturbative treatments

A new approach similar to the method discussed in Sec.
II D is available. An orthonormal pendular basis set is repre-
sented as

TABLE XI. Character table for a symmetric top in a uniform
external field.

CZsd+gdCzs−gd
E CZs−d−gdCzsgd Ca

'ZspdCb
'zspd

f→ f f± sd+gd p−f+2a

x→ x x7g −x+2b

c→ c c±d p−c+2a+2b

r→ r r±g −f+2b

s0,0d+ 1 1 1 z, r

s0,0d− 1 1 −1 ĵ Z, ĵ z
s0,Lda 2 2 cosLg 0

sM ,0db 2 2 cosMd 0

sM ,Ld+a,b 2 2 cossMd+Lgd 0

sM ,Ld−a,b 2 2 cossMd−Lgd 0

aL=1,2,3, . . ..
bM =1,2,3, . . ..

TABLE XII. Symmetry of pendular-limit wave function,
uv , l ,ml.

m, l Symmetry

m=0, l =0 s0,0d+

m=0, l Þ0 s0,ul u d
mÞ0, l =0 sumu ,0d
m·l .0 sumu , ul ud+

m·l ,0 sumu , ul ud−

TABLE XIII. Symmetry of the field-free basis.

Configuration Symmetry

m=0, k=0 s0,0d+

m=0, kÞ0 s0,uku d
mÞ0, k=m sumu ,0d
m·sm−kd.0 sumu , um−kud+

m·sm−kd,0 sumu , um−kud−
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uv,l,mlo.n.= S1 +
r2

4
lDuv,l,ml, s73d

where uv , l ,ml is defined in Eq.(60). In the similar way to
the asymmetric-top case, matrix elements of the full Hamil-
tonian are numerically calculated by Gauss-Laguerre quadra-
tures, and diagonalization of the obtained Hamiltonian ma-
trix gives energy levels and wave functions represented by
the orthonormal pendular basis set. Because the adiabatic
quantum number correlation between a free rotation and the
pendular limit is definite in the case of symmetric tops, as
shown in Eqs.(71) and(72), the assignment on the pendular-
state quantum numbers is straightforward from Eq.(69) even
in the matrix diagonalization method with the free-rotation
basis set. In this respect, the method using the free-rotation
basis set is easier to utilize than the method using the ortho-
normal pendular basis set.

D. Selection rules

The transition dipole operator,mFsF=X,Y,Zd, is the same
as that discussed in Sec. II E. Therefore, the transformation
property ofmF is derived from the Euler angle transforma-
tions in Table XI. The resultant transformation property de-
termines the symmetry ofmF as shown in Table XV. It is
worth noting that thex,y components ofsmX,mYd forms re-
ducible representation, and can be divided into two irreduc-
ible representations,s1,0d and s1,2d+. Hereafter,s1,0d part

of mFg is denoted asmFg
s1,0d, andmFg

s1 ,2d+ stands for thes1,2d+

part, whereF=X,Y and g=x,y. Because it is arbitrary to
determine thex and y axes in the case of a symmetric top,
the pair ofmFx andmFy is doubly degenerate; see Table XV.

Thus, considerations about onlymFx are sufficient, whereF
=X,Y,Z. In the light of symmetries of zeroth-order wave
functions discussed in Sec. III B, the selection rules in terms
of uv , l ,ml can be derived as depicted in Table XVI.

The representations formFg are as follows:

mZx =
Îl

2
mxseir + e−irdrF1 −

l

4
r2 + ¯G , s74ad

mZz= mzF1 −
l

2
r2 + ¯G , s74bd

mXx
s1,0d =

1

4
mxseic + e−icdF2 −

l

2
r2 + ¯G , s74cd

TABLE XVII. Contribution of transition dipole (mFg) to
transitions.

Transition
dipole

Order of
l ContributionsuDv u ,Dl ,Dmd

mZx

l1/2 s1, ±1,0d
l3/2 s1, ±1,0d ,s3, ±1,0d
l5/2 s1, ±1,0d ,s3, ±1,0d ,s5, ±1,0d

A A

mZz

l0 s0,0,0d
l1 s0,0,0d ,s2,0,0d
l2 s0,0,0d ,s2,0,0d ,s4,0,0d
A A

mXx
s1,0d

l0 s0,0, ±1d
l1 s0,0, ±1d ,s2,0, ±1d
l2 s0,0, ±1d ,s2,0, ±1d ,s4,0, ±1d
A A

mXx
s1 ,2d+

l1 s0, ±2, ±1d ,s2, ±2, ±1d
l2 s0, ±2, ±1d ,s2, ±2, ±1d ,s4, ±2, ±1d
A A

mXy

l1/2 s1, ±1, ±1d
l3/2 s1, ±1, ±1d ,s3, ±1, ±1d
l5/2 s1, ±1, ±1d ,s2, ±1, ±1d ,s5, ±1, ±1d

A A

TABLE XIV. Symmetry correlation between symmetric and
asymmetric tops.

Symmetric tops Asymmetric tops

s0,0d+ s0+,Ad
s0,0d− s0−,Ad
s0,Ld, L=even s0+,Ad % s0−,Ad
s0,Ld, L=odd s0+,Bd % s0−,Bd
sM ,0d, M =even sM ,Ad
sM ,0d, M =odd sM ,Bd
sM ,Ld±, M +L=even sM ,Ad
sM ,Ld±, M +L=odd sM ,Bd

TABLE XV. Symmetries of transition dipoles.

Transition
dipole Transition type Symmetry

mZ
smx,myd s0,1d

mz s0,0d

smX

mY
d smx,myd s1,0d % s1,2d+

mz s1,1d+

TABLE XVI. Selection rules onuv , l ,ml.

Transition
dipole Transition type

Selection rule
sDm,Dld

mZ smx,myd s0, ±1d
mz s0,0d

smX

mY
d s1,0d part of smx,myd s±1,0d

s1,2d+ part of smx,myd s±1, ±2d
mz s±1, ±1d
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mXx
s1,2d+ =

1

4
mxseisc+2rd + e−isc+2rddFl

2
r2 −

l2

8
r4 + ¯G ,

s74dd

mXz= −
Îl

2
mzseisc+rd + e−isc+rddrF1 −

l

4
r2 + ¯G .

s74ed

Contributions of each term of Eqs.(74) to transitions are
summarized in Table XVII. The leading terms of
kv f , l f ,mfumFguvi , l i ,mil are as follows:

kv + 1,l ± 1,mumZxuv,l,ml = Îl
mx

2
Îv ± l + 2

2
, s75ad

kv − 1,l ± 1,mumZxuv,l,ml = Îl
mx

2
Îv 7 l

2
, s75bd

kv,l ± 1,mumZzuv,l,ml = mz, s75cd

kv,l,m± 1umXx
s1,0duv,l,ml =

mx

2
, s75dd

kv + 1,l ± 1,m± 1umXzuv,l,ml = − Îl
mz

2
Îv ± l + 2

2
,

s75ed

kv − 1,l ± 1,m± 1umXzuv,l,ml = − Îl
mz

2
Îv 7 l

2
.

s75fd

Calculations of transition strength are carried out with the
same procedure discussed in Sec. II F. In the situations thatl
changes in a transition, a similar discussion to Sec. II F is
possible, and we describe it briefly. A new variabler is in-
troduced by

r i = s1 − dd1/2r , s76ad

r f = s1 + dd1/2r . s76bd

Then,d satisfies

d =
li − l f

li + l f
. s77d

Using the relation of Eq.(B8), uvi , l i ,mil, which is a function
of r i, r, andc, yields

uvi, ± ul iu,mil=edr2/2Nvi,l is1 − ddul iu/2 o
p=0

svi−ul iud/2 FsNvi−p,ul iu+pd−1s− ddp

p!
sr7dpuvi − p, ± sul iu + pd,milG , s78d

wherer± is defined in Eq.(58a), and uvi −p, ±sul i u +pd ,mil is a function ofr, r, andc. Similarly, uv f , l f ,mfl becomes

uv f, ± ul fu,mfl=e−dr2/2Nvf,l fs1 + ddul f u/2 o
p=0

svf−ul f ud/2 FsNvf−p,ul f u+pd−1dp

p!
sr7dpuv f − p, ± sul fu + pd,mflG . s79d

The wave functionsuv−p, ±sul u+pd ,ml in Eqs.(78) and(79)
correspond to those forl defined as Eq.(52). From the same
reason discussed in Sec. II F, the factor ofedr2/2 in Eq. (78)
ande−dr2/2 in Eq. (79) are canceled out to each other in cal-
culations ofkv f , l f ,mfumFguvx

i ,vy
i ,mil, and the series through

aboutk can be truncated with a good accuracy in the case of
udu!1. Therefore, the calculation of the transition oscillator
strength becomes possible.

IV. UTILITY OF THE PENDULAR-LIMIT FORMALISM

In this section, we show usefulness of the present analyti-
cal expressions. Numerical calculations of energy levels and
spectra for molecules in pendular states are carried out with
the matrix diagonalization method, which provides practi-
cally exact results, and they are compared with results from
the analytical representation. We demonstrate that gross fea-
tures of energy levels and spectra in pendular states are well

reproduced by the analytical representations, and assign-
ments of states and transitions are easily performed in terms
of pendular-state quantum numbers.

A. Energy levels

Energy-level representation of asymmetric-top molecules
in a strong-field limit is shown in Eq.(26). Since the corre-
spondence between thesx,y,zd axis and thesa,b,cd axis
depends on the direction ofm, energy levels change not only
with sx,y,z but also with the direction ofm. Suppose an asym-
metric top molecule of whichm directs to theb axis, thex
andy axes correspond to thec anda axes, respectively. This
type of molecules represents the nature of pendular states of
asymmetric tops most clearly because of the large difference
betweensx andsy (notesx=sy in the symmetric-top case).
Therefore, molecules withm ib can be regarded as a typical
model for an asymmetric top in a pendular state. Figure 2(a)
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shows the energy levels derived from Eq.(26) for a molecule
with m ib, wheresx=0.5, sy=1.5, sz=1.0, andl=0.05. All
energies are expressed in a unit reduced by the averaged
rotational constant,sBx+Byd /2=sC+Ad /2. In this condition,
the fundamental frequencies of pendular vibrations along the
x andy axes are 2sy

1/2/l<49.0 and 2sx
1/2/l<28.3, respec-

tively. The zero-point shift is −2/l2=−800, and Ray’s asym-
metry parameter,k, is zero. In lower-energy region, levels
with the samevx, vy are represented assvx,vyd and connected
by thin lines in Fig. 2(a). The results of numerical calcula-
tions with the matrix diagonalization method using the free-
rotation basis set are depicted in Fig. 2(c), where the energy
levels are regarded as accurate. Comparing Figs. 2(a) and
2(c), the analytical representation of Eq.(26) reproduces rea-
sonably the exact energy levels. Furthermore, it can be seen
that the state assignments in terms of the pendular-state
quantum numbersvx, vy, andm are appropriate to describe
the energy levels. Note that the numerical calculations with
the free-rotation basis set consider onlym as a conserved
quantity. While Eq.(26) properly reproduces the gross fea-
tures of energy levels, some discrepancies appear in Fig. 2.
These discrepancies originate from the neglect of the higher-
order corrections. Their contribution becomes larger espe-
cially in the state-congested highvx,vy levels. Even in low
vx,vy levels, discrepancies become apparent at highm levels.
This is due to the neglect of Coriolis coupling as the second-
order correction. The energy levels including the corrections
perturbatively up to the second order are shown in Fig. 2(b).
For example, the Coriolis coupling between thes0,1d and
s1,0d states lowers thes0,1d level down and lifts thes1,0d
level up as m increases. Similarly, thes0,2d levels are
pushed down and thes1,1d levels are lifted up. These cor-
rections provide better match up of the results by the present
pendular formalism to the accurate calculations.

Because the energy-level representation of symmetric-top
molecules in a strong-field limit has been reported previously
[35], energy level comparison is not shown in this paper.
Similar to the case of asymmetric tops, state assignments in
terms ofv, l, andm are very useful to discuss energy-level
structures.

B. Spectra

Next we compare analytically derived spectra with simu-
lations by the matrix diagonalization method using the free-
rotation basis set. The size of basis set in the matrix diago-
nalization is set sufficiently large. Applying the theory
described in Sec. II, basic structures and assignments of
peaks in pendular-state spectra are discussed for several tran-
sition types classified in terms of the transition dipole opera-
tor, mFg. Because our prime interest is on the evaluation of
electronic transitions of large rigid molecules in a strong
field, rotational constants of the initial and final states are
fixed to be the same, and onlyl changes in the following
model calculations. It is assumed thatm directs to theb axis
and thatl9=0.055,l8=0.050,sx=0.5,sy=1.5, andsz=1.0,
where double and single primes denote the ground and the
excited states, respectively. The ground-state population is
assumed as a Boltzmann distribution atEthermal=30.0. All the
spectra presented herein are generated by the convolution of
many lines with the linewidth of 0.1, for the sake of com-
parison of gross spectral features from different calculations.

As discussed in Sec. II E, there are six different types of
excitation. For each of the three types of transitions, namely
mz, mx, and my types, two distinct configurations(parallel,
mZ, and perpendicular,mX) exist. Since it is verbose to de-
scribe all types of spectra, we concentrate our discussion on
the mZx spectrum. The functional form ofmZx are presented
in Eq. (37a). Considering the leading term of it, the gross
spectrum feature comes fromsvx8=vx9±1,vy8=vy9 ,m8=m9d
transitions. The matrix element of a transition dipole mo-
ment, kmZxl, is approximated as shown in Eq.(38a). The
corresponding transition energy,DE, up to thel0 order can
be evaluated from Eqs.(25) and (26),

E = D0 ±
2sy

1/2

l8
+ S 1

l8
−

1

l9
Dfsy

1/2s2vx9 + 1d

+ sx
1/2s2vy9 + 1dg7

sy

4
Svx9 +

1

2
±

1

2
D

±
1

2
S 4sz

sx
1/2sy

1/2 − 3sx
1/2sy

1/2DSvy9 +
1

2
D , s80d

where

D0 = − 2fsl8d−2 − sl9d−2g. s81d

Applying the above-mentioned model parameters,D0<
−138.8 and 2fsl8d−1−sl9d−1g<3.6 are obtained. Correspond-
ing spectrum is depicted in Fig. 3(a), and it is compared with
the exact spectrum, Fig. 3(c). We can see that the exact spec-
trum is well predicted by the analytical representation, and
the spectral features can be explained in terms of the
pendular-state quantum numbers as follows: The series of

FIG. 2. Energy levels of an asymmetric top reproduced by(a)
the analytical representation,(b) the analytical representation with
the second-order energy correction, and(c) the matrix diagonaliza-
tion method. The energy levels of differentumu are separately de-
picted. The model parameters are described in the text. Levels with
the samevx,vy are denoted assvx,vyd and connected by thin lines in
(a) and(b). All energies are measured from the potential minimum
of −2/l2=−800.0.
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lines started at −86 and −180 areDvx= +1 andDvx=−1 tran-
sitions, respectively, and their progressions are transitions
with differentvx,y9 states. While the gross features are similar
to one another, Fig. 3(a) fails to reproduce additional small
splittings appearing in Fig. 3(c). This discrepancy comes
from the Coriolis coupling. As discussed in Sec. IV A, the
analytical energy representation of Eq.(26) does not contain
the effect of Coriolis interaction, and the discrepancy in en-
ergy grows up asm increases. For example, the Coriolis
interaction between thes1,0d ands0,1d levels lifts thes1,0d
level up asm increases, see Fig. 2(b). Thus, the s1,0d
← s0,0d transitions shift to the blue side asm9 increases, and
it results in a blue-shaded tail of thes1,0d← s0,0d transi-
tions, as shown in Fig. 3(d). The red-shaded tail of theDvx
=−1 transitions can be explained in the same way of the
Dvx= +1 transitions. This consideration is quantitatively
verified by Fig. 3(b), which is calculated with the second-
order correction to the energy and the analytical representa-
tion for transition oscillator strengths.

The other types of spectra can be well explained by a
similar procedure, and the comparison of spectra is depicted
in Figs. 4 and 5. In each type of transition, the analytical
results well reproduce the exact spectra in the pendular state,
and the all structures can be completely assigned in terms of
the pendular-state quantum numbers,vx, vy, andm. We also
carried out the same consideration for the case of symmetric-
top molecules, and comfirmed that the pendular-limit formal-
ism for symmetric tops, which is described in Sec. III, is
very useful for prediction and explanation of spectra in the
pendular state.

V. CONCLUSION

Theoretical descriptions for the pendular-state spectros-
copy of rigid symmetric- and asymmetric-top molecules
have been reported in terms of a pendular-limit formalism.
An energy-level representation of asymmetric-top molecules
in the pendular limit has been derived analytically, and it has
been found that the pendular states of asymmetric-top mol-
ecules are well described as two-dimensional anisotropic
harmonic oscillator. Using the pendular-limit energy formu-
las and wave functions, selection rules and transition
strengths for symmetric- and asymmetric-top molecules in a
strong-field condition have been derived analytically.
Throughout the theoretical considerations, we have used the
symmetry groups for rigid bodies of symmetric- and
asymmetric-tops in a uniform electric field, which have been

FIG. 3. Calculated spectra of an asymmetric top for amZx type
transition from(a) the analytical representation,(b) the analytical
representation with the second-order energy correction, and(c) the
matrix diagonalization.(d) An expanded view of theDvx= +1,
Dvy=0 region in (c). The model parameters are described in the
text.

FIG. 4. Calculated spectra of an asymmetric top formZg type
transitionssg=x,y,zd from (a) the analytical representation,(b) the
analytical representation with the second-order energy correction,
and (c) the matrix diagonalization. The model parameters are the
same as those used in Fig. 3.

FIG. 5. Calculated spectra of an asymmetric top formXg type
transitionssg=x,y,zd from (a) the analytical representation,(b) the
analytical representation with the second-order energy correction,
and (c) the matrix diagonalization.
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newly developed in this study. The utility of the analytical
representations for energy levels and transition strengths is
verified by comparing with the exact numerical calculations
by matrix diagonalization.
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APPENDIX A: PERTURBATION THEORY

Schrödinger equation is expressed as

Ĥwn − Enwn = 0, sA1d

whereĤ is a full Hamiltonian,wn is an eigenfunction, andEn

is an eigenvalue. Then,Ĥ, wn, andEn are expanded as fol-
lows:

Ĥ = Ĥs0d + Ĥs1d + Ĥs2d + ¯ , sA2ad

wn = wn
s0d + wn

s1d + wn
s2d + ¯ , sA2bd

En = En
s0d + En

s1d + En
s2d + ¯ , sA2cd

where the superscripts denote orders of perturbation,wn
s0d is

an eigenfunction ofĤs0d, and En
s0d is eigenvalue ofĤs0d,

namely,

Ĥs0dwn
s0d = En

s0dwn
s0d, sA3d

wn
s jd is represented as

wn
s jd = o

i

Cni
s jdwi

s0d. sA4d

Here, we regard the basis set ofwn
s0d not to be completely

orthonormal but to be near orthonormal.Ĥsnd are not neces-
sarily Hermite operators. If an exact volume element,dv, is
expanded asdv=s1+ss1d+ss2d+¯ ddv8, wheredv8 is an ap-
proximated volume element with which integrals ofwn

s0d sat-
isfy the orthonormal condition, overlap integrals are ex-
panded as

E wm
s0d*wn

s0d dv =E wm
s0d*wn

s0d dv8 +E wm
s0d*ss1dwn

s0d dv8

+E wm
s0d*ss2dwn

s0ddv8 + ¯

=dm,n + Smn
s1d + Smn

s2d + ¯ , sA5d

where the superscripts also denote orders of perturbation.

Matrix elements ofĤs jd are represented by

E wm
s0d*Ĥs jdwn

s0d dv=E wm
s0d*Ĥs jdwn

s0ddv8

+E wm
s0d*ss1dĤs jdwn

s0ddv8

+E wm
s0d*ss2dĤs jdwn

s0ddv8 + ¯

=Hmn
s j ;0d + Hmn

s j ;1d + Hmn
s j ;2d + ¯ , sA6d

where the perturbation order ofHmn
s j ;kd is j +k. From Eqs.(A5)

and (A6), the following relation is obtained:

Hmn
s j ;kd = o

i

Smi
skdHin

s j ;0d. sA7d

After the usual procedure of the normal perturbation
theory, the first-order perturbation is represented as

En
s1d = Hnn

s1;0d, sA8ad

Cnm
s1d =

Hmn
s1;0d

En
s0d − Em

s0d smÞ nd, sA8bd

Cnn
s1d = − 1

2Snn
s1d. sA8cd

The second-order perturbation is expressed as

En
s2d = Hnn

s2;0d + o
k

kÞn
Hnk

s1;0dHkn
s1;0d

En
s0d − Ek

s0d , sA9ad

Cnm
s2d = o

k

kÞn
Hmk

s1;0dHkn
s1;0d

sEn
s0d − Ek

s0ddsEn
s0d − Em

s0dd
−

Hmn
s1;0dHnn

s1;0d

sEn
s0d − Em

s0dd2

+
Hmn

s2;0d − 1
2Hmn

s1;0dSnn
s1d

En
s0d − Em

s0d smÞ nd, sA9bd

Cnn
s2d =

3

8
sSnn

s1dd2 −
1

2
Snn

s2d − o
k

kÞn
RfSnk

s1dHkn
s1;0dg

En
s0d − Ek

s0d

−
1

2 o
k

kÞn uHkn
s1;0du2

sEn
s0d − Ek

s0dd2 . sA9cd

Therefore,En
s jd andCnm

s jd are expressed withH
n8m8
s j8;0d andS

n8m8
s j8d ,

both of which are matrix elements integrated withdv8. The
resultant energy-level representations are the same as the re-
sults of the normal perturbation theory.

APPENDIX B: FORMULAS OF SPECIAL FUNCTIONS

1. Hermite polynomials

The generating function of Hermite polynomialsHnsjd is

e2tj−t2 = o
n=0

`

Hnsjd
tn

n!
. sB1d

If j+h is substituted forj of Eq. (B1),
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o
n=0

`

Hnsj + hd
tn

n!
=e2the2tj−t2

=o
j=0

`

o
k=0

`

s2hd jHksjd
tj+k

j ! k!

=o
s=0

` Fo
k=0

s

s2hds−kHksjd
s!

k ! ss− kd!G ts

s!

sB2d

is yielded. Then,

Hnsj + hd = o
k=0

n
n

k ! sn − kd!
s2hdn−kHksjd sB3d

is obtained. Therefore,

Hnsajd = o
k=0

n
n

k ! sn − kd!
f2sa − 1djgn−kHksjd sB4d

can be derived.

2. Associated Laguerre polynomials

The generating function of associated Laguerre polynomi-
als Ln

asjd is

s− tdae−tj/s1−td

s1 − tda+1 = o
n=a

`

Ln
asjd

tn

n!
. sB5d

By the substitution ofj+h for j,

o
n=a

`

Ln
asj + hd

tn

n!
=

s− tdae−tj/s1−td

s1 − tda+1 e−th/s1−td

=o
j=0

`
h j

j !

s− tda+je−tj/s1−td

s1 − tda+j+1

=o
j=0

`

o
k=a+j

`
h j

j !
Lk

a+jsjd
tk

k!

=o
k=a

` Fo
j=0

k−a
h j

j !
Lk

a+jsjdG tk

k!
. sB6d

Thus, Eq.(B7) is derived,

Ln
asj + hd = o

k=0

n−a
hk

k!
Ln

a+ksjd. sB7d

Then,

Ln
asajd = o

k=0

n−a
fsa − 1djgk

k!
Ln

a+ksjd. sB8d
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