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The screening of a He+ ion embedded in a paramagnetic electron gas is studied using density functional
theory within the local spin density approximation. We calculate the induced electron density and the induced
density of states for each spin orientation, parallel and antiparallel to that of the electron bound to the He+ ion.
Our results show that the screening is preferably due to parallel spin electrons, especially for low electron
densities of the medium. In a second step, the rates for Auger neutralization of a He+ ion in an electron gas are
calculated, paying special attention to their dependence on the spin of the electron excited in the Auger process.
The results obtained are used to interpret experiments in which the spin polarization of the emitted yield is
measured when a He+ projectile is neutralized in front of a metal surface.
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I. INTRODUCTION

The study of the screening of a point impurity in an elec-
tron gas plays a central role in the characterization of the
interaction of probe particles with metal targets. The first
approaches to this problem were based on linear response
theory, and studied the effect of improving the description of
the dielectric function[1,2]. Nevertheless, it was soon real-
ized that a static real charge represents a strong perturbation
for the system, and that nonlinear approaches are necessary
in order to properly characterize the rearrangement of the
electron density it induces[3,4]. In this respect, density func-
tional theory (DFT) has been successfully used in the de-
scription of the nonlinear screening of heavy impurities in
metals [5–7]. The method consists in solving the self-
consistent Kohn-Sham(KS) equations[8,9] for the special
case of a static impurity of chargeZ1 embedded in a free
electron gas(FEG).

In several studies, the KS orbitals have been used in an
approximate way as monoelectronic wave functions. Accord-
ingly, a number of empty orbitals may be fixed in order to
mimic impurities with core holes. This approach has been
widely and successfully applied to the study of core-electron
photoemission[10–12] and calculations of core-hole Auger
widths [13]. More recently, similar ideas have been used to
incorporate the crystalline nature of the solids using the so-
calledab initio band structure of the solid to explain detailed
features ofKLV Auger spectra in Si[14]. The problem is that
DFT is only strictly valid for the ground state of each sym-
metry. Hence, within this framework, there is not a theoreti-
cal justification to treat the excited state with an empty core

hole. Nevertheless, it has been claimed that as much as the
core hole can be treated as an external potential, the method
should be physically sound[10].

Another important problem treated within this scheme is
the interaction of slowly moving ion projectiles in different
charge states with solids. In this case, the static approxima-
tion is valid for ion velocities below the Fermi velocity of the
metal electrons. The strong perturbation induced by the in-
coming ion is calculated within DFT, as explained above,
and its charge state is described by introducing vacancies in
the bound KS orbitals. This approach has been used to study
the neutralization of the incoming ion via Auger processes
[15–17], the charge state dependence of the energy loss
[18–20], and the induced kinetic electron emission[21] in
the interaction of multicharged ions with metals.

In this work, we present a detailed analysis of the screen-
ing of a He+ ion in a paramagnetic electron gas. Since the
He+ ion constitutes a spin-polarized object, special attention
will be paid to the fact of how this affects the screening
characteristic, or in other words, what the degree of spin
polarization of the induced density screening cloud is. As an
application, we also study the Auger neutralization process
and how the value of the Auger rates depends on the spin of
the excited Auger electron. This study is relevant in connec-
tion with recent experimental results in which a strong spin
polarization of the emitted electrons is measured when slow
He+ ions are neutralized in their interaction with paramag-
netic metal surfaces[22,23].

The problem of calculating Auger rates for the
deexcitation-neutralization of He ions incident on a metal
surface has been widely treated in literature[24–33]. These
works analyze different aspects of the Auger process for the
general case of unpolarized projectiles and nonmagnetic sur-
faces. In short, we can assert that deep knowledge has been
achieved about the value of the rates at large atom-surface*Electronic mail: wapalocm@sq.ehu.es
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separations, but that difficulties arise at typical physisorption
distances, which are the important ones in the experiments of
Refs. [22,23]. A reason for that is the strong perturbation
represented by the projectile. This problem was treated in
great detail in Ref.[31] for unpolarized projectiles, i.e., with-
out analyzing spin-dependent effects. These effects were par-
tially included in Ref.[34] to study the Auger neutralization
of a spin-polarized He+ ion in front of a Cu surface. The
author analyzed the influence in the Auger rate of the ex-
change process due to the indistinguishability of electrons
with identical spin. Nevertheless, the Auger rate was calcu-
lated without including the perturbation induced by the ion.
In a recent work, the Auger de-excitation of a metastable
2 3SHe* atom in front of a Na surface has been studied[35].
In this case, the spin-dependent perturbation induced in the
target was also included and was shown to be an important
effect.

The organization of the present work is as follows. In Sec.
II we focus on the screening characteristics of He+ ions in an
electron gas. The main features of the model we use are
described and results for the spin-dependent induced electron
density and the induced density of states are presented for
different values of the electron density of the medium. In
Sec. III we apply these results to the study of the Auger
neutralization process. The value of the neutralization rates is
given as a function of the spin of the excited Auger electron.
This allows us to deduce a spin polarization of the emitted
electron yield. We also discuss our results in connection to
experimental findings. In Sec. IV we give the main conclu-
sions of this work.

Atomic units (a.u.) will be used unless otherwise stated.

II. SPIN-DEPENDENT SCREENING

The interaction between a static charged particle and a
FEG requires a nonperturbative theoretical description due to

the large rearrangement of electronic charge induced by the
particle in its vicinity. DFT within the local density approxi-
mation(LDA ) has proven to be successful in the calculation
of such a displacement of electronic charge[6,7]. For spin-
dependent properties, the local spin density(LSD) approxi-
mation is needed[36]. The LSD approximation includes
electronic exchange and correlation effects through approxi-
mate functionals, keeping the simplicity of a one-particle
equation with a local potential. The starting point are KS
equations[9]

H−
1

2
¹2 + veff

j sr dJwi
jsr d = «i

jwi
jsr d, s1d

wherewi
jsr d and«i

j are the KS wave functions and eigenval-
ues, respectively. The indexj runs over the two spin compo-
nents↑ and ↓. KS equations are used to obtain, in a self-
consistent manner, the electron density of the systemnsr d:

nsr d = o
j=↑,↓

o
iPocc.

uwi
jsr du2. s2d

The electron density for just spin-up(spin-down) electrons
n↑sr d fn↓sr dg can be defined in a similar way by limiting the
sum over occupied states to the required spin component.

For the specific case of a static He+ ion embedded in a
paramagnetic FEG, the effective KS potentialveff

j sr d is com-
posed of three terms, namely,

veff
j sr d = −

2

r
+E dr 8fnsr 8d − n0g

ur − r 8u
+ vxc

j fnsr d,zsr dg, s3d

where the first term is the external Coulomb potential created
by the He core, the second term is the electrostatic potential
made by the induced density, and the third term is the
exchange-correlation potential, which we calculate using
the LSD parametrization of Ref.[36]. The potential

FIG. 1. Radial electron density
r2Dnc

j srd induced in the continuum
by a He+ ion embedded in a FEG.
The electron density of the FEG is
indicated in each panel. The He+

ion with a spin-up electron is at
the origin r =0. The induced den-
sity with spin parallel to the bound
electron Dnc

↑ is shown by solid
lines, and that with spin antiparal-
lel Dnc

↓ by dashed lines.
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vxc
j fnsr d ,zsr dg is different for each spin componentj . It is a

function of both the local densitynsr d and the local spin
polarizationzsr d, defined as

zsr d =
fn↑sr d − n↓sr dg
fn↑sr d + n↓sr dg

. s4d

The electron density of the unperturbed FEG is denoted by
n0, and the customary one-electron radiusrs is defined from
1/n0=s4/3dprs

3.
We follow the same numerical procedure of some other

references in the field[7]. The KS wave functionswi
jsr d are

calculated numerically after expansion in the spherical har-
monics basis set, and the set of KS equations are solved
self-consistently using an iterative procedure. The He+ ion,
in which there is only one bound electron, is modeled by
populating just one of the two bound KS 1s states of the
system(there is one for each spin orientation). In this way,
the spin of the electron bound to the projectile is fixed. As a
convention, let us denote in the following the spin orienta-
tion of the electron bound to the He+ ion as ups↑d orienta-
tion. Electron correlation effects make the electronic screen-
ing chargeDnjsr d=njsr d−n0/2 and the KS effective potential
veff

j sr d different for each spin orientation. In the latter, this
difference is introduced through the spin-dependent
exchange-correlation termvxc

j fnsr d ,zsr dg. Let us remark here
that the origin of the FEG local magnetization is the spin-
dependent perturbation introduced by the He+ ion, as the
unperturbed FEG is paramagnetic.

The spin-dependent induced electron densityDnjsr d is the
sum of two contributions: that of the continuum KS states
Dnc

j sr d plus that of the bound KS statesDnb
j sr d, if any. In our

case, Dncsr d=Dnc
↑sr d+Dnc

↓sr d integrates to a unit charge,
providing total screening for the He+ ion.

Figure 1 shows the radial electronic density induced in the
continuumr2Dnc

j srd by the spin-polarized He+ ion embedded
in a paramagnetic FEG. Different panels correspond to dif-
ferent metal-electron densities,rs=1−4 a.u. The He+

ion with a spin-up bound electron in its 1s state is at the
origin, r =0. In order to illustrate the effect of the spin-
dependent perturbation in the medium, we distinguish
between the induced electron density with spin parallel
[Dnc

↑srd, by solid lines], and antiparallel[Dnc
↓srd ,by dashed

lines], to that of the bound electron. Clearly, from this figure,
the piling up of electrons around the He+ ion is a spin-
dependent phenomenon, particularly for intermediate and
low metallic densitiessrsù2d. We observe that close to the
bound electron, the screening is preferable due to electrons
of parallel spinfDnc

↑srdg. This behavior is simply a manifes-
tation of the Coulomb interaction and the Pauli principle; in
other words, ofexchange. Since the 1s state and the con-
tinuum states are well separated in energy and space, we
focus on the effective electron-electron interaction to explain
this effect. Thinking in terms of the mean-field formalism,
one can treat short-range electron correlations by introducing
local-field corrections to the bare Coulomb interaction be-
tween electrons. In a paramagnetic FEG, these local-field
corrections depend only on the relative spin of electrons.
Therefore, one should distinguish between two different
kinds of effective electron-electron interactions:V↑↑, the in-
teraction between electrons of parallel spin, andV↑↓, the in-
teraction between electrons of opposite spin. For parallel
spin electrons, both the Pauli principle and Coulomb corre-
lations contribute to the creation of an exchange-correlation
hole, reducing the effectiveness of the short-range part of the
Coulomb interaction. For antiparallel spin electrons, how-
ever, only Coulomb correlations contribute to the creation of
the hole, and therefore, the interaction is not so much re-
duced. As a result, the exchange is typically characterized by

FIG. 2. Total radial electronic
density r2Dncsrd induced in the
continuum by a He+ ion embed-
ded in a FEG. The electron den-
sity of the FEG is indicated in
each panel. The He+ ion with a
spin-up electron is at the originr
=0. The radial electronic density
is calculated using for the
exchange-correlation potential the
LSD (solid lines) and the LDA
(dash-dotted lines) prescriptions.
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a weaker repulsive interaction between electrons of parallel
spin, i.e., 0,V↑↑,V↑↓. This allows us to understand the ef-
fect observed in Fig. 1. In DFT, the correction to the bare
Coulomb interaction is incorporated by thevxc

j sr d potential.
In this respect, Gunnarssonet al.already showed the validity
of the LSD to reproduce the Hund’s first rule for an open-
shell atom[36]. For instance, in case of a metastable He*

atom this means that the lowest excited state is the triplet
2 3S instead of the singlet 21S. Here, our results indicate that
the metal electrons participating in the screening of the spin-
polarized He+ ion also follow a kind of Hund’s first rule that
favors the alignment of electron spins, provided the Pauli
principle is not violated.

In order to get a deeper insight on the screening process,
we have also estimated the integrated induced density for
each spin directions j = ↑ ,↓d,

Qc
j = 4pE

0

`

dr r2Dnc
j srd. s5d

Note thatQc
↑+Qc

↓=1. The ratioQc
↑ /Qc

↓ strongly depends on
the FEG density. At high densities, e.g.,rs=1, the screening
is almost equally shared by the spin-up and spin-down elec-
trons. As the FEG density decreases, the contribution ofQc

↑

to the charge balance increases. Thus, forrs=5, the screening
is practically due toQc

↑ [37].
This behavior is a consequence of the dependence of the

exchange-correlation energy on the FEG density[38]. At
high metallic densities, exchange-correlation effects are
small because the contribution of the kinetic term to the total
energy of the system dominates over the interaction terms.
As the electron density decreases, the potential energy be-
comes comparable to the kinetic one, and the exchange ef-
fects that favor the alignment of electron spins are important.
As a result, we observe that the alignment is stronger for
lower FEG densities, provided we are in the range of metal-
lic densitiess1.5ø rsø6d.

Now, let us verify that the spatial distribution of the total
screening chargefDncsrdg is practically unaffected by the
spin-dependent response of the medium. To do so, we also
calculate the electron density induced by the He+ ion using
the non-spin-dependent LDA. The difference between the
LSD and the LDA prescriptions is based on the way the
exchange-correlation potentialvxc is calculated. The LSD as-
sumes thatvxc is a function not only of the local charge
density but also of the local spin polarization. On the con-
trary, in the LDA only the local charge density affects the
exchange-correlation potential and, as a consequence, one
getsDnc

↑srd=Dnc
↓srd. In Fig. 2, we plot the total radial elec-

tronic densities induced in the continuum, i.e.,Dncsrd
=Dnc

↑srd+Dnc
↓srd, according to the LSD(solid lines) and to

the LDA (dash-dotted lines) prescriptions. A comparative
analysis of these results indicates that, regarding the spatial
distribution of induced charge, the He+ ion is equally
screened in a paramagnetic FEG whether or not the spin
polarization of its bound electron is taken into account.

Up to now, we have analyzed the spatial distribution of
the metallic electrons accounting for the screening process.
Next, we focus on a different quantity, namely, the density of

states in momentum space induced by the impurity in the
continuum,Drskd. The knowledge ofDrskd is fundamental
in order to understand the properties of the medium since it
governs its excitation spectra. For instance, atomic-like reso-
nances induced by ions in the valence band of the FEG can
be clearly seen as peaked structures in theDr jskd function
[17]. Here, we calculate the density of states induced in the
continuum for each spin states j = ↑ ,↓d as [17,42]

Dr jskd =
2

p
o

l

s2l + 1d
d

dk
dl

jskd, s6d

wherek is the electron momentumse=k2/2d, l is the angular
momentum in a partial-wave expansion, anddl

jskd are the
phase shifts of the KS radial wave functions. Figure 3 shows
Dr↑skd (dash-dotted lines) andDr↓skd (long dashed lines) for
two representative metallic densities,rs=2 (upper panel) and
rs=4 (lower panel). Thick solid lines correspond to the total
density of states, i.e.,Drskd=Dr↑skd+Dr↓skd. The value of
the Fermi momentumkF is indicated in each panel by a
vertical solid line. Forrs=2, the spin-up and -down bands
show a quite similar dependence onk. In the region of un-
occupied statessk.kFd, the difference betweenDr↑ andDr↓

is small and keeps an almost constant value. As is expected,
the spin dependence ofDrskd is stronger forrs=4. The k

FIG. 3. Density of statesDrskd induced in the continuum of a
FEG by a He+ ion as a function of the electron momentumk. Two
different values ofrs are shown:rs=2 (upper panel) and rs=4
(lower panel). The correspondingkF value is indicated by a vertical
line in each panel. Thick lines correspond to the results obtained
within the LSD approximation: totalDrskd are shown by thick solid
lines,Drskd↑ by dash-dotted lines, andDrskd↓ by long dashed lines.
Thin lines represent the results obtained by the LDA prescription:
total Drskd (thin solid lines) and partialDrskd↑=Drskd↓ (dotted
lines).
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structure of both spin bands are different.Dr↑ shows reso-
nances atk,0.4 (below kF) and k,0.7 (abovekF). How-
ever,Dr↓ increases smoothly withk and only presents a wide
resonance aroundkF. Furthermore, the quantitative differ-
ence betweenDr↑ andDr↓ is remarkably strong in the region
of occupied states, in agreement with the high polarization of
the electron density induced around the He+ ion for this par-
ticular value ofrs (see Fig. 1). In the unoccupied region, the
difference between both spin bands is smaller.

For the sake of completeness, we also indicate the density
of states obtained within the LDA by thin solid lines
ftotal, Drskdg and by dotted linesfpartial,Dr↑skd=Dr↓skdg.
In agreement with the results shown in Fig. 2, at high den-
sitiesDrskd is unaffected by the spin-polarized nature of the
perturbation, even though the screening is not equally shared
between both spin bands. Forrs=4, however, Drskd is
slightly modified, shifting the resonance to lowerk values
when the local spin polarization is taken into account.

III. AUGER NEUTRALIZATION OF He + IONS IN METALS

The embedding of an ion in a FEG is a useful model to
describe the interaction between the ion and a metallic me-
dium. In the following, we focus on a specific process in-
volved in this interaction, namely, the Auger capture(AC)
process for a He+ ion in a metal bulk. In a simplified picture,
the Auger process is due to the Coulomb interaction between
two electrons of the valence band. One electron decays to the
empty bound state of the He+ ion, whereas the second elec-
tron is promoted to an excited state. The process is schemati-
cally shown in Fig. 4. Two different channels contribute to
the total AC probabilityG: (a) capture of a spin-down elec-
tron and emission of a spin-up electronG↑ and (b) capture
and emission of spin-down electronsG↓.

The AC probability can be calculated in first-order pertur-
bation theory. The probability of AC per unit time involving
the excitation of an electron of spin orientation parallel to the
bound electronsG↑d is [34,40]

G↑ = 2p o
w1

↓Pocc.

o
w2

↑Pocc.

o
w3

↑¹occ.

UE dr dr 8fwa
↓sr dg*fw3

↑sr 8dg*vsr ,r 8dw2
↑sr 8dw1

↓sr dU2

ds«1
↓ + «2

↑ − «a
↓ − «3

↑d, s7d

wherevsr ,r 8d=1/ur −r 8u is the Coulomb potential, respon-
sible for the decay. The wave functions of the electrons in-
volved in the transition are approximated by the KS wave
functionsw1

↓sr d andw2
↑sr d of the He+/FEG system, with KS

eigenvalues«1
↓ and «2

↑, respectively. We approximate the
wave function of the captured electron in the final state by

the KS wave function of the unoccupied bound statewa
↓sr d

with eigenvalue«a
↓ . The wave function of the unoccupied

state in the continuum is also approximated by the KS wave
function w3

↑sr d with eigenvalue«3
↑.

The Auger probability per unit time when the spin orien-
tation of the excited electron is antiparallel to the bound

FIG. 4. Schematic representation of the Auger capture process: an electron from the valence band decays to the unoccupied 1s state of
the He+ ion, whereas a second electron is excited to an unoccupied continuum state. The Auger process can be viewed as the sum of two
channels:(a) G↓, in which the electron excited has a spin parallel to that of the electron bound to the He+ ion and(b) G↑, in which the spin
of the excited electron is antiparallel. The indistinguishability of electrons gives rise in the latter to the two processes indicated by solid and
by dashed arrows.
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electronG↓ needs special care. In this case, the captured electron and the excited electron have the same spin orientation and
are thus indistinguishable particles. Hence, the spatial part of the wave function of the two-electron states involved in the
transition must be antisymmetric, andG↓ can be written as[34,40]

G↓ = 2p o
w1

↓Pocc.

o
w2

↓Pocc.

o
w3

↓¹occ.

1

2
UE dr dr 8fwa

↓sr dg*fw3
↓sr 8dg*vsr ,r 8dw2

↓sr 8dw1
↓sr d

−UE dr dr 8fwa
↓sr dg*fw3

↓sr 8dg*vsr ,r 8dw1
↓sr 8dw2

↓sr dU2

ds«1
↓ + «2

↓ − «a
↓ − «3

↓d. s8d

The first double integral describes the process indicated in Fig. 4(b) by solid arrows. The last integral corresponds to the
indistinguishable process represented by dashed arrows. Expanding the squared term,G↓ can be also written as

G↓ = G0
↓ − Gint

↓ = 2p o
w1

↓Pocc.

o
w2

↓Pocc.

o
w3

↓¹occ.

UE dr dr 8fwa
↓sr dg*fw3

↓sr 8dg*vsr ,r 8dw2
↓sr 8dw1

↓sr dU2

3ds«1
↓ + «2

↓ − «a
↓ − «3

↓d− 2p o
w1

↓Pocc.

o
w2

↓Pocc.

o
w3

↓¹occ.

ReHE dr dr 8fwa
↓sr dg*fw3

↓sr 8dg*vsr ,r 8dw2
↓sr 8dw1

↓sr d

3E dr dr 8 wa
↓sr dw3

↓sr 8dvsr ,r 8dfw1
↓sr 8dg*fw2

↓sr dg*ds«1
↓ + «2

↓ − «a
↓ − «3

↓dJ , s9d

whereG0
↓ corresponds to the first term, the one equivalent to

the expression ofG↑, andGint
↓ is the second term preceded by

the minus sign.
The indistinguishability of the electrons gives rise to the

interference termGint
↓ , absent in the AC rateG↑. The expres-

sion for the AC rate can be also obtained in the self-energy
formalism[41]. However, the interference term does not ap-
pear in the so-calledG0W0 derivation at the Hartree level. In
this case, one gets[39] G0=G↑+G0

↓.
The expressions given above for the calculation of the AC

probabilities neglect collective effects in the dynamic re-
sponse of the system to the electron decay. Nevertheless, and
for the range of transition energies that are involved in our
specific system, these effects should be of minor importance
[42]. Further details on the numerical calculation ofG↑ and
G↓ are provided in the Appendix.

Figure 5 represents the value of the Auger rate as a func-
tion of rs. We show separately the contribution to the total
rate coming exclusively from the excitation of electrons with
spin-up(G↑, by a thick dash-dotted line) and spin-down(G↓,
by a thick dotted line). The total AC rate,G=G↑+G↓, is rep-
resented by a thick solid line. In this figure, we also show the
results obtained without including the interference term: the
total rateG0 (thin solid line) and the partial rateG0

↓ (thin
dotted line). It is observed thatG↑ is much larger thanG↓, and
that this difference is more important at lower electron den-
sities. The ratioG↑ /G↓ increases a factor of 5 as the electron
density varies fromrs=2 to rs=5.

This difference arises from the contribution of two effects.
On the one hand, due to the spin-dependent screening ex-
plained in the previous section, it is easier to excite spin-up
electrons, because the probability of finding them around the
He+ ion is larger(Dnc

↑.Dnc
↓ close to the ion). The contribu-

tion of this effect can be obtained from the comparison ofG↑

andG0
↓ (which does not include the interference term). In this

case, the difference between the values obtained comes
uniquely from the different wave functions entering the ma-
trix elements ofG↑ and G0

↓. As can be deduced from the
results of the previous section, this effect is important at low
electron densities for which the screening is strongly spin
dependent. At high densities, the effect is much reduced. On
the other hand, a further reduction of the value ofG↓ is due to
the interference termGint

↓ , which accounts for the indistin-
guishability of electrons. A comparison betweenG↓ and G0

↓

shows that the contribution of this effect to the spin depen-
dence of the AC rate is important over all the range of elec-
tronic densities considered. The interference term comes
from the fact that the Auger rate is ruled by the Coulomb
interaction between electrons,vsr ,r 8d=1/ur −r 8u, which is a
two-body operator. Therefore, it depends on the two-body
densitynsr ,r 8d, i.e., the probability of finding a pair of elec-
trons at the positionsr and r 8. In G↓, two spin-down elec-
trons participate: the one that is excited and the one that is
captured and neutralizes the He+ ion. Due to the exchange
hole that surrounds an electron in the conduction band, the
probability of finding two electrons with the same spin close
to each other(e.g., the two spin-down electrons in the calcu-
lation of G↓) is reduced compared to the case in which the
two electrons have different spin. In other words, for small
values of ur −r 8u, one hasn↓↓sr ,r8d,n↓↑sr ,r8d. This fact is
incorporated in the interference term.

In order to quantify the spin dependence of the Auger
process and the influence of the metal electron density on it,
we define the spin polarization of the excitationjAC by the
following expression:
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jAC =
G↑ − G↓

G↑ + G↓ . s10d

This quantity is related to the average spin polarization of the
electrons excited during the Auger capture process. The de-
pendence ofjAC on rs is represented in Fig. 6. The curves
shown correspond to three different calculations. The thick
solid line represents the results obtained using LSD to calcu-
late the screening of the He+ ion and including the interfer-
ence term in the calculation ofG↓ (we will denote it by
LSD&INT ). The dashed line is obtained including the inter-
ference term but calculating the screening within the LDA
(LDA&INT ). In this case, the spin dependence of the screen-
ing is neglected and all the polarization comes from the in-
terference term. Finally, the thin solid line shows the result of
neglecting the interference term inG↓ when the screening is
calculated with the LSD prescription(LSD0). Hence, this
curve shows the contribution tojAC coming exclusively from
the spin dependence of the screening. The LSD0 results of
the AC rate were already shown in Ref.[39]. Note also that
the results obtained in the LSD approximation use the pa-
rametrization of Gunnarsson and Lundqvist[36]. We have
checked that the use of a different parametrization(Perdew
and Wang[43]) introduces differences up to 3% in the spin
polarization of the excitationjAC. This value can be consid-
ered as an estimate of the error introduced by the LSD ap-
proximation.

Focusing on the LSD&INT calculation, which incorpo-
rates the spin-dependent perturbation induced by the ion and
the interference term inG↓, we see that the spin polarization
of the excited Auger electrons is very large(70% –90% in
the rangers=2–5 a.u.). A comparative analysis of the differ-
ent curves allows us to deduce the relative importance of
these two effects in the spin polarization of the Auger pro-

cess. By comparing LSD&INT to LSD0, we observe that the
interference term plays the predominant role over the entire
range of densities. The effect due to the spin-dependent char-
acter of the screening(compare LSD&INT to LDA&INT) is
always smaller, although it gains relative importance at low
densities. Surprisingly, aroundrs=2, the LSD&INT calcula-
tion, which includes the two spin-dependent effects, gives a
slightly lower value ofjAC than the LDA&INT calculation,
including only the interference term. The reason is that not
only the interference termGint

↓ , but alsoG0
↓ andG↑ are modi-

fied when using LDA instead of LSD wave functions. There-
fore, both the denominator and numerator of Eq.(10) are
modified in a nontrivial way. Nevertheless, as one could ex-
pect, at low densities for which the screening is strongly spin
dependent, the LSD&INT calculation gives the highest value
of jAC.

In the following, we analyze the polarization of the ex-
cited electron as a function of its energy. With this aim, we
define the energy-dependent Auger ratesG↑s«3d and G↓s«3d
that are obtained without making the sum over the unoccu-
pied w3 states in Eqs.(7) and(9), respectively. In Fig. 7, we
showPsEd, the polarization of all electrons excited with en-
ergies larger than a given valueE:

PsEd =

E
E

Emax

d«3fG↑s«3d − G↓s«3dg

E
E

Emax

d«3fG↑s«3d + G↓s«3dg
, s11d

whereEmax is the maximum energy for excitation andE=0
corresponds to the Fermi level. Note thatPs0d is the average
polarizationjAC already shown in Fig. 6. The figure shows
that PsEd is an almost constant function with slight varia-
tions at the highest values of the energy. For all densities and
energies the polarization is very high. The lowest value of
PsEd is around 70% forE=0 andrs=2.

FIG. 5. rs dependence of the Auger capture rate undergone by a
He+ ion. The thick dash-dotted(thick dotted) line represents the AC
rate in which a spin-up(spin-down) electron is excited:G↑ sG↓d.
The sum of both contributions is shown by a thick solid line. For
comparison, we also show the results obtained when the interfer-
ence term is not included(see text for details). In this case, the total
AC rateG0 is indicated by a thin solid line and partialG0

↓ by a thin
dotted line.

FIG. 6. Spin polarization of the Auger capture ratejAC, defined
in Eq. (10), as a function of the FEG parameterrs. The thick solid
(dashed) line indicates the results obtained by the LSD(LDA ) when
the interference term is included. The results obtained by LSD if the
latter is not considered are shown by a thin solid line.
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We would like to remark that the high values we obtain
for the polarization of the Auger electrons are consistent with
those obtained in similar calculations. In Ref.[34], the po-
larization of the Auger electrons was calculated for a He+ ion
interacting with a Cu surface. The theoretical model pro-
posed included the interference term, but neglected the per-
turbation induced by the ion. Similar to our case, the results
showed very high values of the polarization(higher than
80%) for the lowest excitation energies. In a recent calcula-
tion, Bonini et al. [35] obtained the deexcitation rates of a
metastable 23S He* atom interacting with a metal surface,
considering both the induced spin-dependent perturbation
and the interference term. Although not given explicitly,
from their Figs. 5(a) and 5(b), one can infer values of the
polarization around 70%.

In Refs. [22,23], the polarization of the emitted Auger
electrons when He+ ions are neutralized in front of different
metal surfaces is measured. Although the direction of the
measured polarization of the emitted yield coincides with our
results(parallel to the spin of the incoming bound electron),
there exist quantitative differences. The experiment shows a
lower average polarization(around 30%), and only at the
highest excitation energies, values of the polarization similar
to ours are obtained. Although our work is devoted to a bulk
calculation and in the experiment the surface of the metal is
probed, this cannot be invoked to explain such a disagree-
ment. One may approximate the Auger rates at a given dis-
tance from the surface as the corresponding bulk rates evalu-
ated for the value of the electron density at this position. In
this case, to mimic the surface Auger rates, one should use
the results we obtain for the lowest values of the density, for
which the polarization takes the highest values. Additionally,
note that the surface calculations of Refs.[34,35] give values
of the polarization close to ours. In Ref.[22], a theoretical
model is also presented in order to estimate the values of the
polarization of the Auger electrons. In this model, the spin-
dependent perturbation induced by an He+ ion in front of a
metal surface was calculated. Assuming that the Auger rates

are proportional to the spin-dependent induced electron den-
sity of states, they obtain lower values of the polarization
than ours, consistent with the measurements. Nevertheless,
this model neglects the interference term, or, in other words,
assumes that the two-body density is the product of two one-
body densities. Note that in the rangers=3–4 a.u.(a reason-
able value of the electron density in the surface/vacuum
area), our results, without including the interference term,
also give around a 30% polarization. Nevertheless, we have
shown that to neglect the interference term is too strong an
assumption, since it gives an important reduction ofG↓.

In connection with the above discussed disagreement be-
tween the experimental results and the model calculations,
Salmi [34] showed that in order to reproduce the measured
lower polarization of the yield, it is necessary to take into
account the production of secondary electrons. The excited
Auger electrons produce a cascade of nonpolarized second-
ary electrons mainly in the lower energy region. This effect
reduces the polarization at low ejection energies. Note that it
is precisely in the low energy region where our calculation
overestimates the experimental polarization. Therefore, from
our results, we infer that the initial excited Auger electrons
are highly spin polarized, and that this polarization is ob-
served experimentally only for high ejection energies. The
initial polarization is presumably reduced at low energies due
to secondary electrons.

IV. CONCLUSIONS

In this work, we have studied the screening of a spin-
polarized He+ ion in a FEG, using DFT within the LSD
approximation. It has been shown that the spin-polarized im-
purity induces a spin polarization of the medium. The screen-
ing is preferably due to electrons with spin parallel to that of
the incoming bound electron. The strength of this induced
spin polarization of the medium depends strongly on its elec-
tron density. In the range of metallic densities, the spin po-
larization is larger for low electron densities. Whereas for
rs=1, the screening is almost equally shared by both kinds of
electrons, forrs=5 practically only electrons with parallel
spin participate in the screening.

As an application of these results, we have studied the
spin polarization of the Auger electrons produced during the
neutralization of a He+ ion in a metal. Our results indicate a
large polarization of the Auger rates(larger than 70%), fa-
voring the excitation of parallel spin electrons. The reason
for this is twofold: the spin-dependent screening that, close
to the He+ ion, favors the presence of electrons with spin
parallel to that of the bound electron; and the interference
term of G↓ that incorporates the reduced probability of find-
ing, close to each other, two electrons with the same spin.
This last effect is the most important in the entire range of
metallic densities. Only at the lowest electron densities does
the effect due to the spin-dependent perturbation induced by
the ion play an important role in the polarization of the rates.
Finally, we point out that our results are consistent with ex-
periments, showing a similar high polarization of the yield
for the highest values of the emitted electron energies. Al-
though, for low emitted electron energies, the values of the

FIG. 7. Spin polarization of all electrons excited with an energy
larger thanE [see Eq.(11)]. The electron density of the metal is
indicated on each curve by the parameterrs. The energyE is mea-
sured from the corresponding Fermi energyEF.
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measured polarization are lower than those obtained in the
model calculations, this is presumably due to the unpolariz-
ing effect of the cascade of secondary electrons, which are
emitted with low energies.
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APPENDIX

In this Appendix, we provide some details on the calcula-
tion of the Auger ratesG↑ andG↓ [see Eqs.(7) and(9)]. Let
us start expanding the wave function of the final bound state
wa

↓ in the spherical harmonic basis set

wa
↓ = Rala

↓ srdYlama
sVrd, sA1d

as well as the wave functionswk
j sr d of the continuum states

with KS eigenvalue«k
j =k2/2:

wk
j sr d = o

l,m
Rkl

j srdYlmsVrdYlm
* sVkd. sA2d

The radial wave functionsRkl
j srd of the continuum states are

normalized in such a way that they reduce to the correspond-
ing Bessel functions of the samel in the absence of potential.

The Coulomb potential between the electronsvsr ,r 8d can
be also expanded in terms of spherical harmonics as

vsr ,r 8d = o
l,m

vlsr,r8dYlmsVrdYlm
* sVr8d, sA3d

with

vlsr,r8d =
4p

s2l + 1d
sr,dl

sr.dl+1 , sA4d

wherer, sr.d is the minimum(maximum) betweenr andr8.
Introducing the above expansions into Eq.(7), we obtain

the following expression for the Auger capture rateG↑:

G↑ =
32

p2E
0

kF

dk1k1
2E

0

kF

dk2k2
2E

kF

`

dk3k3
2 o

l1,m1

o
l2,m2

o
l3,m3

HUFE o
l,m

dr dr8 r2r82fRala
↓ srdg*fRk3l3

↑ sr8dg*vlsr,r8dRk2l2
↑ sr8dRk1l1

↓ srd

3E dVr 1
Ylama

* sVrdYlmsVrdYl1m1
sVrd E dVr8Yl3m3

* sVr8dYlm
* sVr8dYl2m2

sVr8dGU2

d„k3
2 − sk1

2 + k2
2 − 2«a

↓d…J , sA5d

where the integrals over thek anglesVk i
have been performed analytically, helping to reduce the number of sums over angular

momenta.
The angular integrals overVr andVr8 can be performed analytically as well, in terms of Wigner 3j symbols. After summing

over them indices and making the integral ink3 by means of the delta function, we obtain the following expression for the
Auger rateG↑:

G↑ =
16

p2 o
l,l1,l2,l3

HQsla,l1,l2,l3; ldE
0

kF

dk1 k1
2E

0

kF

dk2 k2
2 k3

0uR↑sla,l1,l2,l3; ldu2J , sA6d

where we have defined the radial integralR↑sla , l1, l2, l3; ld, which also depends onk1, k2, andk3 as

R↑sla,l1,l2,l3; ld =E dr dr8 r2r82fRala
↓ srdg*fRk3l3

↑ sr8dg*vlsr,r8dRk2l2
↑ sr8dRk1l1

↓ srd, sA7d

the angular coefficientQsla , l1, l2, l3; ld as

Qsla,l1,l2,l3; ld =
1

s4pd2s2l1 + 1ds2l2 + 1ds2l3 + 1ds2l + 1dSla

0

l

0

l1
0
D2Sl3

0

l

0

l2
0
D2

, sA8d

andk3
0 ask3

0=sk1
2+k2

2−2«a
↓d1/2.

The Auger capture rate when the spin orientation of the emitted electron is antiparallel to the bound electron is made of two
terms:G↓=G0

↓−Gint
↓ . The first one,G0

↓, is formally identical toG↑, the only difference being the wave functions that must beused
in the calculation of the radial integral:

R↓sla,l1,l2,l3; ld =E dr dr8 r2r82fRala
↓ srdg*fRk3l3

↓ sr8dg*vlsr,r8dRk2l2
↓ sr8dRk1l1

↓ srd. sA9d

The interference termGint
↓ defined in Eq.(9) can be simplified following a similar procedure. We present here only the final

expression

SPIN-DEPENDENT SCREENING AND AUGER… PHYSICAL REVIEW A 70, 012901(2004)

012901-9



Gint
↓ =

16

p2 o
l,l8,l1,l2,l3

HQ̄sla,l1,l2,l3; l,l8dE
0

kF

dk1 k1
2E

0

kF

dk2 k2
2 k3

0R↓sla,l1,l2,l3; ldR↓sla,l2,l1,l3; l8dJ , sA10d

where a sum over an additional indexl8 is required, and we have defined an angular coefficientQ̄sla , l1, l2, l3; l , l8d:

Q̄sla,l1,l2,l3; l,l8d =
s− 1dsl+l8d

s4pd2 s2l1 + 1ds2l2 + 1ds2l3 + 1ds2l + 1ds2l8 + 1dHl1
l2

l

l8

la

l3
JSl1

0

l

0

la

0
DSl1

0

l8

0

l3
0
DSl2

0

l8

0

la

0
DSl2

0

l

0

l3
0
D ,

sA11d

making use of Wigner 3j and 6j symbols.
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