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Variational ab initio R-matrix theory is combined with generalized multichannel quantum defect theory,
implemented in spheroidal coordinates, to calculate clamped-nuclei1Sg

+, 1pg, and1Dg
+ electron-ion scattering

phase shift matrices for H2. The calculations cover the bound state region below H2
+ 1sg, the resonance region

between H2
+ 1sg and H2

+ 1su, and they extend beyond the H2
+ 1su threshold. They span the range of

internuclear distances 1øRø5 a.u. The use of spheroidal instead of spherical coordinates allows a restricted
partial wave expansion to be used, thus yielding a compact set of interaction parameters pertaining to the
electron-ion scattering dynamics in H2. The accuracy of our fixed-nuclei quantum defects is generally of the
order of about 0.02. At the same time the quantum defect matrices obtained here exhibit a smooth behavior
across the ionization thresholds and their elements also vary rather smoothly with internuclear distance. These
results represent a step toward the goal of constructing a unfied theoretical description of ionization and
dissociation fragmentation dynamics of H2.
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I. INTRODUCTION

In a recent paper[1] we described a new implementation
of the variationalab initio R-matrix method and we pre-
sented calculations of the singletungeradeexcitation chan-
nels of H2. These calculations gave quantum defect matrices
both for the discrete and the continuum ranges in a single
unified procedure, that are smooth functions of the total en-
ergy and the internuclear distance. This smooth behavior is
desirable because of the physical insight it provides, and it is
a prerequisite for a fullyab initio unified description of the
photoionization and photodissociation of H2 including the
rotational and vibrational degrees of freedom, a goal which
has not been attained yet.

In this paper we present analogous calculations for the
singlet gerade channels of symmetry1Sg

+, 1pg, and1Dg. The
1Sg

+ channels are generally thought to be the main contribu-
tors to the dissociative recombination process of the H2

+ ion
with an electron. Rotational-electronic coupling mixes them
with the 1pg and 1Dg symmetries, which therefore logically
are calculated at the same time.

Quasiexacts<10−5 a.u.d ab initio quantum chemical po-
tential energy curves are available for all these symmetries,
but do not exceed then=4 [2–4] or (in a few cases) the n
=5 excitation level[5,6]. The positions and widths of core
excited autoionization resonances have been calculated by
various authors, and in particular the lowest1Sg

+ resonance
which mediates the dissociative recombination process has
been studied in many papers. O’Malley[7] has apparently
been the first, in 1969, to calculate quasistationary(i.e., reso-
nant) 1Sg

+ potential curves for doubly excited H2 using the
Feshbach projection technique. A few years later Bottcher
and Docken[8] used similar methods to calculate the auto-
ionization widths in addition to the resonant curves. Takagi
and Nakamura[9] expressed the two-electron problem in a
scattering theoretical framework using spheroidal corrdinates
and thus demonstrated the resonant behavior of the electron-

ion scattering phase shifts near the resonance energies. The
more recent larger-scale calculations were initiated by Col-
lins and Schneider[10], Gubermann[11], and Tennyson,
Noble and Salvini [12] who used the linear algebraic
method, the Feshbach projection operator technique and the
R-matrix approach, respectively, to treat core excited chan-
nels in H2. Extensive tables of resonance positions and
widths for the various symmetries and internuclear distances
were published a few years ago by Tennyson[13] and
Sánchez and Martin[14] who used the Wigner-Eisenbud
R-matrix method[13] and the Feshbach formalism imple-
mented withB-spline functions[14]. Shimamura, Noble, and
Burke [15] have calculated some higher resonances which
are given in neither of those compilations.

In the late 1980s it was recognized[16–18] that the ex-
cited state dynamics of H2, particularly of1Sg

+ symmetry and
including nuclear motion, is best envisioned in terms of
vibrational-coordinate dependent nondiagonal electronic
quantum defect matrices. Thereby the doubly excited struc-
tures that produce the electronic autoionization resonances
are explicitly introduced as core-excited(negative energy)
scattering channels on the same footing as the channels as-
sociated with the ground state core. The nondiagonal quan-
tum defect matrices used in Refs.[16–18] to treat the
nuclear-electronic coupling in the excited singletgeradelev-
els of H2 were deriveda posteriorifrom the quantum chemi-
cal clamped-nuclei potential energy curves of Refs.[2–4],
whereas it appears desirable to evaluate them directly in an
ab initio scattering procedure. Greene and Yoo[19,20] have
attempted this. Our calculations are similar to Refs.[19] and
[20] in many ways, but they are not limited to the1Sg

+ sym-
metry and in addition our aim is to remove the main short-
coming of the work of Refs.[19] and [20], by producing
quantum defect matrices that vary much more smoothly with
energy and internuclear distance.

While the states and resonances calculated in the present
work have been described theoretically before, the present
paper provides a unification of the earlier work. The simul-
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taneousab initio calculation of bound as well as scattering
states in a multichannel quantum defects framework yields a
global picture of the electron-ion scattering dynamics which
has not been available before and which is visualized by the
quantum defect representations of Fig. 1. The resultingR-
and E-dependent quantum defect matrix elements are in-
tended for future use in dynamical scattering and bound state
calculations including the nuclear degrees of freedom.

II. THEORY

The variationalR-matrix approach employed here has
been discussed in detail in Ref.[1]. Briefly, we use spheroi-
dal coordinatesj ,h ,f and expand the two-electron wave-

function in terms of properly symmetrized products of H2
+

one-electron orbitals. A configuration interaction treatment is
set up in a finite volumejøj0 and yields variational wave-
functions that have stationary logarithmic derivatives with
respect to the spheroidal radial coordinate. Continuation of
the wave function and its derivative beyond the finite
R-matrix volume directly yields the desired reaction matrices
K or equivalent quantum defect matricesm.

The use of generalized quantum defect theory allows this
continuation to be achieved in the framework of a unified
formalism for the discrete region, the resonance region and
the electronic continuum. As in the preceding paper[1] we
denote the H2

+ spheroidal one-electron wavefunctions in the

finite volume bynl̃l, and the corresponding channel func-

FIG. 1. Ab initio spheroidal eigenquantum defectsma for 1Sg
+ symmetry as functions of internuclear distanceR (in atomic units) and

energyE (in rydbergs). The zero of energy corresponds to the H2
+ 1s̃s threshold:(a) a=1, (b) a=2, (c) a=3, and(d) a=4. Note the

different origin of the quantum defect scale employed fora=4.
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tions outside it byel̃l. Here l̃ is the spheroidal analog of the
spherical orbital angular momentuml, andl is the quantum
number associated with the projection of the orbital angular
momentum on the internuclear axis.n− l̃ −1 is the number of
radial nodes occurring inside the finite volume, whilee is the
(negative or positive) one-electron channel energy. Thus,
with the R-matrix radius chosen appropriately large, the two
lowest spheroidal orbitals 1s̃s and 2p̃s H2

+ are exponen-
tially small on the reaction zone boundaryj0 and are identi-
cal with the 1sg or 1su quantum chemical orbitals.

In our calculations we include the following two electron
channel functions associated with the ground state core:

1s̃ses̃s and 1s̃sed̃l with l=0−2. Thecore-excited channels

included are 2p̃sep̃l with l=0 and 1, and 2p̃se f̃l with l
=0−2. Explicit inclusion of these core-excited channels al-
lows the electron-ion scattering resonances below the 2p̃s
excited state of H2

+ to be removed from the quantum defect
matrices; these resonances then reappear when asymptotic
bound state boundary conditions are applied to the closed
portion of the electron wavefunction. Assuming that only one
electron effectively escapes from the core, it is reasonable to
expect that the singly and doubly excited channel functions
listed above describe the system outside the reaction volume
adequately for energies up to and beyond the 2p̃s H2

+ ion-
ization threshold. For yet higher energies higher core-excited
channels would have to be included.

Inside the core region a much larger discrete basis of two-
electron functions must be set up. We use a basis of typically
about 200 antisymmetrized products of one-electron wave-

functions of the typenl̃ln8l̃8l8, where 1øn, n8ø10,0

ø l̃ , l̃8ø3, and wherel andl8 are chosen in accordance with
the total symmetryL=l+l8, 1Sg

+, 1Pg, or 1Dg. Two types of
such two-electron basis functions are actually used simulta-
neously in the computations, namely those which vanish at
j=j0 (and are referred to as closed-type functions), and those
whose derivatives with respect toj vanish atj=j0 (so-called
open-type basis functions). The former constitute about 95%
of the whole basis. The latter are added in order to provide
the connection with the asymptotic channel functions dis-
cussed above. As in the previous paper[1] two open-type
basis functions inside the reaction volume are included in the
calculation for each channel taken into account asymptoti-
cally. Their energies are chosen close to the total energyE
considered. As shown previously, this choice guarantees that
the correct number of nontrivial solutions, corresponding to
the number of asymptotic channels, is obtained in the
R-matrix procedure.

The truncation of the basis sets tol̃ ø3 both within and
outside the reaction region may appear too drastic to be re-
alistic. However, each spheroidal partial wave is itself a lin-
ear combination of a range of spherical waves, which is the
larger the smaller the value of the radial coordinate. The use
of spheroidal basic functions therefore amounts to a predi-
agonalization of the one-electron Hamiltonian and therefore
greatly reduces the size of the problem.

The criteria determining the choice of the reaction volume
have been discussed in Ref.[1]. In the present calculationsj0
has been taken asj0=15/R+1 (whereR is the internuclear

distance in atomic units), i.e., somewhat larger than in the
previous paper[1], and no polarization terms have been
added to the potential in the external zone. The variational
procedure yields the reaction matrixK sE,Rd in nondiagonal
form on the arbitraryR− andE− mesh chosen for the calcu-
lation. For the purposes of compact visualization we shall in
the following use the eigenquantum defectsma which are
defined in terms ofK by the relation

masE,Rd =
1

p
tan−1o

kk8

Uak
−1Kkk8Uk8a, s1d

where the columns ofU are the eigenvectors ofK sE,Rd.
The clamped-nuclei bound states below the H2

+ 1s̃s
threshold are obtained by generalized quantum defect theory
as the solutions of the MQDT secular equation[21,23]

detutan bksekddkk8 + Kkk8sEdu = 0, s2d

which is solved separately for eachR-value.bk is the accu-
mulated phase of the external electron in channelk, charac-
terized by the channel energyek=E−Ec

skd whereEc
skd is the

core energy. Note that for a one center Coulombic problem
the quantitybk/p+, reduces to the familiar Rydberg effec-
tive principal quantum numbernk=s−ekd−1/2. The accumu-
lated phase measures the number of half wavelengths of the
electron wavefunction in the potential of the two partially
screened nuclei. Equivalently, the integer part ofbk minus 1
gives the number of nodes of the radial part of the wavefunc-
tion. bk is evaluated numerically by use of the procedures
described in Ref.[24]. It is a smoothly increasing function of
the channel energy as illustrated for example by Fig. 3 of
Ref. [1].

Onceb andK are known, Eq.(2) yields the full spectrum
of eigenvaluesEnsRd from n=2 to arbitrarily highn values.
Owing to their smooth behaviorb andK need be calculated
only on a relatively coarse grid of energies, and interpolation
procedures may be used to obtain them for arbitraryE val-
ues. The resulting eigenvaluesEnsRd are equivalent to the
molecular potential energiesUnsRd once the proton-proton
repulsion term +2/R (in Rydbergs) is added.R-dependent
effective principal quantum numbersnnsRd (not to be con-
fused with the Coulombic accumulated phase mentioned
above) are defined as

nnsRd =
1

ÎU + sRd − UnsRd
, s3d

where U+sRd is the energy(again in Rydbergs) of the
H2

+ 1s̃s ground state. The quantitymnsRd=n−nnsRd is the
effective one-center Coulombic electronic quantum defect
which, multiplied by p, gives the corresponding effective
one-center Coulombic electron phase shift in the bound state
n.

In the continuum above the 2p̃s H2
+ threshold inelastic

scattering processes occur. Equation(2) must now be re-
placed[21,23] by
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detutanf− ptrsEdgdkk8 + Kkk8sEdu = 0 s4d

for each energy, whereptrsEd sr=1, . . . ,N0d are the eigen-
phases of the continuum channel interaction for a given en-
ergy E and N0 is the number of open channels. Note, the
different role of the accumulated phasebk in Eq. (2) and of
the eigenphaseptr in Eq. (4). The former is a quantity which
is defined at the given energyek for each channelk, and
hence for every total energyE, irrespective of the presence
of a core, in terms of the potential seen by the escaping
electron outside the reaction zone. Withbk given, Eq.(2) can
be satisfied only for a discrete set of total energiesEn or
equivalentlyUnsRd=EnsRd+2/R. On the other hand, the set
of eigenphasesptr actually result from solving Eq.(4). As
Eq. (4) indicates, the quantities tanptr coincide in fact with
the eigenvalues tanpma of the reaction matrixK when all
channels included are open, and as such are defined for every
energyE.

When we consider resonances occuring in the continuum
between the 1s̃s and 2p̃s H2

+ thresholds, we must combine
Eqs. (2) and (4) by using lines according to Eq.(2) for the
closed channels associated with the 2p̃s H2

+ state, and lines
according to Eq.(4) for the open channels associated with
the 1s̃s H2

+state[21–23]. The presence of closed channels
associated with H2

+ 2p̃s then leads to a resonant behavior of
the eigenphasesptrsEd [21–23]. The derivative with respect
to the energy of the eigenphase sum corresponds to the spec-
tral density of states. A plot of this quantity versus the energy
E yields a Breit-Wigner-type peak for each isolated reso-
nance, from which the positionEn

sresd and the widthGn
sresd can

be derived. Each resonance energyEn
sresd sRd in turn can be

used to derive a resonance potential energy curveUn
sresd sRd

=En
sresd sRd+2/R as well as the corresponding effective prin-

cipal quantum numbernn
sresd by means of Eq.(3), where

U+ sRd now is the potential energy of the H2
+ 2p̃s state.

When pairs or clusters of resonances overlap, their resonance
positions and widths are no longer well defined although, of
course, Eqs.(2) and (4) remain perfectly valid.

III. RESULTS

A. 1Sg
+ symmetry: Potential energy curves

Figures 1(a)–1(d) are three-dimensional plots of the
eigenchannel quantum defects for1Sg

+ symmetry which we
obtain as functions of the energy and the internuclear dis-
tance. It may be seen that while all of these quantum defect
surfaces are globally smooth, two of them(a=2 and 3) de-
pend little onR andE and are close to zero for most of the
sR,Ed range shown. The two other eigenquantum defectsma

exhibit a significant evolution withR, but depend relatively
little on the energy, particularly forR.2. Inspection of the
eigenvectorsUia (not shown) indicates that the eigenchan-
nels a=1,3, and 4 aremixtures of the channels 1s̃ses̃s,

1s̃sed̃s, and 2p̃sep̃s, while a=2 corresponds approxi-

mately to the 2p̃se f̃s core excited channel. This latter in-
volves a nearly nonpenetrating outer electron which partici-
pates only slightly in the channel interactions in theE andR
ranges considered here.

In order to test the accuracy of theab initio scattering
information thus obtained, we shall now use the data de-
picted in Fig. 1 to calculate known bound and resonance
states of1Sg

+ symmetry. Use of Eq.(2) with suitable interpo-
lation of the ma sEd of Eq. (1) [or equivalently ofmi jsEd
=p−1 tan−1 KijsEd] for each R yields the potential energy
curves for the seven lowest1Sg

+ excited states illustrated in
Fig. 2 (dots). Figure 2 also depicts the quasiexact quantum
chemicalab initio curves from Ref.[2] (full lines). Table I
lists the effective principal quantum numbersnnsRd evalu-
ated with Eq.(3) derived from ourR-matrix work. They are
compared in Fig. 3 with the corresponding data derived from
the quantum-chemical potential energy curves from Ref.[2]
for n=2−4. Figure 3 displays the differencesDnn=nab initio
−nR−matrix as functions ofR for the various statesn. The error
bars on the right indicate the mean value ofDnn for each
state as well as its scatter. The energy deviation, in cm−1,
corresponding to the mean value ofDnn is also given. The
deviations of our present effective principal quantum num-
bers from the corresponding quantum-chemical values
amount touDnnu <0.02 in the average, or less, and the largest
deviations are seen to occur at largeR and, for some of the
states nearR<3 a.u. where thes2p̃sd2 core excited state
crosses the singly excited Rydberg manifold. The deviations
are systematically negative, as should be expected because
our variational calculations are not as sophisticated in terms
of the basis sets used and therefore are not as well converged
as the quantum-chemicalab initio calculations.

This agreement is similar to what we obtained previously
for the 1Su

+ and 1pu symmetries[1]. Remembering that the
effective principal quantum numbermodulo 1is to within a
factor -p equivalent to the effective Coulombic electron
phase shift, we see that our calculations reproduce this quan-
tity correctly to about 2%. As the focus of the present work

FIG. 2. Potential energy curves and resonances for1Sg
+ symme-

try (atomic units). Solid lines: quantum chemicalab initio results

from Ref.[2] for theEF, GK, HH̄, P, andO states. Dashed lines,ab
initio resonance positions from Ref.[13]; dotted lines, H2

+ 1s̃s and
2p̃s thresholds; dots, present bound state calculations; bars, present
positions and widths of thes2p̃sd2 and 2p̃s3p̃s resonances;.

squares and diamonds, present 2p̃s4p̃s and 2p̃s4f̃s resonance
positions.
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is basically on wavefunction properties, in particular phases,
rather than on energies, we consider this agreement satisfac-
tory. Forn=5 (sixth and seventh excited states) no quantum-
chemical curves are available in the literature.(These states
have been calculated in Ref.[5] but are presented there only
in graphical form.) We therefore compare with theR-matrix
computations of Yoo and Greene[19,20] which can be seen
to be equivalent to ours. The twoR-matrix calculations thus
give equivalent results, although it must be realized that the

quantum defects themselves are very different(cf. the illus-
trations of eigenquantum defects given in Ref.[19]). We
have previously encountered a similar situation for the1Su

+

symmetry, where our smooth quantum defect matrices gave
potential energies quite close to those obtained by Yoo and
Greene with their stronglyR- andE-dependent quantum de-
fects.

B. 1Sg
+ symmetry: Resonances

Figure 2 also displays the positions of the1Sg
+ resonances

above the 1s̃s threshold and, for the broads2p̃sd2 and
2p̃s3p̃s lowest resonances, the resonance widths. Notice
how the width of the lowest resonance shown forRø2.6 in
Fig. 2 extrapolates visually smoothly to the avoided cross-
ings seen in the discrete range forR.2.6. Table II contains
our calculatednnsRd values for these and a few higher reso-
nances. Figure 4 is aDnnsRd plot analogous to Fig. 3, which
gives the effective principal quantum number differences be-
tween the positions for the three lowest resonances
2p̃snp̃s sn=2−4d obtained here, and those given in the re-
cent compilation of Tennyson[13]. ab initio here thus refers
to Wigner-EisenbudR-matrix calculations[13], in which
three ion core states were included(rather than two as here),
and where the scattering eigenphases including the resonance
effects were obtained directly in the variational calculation
(rather than in a separate MQDT step as here). We note in
passing that the resonance parameters given by Sánchez and
Martin [14] on the whole agree well with those of Ref.[13]
(except forR,1.5 a.u., cf. Ref.[14], and for f̃-type reso-
nances, see below). We will cite them therefore in detail only
in a few particular instances. The deviationsDnnsRd of Fig. 4
are of the same order of magnitude as those shown in Fig. 3

TABLE I. Clamped nuclei effective Rydberg principal quantum numbersnnsRda for bound1Sg
+ states of

H2. The orbital designationsnll are valid for smallR only.

R 2ssEF 3dsGK 3dsHH 4dsP 4ssO 5ds 5ss

1.0 1.988 2.990 2.996 3.990 3.993 4.992 5.006

1.4 2.028 2.976 3.040 3.975 4.043 4.974 5.044

1.5 2.074 2.974 3.052 3.973 4.054 4.972 5.055

1.6 2.056 2.961 3.065 3.964 4.056 4.969 5.066

1.8 2.081 2.962 3.083 3.985 4.085 4.956 5.086

2.0 2.093 2.948 3.101 3.944 4.103 4.943 5.104

2.2 2.101 2.938 3.116 3.924 4.118 4.920 5.119

2.4 2.120 2.905 3.127 3.890 4.129 4.890 5.130

2.5 2.124 2.875 3.130 3.856 4.132 4.833 5.133

2.6 2.126 2.869 3.132 3.810 4.133 4.766 5.133

2.8 2.128 2.769 3.124 3.596 4.119 4.476 5.115

3.0 2.116 2.543 3.086 3.335 4.071 4.270 5.063

3.5 1.940 2.268 2.982 3.230 3.980 4.218 4.980

4.0 1.773 2.231 2.926 3.216 3.929 4.202 4.929

4.5 1.698 2.206 2.874 3.192 3.880 4.160 4.881

5.0 1.672 2.175 2.821 3.151 3.827 4.069 4.827

aEquation(3).

FIG. 3. DeviationsDnn=nab initio−nR-matrix as functions ofR for
the bound 1−7 1Sg

+ states.nn is evaluated with Eq.(3). The ab
initio data are from Ref.[2] except forn=5 (states 6 and 7) where
we compare with theR-matrix calculations of Ref.[20]. The error
bars on the right give the mean value and scatter of the deviations
for each state. The numbers are the corresponding mean energy
deviations in cm−1.
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for the bound states, but by contrast with Fig. 3 their mean
values are not systematically negative.

The calculated widths of the 2p̃snp̃ssn=2−4d resonances
are given in Table III and illustrated by Fig. 5(a) (circles) and
compared with those evaluated by Tennyson[13] (full lines).
The two sets of widths agree well. The apparent decrease of
the s2p̃sd2 resonance forR=2.6 a.u. in our calculation is

related to the fact that this resonance is very close to the 1s̃s
threshold and in fact straddles it(i.e., part of the resonance
has actually passed into the discrete range). This decrease is
not substantiated by the work of Sánchez and Martin[14]
who used the Fermi golden rule and give a width of
0.146 Ry for this resonance atR=2.705 a.u. Note, however,
that in such a circumstance the concept of a Lorentzian width
starts breaking down anyway and, as pointed out in Sec. II,
only the energy dependence of the continuum phases remains
meaningful. We stress again that our raw quantum defect
matrices are smooth, up to and beyond, the threshold, and
yet, by means of Eqs.(2) and(4), embody all the information
concerning the inelastic scattering process involving ap̃s or

f̃s outer electron with arbitrary principal quantum number.

C. 1pg and 1Dg symmetries

The eigenchannel quantum defects for1pg and
1Dgsymmetry exhibit a behavior similar to that displayed in
Figs. 1(a)–1(d) and are not shown. Tables IV and V contain
the computednnsRd curves for1pg and1Dg bound and reso-
nance states, and Fig. 6 is the correspondingDnnsRd plot for
the bound states associated with these symmetries, while the
upper part Fig. 4 contains theDnnsRd values for the reso-
nance positions of1pg and1Dg symmetry. Table VI contains
the calculated widths for the1pg and 1Dg resonances.

Theab initio quantum defect surfacesma for 1pg and1Dg
symmetry are remarkably smooth in bothE and R. This is
particularly true for the1Dg quantum defects which are
nearly flat and which we discuss first. The channel structure

for the 1Dg symmetry forl̃ ø3 is indeed itself very simple as

it consists only of one single excited channel 1s̃sed̃d and

TABLE II. Clamped nuclei energies and effective Rydberg principal quantum numbers for core excited

2p̃snl̃s 1Sg
+ resonances of H2. The orbital designationsnll are valid for smallR only.

2p̃s 3p̃s 4p̃s 4f̃s

R Ea nb E n E n E n

1.0 1.3802 1.594 1.6448 2.783 1.7047 3.800 1.7115 4.002

1.2 1.1446 1.576 1.4164 2.763 1.4776 3.785 1.4849 4.000

1.4 0.9350 1.563 1.2114 2.743 1.2734 3.753 1.2817 3.994

1.5 0.8306 1.541 1.1177 2.732 1.1804 3.746 1.1891 4.000

1.6 0.7400 1.535 1.0296 2.721 1.0930 3.736 1.1021 3.998

1.8 0.5597 1.495 0.8696 2.696 0.9346 3.712 0.9445 3.995

2.0 0.4091 1.473 0.7304 2.675 0.7969 3.693 0.8076 3.997

2.2 0.2825 1.460 0.6098 2.655 0.6777 3.678 0.6890 3.995

2.4 0.1445 1.407 0.5057 2.639 0.5747 3.663 0.5865 3.991

2.6 0.0531 1.403 0.4165 2.631 0.4863 3.659 0.4982 3.992

2.8 0.3401 2.629 0.4101 3.659 0.4220 3.991

3.0 0.2747 2.633 0.3444 3.663 0.3561 3.989

3.5 0.1500 2.666 0.2172 3.690 0.2278 3.986

4.0 0.0663 2.724 0.1296 3.740 0.1381 3.987

4.5 0.0105 2.798 0.0692 3.806 0.0753 3.987

5.0 0.0280 3.885 0.0315 3.990

aEnergy in rydbergs above the 1s̃s threshold.
bEquation(3).

FIG. 4. DeviationsDnn=nab initio−nR-matrix as functions ofR for
1Sg

+ and1Pg 2p̃snp̃l resonance positions.nn is evaluated with Eq.
(3). Theab initio reference data areR-matrix results from Ref.[13].
The crosss2p̃p ,R=3.5d is derived from Ref.[14]. The error bars
have the same meaning as in Fig. 3. The numbers on the right-hand
side give the energy deviation(in cm−1) corresponding to the scatter
of Dnn.
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one doubly excited channel 2p̃se f̃d. Both channels corre-
spond to a nearly nonpenetrating outer electron and thus
have small quantum defects and their coupling(off-diagonal
quantum defect) is also small. Owing to the simple1Dg chan-
nel structure and weak interchannel couplings, the potential
energy and resonance curves run nearly perfectly parallel to
the corresponding ion curves. The corresponding deviations
nab initio−nR-matrix (upper part of Fig. 6) are smaller than those

for 1Sg
+ symmetry. ThennsRd values of the 2p̃s4f̃d reso-

nances(Table V) are almost integers. The lowest1Dg reso-
nance is so high that it does not cross the threshold in the
R-range considered here, and no avoided crossings(which
would be weak) occur in this range.

The 1pg channel structure, potential curves, and reso-
nance positions exhibit characeristics intermediate between
those discussed for the1Sg

+ and1Dg symmetries. The channel

structure for l̃ ø3 consists of the single ground state core

channel 1s̃sed̃p and two excited core channels 2p̃sep̃p and

2p̃se f̃p. Below the thresholdsR.3.5d the continuation of
the 2p̃s2p̃p resonance gives rise to avoided crossings and a

potential maximum in the lowest bound state 3d̃pI. The de-
viations Dnn=nab initio−nR-matrix for the bound 1pg states
shown in Fig. 6(lower part) are again comparable to those
for the 1Sg

+ states albeit somewhat smoother. The deviations
DnnsRd of the present1pg resonance positions from those
obtained by Tennyson[13] are shown in Fig. 4(upper part).
A striking feature in this plot is the large deviation, more
than 0.2 on the quantum defect scale, of the resonance posi-
tion 2p̃s2p̃p obtained here from that of Ref.[13] for R
=3.5. A similar but less pronounced deviation occurs for
2p̃s3p̃p at the sameR value. We note that our corresponding
nnsRd function (third column of Table V) is much smoother
than that given in Ref.[13]. Evidence for the possible cor-

rectness of our resonance energy comes from Ref.[14]
whose corresponding value yields the deviation indicated by
a cross in Fig. 4sR=3.5d which, when substituted, leads to a
decrease of the corresponding error bar and energy value on
the right of Fig. 4 by a factor of 10. The widths of 2p̃snp̃p
resonances(Table VI) are compared with the values from

Ref. [13] in Fig. 5b. For nù4 the 2p̃snp̃p and 2p̃snf̃p
resonances occur as pairs, with the former characterized by a
comparatively large width and the latter characterized by a
much smaller width. We find that this pair of resonances
overlaps increasingly with increasingR. This may be the
reason why in Ref.[13] there is a sudden drop of the widthG
nearR=2 [Fig. 5(b)]. We suspect that the 2p̃s4p̃p resonance
has been missed forR.2 in the earlier calculations, and that
the values given for this range in fact correspond to the much

sharper 2p̃s4f̃p resonance(Fig. 7). In Ref. [14] both reso-
nances have been found, and these authors indeed point out

that an avoided crossing of the 2p̃s4p̃p and 2p̃s4f̃p con-
figurations occurs nearR=2.3 a.u. We would like to add
here that the continuum phase-shift sum from which we de-
rive our widths and energies indicates that the resonances are
overlapping so that strictly speaking the widths and positions
become undefined in the crossing region. Thus the fact that
we find the higher resonance to be sharper than the lower one
for all R values considered, without exchange of character as
found in Ref.[14], is not necessarily in contradiction with
the statements made in the earlier work.

D. f̃ type resonances

The tables of Sánchez and Martin[14] provide the most

recent and systematic survey of the 2p̃snf̃l core excited
resonances of1Sg

+, 1pg, and 1Dg symmetry. Here we shall
discuss then=4 members of these resonance Rydberg series.

TABLE III. Widths (in rydbergs) for core excited 2p̃snl̃s 1Sg
+ resonances of H2. The orbital designations

nll are valid for smallR only.

R 2p̃s 3p̃s 4p̃s 4f̃s

1.0 0.0225 0.0049 0.0018 1.7s−6d
1.2 0.0375 0.0068 0.0023 2.5s−6d
1.4 0.0491 0.0073 0.0034

1.5 0.0476 0.0081 0.0033 6.2s−6d
1.6 0.0519 0.0093 0.0035 2.4s−5d
1.8 0.0674 0.0111 0.0042

2.0 0.0834 0.0125 0.0047 5.5s−6d
2.2 0.1110 0.0130 0.0047

2.4 0.1194 0.0129 0.0045

2.5 0.1487 0.0120 0.0045

2.6 0.0905 0.0113 0.0045

3.0 0.0110 0.0046 4.6s−6d
3.5 0.0120 0.0055 4.0s−6d
4.0 0.0160 0.0075 5.6s−5d
4.5 0.0264 0.0098 0.000 22

5.0 0.0176 0.000 48
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Figure 7(a) presents the effective principal quantum number
curvesnn=4sRd derived from the resonance energies given in
Ref. [14] (full lines), as well as our present results from
Tables II and V(circles, squares, and diamonds). Surpris-

ingly, the two sets of data show a markedly different behav-
ior as functions of the internuclear distance. While the
nn=4sRd curves from Ref.[14] rise steeply withR, our effec-
tive principal quantum numbers stay close to the integer
value n=4 in agreement, forl=0 and 2, with the calcula-
tions of Shimamura, Noble, and Burke[15] and Tennyson
[13] (dashed lines in the figure). This latter behavior is in line
with the expected behavior of a nearly nonpenetrating reso-
nance electron. An additional surprising feature of the calcu-
lations of Ref.[14] is that the threel components are calcu-
lated virtually degenerate, while our calculations predict a
small but non-negligiblel structure for the same resonances.

Figure 7(b) illustrates the widths of these resonances.

Again, owing to the weakly penetrating character of thel̃
=3 electron, the coupling to the ion ground state continua is
expected to be weak, with the result that according to our
calculations the largest widths are two orders of magnitude
smaller than those of the 2p̃snp̃l resonances shown in Fig.
5. Indeed, forRø3 our calculated widths are reduced by
another two orders of magnitude, highlighting the almost
strictly nonpenetrating character of the outer electron whenR
is small. The transition between the two electronic autoion-
ization regimes takes place rather abruptly nearR=3.5 a.u.

This behavior is common to alll components of thef̃l

resonances. Figure 7(b) also contains thef̃ type resonance
widths calculated previously(full lines, [14]; dashed lines,
[13,15]). Although the overall trends are the same as we find,
Fig. 7(b) shows that the values obtained previously are sub-
stantially larger than ours, in fact by as much as an order of
magnitude for the largestR values.

IV. DISCUSSION

A. Ground state core and excited state core quantum defects

In spite of their rather simple appearance, theab initio
quantum defect surfaces such as those displayed in Fig. 1
contain a great deal of physical information in compact form
concerning the interactions between the electrons and pro-
tons in highly excited H2. We have illustrated this is the
preceding section by extracting from them several physical
parameters, such as potential energy curves of various
shapes, as well as resonance position curves and widths.

FIG. 5. Widths of (a) the 2p̃snp̃s 1Sg
+ and (b) the

2p̃snp̃p 1Pgsn=2−4d resonances in H2 as functions of internu-
clear distance. Reference[13], full lines; present work, circles.

TABLE IV. Clamped nuclei effective Rydberg principal quantum numbersnnsRda for bound1Pg and1Dg

states of H2. The orbital designationsnll are valid for smallR only.

R 3dpI 4dpR 5dp 6dp 3ddJ 4ddS 5dd 6dd

1.0 3.025 4.011 5.003 6.004 3.004 4.004 5.004 6.003
1.5 3.009 3.984 4.988 5.984 3.011 4.010 5.010 6.010
2.0 2.983 3.972 4.967 5.966 3.019 4.019 5.018 6.018
2.5 2.961 3.942 4.937 5.934 3.026 4.028 5.028 6.027
3.0 2.918 3.888 4.878 5.872 3.040 4.038 5.037 6.037
3.5 2.834 3.772 4.740 5.719 3.050 4.048 5.046 6.046
4.0 2.675 3.552 4.477 5.426 3.060 4.056 5.055 6.054
4.5 2.469 3.365 4.282 5.223 3.069 4.063 5.061 6.060
5.0 2.299 3.278 4.173 5.058 3.076 4.068 5.064 6.062

aEquation(3).
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Here, we shall briefly discuss yet another aspect, namely the
relationship between the effective principal quantum num-
bers of bound states and the analogous quantities of core
excited resonances.

Figure 8 depicts the evolution with internuclear distance
of the quantum defect of the 3p̃l electron withl=0 and 1
moving in the field of either the 1s̃s ground state core of the
2p̃s excited state core. TheseR-dependent effective Cou-
lombic quantum defects are defined bymsRd=n−nnsRd,
wherennsRd is given by Eq.(3). By their definition they are
one-electron quantities, but they are effective becauseUnsRd
in Eq. (3) contains the effects of configuration interaction.
The curves labeled 1p̃s3p̃s and 1s̃s3p̃p (full symbols) are
ground state core quantum defects and correspond to the
B81Su

+ andD1Pu bound states of H2, respectively; the corre-
sponding data have been taken from Ref.[1]. The curves

labeled 2s̃s3p̃s and 2s̃s3p̃p (empty symbols) are excited
core quantum defects corresponding to the1Sg

+ and1pg reso-
nant states from Tables II and IV. The data points forR=0
(united atom He) are drawn assuming that the ground state
core quantum defects correlate with 1s3p 1Po, while the ex-
cited core quantum defects correlate with the 2,3a 1Do

atomic resonance calculated by Conneely and Lipsky[25].
The ground state core quantum defects exhibit the well-

known behavior of the promoted antibonding 3p̃s electron
and the unpromoted nonbonding 3p̃p electron discussed in
the past many times, e.g., in Refs.[26–28]. The quantum
defect of the1Su

+ component exhibits a characteristic strong
increase withR, approaching unity at largeR, while that of
the 1Pu component is much lessR dependent and remains
small throughout theR range shown. The excited core quan-
tum defects provide analogous scattering information per-
taining to ap electron impinging on the core in a different
state. We see that the quantum defects are larger(more posi-

TABLE V. Clamped nuclei energies and effective Rydberg principal quantum numbers for core excited 2p̃snl̃p 1Pg and 2p̃snl̃d 1Dg

resonances of H2.

2p̃p 3p̃p 4p̃p 4f̃p 4f̃d 5f̃d

R Ea na E n E n E n E n E n

1.0 1.457 1.776 1.645 2.789 1.704 3.789 1.713 4.044 1.712 4.002 1.734 5.001

1.2 1.248 1.827 1.423 2.836 1.479 3.832 1.486 4.043

1.5 0.973 1.895 1.133 2.902 1.186 3.897 1.191 4.048 1.189 4.002 1.212 5.002

1.6 0.892 1.914 1.047 2.919 1.099 3.915 1.104 4.048

2.0 0.614 1.977 0.757 2.975 0.807 3.968 0.809 4.049 0.808 4.000 0.830 5.000

2.5 0.364 2.044 0.493 3.014 0.541 4.002 0.543 4.050 0.541 4.000 0.564 5.000

3.0 0.196 2.115 0.310 3.032 0.357 4.012 0.358 4.054 0.357 4.002 0.379 5.004

3.5 0.077 2.162 0.180 3.004 0.228 4.006 0.230 4.051 0.228 4.002

4.0 0.088 2.973 0.139 4.017 0.139 4.020 0.139 4.007 0.161 5.010

4.5 0.023 2.950 0.074 3.931 0.076 4.019 0.076 4.009 0.098 5.011

5.0 0.032 4.011 0.055 5.017

aCf. caption for Table II.

FIG. 6. DeviationsDnn=nab initio−nR-matrix as functions ofR for
the bound 1−31Pg and 1-21Dg states.Ab initio data from Refs.
[3] and [4] except for the 31Pgs5dpd state where they are from
Ref. [6] (cf. caption for Fig. 3).

TABLE VI. Widths (in rydbergs) for core excited 2p̃snl̃p 1Pg

and 2p̃snl̃d 1Dg resonances of H2. The orbital designationsnll are
valid for smallR only.

R 2p̃p 3p̃p 4p̃p 4f̃p 4f̃d

1.0 0.0200 0.0044 0.0018 3.0s−6d 3.4s−6d
1.2 0.0240 0.0057 0.0021 5.2s−6d
1.5 0.0320 0.0077 0.0032 6.0s−7d
1.6 0.0310 0.0088 0.0034 4.6s−6d
2.0 0.0400 0.0126 0.0053 3.0s−6d 4.9s−6d
2.2 0.0440 0.0147 0.0062

2.5 0.0570 0.0204 0.0081 6.4s−6d 9.0s−6d
3.0 0.0740 0.0207 0.0091 9.8s−5d 6.0s−7d
3.5 0.0764 0.0300 0.0125 8.6s−5d 2.2s−6d
4.0 0.0430 0.0030 0.000 18 0.000 14

4.5 0.0314 0.0026 0.000 17 0.000 42

5.0 0.000 86
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tive) as should be expected because the core region is in-
creased and, in particular, the 2p̃s core electron is a precur-
sor of the 3p̃s scattered electron. Thus the effect of core
penetration is enhanced. The antibonding versus nonbonding
behavior of the quantum defect curves as functions ofR
however is again clearly visible. At the same time we also
see the limits of this one-electron interpretation of quantum
defects: forR<4, the1Sg

+ excited core quantum defect com-
poent starts bending down towards smaller values. This ef-
fect is due to configuration interaction: the 3p̃s resonance
comes down in energy asR increases and begins to interact
with the lower lying bound states of the same symmetry
which push the resonance to higher energy and thus decrease
its quantum defect. The opposite effect pushes the bound
state quantum defects up asR increases as has been shown in
Ref. [1]. Indeed, part of the strong increase of the 1s̃s3p̃s
curve in Fig. 8 is due to configuration interaction and should
not be explained in tems of a pure one-electron Rydberg

image. The1pg resonance lies higher and crosses the ground
state ion curve at largerR. As a consequence the decrease of
the quantum defect is not visible in Fig. 8.

Plots similar to Fig. 8 may be drawn also for the 3s̃s and

3d̃l electrons as well as for principal quantum numbersn
Þ3. The separation of ground state quantum defects(to
higher values) and of excited state quantum defects(to lower
values) with increasingR is a common feature of all these
plots, related to the fact that the 1s̃s and 2p̃s core states
coalesce asR→`.

B. Transformation to spherical coordinates
and quantum defects

In Refs. [16,17] nondiagonal quantum defect matrices
were derived from the quantum chemical potential energy
curves of Refs.[2,3] and [4]. These earlier quantum defects
matrices have been used successfully in rovibronic level cal-
culations of the mixedgeradeexcited state structures[18],
and they have also served for the calculation of the
ionization/dissociation dynamics of H2 excited from the
EF1Sg

+ double minimum state[30] as well as for the predic-
tion of wavepacket dynamics in highly excited ionizing and
dissociatinggeradeH2 [31]. As Greene and Yoo[20] pointed
out, the relationship between such quantum defect matrices
obtained indirectly from potential energy curve data and
those calculateddirectly in an ab initio R-matrix procedure
such as utilized here, is not obvious and is more complex
than in atomic problems, because it depends on the number
of channels explicitly included, and is complicated by the
fact that some of the channels(e.g., 2p̃suep̃su; cf. Fig. 2) are
strongly closed at small internuclear distances while they
become weakly closed(in the sense of MQDT) at largerR
values.

In Refs. [16] and [17] the multichannel quantum defect
secular Eq.(2) was used and theK-matrix elementsKkk8

FIG. 7. (a) Effective principal quantum numbersnnsRd, (b)

widths, of the 2p̃s4f̃l resonances. Full lines, Ref.[14]; long dashed

lines, Refs.[15] s4f̃sd and[13] s4f̃dd. Present work: symbols[con-

nected by dotted lines in(b)]: circles s4f̃sd, squaress4f̃pd, and

diamondss4f̃dd.

FIG. 8. Ground state core and excited state core effective quan-
tum defectsmnsRd=n−nnsRd [Eq. (3)] as functions ofR for n

=3,l̃ =1. Filled symbols, ground state core quantum defects(unger-
adesymmetry); empty symbols, excited core quantum defects(ger-
adesymmetry). Circles,1S symmetry; squares,1P symmetry.
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adjusted in such a way that the solutionsUnsRd fit the quan-
tum chemical potential energy curves as best as possible.
This goal was achieved in Refs.[16] and [17] with almost
spectroscopic accuracy, although a number ofad hoc as-
sumptions also had to the made(e.g., the neglect of most of
the energy dependencies and of some of theR dependen-
cies). In the earlier work however spherical coordinates were
used instead of the spheroidal coordinates used here, and the
accumulated channel phasesbk were taken to be one-center
Coulombic rather than two-center Coulombic. Thus for the
purpose of a detailed comparison we must make a transfor-
mation to a spherical representation and replace the numeri-
cal channel functions used in the external zone by the appro-
priate analytic regular and irregular Coulomb functions used
in Ref. [17].

We return at this point to theR-matrix solutionsCb of Eq.
(10) of Ref. [1] and their spheroidal asymptotic form Eq.
(16) of Ref. [1]:

CbsE,v,jd = o
k

FksE,vd
1

Îj2 − 1

3ffksec,jdIkb − gksec,jdJkbg, s5d

whereFk contains the core wave function of channelk as
well as the angular factor of the outer electron.v thus de-
notes all coordinates exceptj. The matricesI andJ consist of
matching coefficients which yield the desired spheroidal re-
action matrixK=JI−1. Equation(5) is valid for any jùj0
with the coefficientsIkb and Jkb determined forj=j0. We
now use Eq.(5) to evaluate theR-matrix eigensolutions on a
spherer =r0, centered on the midpoint between the nuclei.
Then the matching procedure, Eqs.(19)–(22) of Ref. [1], is
repeated with the difference that the asymptotic channel
functions in the summation of Eq.(5) are now

CbsE,v,rd = o
k

fcsj1,h1,w1dY1lsu,fd
1

r

3ffk
ssphdsec,rdIkb

ssphd − gk
ssphdsec,rdJkb

ssphdg, s6d

wherefc is the core wavefunction,Y are ordinary spherical
harmonics, andfk

ssphd andgk
ssphd are the radial Coulomb func-

tions originally introduced by Ham[32] (see Seaton[21], his
nearly analytic functionsf andh). The relation

Kkk8
ssphd ; tan phkk8 = o

b

Jkb
ssphdIk8b

ssphd−1 s7d

now yieldssphericalquantum defect matriceshkk8, so-called
h defects in the terminology of Ham[32], which are appro-
priate for use in the framework of the customary quantum
defect/frame transformation theory.(Our K ssphd corrsponds to
Y in Seaton’s notation.)

In order to be consistent with the present spheroidal
R-matrix calculations and with the work of Refs.[16] and
[17] where thes2p̃sd2 resonance is treated as the lowest
member of a Rydberg channel, we have taken the spherer
=r0 just slightly larger than the large axis of the ellipsoidj
=j0, typically r0=sR/2dj0+ 1

2. We have ascertained that theh
defects thus determined yield bound statennsRd values very

close to those listed in Table I. The resulting spherical1Sg
+ h

defects are shown in Fig. 9 for the range 2øRø5 a.u. and
for an energy of 0.1 Ry below the 1s̃s H2

+ threshold corre-
sponding ton<3.2 which is in the middle of the range for
which theh matrices of Ref.[17] were derived.

In Refs.[16–18] only the channels 1s̃sess, 1s̃seds, and
2p̃seps (in short-hand notation:s,d, and p) were consid-
ered, while 2p̃sefs (short-handf) was excluded. Figure 9(a)
illustrates thel f s1=0−3d spherical1Sg

+ h quantum defect
functions obtained here. Two elements,df and f f, are seen to
become as large as 0.3 nearR=5, indicating that the neglect
of the f excited core channel in Refs.[16–18] was not justi-
fied because the single-center representation of the nonpen-

etrating f̃ wave becomes inappropriate forRù2.5. Note that
by contrast in the spheroidal formulation all quantum defect

elements involving ane f̃l outer electron are smaller than
0.03 (see Fig. 1, for example) throughout the energy andR
ranges considered in this work.

We next compare in Fig. 9(b) the diagonalh elementsss,
dd, andpp (short-hand notation, represented by circles con-
nected by dashed lines) with those illustrated in Ref.[18]
(full lines in Fig. 9). The crucial region ofR values for the
interactions between singly and doubly excited configura-
tions of 1Sg

+ symmetry is betweenR=2 (minimum of
H2

+ 1s̃s) and R=3 [crossing ofs2p̃sd2 with the singly ex-
cited Rydberg manifold]. Figure 9(b) shows that in thisR
range the previous and presenth defects are indeed quite
close to each other, with deviations of the order of<0.05.
This may be considered as a good agreement. Outside the
R=2−3 range however the two sets of quantum defect func-
tions diverge substantially from one another, no doubt be-
cause of the various simplifying assumptions which had to
be made in the earlier work. Nevertheless, it is probably, fair
to say, with a dose of optimism, that the overallR dependen-
cies are qualitatively similar(e.g., the overall decrease ofpp
for Rù3, or the negative values ofdd in the intermediate
range followed by a strong increase up to large positive val-
ues).

Figure 9(c) finally illustrates the off-diagonalsd, sp, and
dp quantum defects. We see, again, that in the crossing re-
gion sR<3d the two sets of quantum defects agree rather
closely, with thedp interaction larger thansp, andsd small
with opposite sign. Again, however, theR dependencies an-
ticipated in the earlier work are not corroborated by the
presentR-matrix results.

V. CONCLUSION

The main result of this work is a set of quantum defect
matrices for all singlet gerade symmetry channels of H2 with
1ø3 andlø2 that are smooth functions of both energy and
internuclear distance. We have seen that these eigenchannel
surfaces fall into two rather distinct classes, a few that are
active and exhibit a significant evolution as function ofR and
E, and all those that are inactive and are near zero throughout
the E, R ranges studied here. As stated earlier, this double
smoothness should prove helpful when, as planned, a purely
ab initio description of H2 fragmentation dynamics is imple-
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mented. Interpolation procedures will be used to obtain the
quantum defect matrices on energy and internuclear grids as
desired. These interpolation procedures can be applied di-
rectly to the quantum defect matrices themselves irrespective
of the dimensions of the variational basis sets used in the
calculation for a givenR. This possibility has not been fully
exploited in the present work since we have taken essentially
the same basis set for allR values. If required, however, the
convergence can be improved locally, e.g., at largeR, a pos-
sibility which is not offered in the approach of Yoo and
Greene[20] which requires a single basis for the fullR range
considered.

We have tested the accuracy of theR-matrix quantum
defects by using them in the framework of generalized quan-
tum defect theory to calculate clamped-nuclei potential en-
ergy curvesUnsRd for n=2–5, andcomparing these with
highly accurate state-of-the-art quantum chemicalab initio

potential energy curves. The effective principal quantum
numbers(modulo 1), equivalent to theR-dependent electron-
ion effective phase shift, are found to be correct to within
about 2% which we consider satisfactory agreement. Salient
features, such as the double-minimum or shelf structures of
some of the states, are reproduced correctly. We have also
used theR-matrix quantum defects to calculate electronic
autoionization resonance positions and widths which have
again been compared with previous first principles scattering
calculations. Ourp̃ resonances agree well with the previous
calculations(with a single exception, cf. Fig. 4). No such
general consensus has been reached yet with regard to the

more elusivef̃ type resonances for which diagreement per-
sists between our and previous work, but also between vari-
ous earlier studies.

The lowest1Sg
+ doubly excited configurations2p̃sd2 pro-

duces the low-lying outer well in theEF state nearR

FIG. 9. Sphericalh defects for1Sg
+ symmetry. Circles connected by dashed lines: presentR-matrix results. Full lines: values from Ref.

[18]. l denotes the orbital angular momentum of the outer electron with the core in the ground state foreven l, and with the core in the
excited state forodd l, respectively:(a) diagonal and off-diagonal elements involvingl =3; (b) diagonal elements forl ø2; (c) off-diagonal
elements forl , l8ø2. For clarity, the labels in(b) and(c) are placed near theR values where the corresponding dashed and full lines cross
or come closest.
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<4.5 a.u.(see Fig. 2). This state is usually considered to be
a valence rather than a Rydberg state, indeed it turns into the
H+1H− ionic configuration forR values between 5 and
7 a.u. It is thus interesting to note that ourR- matrix calcu-
lations yield this state as the lowest member of the 2p̃snp̃s
resonance Rydberg series with hardly any trace of resonant
behavior visible in the quantum defectsma themselves at the
corresponding energy(Fig. 1). By contrast, the recent
Wigner-EisenbudR- matrix calculations of Hiyama and
Child [29] of the NO molecule yielded the valence states of
that molecule in the form of poles of theK matrix, which
disrupt the otherwise smooth evolution of its elements with
energy and internuclear distance. Our calculations differ
from those of Ref.[29] in that we use spheroidal rather than
spherical coordinates, and therefore are able to reduce the
reaction volume considerably(by about a factor of two) as a
consequence of a more realistic description of the asymptotic
field outside the core, two half-charges separated byR rather
than a unit point charge(the “halfium” description in the
terminology of Ref.[1]). The wavefunction of thes2p̃sd2

configuration therefore spills out into the asymptotic zone
and thereby becomes amenable to a Rydberg description. An-
other advantage of the halfium description is the fact that the

l̃ =3 partial wave remains nonpenetrating throughout theR
range studied here and hence participates only little in the
channel interactions. In the spherical Coulomb description
on the other hand, thel =3 wave undergoes strongl mixing
for Rù3 as shown by the large off-diagonal quantum defect
elements displayed in Fig. 9(a).

It has been possible in the present work to make a direct
comparison of directly calculated R-matrix quantum defect
matrices with the spherical Hamh quantum defect matrices
derived previously in Refs.[16] and[17] on the basis of the
lowest quantum chemicalab initio potential energy curves.
This comparison is important in view of the fact that the
matrices published in 1994 constitute the only available set
of dynamical parameters(which in a sense isab initio),
which when combined with rovibronic multichannel quan-
tum defect theory, is capable to yield a realistic description
of the various continuum processes occurring near the ion-
ization and dissociation thresholds of H2. The comparison,
made in Figs. 9(b) and 9(c), reveals substantial shortcomings
of the previous approach, but at the same time many of the
crucial details turn out to be in almost quantitative agree-
ment.
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