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Variational ab initio R-matrix theory is combined with generalized multichannel quantum defect theory,
implemented in spheroidal coordinates, to calculate cIamped-nlB;;feilﬂg, andlAg electron-ion scattering
phase shift matrices for HThe calculations cover the bound state region belg\’ivhlrg, the resonance region
between H* 1oy and H" 1g,, and they extend beyond the,Hlg, threshold. They span the range of
internuclear distances<lR=<5 a.u. The use of spheroidal instead of spherical coordinates allows a restricted
partial wave expansion to be used, thus yielding a compact set of interaction parameters pertaining to the
electron-ion scattering dynamics in,HThe accuracy of our fixed-nuclei quantum defects is generally of the
order of about 0.02. At the same time the quantum defect matrices obtained here exhibit a smooth behavior
across the ionization thresholds and their elements also vary rather smoothly with internuclear distance. These
results represent a step toward the goal of constructing a unfied theoretical description of ionization and
dissociation fragmentation dynamics of.H
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[. INTRODUCTION ion scattering phase shifts near the resonance energies. The
more recent larger-scale calculations were initiated by Col-
In a recent papefl] we described a new implementation lins and Schneidef10], Gubermann[11], and Tennyson,
of the variationalab initio R-matrix method and we pre- Noble and Salvini[12] who used the linear algebraic
sented calculations of the singlengeradeexcitation chan- method, the Feshbach projection operator technique and the
nels of H,. These calculations gave quantum defect matrice&-matrix approach, respectively, to treat core excited chan-
both for the discrete and the continuum ranges in a singl8€ls in H. Extensive tables of resonance positions and
unified procedure, that are smooth functions of the total enwidths for 'ghe various symmetries and internuclear distances
ergy and the internuclear distance. This smooth behavior i¥€"® published a few years ago by Tennysdr$] and
desirable because of the physical insight it provides, and it i&nchez and Martii14] who used the Wigner-Eisenbud
a prerequisite for a fullyab initio unified description of the -matrix method[13] and the Feshbach formalism imple-
photoionization and photodissociation of, khcluding the mented withB-spline functiong14]. Shimamura, Noble, and

. . . . Burke [15] have calculated some higher resonances which
rotational and V|b(at|onal degrees of freedom, a goal Wh'Chare given in neither of those compilations.
has not been attained yet.

In this paper we present analogous calculations for th%- ; ; I+
. o 1 ited state dynamics of Jiparticularly of symmetry and
singlet gerade channels of symmet®y, Iy, and*A,. The including nuclear motion, is best envisioned in terms of

'S4 channels are generally thought to be the main contribugiprational-coordinate dependent nondiagonal —electronic

tors to the dissociative recombination process of thein  guantum defect matrices. Thereby the doubly excited struc-

with an electron. Rotational-electronic coupling mixes themyyres that produce the electronic autoionization resonances

with the T and *A4 symmetries, which therefore logically are explicitly introduced as core-excitédegative energy

are calculated at the same time. scattering channels on the same footing as the channels as-
Quasiexac{=~107 a.u) ab initio quantum chemical po- sociated with the ground state core. The nondiagonal quan-

tential energy curves are available for all these symmetriesum defect matrices used in Ref§l6-18 to treat the

but do not exceed the=4 [2—4] or (in a few casesthe n nuclear-electronic coupling in the excited singieradelev-

=5 excitation level[5,6]. The positions and widths of core els of H, were deriveda posteriorifrom the quantum chemi-

excited autoionization resonances have been calculated Il clamped-nuclei potential energy curves of R4,

various authors, and in particular the lowésf; resonance whereas it appears desirable to evaluate them directly in an

which mediates the dissociative recombination process hash initio scattering procedure. Greene and Y8,20q have

been studied in many papers. O’Mall¢y] has apparently attempted this. Our calculations are similar to R¢f€] and

been the first, in 1969, to calculate quasistatior(agy, reso-  [20] in many ways, but they are not limited to tﬁEg sym-

nany 12; potential curves for doubly excited,Hising the  metry and in addition our aim is to remove the main short-

Feshbach projection technique. A few years later Bottchecoming of the work of Refs[19] and [20], by producing

and Docken[8] used similar methods to calculate the auto-quantum defect matrices that vary much more smoothly with

ionization widths in addition to the resonant curves. Takagienergy and internuclear distance.

and Nakamurg9] expressed the two-electron problem in a  While the states and resonances calculated in the present

scattering theoretical framework using spheroidal corrdinatesiork have been described theoretically before, the present

and thus demonstrated the resonant behavior of the electropaper provides a unification of the earlier work. The simul-

In the late 1980s it was recogniz¢ti6—19 that the ex-
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FIG. 1. Ab initio spheroidal eigenquantum defegtg for 12;' symmetry as functions of internuclear distariRé¢in atomic unitg and
energyE (in rydbergs. The zero of energy corresponds to thg*HSo threshold:(a) =1, (b) a=2, (¢) =3, and(d) a=4. Note the
different origin of the quantum defect scale employed der4.

taneousab initio calculation of bound as well as scattering function in terms of properly symmetrized products of*H
states in a multichannel quantum defects framework yields ane-electron orbitals. A configuration interaction treatment is
global picture of the electron-ion scattering dynamics whichset up in a finite volume&= &, and yields variational wave-
has not been available before and which is visualized by théunctions that have stationary logarithmic derivatives with
quantum defect representations of Fig. 1. The resulRng respect to the spheroidal radial coordinate. Continuation of
and E-dependent quantum defect matrix elements are inthe wave function and its derivative beyond the finite
tended for future use in dynamical scattering and bound statR-matrix volume directly yields the desired reaction matrices
calculations including the nuclear degrees of freedom. K or equivalent quantum defect matrices
The use of generalized quantum defect theory allows this
continuation to be achieved in the framework of a unified
Il. THEORY formalism for the discrete region, the resonance region and

The variational R-matrix approach employed here has the electronic continuum. As in the preceding pajigrwe
been discussed in detail in R¢L]. Briefly, we use spheroi- denote the H" spheroidal one-electron wavefunctions in the

dal coordinatest, n,¢ and expand the two-electron wave- finite volume byn~l)\, and the corresponding channel func-
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tions outside it byel\. Herel is the spheroidal analog of the distance in atomic unifsi.e., somewhat larger than in the
spherical orbital angular momentumand\ is the quantum  Previous paper1], and no polarization terms have been
number associated with the projection of the orbital angulagdded to the potential in the external zone. The variational
momentum on the internuclear axis-1-1 is the number of ~Procedure yields the reaction matixE, R) in nondiagonal
radial nodes occurring inside the finite volume, whilis the ~ form on the arbitraryR- andE- mesh chosen for the calcu-
(negative or positive one-electron channel energy. Thus, lation. For the purposes of compact visualization we shall in
with the R-matrix radius chosen appropriately large, the twothe following use the eigenquantum defegts which are
lowest spheroidal orbitals3& and 2o H," are exponen- defined in terms oK by the relation

tially small on the reaction zone boundafyand are identi-

cal with the Iry or 1oy, quantum chemical orbitals. 1 1
In our calculations we include the following two electron ma(ER) = 7—Ttan > U aiKite Ui s D
channel functions associated with the ground state core: kK’

ISoeso and Boed\ with A\=0-2. Thecore-excited channels where the columns o are the eigenvectors df (E,R).

included are Boep\ with A\=0 and 1, and ﬁ(fehf‘)\ with \ The clamped-nuclei bound states below the* BEo

=0-2. Explicit inclusion of these core-excited channels al-threshold are obtained by generalized quantum defect theory
lows the electron-ion scattering resonances below e 2 g the solutions of the MQDT secular equatj@d,23
excited state of K" to be removed from the quantum defect

matrices; these resonances then reappear when asymptotic d _

- . eftan O + K (E)[ =0, 2
bound state boundary conditions are applied to the closed ftan il e + Kige (B)| @
portion of the electron wavefunction. Assuming that only one hich | ved v f saval is th
electron effectively escapes from the core, it is reasonable t¥f IIC '5 Sﬁ Ve s%epr)]arate y orl ela va ug.ﬁwsr;“ghaccu—
expect that the singly and doubly excited channel functiond"'2€d Phase of the extermnal electron In charkpeharac-
listed above describe the system outside the reaction volunf§fized by the channel energy=E-E " whereE " is the
adequately for energies up to and beyond tpe B,* ion-  COré energy. Note that for a one center Coulombic problem
ization threshold. For yet higher energies higher core-excite®€ quantityB,/ 7+ reduces to the fam'i'/?r Rydberg effec-
channels would have to be included. tive principal quantum number,=(-¢,) "< The accumu-

Inside the core region a much larger discrete basis of twol2ted phase measures the number of half wavelengths of the

electron functions must be set up. We use a basis of typicall§/ectron wavefunction in the potential of the two partially

about 200 antisymmetrized products of one-electron waveScreened nuclei. Equivalently, the integer parppiminus 1
functions of the typenTxn’T’)\’ where 1=n n'<10.0 9ves the number of nodes of the radial part of the wavefunc-

~= ’ ] . tion. B¢ is evaluated numerically by use of the procedures
<I,I"<3, and where\ and’)\ lar+e fhosenlln accordance With gescribed in Ref{24]. It is a smoothly increasing function of
the total symmetrA=A+\", "X, “1lg, or “Aq. Two types of  the channel energy as illustrated for example by Fig. 3 of
such two-electron basis functions are actually used simultagef. [1].

neously in the computations, namely those which vanish at OncepB andK are known, Eq(2) yields the full spectrum
§=&, (and are referred to as closed-type functioasd those  of gigenvalue,(R) from n=2 to arbitrarily highn values.
whose derivatives with respect fvanish att=¢£, (so-called  ying to their smooth behavigs andK need be calculated
open-type basis functionsThe former constitute about 95% |y on a relatively coarse grid of energies, and interpolation
of the whole basis. The latter are added in order to prOV'd“fﬁ)rocedures may be used to obtain them for arbit&uwal-

the connection With the asym_ptotic channel functions disy,es. The resulting eigenvalu@&(R) are equivalent to the
cussed above. As in the previous papef two Open-type  pgjecyjar potential energied, (R) once the proton-proton

basis functions inside the reaction volume are included in th?epulsion term +2R (in Rydbergs is added.R-dependent
calculation for each channel taken into account asymptoti—ef.fe(,’,[ive principal quantum numbets(R) (nét to be con-

caIIy._ Their energies are chosen clqse to.the total enérgy fused with the Coulombic accumulated phase mentioned
considered. As shown previously, this choice guarantees th% ove are defined as

the correct number of nontrivial solutions, corresponding to
the number of asymptotic channels, is obtained in the
R-matrix procedure. 1y(R) =

The truncation of the basis sets Ite3 both within and VU +(R) = Uy(R)
outside the reaction region may appear too drastic to be re-
alistic. However, each spheroidal partial wave is itself a lin-where U*(R) is the energy(again in Rydbergs of the
ear combination of a range of spherical waves, which is théd," IS0 ground state. The quantity,(R)=n-v,(R) is the
larger the smaller the value of the radial coordinate. The useffective one-center Coulombic electronic quantum defect
of spheroidal basic functions therefore amounts to a prediwhich, multiplied by 7, gives the corresponding effective
agonalization of the one-electron Hamiltonian and therefor@ne-center Coulombic electron phase shift in the bound state
greatly reduces the size of the problem. n.

The criteria determining the choice of the reaction volume In the continuum above thepz H," threshold inelastic
have been discussed in RET]. In the present calculatiorg scattering processes occur. Equati@ must now be re-
has been taken a&=15/R+1 (whereR is the internuclear placed[21,23 by

L 3
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dettar{- 77,(E) 16y + K (E)| =0 (4) 00 1

for each energy, where,(E) (p=1,... No) are the eigen-

phases of the continuum channel interaction for a given en- g2

ergy E and N, is the number of open channels. Note, the

different role of the accumulated phaggin Eq. (2) and of ;

the eigenphaser, in Eq.(4). The former is a quantity which @ g4

is defined at the given energy, for each channek, and 5’

hence for every total enerdy, irrespective of the presence

of a core, in terms of the potential seen by the escaping

electron outside the reaction zone. Wghgiven, Eq.(2) can

be satisfied only for a discrete set of total enerdigsor

equivalentlyU,(R)=E,(R)+2/R. On the other hand, the set

of eigenphasesrr, actually result from solving Eq.(4). As

Eg. (4) indicates, the quantities tamr, coincide in fact with

the eigenvalues tamu,, of the reaction matrix when all R(a.u.)

222:‘;;'58. included are open, and as such are defined for every FIG. 2. Pot_ential energy curves an q resonance éz_g_symme-
When we consider resonances occuring in the continuurHy (atomic unitg. Solid lines: quantum chemicalb initio results

between the 3 and Po H,* thresholds, we must combine from Ref.[2] for theEF, GK, HH, P, andO states. Dashed lineab

Egs.(2) and (4) by using lines according to Eq2) for the initio resonanc? positions from R¢f.3]; dotted Ilnesf H .150- and

closed channels associated with terH," state, and lines ZT)a_ t_hresholds, d'ots, present bounzd state calculations; bars, p.resent

according to Eq(4) for the open channels associated with positions and Wldths of thdzbf) and $Ugba~ resonances,.

the Bo H,*state[21-23. The presence of closed channelsSduares and diamonds, preseifto@po and Podfo resonance

associated with bt 2po then leads to a resonant behavior of POStONS:

the eigenphasesr,(E) [21-23. The derivative with respect  |n order to test the accuracy of tre initio scattering

to the energy of the eigenphase sum corresponds to the spégformation thus obtained, we shall now use the data de-
tral density of states. A plot of this quantity versus the energypicted in Fig. 1 to calculate known bound and resonance
E yields a Breit-Wigner-type peak for each isolated reso-states oflE; symmetry. Use of Eq(2) with suitable interpo-
nance, from which the positioB*® and the widthl“f{es can lation of the u, (E) of Eq. (1) [or equivalently of w;;(E)

be derived. Each resonance eneB§’® (R) in turn can be =" tan K;(E)] for eachR yields the potential energy
used to derive a resonance potential energy cu{& (R)  curves for the seven lowesk; excited states illustrated in
=E§1fe9 (R)+2/R as well as the corresponding effective prin- Fig. 2.(dots).. Eigure 2 also depicts the quasiexact quantum
cipal quantum numbewgeg by means of Eq(3), where c;hem|calab |n|'t|o curves from Ref[2] (full lines). Table |

U* (R) now is the potential energy of the ,H 2po state. lists the effective principal quantum numbergR) evalu-

When pairs or clusters of resonances overlap, their resonané‘éEd with dE.q'S.) deriv_er:d Lrom ourR-maér'ix V\éork' ;h‘?y 32?

positions and widths are no longer well defined although, ofﬁggfgﬁtu':q C'ﬁ’éii‘(’;\’; ptotirf'fijz;rle‘:r?grgylr(];%rvaets frg::lvelﬁafrom
, Eqs(2) and (4 i fectl lid. " . . :

course, Eqs(2) and(4) remain perfectly vali for n=2-4. Figure 3 displays the differencesv,=v.y initio

— vr_matiix @S functions oR for the various states. The error
bars on the right indicate the mean value Xo#, for each
A. 12; symmetry: Potential energy curves state as well as its scatter. The energy deviation, in‘cm
corresponding to the mean value &¥, is also given. The

o er?grzzznéf)_t};?tuie d;Pe rc?ti_(filitrqegsrlr?r?ﬂtrpl\?\}ﬁicgfwté]e deviations of our present effective principal quantum num-
9 d g Y y bers from the corresponding quantum-chemical values

obtain as functions of the energy and the internuclear d's'mount to/Av,| ~0.02 in the average, or less, and the largest

tance. It may be seen that while all of these quantum defecgeviations are seen to occur at laigend, for some of the
surfaces are globally smooth, two of them=2 and 3 de- states neaR~3 a.u. where thg2po)? core excited state

pend little onR andE and are close to zero for most of the : . : L
(R,E) range shown. The two other eigenquantum defects crosses the s_lngly excneq Rydberg manifold. The deviations
e T ; . . are systematically negative, as should be expected because
exhibit a significant evolution witlR, but depend relatively iational calculations are not as sophisticated in terms
little on the energy, particularly foR>2. Inspection of the our var|at|_ona caicu P
eigenvectord... (not shown indicates that the eigenchan- of the basis sets used .and 'ghgrefore are_not as well converged
nels a=1,3 a“r11d 4 aremixtures of the channelss&éSo as th? quantum—chgmpa_b Initio calculat|ons.. .
R - ) " This agreement is similar to what we obtained previously
ISoedo, and Doepo, while a=2 corresponds approxi- for the !3* and I1, symmetries{1]. Remembering that the
mately to the Poefo core excited channel. This latter in- effective principal quantum numbenodulo 1lis to within a
volves a nearly nonpenetrating outer electron which particifactor - equivalent to the effective Coulombic electron
pates only slightly in the channel interactions in fandR  phase shift, we see that our calculations reproduce this quan-
ranges considered here. tity correctly to about 2%. As the focus of the present work

-0,8 T v T T T T T v T

IIl. RESULTS
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TABLE I. Clamped nuclei effective Rydberg principal quantum numbg(®)? for bound 12; states of
H,. The orbital designationsI\ are valid for smallR only.

R 2soEF 3doGK 3doHH 4doP 4500 5do 5so

1.0 1.988 2.990 2.996 3.990 3.993 4,992 5.006
1.4 2.028 2.976 3.040 3.975 4.043 4.974 5.044
1.5 2.074 2.974 3.052 3.973 4.054 4.972 5.055
1.6 2.056 2.961 3.065 3.964 4.056 4.969 5.066
1.8 2.081 2.962 3.083 3.985 4.085 4.956 5.086
2.0 2.093 2.948 3.101 3.944 4.103 4.943 5.104
2.2 2.101 2.938 3.116 3.924 4.118 4.920 5.119
2.4 2.120 2.905 3.127 3.890 4.129 4.890 5.130
2.5 2.124 2.875 3.130 3.856 4.132 4.833 5.133
2.6 2.126 2.869 3.132 3.810 4.133 4.766 5.133
2.8 2.128 2.769 3.124 3.596 4.119 4.476 5.115
3.0 2.116 2.543 3.086 3.335 4.071 4.270 5.063
3.5 1.940 2.268 2.982 3.230 3.980 4.218 4.980
4.0 1.773 2.231 2.926 3.216 3.929 4.202 4.929
4.5 1.698 2.206 2.874 3.192 3.880 4.160 4.881
5.0 1.672 2.175 2.821 3.151 3.827 4.069 4.827
#Equation(3).

is basically on wavefunction properties, in particular phasesguantum defects themselves are very differ@fit the illus-
rather than on energies, we consider this agreement satisfaitations of eigenquantum defects given in REE9]). We

tory. Forn=5 (sixth and seventh excited statem quantum-

have previously encountered a similar situation for té

chemical curves are available in the literatufEhese states symmetry, where our smooth quantum defect matrices gave
have been calculated in R¢&] but are presented there only potential energies quite close to those obtained by Yoo and
in graphical form) We therefore compare with tHe-matrix
computations of Yoo and Greefi&9,20 which can be seen fects.

to be equivalent to ours. The tw-matrix calculations thus

Greene with their strongliR- and E-dependent quantum de-

give equivalent results, although it must be realized that the

005 | 5sc -1 cm™
000 | ]
-0.05
0.05 | 5do -11
000 | ==
-0.05

. 005} 4s60 -41

£ 000 | -

g _0.05

]

<= 005} 4doP -50

000 f -

£ 005 ~N—"

;% 8'88 L 3soHH -123
—0.05 | =
g8 3doGK -122
~0:05 ~—— -
8'88 | 2scEF -430 g
~0.05 | =

0 1 6

FIG. 3. DeviationsA v,= vy, initio— VR-matrix &S functions oR for
the bound 1-7 13} states.v, is evaluated with Eq(3). The ab
initio data are from Ref{2] except forn=5 (states 6 and)Avhere
we compare with thé&r-matrix calculations of Ref{20]. The error
bars on the right give the mean value and scatter of the deviationdances, see belgwWe will cite them therefore in detail only
for each state. The numbers are the corresponding mean enerify @ few particular instances. The deviatiahs,(R) of Fig. 4

deviations in crm.

B. ¥} symmetry: Resonances

Figure 2 also displays the positions of thH&' resonances
above the %o threshold and, for the broatpo)? and
2po3po lowest resonances, the resonance widths. Notice
how the width of the lowest resonance shownRe& 2.6 in
Fig. 2 extrapolates visually smoothly to the avoided cross-
ings seen in the discrete range fRr2.6. Table Il contains
our calculatedv,(R) values for these and a few higher reso-
nances. Figure 4 is Av,(R) plot analogous to Fig. 3, which
gives the effective principal quantum number differences be-
tween the positions for the three lowest resonances
2ponpo (n=2-4) obtained here, and those given in the re-
cent compilation of Tennysofi3]. ab initio here thus refers
to Wigner-EisenbudR-matrix calculations[13], in which
three ion core states were includ@dther than two as here
and where the scattering eigenphases including the resonance
effects were obtained directly in the variational calculation
(rather than in a separate MQDT step as hevée note in
passing that the resonance parameters given by Sanchez and
Martin [14] on the whole agree well with those of R¢13]

(except forR< 1.5 a.u., cf. Ref[14], and for?—type reso-

are of the same order of magnitude as those shown in Fig. 3
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TABLE II. Clamped nuclei energies and effective Rydberg principal quantum numbers for core excited

Zf)O'I’INlo' 12; resonances of H The orbital designationsI\ are valid for smallR only.

R

1.0
12
1.4
15
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.5
4.0
4.5
5.0

2po

E
1.3802
1.1446
0.9350
0.8306
0.7400
0.5597
0.4091
0.2825
0.1445
0.0531

v
1.594
1.576
1.563
1.541
1.535
1.495
1.473
1.460
1.407
1.403

3po

E
1.6448
1.4164
1.2114
11177
1.0296
0.8696
0.7304
0.6098
0.5057
0.4165

0.3401
0.2747
0.1500
0.0663
0.0105

Apo Af o
v E v E v
2.783 1.7047 3.800 1.7115 4.002
2.763 1.4776 3.785 1.4849 4.000
2.743 1.2734 3.753 1.2817 3.994
2.732 1.1804 3.746 1.1891 4.000
2.721 1.0930 3.736 1.1021 3.998
2.696 0.9346 3.712 0.9445 3.995
2.675 0.7969 3.693 0.8076 3.997
2.655 0.6777 3.678 0.6890 3.995
2.639 0.5747 3.663 0.5865 3.991
2.631 0.4863 3.659 0.4982 3.992
2.629 0.4101 3.659 0.4220 3.991
2.633 0.3444 3.663 0.3561 3.989
2.666 0.2172 3.690 0.2278 3.986
2.724 0.1296 3.740 0.1381 3.987
2.798 0.0692 3.806 0.0753 3.987
0.0280 3.885 0.0315 3.990

*Energy in rydbergs above th&d threshold.
quuation(3).

for the bound states, but by contrast with Fig. 3 their meanelated to the fact that this resonance is very close tosae 1

values are not systematically negative.

The calculated widths of thép2npo(n=2-4) resonances
are given in Table Ill and illustrated by Fig(& (circles and
compared with those evaluated by Tenny§b8 (full lines).

threshold and in fact straddles(ite., part of the resonance
has actually passed into the discrete rangéis decrease is
not substantiated by the work of Sanchez and Majti
who used the Fermi golden rule and give a width of

The two sets of widths agree well. The apparent decrease 146 Ry for this resonance Bt=2.705 a.u. Note, however,

the (2po)? resonance folR=2.6 a.u. in our calculation is

that in such a circumstance the concept of a Lorentzian width
starts breaking down anyway and, as pointed out in Sec. Il,
only the energy dependence of the continuum phases remains
meaningful. We stress again that our raw quantum defect
matrices are smooth, up to and beyond, the threshold, and
yet, by means of Eq$2) and(4), embody all the information

concerning the inelastic scattering process involviffgreor
fo outer electron with arbitrary principal quantum number.

C. Iy and *A4 symmetries

The eigenchannel quantum defects fdil; and

0.05 | 4pn 46 cm™ |
0.00 | -
-0.05 }
0.05 | 3pn /\ 404
0.00 | \ / I
-0.05 }

§ 005} 2pn / 2395 -|—

I o000 f x +

> 005

£ o005} 4po 74

s 000} —

> 005 |
0.05 | 3po 143
000 | P S =
—0.05 |
0.05 | 2pc 521
0.00 | ~— ==
-0.05 |

0 1 2 4 5 6

3
R (a.u.)

FIG. 4. DeviationsA v,= vy, initio— VR-matrix &S functions oR for
125 and 1Hg 2ponpA resonance positions,, is evaluated with Eq.
(3). Theab initio reference data af@-matrix results from Ref13].
The cross(2pw,R=3.5 is derived from Ref[14]. The error bars

A symmetry exhibit a behavior similar to that dlsplayed in
Figs. Xa-1(d) and are not shown. Tables IV and V contain
the computed,(R) curves forlly and*A4 bound and reso-
nance states, and Fig. 6 is the correspondimg(R) plot for
the bound states associated with these symmetries, while the
upper part Fig. 4 contains th#w,(R) values for the reso-
nance positions OTH andlA symmetry. Table VI contains
the calculated widths for th%H and'A4 resonances.

Theab initio quantum defect surfacesa for I and*A
symmetry are remarkably smooth in dehandR This |s
particularly true for thelA guantum defects which are

have the same meaning as in Fig. 3. The numbers on the right- halndearly flat and which we dlscuss first. The channel structure

side give the energy deviatigim cm™t) corresponding to the scatter fOr the A4 symmetry forl <3 is indeed itself very S|mple as
of A, it con5|sts only of one single excited chann@v#ds and
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TABLE lIl. Widths (in rydberg3 for core excited BanTo— 125 resonances of | The orbital designations
ni\ are valid for smallR only.

R 2po 3po 4po Afo

1.0 0.0225 0.0049 0.0018 1)
1.2 0.0375 0.0068 0.0023 2:5)
1.4 0.0491 0.0073 0.0034

1.5 0.0476 0.0081 0.0033 6-25)
1.6 0.0519 0.0093 0.0035 2+45)
1.8 0.0674 0.0111 0.0042

2.0 0.0834 0.0125 0.0047 5-5)
2.2 0.1110 0.0130 0.0047

2.4 0.1194 0.0129 0.0045

2.5 0.1487 0.0120 0.0045

2.6 0.0905 0.0113 0.0045

3.0 0.0110 0.0046 4(66)
35 0.0120 0.0055 4(66)
4.0 0.0160 0.0075 5(65)
4.5 0.0264 0.0098 0.000 22
5.0 0.0176 0.000 48

one doubly excited channelpaefs. Both channels corre- rectness of our resonance energy comes from Ref]
spond to a nearly nonpenetrating outer electron and thughose corresponding value yields the deviation indicated by
have small quantum defects and their coupliofi-diagonal ~ & cross in Fig. 4R=3.5 which, when substituted, leads to a
quantum defegtis also small. Owing to the simpfe\ ; chan- decrease of the corresponding error bar and energy value on
nel structure and weak interchannel couplings, the potentidhe right of Fig. 4 by a factor of 10. The widths opa@npm
energy and resonance curves run nearly perfectly parallel tggsonancegTable Vi) are compared with the values from
the corresponding ion curves. The corresponding deviationRef. [13] in Fig. 5b. Forn=4 the Ponpr and Ponfr
Vab initio— YR-matrix (UPPEr part of Fig. are smaller than those resonances occur as pairs, with the former characterized by a
for 12; symmetry. They,(R) values of the ‘904?5 reso- Ccomparatively Ia_rge width fand the Iat_ter characterized by a
nancegTable V) are almost integers. The lowet, reso- much smaller width. We find that this pair of resonances
nance is so high that it does not cross the threshold in theverlaps increasingly with increasirig. This may be the
R-range considered here, and no avoided crossingch ~ 'eason why in Refi13] there is a sudden drop of the width
would be weak occur in this range. nearR=2 [Fig. 5b)]. We suspect that thepz4p= resonance
The 1Hg channel structure, potentia| curves, and resohas been mi.SSEd fﬁ>2 in the -ear”er CalCUlationS, and that
nance positions exhibit characeristics intermediate betweelie values given for this range in fact correspond to the much
those discussed for tHég andlAg symmetries. The channel sharper Podfs resonanceFig. 7). In Ref. [14] both reso-
structure forl <3 consists of the single ground state coreNances have been found, and these authors indeed point out

channel Foedm and two excited core channel§@epm and  that an avoided crossing of th@@4pm and Podfm con-

= . . figurations occurs neaR=2.3 a.u. We would like to add
Zpoefn. Below the thresholdR>3.5) the continuation of here that the continuum phase-shift sum from which we de-

the %c_errr re_sonan_ce gives rise to avoided crossings and five our widths and energies indicates that the resonances are
potential maximum in the lowest bound statén8. The de-  oyerlapping so that strictly speaking the widths and positions
viations Avy,=vap initio~ Vrematix fOr the bound 'l states  phecome undefined in the crossing region. Thus the fact that
shown in Fig. 6(lower pary are again comparable to those e find the higher resonance to be sharper than the lower one
for the 13 states albeit somewhat smoother. The deviationsor all R values considered, without exchange of character as
Avy(R) of the present'Tl, resonance positions from those found in Ref.[14], is not necessarily in contradiction with

obtained by Tennyso[i3] are shown in Fig. 4upper part  the statements made in the earlier work.
A striking feature in this plot is the large deviation, more

than 0.2 on the quantum defect scale, of the resonance posi-
tion Zpo2pm obtained here from that of Refl3] for R
=3.5. A similar but less pronounced deviation occurs for ~The tables of Sanchez and Marf{it4] provide the most
2po3pm at the sam& value. We note that our corresponding recent and systematic survey of th@ohf\ core excited
vy(R) function (third column of Table Y is much smoother resonances ofs/, 11, and'A, symmetry. Here we shall
than that given in Ref[13]. Evidence for the possible cor- discuss thex=4 members of these resonance Rydberg series.

D.f type resonances
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ingly, the two sets of data show a markedly different behav-
ior as functions of the internuclear distance. While the
v=4(R) curves from Ref[14] rise steeply withR, our effec-
tive principal quantum numbers stay close to the integer
value n=4 in agreement, fon=0 and 2, with the calcula-
tions of Shimamura, Noble, and Burk&5] and Tennyson
[13] (dashed lines in the figuyeThis latter behavior is in line
with the expected behavior of a nearly nonpenetrating reso-
nance electron. An additional surprising feature of the calcu-
lations of Ref.[14] is that the thre&. components are calcu-
lated virtually degenerate, while our calculations predict a
small but non-negligiblen structure for the same resonances.
Figure qb) illustrates the widths of these resonances.

Again, owing to the weakly penetrating character of the
=3 electron, the coupling to the ion ground state continua is
expected to be weak, with the result that according to our
calculations the largest widths are two orders of magnitude
smaller than those of thepz-np\ resonances shown in Fig.
5. Indeed, forR<3 our calculated widths are reduced by
another two orders of magnitude, highlighting the almost
strictly nonpenetrating character of the outer electron wRen
is small. The transition between the two electronic autoion-
ization regimes takes place rather abruptly nea3.5 a.u.

This behavior is common to alk components of thef

resonances. Figure(y) also contains thé type resonance
widths calculated previouslyfull lines, [14]; dashed lines,
[13,15). Although the overall trends are the same as we find,
Fig. 7(b) shows that the values obtained previously are sub-
stantially larger than ours, in fact by as much as an order of
magnitude for the larges® values.

IV. DISCUSSION
A. Ground state core and excited state core quantum defects

In spite of their rather simple appearance, Hie initio
quantum defect surfaces such as those displayed in Fig. 1
contain a great deal of physical information in compact form
concerning the interactions between the electrons and pro-

Figure {a) presents the effective principal quantum numbertons in highly excited K We have illustrated this is the
curvesy,-4(R) derived from the resonance energies given inpreceding section by extracting from them several physical
Ref. [14] (full lines), as well as our present results from parameters, such as potential energy curves of various

Tables Il and V(circles, squares, and diamondSurpris-

shapes, as well as resonance position curves and widths.

TABLE IV. Clamped nuclei effective Rydberg principal quantum numbg(®)® for bound*Il, and*A,
states of H. The orbital designationsIx are valid for smallR only.

R 3dwl 4d7R 5dw 6dw 3dé8J 4d8S 5dé 6ds

1.0 3.025 4.011 5.003 6.004 3.004 4.004 5.004 6.003
15 3.009 3.984 4.988 5.984 3.011 4.010 5.010 6.010
2.0 2.983 3.972 4.967 5.966 3.019 4.019 5.018 6.018
25 2.961 3.942 4,937 5.934 3.026 4.028 5.028 6.027
3.0 2.918 3.888 4.878 5.872 3.040 4.038 5.037 6.037
35 2.834 3.772 4,740 5.719 3.050 4.048 5.046 6.046
4.0 2.675 3.552 4.477 5.426 3.060 4.056 5.055 6.054
4.5 2.469 3.365 4.282 5.223 3.069 4.063 5.061 6.060
5.0 2.299 3.278 4.173 5.058 3.076 4.068 5.064 6.062
*Equation(3).
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TABLE V. Clamped nuclei energies and effective Rydberg principal quantum numbers for core emn(;kdréﬂg and $0n~I§ 1Ag

resonances of 5

2pm 3p7 apm Af afs 5f8
R =8 i E v E v E E v E v
1.0 1.457 1.776 1.645 2.789 1.704 3.789 1.713 4.044 1.712 4.002 1.734 5.001
1.2 1.248 1.827 1.423 2.836 1.479 3.832 1.486 4.043
1.5 0.973 1.895 1.133 2.902 1.186 3.897 1.191 4.048 1.189 4.002 1.212 5.002
1.6 0.892 1.914 1.047 2.919 1.099 3.915 1.104 4.048
2.0 0.614 1.977 0.757 2.975 0.807 3.968 0.809 4.049 0.808 4.000 0.830 5.000
2.5 0.364 2.044 0.493 3.014 0.541 4.002 0.543 4.050 0.541 4.000 0.564 5.000
3.0 0.196 2.115 0.310 3.032 0.357 4.012 0.358 4.054 0.357 4.002 0.379 5.004
35 0.077 2.162 0.180 3.004 0.228 4.006 0.230 4.051 0.228 4.002
4.0 0.088 2.973 0.139 4.017 0.139 4.020 0.139 4.007 0.161 5.010
4.5 0.023 2.950 0.074 3.931 0.076 4.019 0.076 4.009 0.098 5.011
5.0 0.032 4.011 0.055 5.017

4Cf. caption for Table II.

Here, we shall briefly discuss yet another aspect, namely thabeled Zo03po and Zo3pw (empty symbols are excited
relationship between the effective principal quantum num-core quantum defects corresponding to & and1Hg reso-
bers of bound states and the analogous quantities of corant states from Tables Il and IV. The data points R0

excited resonances.

(united atom Hgare drawn assuming that the ground state

Figure 8 depicts the evolution with internuclear distancecore quantum defects correlate wits3p *P°, while the ex-

of the quantum defect of thep? electron withA=0 and 1

cited core quantum defects correlate with the 2'B°

moving in the field of either theSbr ground state core of the atomic resonance calculated by Conneely and Lij&6y.

2po excited state core. Thede-dependent effective Cou-

lombic quantum defects are defined hyR)=n-v,(R),

The ground state core quantum defects exhibit the well-
known behavior of the promoted antibondinga3electron

wherev,(R) is given by Eq.(3). By their definition they are and the unpromoted nonbondin@®3 electron discussed in

one-electron quantities, but they are effective becalgR)

the past many times, e.g., in Ref26-28. The quantum

in Eq. (3) contains the effects of configuration interaction. defect of the'S.; component exhibits a characteristic strong

The curves labeledfir3po and Bo3p# (full symbols are

increase withR, approaching unity at largR, while that of

ground state core quantum defects and correspond to ttibe 11, component is much lesR dependent and remains
B’!S! and D, bound states of  respectively; the corre- small throughout th&® range shown. The excited core quan-

sponding data have been taken from Réf.. The curves

tum defects provide analogous scattering information per-
taining to ap electron impinging on the core in a different

‘ state. We see that the quantum defects are ldrgere posi-
005 | 4d58S -12 cm”
_g:gg [ - TABLE VI. Widths (in rydbergs for core excited Bonla 1
and Ponlés 1Ag resonances of 5 The orbital designationsI\ are
g:gg: 3daJ -51 _ valid for smallR only.
. —005 |
§ R 2w 3pr apm 4w 4t s
4 005} 5drn —-20
> 000} —_ 1.0 0.0200 0.0044 0.0018 3-®) 3.4(-6)
; -00s 1.2 0.0240  0.0057  0.0021  §=b)
> 005 | 4dnR a1 15  0.0320 0.0077  0.0032 6:07)
ot = 16 00310 0.0088 0.0034 4
2.0 0.0400 0.0126 0.0053 3-®) 4.9-6)
ool i -197 22 00440 00147  0.0062
005 | . . . T 25 00570 00204 00081 646  9.0-6)
2 R ?a.u.) 4 5 6 3.0 0.0740 0.0207 0.0091 9-5) 6.0(-7)
3.5 0.0764 0.0300 0.0125 8-6) 2.2(-6)
FIG. 6. DeviationsA v,= v,y initio— Yr-marix @S functions oRfor 4.0 0.0430  0.0030 0.00018  0.000 14
the bound 1-31I, and 1-2'A, states.Ab initio data from Refs. 4.5 0.0314  0.0026  0.00017  0.000 42
[3] and [4] except for the 3114(5dm) state where they are from 5 g 0.000 86

Ref. [6] (cf. caption for Fig. 3.
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0.0010 FIG. 8. Ground state core and excited state core effective quan-

tum defectsu,(R)=n-v,(R) [Eq. (3)] as functions ofR for n
=3 ,Tzl. Filled symbols, ground state core quantum defaatger-
adesymmetry; empty symbols, excited core quantum defeéges-
ade symmetry. Circles,'S symmetry; squares]I symmetry.

0.0008

0.0006

image. The'l, resonance lies higher and crosses the ground
state ion curve at largdR®. As a consequence the decrease of
the quantum defect is not visible in Fig. 8.

Plots similar to Fig. 8 may be drawn also for th&3and

3d\ electrons as well as for principal quantum numbers

# 3. The separation of ground state quantum deféfis

higher valuesand of excited state quantum defegtslower

valueg with increasingR is a common feature of all these

0 1 2 3 4 5 6 plots, related to the fact that th&d and 2o core states
R(au) coalesce aR— .

width (Ry)

0.0004

0.0002

0.0000

FIG. 7. (a) Effective principal quantum numbers,(R), (b) B. Transformation to spherical coordinates
widths, of the Ho4f\ resonances. Full lines, R¢f.4]; long dashed and quantum defects

lines, Refs[15] (4fo) and[13] (49). Present work: symbofgon- In Refs. [16,17 nondiagonal quantum defect matrices
nected by dotted lines iab)]: circles (4fo), squares(4f), and  were derived from the quantum chemical potential energy
diamonds(4f ). curves of Refs[2,3] and[4]. These earlier quantum defects
matrices have been used successfully in rovibronic level cal-
tive) as should be expected because the core region is irculations of the mixedjeradeexcited state structurg4.8],
creased and, in particular, th@@ core electron is a precur- and they have also served for the calculation of the
sor of the Po scattered electron. Thus the effect of coreionization/dissociation dynamics of ,Hexcited from the
penetration is enhanced. The antibonding versus nonbondirtEFlE; double minimum stat§30] as well as for the predic-
behavior of the quantum defect curves as functionsRof tion of wavepacket dynamics in highly excited ionizing and
however is again clearly visible. At the same time we alsadissociatinggeradeH, [31]. As Greene and Yof20] pointed
see the limits of this one-electron interpretation of quantunout, the relationship between such quantum defect matrices
defects: forR=4, the'X excited core quantum defect com- obtained indirectly from potential energy curve data and
poent starts bending down towards smaller values. This ethose calculatedlirectly in an ab initio R-matrix procedure
fect is due to configuration interaction: th@® resonance such as utilized here, is not obvious and is more complex
comes down in energy & increases and begins to interact than in atomic problems, because it depends on the number
with the lower lying bound states of the same symmetryof channels explicitly included, and is complicated by the
which push the resonance to higher energy and thus decreafeet that some of the channéks.g., Do ,epoy; cf. Fig. 2) are
its quantum defect. The opposite effect pushes the bounstrongly closed at small internuclear distances while they
state quantum defects up Bsncreases as has been shown inbecome weakly close@n the sense of MQDY at largerR
Ref. [1]. Indeed, part of the strong increase of tferdpo  values.
curve in Fig. 8 is due to configuration interaction and should In Refs.[16] and [17] the multichannel quantum defect
not be explained in tems of a pure one-electron Rydbergecular Eq.(2) was used and th&-matrix elementsKy,
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adjusted in such a way that the solutidngR) fit the quan-  close to those listed in Table I. The resulting spheriﬁ%] n
tum chemical potential energy curves as best as possibléefects are shown in Fig. 9 for the rangeeR<5 a.u. and
This goal was achieved in Refgl6] and[17] with almost  for an energy of 0.1 Ry below thé&a H,* threshold corre-
spectroscopic accuracy, although a numberadfhocas-  sponding tov~=3.2 which is in the middle of the range for
sumptions also had to the mageg., the neglect of most of which the » matrices of Ref[17] were derived.

the energy dependencies and of some of Rhdependen- In Refs.[16—1§ only the channels%eso, 1Soedo, and
cies. In the earlier work however spherical coordinates werepoepo (in short-hand notations,d, and p) were consid-
used instead of the spheroidal coordinates used here, and theed, while Hoefo (short-hand) was excluded. Figure()
accumulated channel phasgswere taken to be one-center illustrates thelf(1=0-3 spherical 12; 7 quantum defect
Coulombic rather than two-center Coulombic. Thus for thefunctions obtained here. Two elemend$,andff, are seen to
purpose of a detailed comparison we must make a transfobecome as large as 0.3 nd&+ 5, indicating that the neglect
mation to a spherical representation and replace the numerif the f excited core channel in Refil6—-18 was not justi-
cal channel functions used in the external zone by the apprdied because the single-center representation of the nonpen-

priate analytic regular and irregular Coulomb functions usecratingf wave becomes inappropriate e 2.5. Note that

in Ref. [17]. . _ . ) utionsy . of by contrast in the spheroidal formulation all quantum defect
(10\)/\/?);?_\2‘;“ [algtalr?dp?rllr;tirtost fé?;‘?ézr :12 L:Eotnoticﬂ f% rriqiz elements involving aref\ outer electron are smaller than
: P ymp 9 0.03 (see Fig. 1, for examp)ehroughout the energy arid

(16) of Ref. [1]: ranges considered in this work.

1 We next compare in Fig.(B) the diagonaly elementsss
WHE 0,6 =2, P(E, )= dd, andpp (short-hand notation, represented by circles con-
K ver-1 nected by dashed lingsvith those illustrated in Ref{18]
X[fi(€e lis — g€ §) gl (5)  (full lines in Fig. 9. The crucial region oR values for the

] i interactions between singly and doubly excited configura-
where @ contains the core wave function of chanke&s  tions of 3 symmetry is betweerR=2 (minimum of

well as the angular factor of the outer electrenthus de- H,* 130) and R=3 [crossing of(Zpo)? with the singly ex-
notes all coordinates excefitThe matrices andJ consist of 1o g Rydberg manifold Figure 9b) shows that in thisR
matching coefficients which yield the desired spheroidal re'range the previous and presentdefects are indeed quite
action matrixK=JI"%. Equation(5) is valid for any =&  (jose to each other, with deviations of the order-e0.05.
with the coefficientsl,; and J; determined foré=&. We  This may be considered as a good agreement. Outside the
now use Eq(5) to evaluate th&-matrix eigensolutions on @ p-3_3yrange however the two sets of quantum defect func-
spherer=ro, centered on the midpoint between the nucleitjong diverge substantially from one another, no doubt be-
Then the matching procedure, Eq$9)~(22) of Ref. [1], IS c5yse of the various simplifying assumptions which had to
repeated with the difference that the asymptotic chann@le made in the earlier work. Nevertheless, it is probably, fair
functions in the summation of E@5) are now to say, with a dose of optimism, that the oveRiflependen-
1 cies are qualitatively similate.g., the overall decrease pp
W 4(E, w,1) = (&, 11,00 Y10 (6, )= for R=3, or the negative values afd in the intermediate
k r range followed by a strong increase up to large positive val-
(sph (sph _ ~(sph (sph ues.
X[ el = g (€], (6) ?:igure qc) finally illustrates the off-diagonaid, sp, and
where ¢, is the core wavefunctiorY are ordinary spherical dp quantum defects. We see, again, that in the crossing re-
harmonics, and*™ andg*"" are the radial Coulomb func- gion (R=3) the two sets of quantum defects agree rather
tions originally introduced by Harf82] (see Seatof21], his  closely, with thedp interaction larger thasp, andsd small

nearly analytic functiong andh). The relation with opposite sign. Again, however, tiiedependencies an-
ticipated in the earlier work are not corroborated by the
KEPP = tan 7o = 2 Jﬁsﬁph)l(ks';h)_l (7)  presentR-matrix results.
B

now yieldssphericalquantum defect matrices,, so-called
n defects in the terminology of Haifi32], which are appro-
priate for use in the framework of the customary quantum The main result of this work is a set of quantum defect
defect/frame transformation theo(@ur K *PY corrsponds to  matrices for all singlet gerade symmetry channels gfiith
Y in Seaton’s notation. 1=<3 and\ <2 that are smooth functions of both energy and

In order to be consistent with the present spheroidalnternuclear distance. We have seen that these eigenchannel
R-matrix calculations and with the work of Refil6] and  surfaces fall into two rather distinct classes, a few that are
[17] where the(ZPo)? resonance is treated as the lowestactive and exhibit a significant evolution as functiorRodind
member of a Rydberg channel, we have taken the sphere E, and all those that are inactive and are near zero throughout
=1 just slightly larger than the large axis of the ellipsdid the E, R ranges studied here. As stated earlier, this double
=&, typically ro:(R/2)§0+%. We have ascertained that thye  smoothness should prove helpful when, as planned, a purely
defects thus determined yield bound statéR) values very ab initio description of H fragmentation dynamics is imple-

V. CONCLUSION
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FIG. 9. Sphericaly defects forlia symmetry. Circles connected by dashed lines: preRematrix results. Full lines: values from Ref.
[18]. | denotes the orbital angular momentum of the outer electron with the core in the ground seterfdrand with the core in the
excited state foodd |, respectively(a) diagonal and off-diagonal elements involvihg3; (b) diagonal elements fdr< 2; (c) off-diagonal
elements foil I’ <2. For clarity, the labels iib) and(c) are placed near the values where the corresponding dashed and full lines cross
or come closest.

mented. Interpolation procedures will be used to obtain thgotential energy curves. The effective principal quantum
quantum defect matrices on energy and internuclear grids asumbergmodulo 1), equivalent to thd&k-dependent electron-
desired. These interpolation procedures can be applied dien effective phase shift, are found to be correct to within
rectly to the quantum defect matrices themselves irrespectiv@bout 2% which we consider satisfactory agreement. Salient
of the dimensions of the variational basis sets used in théeatures, such as the double-minimum or shelf structures of
calculation for a giverR. This possibility has not been fully some of the states, are reproduced correctly. We have also
exploited in the present work since we have taken essentiallysed theR-matrix quantum defects to calculate electronic
the same basis set for &l values. If required, however’ the autoionization resonance pOSitiOI’lS and widths which have
convergence can be improved locally, e.g., at l&ga pos- again been comgared with previous first principles scattering
sibility which is not offered in the approach of Yoo and calculations. Ouip resonances agree well with the previous
Greene[20] which requires a single basis for the fRllrange ~ calculations(with a single exception, cf. Fig.)4No such
considered. general consensus has been reached yet with regard to the
We have tested the accuracy of tRematrix quantum more elusivef type resonances for which diagreement per-
defects by using them in the framework of generalized quansists between our and previous work, but also between vari-
tum defect theory to calculate clamped-nuclei potential eneus earlier studies.
ergy curvesU,(R) for n=2-5, andcomparing these with The lowest'X; doubly excited configuratiof2po)® pro-
highly accurate state-of-the-art quantum chemaalinito  duces the low-lying outer well in th&F state nearR
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~4.5 a.u.(see Fig. 2 This state is usually considered to be It has been possible in the present work to make a direct
a valence rather than a Rydberg state, indeed it turns into th@mparison of directly calculated R-matrix quantum defect
H*+H" ionic configuration forR values between 5 and matrices with the spherical Ham quantum defect matrices

7 a.u. It is thus interesting to note that d&r matrix calcu-  derived previously in Refd16] and[17] on the basis of the
lations yield this state as the lowest member of thet®os  lowest quantum chemicalb initio potential energy curves.
resonance Rydberg series with hardly any trace of resonardthis comparison is important in view of the fact that the
behavior visible in the quantum defegts themselves at the matrices published in 1994 pons_titute the on.Iy ayai_lable set
corresponding energyFig. 1). By contrast, the recent Of dynamical parameterévhich in a sense isb initio),
Wigner-EisenbudR- matrix calculations of Hiyama and which when combined with rovibronic multichannel quan-

Child [29] of the NO molecule yielded the valence states oftum defect theory, is capable to yield a realistic description
that molecule in the form of poles of thHé matrix, which  Of the various continuum processes occurring near the ion-

disrupt the otherwise smooth evolution of its elements withZation and dissociation thresholds of.HThe comparison,
energy and internuclear distance. Our calculations diffef@de in Figs. @) and 9c), reveals substantial shortcomings
from those of Ref[29] in that we use spheroidal rather than ©f the previous approach, but at the same time many of the
spherical coordinates, and therefore are able to reduce ttfEucial details turn out to be in almost quantitative agree-
reaction volume considerabipy about a factor of twpas a ~ Ment.
consequence of a more realistic description of the asymptotic
field outside the core, two half-charges separate® bgther

than a unit point chargethe “halfium” description in the This project has been supported in part within the frame-
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