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Absolute se,3ed measurements on helium, at high incident energy, have been recently reproduced by a
calculation in the first Born approximation[Phys. Rev. Lett.91, 73201(2003)]. The theoretical model is based
on the product of three Coulomb waves for the final state and the use of Pluvinage wave function for the initial
helium ground state. The authors suggest that the good agreement obtained is strongly related to the quality of
the initial state, in particular to the fact that it is diagonal in all Coulomb interactions. In this paper, we show
that this conclusion is not correct. We construct three other helium ground states to demonstrate that diago-
nalizing the Hamiltonian is not the deciding factor in obtaining agreement with the absolute experimental data.
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I. INTRODUCTION

Ionization of atoms and molecules by electron impact is
one of the fundamental processes of atomic physics. The
comprehension of such processes is important for plasma
physics and nuclear fusion devices. The study of kinemati-
cally complete double ionization experiments by electron im-
pact is a very powerful tool to investigate the role of
electron-electron correlation. In the so-calledse,3ed experi-
ments the three electrons(the two ejected and the scattered)
are detected in coincidence(see the review paper[1]). These
difficult measurements allow us to check with a good accu-
racy the different theories. Helium is an ideal theoretical tar-
get as its final state is a bare nucleus.

The coplanarse,3ed experiments on helium of Lahmam-
Bennaniet al. [2] have been performed at an incident energy
of ,5.6 keV and under a small projectile’s scattering angle
of 0.45° (momentum transfer of 0.24 a.u.; dipolar regime).
The two ejected electrons have been detected with equal en-
ergy s10 eVd and absolute angular cross sections have been
measured.

Several theoretical description have been proposed for the
calculation of se,3ed cross sections(see Sec. II for more
details, and[1] for a review). For the kinematical situation
selected in the measurements of Ref.[2], the first Born ap-
proximation (FBA)—with respect to the interaction of the
fast projectile with the target—should apply[3]; moreover,
the 3C model[4,5]—where the final state is described by a
product of three Coulomb waves—seems also sufficient. In
this paper, we shall restrict the discussion to the 3C model
within the FBA.

What remains is the question of what to use for the de-
scription of the helium bound state. Hydrogenic and Hyller-
aas wave functions[6] yield cross sections similar in shape
and magnitude, but are in bad agreement[3] with the experi-
mental results. Jones and Madison[3] have therefore sug-
gested using the wave function introduced by Pluvinage[7].
The calculatedse,3ed cross sections are then in overall good
agreement(in 16 out of the 20 geometrical situations) with
the experimental data of[2]. The authors therefore conclude
that this agreement is related to the quality of Pluvinage
wave function, in particular because it diagonalizes the

Hamiltonian in all three Coulomb singularities. In this con-
tribution, we would like to show that this claim is not cor-
rect. The comparison of calculatedse,3ed cross sections ob-
tained with three other helium bound state functions will
demonstrate that diagonalizing the Hamiltonian is not the
deciding factor in obtaining agreement with the absolute ex-
perimental data. We therefore believe that Jones and Madi-
son have made hasty conclusions, since the good agreement
with experimental data can be reproduced also with a wave
function which does not diagonalize the Hamiltonian.

In Sec. II, we briefly describe the 3C model within the
FBA. The choice and properties of several bound state he-
lium wave functions are discussed in Sec. III. Calculated
cross sections with these initial state wave functions are
compared in Sec. IV. Concluding remarks are given in
Sec. V.

II. 3C MODEL FOR „e,3e… CROSS SECTIONS

The fivefold differential cross section(FDCS) corre-
sponding to these,3ed reaction,

e− + He→ 3e− + He2+, s1d

is given by

d5s

dVa dVb dVs dEa dEb
=

kskakb

ki
uTfiu2, s2d

wheredVs,dVa and dVb denote, respectively, the elements
of the solid angle for the scattered and the two ejected elec-
trons. The energy intervals of the two ejected electrons are
represented bydEa anddEb. The momenta of incident, scat-
tered, the first and second ejected electrons are denoted, re-
spectively, byki , ks, ka, andkb.

The dominant theoretical models used to describese,3ed
processes are[1] the following.

(i) The 3C model(or BBK model) where the final state is
described by a product of three Coulomb waves which ac-
count for the interaction between each electron and the
nucleus, and for the electron-electron repulsion[4,5]. This
double-continuum final state is asymptotically exact. An im-
provement of the 3C approach consists in using effective
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charges(model C4FS[2]) for describing the correlated four-
body final state.

(ii ) The convergent close coupling(CCC) model[8]. This
model consists in solving the Lippmann-Schwinger equation
for the three-body problem. Technically the double ioniza-
tion process is identified as an excitation of the positive-
energy pseudostate of the ion.

(iii ) The Green’s function expansion of Ref.[9] which
corresponds to the well established Faddeev equations[10]
for three particles(it is the lowest order iteration of an incre-
mental approach to the four-body Coulomb problem). The
use of this model is, however, limited by numerical difficul-
ties.

(iv) The 6C model[3,11,12] takes into account the pair-
wise final state interactions between all four particles(the
scattered electron, the two ejected electrons and the nucleus).
This model corresponds to a product of six Coulomb waves
and necessitates a difficult nine-dimensional numerical
integral.

As we restrict our study to high incident energies, we
shall only use the 3C model within the FBA. This choice is
guided by the fact that(i) calculations with electron and pos-
itron impact have shown the validity of the FBA[3]; (ii ) the
3C model seems sufficient because there is practically no
difference between the results of the 3C model and those of
the 6C model[3].

When considering high impact energies, it is reasonable to
describe the incoming and scattered electrons by plane waves
(FBA for the description of the projectile-target interaction).
Moreover, since the scattered electron is faster than the
ejected electrons, the effect of their exchange can be safely
neglected. In the FBA, the matrix element is then[1]

Tfi = −
1

2p
keikWsrW0C f

−srW1,rW2,kWa,kWbduVsr0,r1,r2duCisrW1,rW2deikWirW0l,

s3d

whereV is the Coulomb interaction between the projectile
and the helium atomsZ=2d,

Vsr0,r1,r2d = −
Z

r0
+

1

urW0 − rW1u
+

1

urW0 − rW2u
s4d

(r0 is the distance between the incident electron and the
nucleus,r1,r2 are the distances between one of the helium
electron and its nucleus). In Eq. (3), CisrW1,rW2d is the initial
bound state of helium. The final state in the 3C model is
described by a symmetrized product of three Coulombic dis-
tortion factors(one for each two-body Coulomb interaction)
[4,5],

C f
−srW1,rW2,kWa,kWbd =

1
Î2

fwskWa,rW1dwskWb,rW2d + wskWa,rW2dwskWb,rW1dg

3xsukWa − kWbu,rW12d, s5d

with

wskW,rWd =
1

s2pd3/2eph/2Gs1 + ihdeikWrW
1F1„− ih,1,− iskr + kWrWd…,

s6d

whereh=Z/k and1F1 is the confluent hypergeometric func-

tion. The termxsukWa−kWbu ,rW12d takes into account the repulsion
between the two ejected electrons,

xsukWa − kWbu,rW12d = e−phab/2Gs1 − ihabd

31F1„ihab,1,− iskabr12 + kWabrW12d…, s7d

wherehab=1/ukWa−kWbu andkWab=skWa−kWbd /2.
The final double-continuum stateC f

− and the initial
ground stateCi are, in principle, orthogonal because they are
eigenfunctions of the same Hamiltonian. However, since in
each case we do not know the exact solutions, any approxi-
mation will break the orthogonality. The latter can be re-
stored by an artificial orthogonalization through

kC f
−'

u = kC f
−u − kC f

−uuCilkCiu. s8d

If this operation leads to important corrections in the cross
sections, it indicates that the model possibly breaks down.

For the calculation of the nine-dimensional integral(3),
we first use the Bethe transformation for the integration over
r0,

eikWaW

k2 =
1

4p
E eikWrW

urW − aW u
drW, s9d

to reduce it to a six-dimensional integral overrW1 and rW2,

Tfi = −
2

K2kC f
−srW1,rW2,kWa,kWbdueiKW rW1 + eiKW rW2 − ZuCisrW1,rW2dl,

s10d

whereKW =kW i −kWs is the momentum transfer.
When the initial stateCi is described by a Hylleraas-type

functione−ar1e−br2r12
n e−gr12, the calculation of the matrix ele-

ment Tfi can be reduced to a double numerical integration
(see details in[4,5]).

When the Pluvinage wave function is used[see Eq.(24c),
next section], we have been able to reduce the six-
dimensional integral to a three-dimensional numerical
(Gauss-Legendre) quadrature—instead of a six-dimensional
numerical quadrature as in[3]. To do this, we first replace the
confluent hypergeometric function of Pluvinage wave func-
tion with parameterk by using the transformation(13.2.1) of
[13],

1F1S1 −
i

2k
,2,2ikr12D

=
Gs2d

GS1 +
i

2k
DGS1 −

i

2k
DE0

1

e2ikr12tt−i/2ks1 − tdi/2k dt, s11d

so that the matrix element becomes
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Tfi = − NP
2

K2

Gs2d

GS1 +
i

2k
DGS1 −

i

2k
DE0

1

t−i/2ks1 − tdi/2k dt

3E e−Zr1e−Zr2eikr12s2t−1dC f
−*

srW1,rW2,kWa,kWbd

3seiKW rW1 + eiKW rW2 − ZddrW1 drW2. s12d

The six-dimensional integral appearing in(12) can be re-
duced to a linear combination of several two-dimensional
integrals as indicated in detail in the appendices of[4,5].
Hence, the calculation of the matrix element is reduced to a
sum of three-dimensional integrations.

III. HELIUM GROUND STATE WAVE FUNCTION

Jones and Madison[3] have claimed that the good agree-
ment of their theoretical calculations with experimental
se,3ed data is directly related to the quality of the Pluvinage
wave function for the helium bound state, in particular be-
cause it diagonalizes the Hamiltonian in all three Coulomb
singularities. In this section, we shall analyze some proper-
ties of this and other initial state wave functions to check
whether this is true.

Let us start with the nonrelativistic Schrödinger equation
(SE) for the helium atomsZ=2d, in which we neglect the
nucleus mass effects. Letr1 andr2 be the two electrons radial
coordinate, andr12= urW1−rW2u the electron-electron distance.
Considering S-states only(and in particular the1S0 ground
state), the six-dimensional SE reduces to the well known
three-dimensional Hylleraas equation(HE). The latter is ex-
pressed as

HCsr1,r2,r12d = ECsr1,r2,r12d, s13d

where the HamiltonianH can be written as

H = H1 + H2 + H12 + H128 , s14d

with

Hi = −
1

2
S ]2

] r i
2 +

2

r i

]

] r i
D −

Z

ri
si = 1,2d, s15ad

H12 = − S ]2

] r12
2 +

2

r12

]

] r12
D +

a

r12
, s15bd

H128 = −
r1

2 − r2
2 + r12

2

2r1r12

]2

] r1 ] r12
−

r2
2 − r1

2 + r12
2

2r2r12

]2

] r2 ] r12
. s15cd

In H12, the quantitya is introduced to “turn on”sa=1d or
“switch off” sa=0d the electron-electron interaction; no ana-
lytical solution exists today for Eq.(13) for the physical
situation (a=1). Note that three singularities(i.e., r1=0,r2
=0 or r12=0) appear inH, and the factors multiplying the
mixed partial derivatives inH128 are always finite.

The mean energy,

E =
kCuHuCl
kCuCl

, s16d

is usually minimized with trial wave functions(variational
method). The energy, which can be considered asnumeri-
cally exact, of the 1S0 ground state of(13) is Eexact
=−2.903724 a.u.[14].

Let us define the local energy[15],

Esr1,r2,r12d =
1

Csr1,r2,r12d
HCsr1,r2,r12d. s17d

Only for the exact solution, this local energy will be a con-
stant throughout the entire configuration space, i.e., an eigen-
value of(13), and hence equal to the mean energy[this is the
case, for example, for the hydrogenic ions of nuclear charge
Z, for which the local and mean energies are equal toE
=−Z2/2n2 (a.u.)]. For any other trial wave function, the local
energy will not be a constant value; the averaging over the
whole space[see Eq.(16)] smooths out the variations of the
local energy and provides a finite constant value as close as
possible to the numerically exact value. For the study of
collisions with a helium atom, it is necessary to have a good
wave function and not only a good mean energy(the latter is
enough for spectroscopical purposes). Obtaining a good
mean energy is not a sufficient criterion to state that a trial
wave function is good[16]. Having an almost constant local
energy is a much stronger quality test.

Bartlett [15] has shown that Hylleraas wave functions
provide local energies ranging from −` to `. Infinite local
energies can come from two sources:(i) the wave function
has nodes andHCÞ0; (ii ) one or several of the singularities
of the potential terms inH1,H2 andH12 (i.e., r1=0,r2=0 or
r12=0) are not compensated by the corresponding kinetic
terms. The study of the singularities has led Kato[17] to
provide mathematical conditions thatC must satisfy(the so-
called “cusp conditions”) in order to eliminate these singu-
larities:

F ] C̄

] r1
G

r1→0
= − ZCs0,r2,r12d, s18ad

F ] C̄

] r2
G

r2→0
= − ZCsr1,0,r12d, s18bd

F ] C̄

] r12
G

r12→0
=

1

2
Csr,r,0d, with r =

1

2
usr1

W + r2
W du ,

s18cd

whereC̄ means the average ofC over a very small sphere of
radius r1 (respectively,r2 or r12) keeping the other values
fixed. Relations(18a)–(18c) provide the linear behavior that
C must have close to the singularity points.

If the electron-electron interaction is neglectedsa=0d, r12

is no longer needed inC. The exact solution of(13) is the
product of two hydrogenic He+s1sd functions e−Zsr1+r2d,
which yields the mean or local energy −Z2. Of course, in the
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physical casea=1, C will depend also onr12 and the elec-
tronic structure of the helium ground state is substantially
modified. A first approach is to consider wave functions of
the kind

fsr1dfsr2dhsr12d, s19d

where hsr12d is a correlation function(note that, for the
ground state,C is symmetric inr1,r2). The product(19),
however, can never be the solution of(13) since the equation
is not separable in the three variablesr1,r2,r12 because of the
presence ofH128 .

For the purpose of the present study, let us ignore theH128
term of the Hamiltonian(this term has no singularity). This
corresponds to replacing the three-body system to 3 two-
body systems; Eq.(13) is then fully separable and the solu-
tion can be written as in(19). Building up from thea=0
solution, let us consider the hydrogenic functionsfsr id
=e−Zri, and hsr12d an eigenfunction ofH12. The latter are
exact solutions of the well known Coulomb-type differential
equation(without centrifugal term,L=0)

F− S ]2

] r12
2 +

2

r12

]

] r12
D +

a

r12
Ggsr12d = «gsr12d, s20d

and are given by the Coulomb-type functions[13] with either
a positives«.0d or negatives«,0d eigenvalue. Consider-
ing only regular solutions atr12=0, we have

g+sr12d = e−kr12
1F1S1 +

a

2k
,2,2kr12D, with « = − k2 , 0,

s21ad

g−sr12d = e−ikr12
1F1S1 − i

a

2k
,2,2ikr12D, with « = k2 . 0,

s21bd

wherek is a real number(note that, because of Kummer’s
relations[13], k and −k give the same solutions); bothg+sr12d
and g−sr12d are real functions ofr12. The first (g+sr12d) cor-
respond to bound solutions(in the sense of negative energy)
while the second(g−sr12d) to continuum solutions. Hence,
the wave function(19),

e−Zr1e−Zr2g±sr12d s22d

is a product of three Coulomb functions and is analogous to
the 3C final state in(5). Each of the two-body Coulomb
interactions for the bound state is treated exactly and hence
the Kato cusp conditions(18a)–(18c) are automatically sat-
isfied.

If we ignoreH128 , the exact separable solution(22) yields
a local (and mean) energy of

E = − Z2 7 k2. s23d

In the case of the bound solutionsg+sr12d, we have a special
situation when1+1/2k=−N whereN.0 is an integer. In-
deed, the confluent hypergeometric function reduces then to
a Laguerre polynomial of orderN, i.e., LN

1skr12d / sN+1d [13]
and g+sr12d to a hydrogenic function(exponential times a
polynomial). The use of a correlation functionhsr12d in the

form of an exponential times a polynomial has been used in
many trial wave functions(e.g., [6,18,19]). However, usu-
ally, the parameters appearing in both the exponential and in
the polynomial are chosen in order to optimize the mean
energy rather than to eliminate the singularity of the potential
term 1/r12, and hence satisfy Kato’s cusp condition(18c).

In the calculations ofse,3ed cross sections which we will
present in the next section, we shall consider four bound
state wave functions corresponding to four different correla-
tion functionshsr12d. The first three are of the family(22),
i.e., separable solutions which automatically satisfy Kato
cusp conditions. Two of them,C0 andC1, areg+sr12d func-
tions corresponding, respectively, toN=0 sk0=−1/2d and
N=1 sk1=−1/4d. A third one,CP, is a g−sr12d function cor-
responding to the valuek=kP=0.410 which minimizes the
mean energy(this is Pluvinage choice[7] as used by Jones
and Madison[3]). The fourth one,CA, has ahsr12d function
which is not solution of(20) and is mathematically similar to
the correlation factor of Le Sech function[19] but with the
numbers ofC1. The normalized wave functions, with the
corresponding mean energies are

C0 = N0e
−Zsr1+r2des1/2dr12, E0 = − 2.8561 a.u., s24ad

C1 = N1e
−Zsr1+r2des1/4dr12S1 +

r12

4
D, E1 = − 2.8721 a.u.,

s24bd

CP = NP e−Zsr1+r2de−ikr12
1F1S1 − i

1

2k
,2,2ikr12D,

EP = − 2.8788 a.u., s24cd

CA = NAe−Zsr1+r2dS1 + es1/4dr12
r12

4
D, EA = − 2.8766 a.u.

s24dd

where N0=1.343,N1=1.429,NP=1.535 and NA=1.797.
These four wave functions have comparable mean energies
which are not so good when compared to the values obtained
with other wave functions available in the literature. In the
best case, theCP wave function yields only about 40% of the
correlation energy, which is defined to be the difference be-
tween Eexact and the Hartree-Fock energy. However, their
analytical forms are simple, and practical for collision calcu-
lations. Higher order Laguerre polynomials can be easily en-
visaged, but they provide only a slight improvement to the
mean energy(of the order of 0.0033 a.u. at most) at the cost
of a slightly longer analytical form.

Let us now describe some of the properties of the first
three functionsC0, C1 and CP which are exact separable
solutions. The corresponding correlation functionshsr12d
with the normalization factors as given in(24a)–(24c) are
plotted in Fig. 1 as a function ofr12. They are regular at
r12=0, but behave quite differently at asymptotic distances
sr12→`d. For C0 andC1, hsr12d increases at large distances
while, for CP, it tends to zero in an oscillatory way. The
Pluvinage functionCP has therefore an infinite number of
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nodes, although for large value ofr12 only. Note that none of
the three wave functions has the correct global three-body
asymptotic behavior[20].

Since the electron-electron interaction is repulsive it
makes sense, at a first glance, to believe that a continuum
wave functiong−sr12d for hsr12d is a better choice than a
bound solutiong+sr12d. Indeed, the former contributes with a
positive (rather than negative) energy, and hence provides a
local energy(23) closer to the exact value. This, however,
will not be necessarily true when the full Hamiltonian is
considered since the operatorH128 mixes the variablesr1,r2
and r12, and the local energy is not constant anymore.

Another argument seemingly in favor of the continuum
solution is that the function goes asymptoticallysr12→`d to
zero in one case and increases to infinity in the other(see
Fig. 1). One must not forget, however, that the exponential
termse−Zsr1+r2d will dominate the large distance behavior en-
suring that the function(22) will represent a bound state.
Indeed, whenr12 is large, eitherr1 or r2, or both must also be
large; as long as it does not increase exponentially faster than
eZr12, hsr12d does not need, therefore, to go to zero at large
distances. Moreover, the correlation functionhsr12d repre-
sents the influence of the electron-electron interaction, but
does not necessarily represent a physical bound state on its
own. Let us remind that the helium three-body system cannot
be reduced to the product of 3 two-body systems.

One of the arguments put forward in the paper of Jones
and Madison[3] is thatCP diagonalizes the Hamiltonian in
all Coulomb interactions. By construction, bothC0 and C1
have the same property. As stated in[3], the remaining term
in the Hamiltonian,H128 , does not have singularities. How-
ever, since the Pluvinage wave functionCP has nodes(see
Fig. 1), the contribution ofH128 to the local energy(17) has
an infinite number of infinite values. This is exactly one of
the deficiencies of Hylleraas wave functions as pointed out
by Bartlett [15] and quoted by[3]. The wave functionsC0
andC1, on the contrary, do not have any nodes, and provide
a local energy finite everywhere. This will be illustrated be-
low.

In summary, when comparing the properties of the three
wave functions(24a)–(24c), C0 andC1 should not be infe-

rior to the Pluvinage wave functionCP, except possibly for
the value of the mean energy.

The fourth wave function,CA is given by(24d); the cor-
responding correlation function has no nodes and behaves
very similarly to that shown in Fig. 1 forC1 (the dominant
asymptotic term is the same). The functionCA is not a sepa-
rable solution, so that it does not diagonalize the Hamil-
tonian in all Coulomb singularities and does not satisfy Ka-
to’s cusp condition(18c). In this respect,CA should be a
much worse representation of the helium ground state than
the previous three wave functions.

Some of the properties of the four wave functions can be
illustrated by comparing their local energies(17). The varia-
tion with respect to the exact numerical value may be repre-
sented by the quantitydE=Esr1,r2,r12d−Eexact: small values
of dE are a sign that a wave function behaves well locally.
For illustration purposes, we have chosen to select, in the
three dimensional spacesr1,r2,r12d, the following situations:
r2=5r1 (Fig. 2) and r2=1 a.u. (Fig. 3). In each case the
mutual angleu12=arccosfsr1

2+r2
2−r12

2 d / s2r1r2dg is fixed, and
dE is plotted versusr1. The same vertical scale is used in
both figures and, to avoid overloading them, we consider
only C1, CP andCA.

In Fig. 2, whenr1 tends to zero, the variablesr2 and r12
tend to zero as well becauser2=5r1. A singularity in dE
appears forCA, but not forC1 and CP: this is directly re-
lated to the fact thatCA does not satisfy the Kato cusp con-
dition (18c), while C1 andCP do. At larger values ofr1, dE
tends to a finite value forC1 and CA, whereas it varies
enormously forCP with divergences at the corresponding
nodes ofhsr12d (see Fig. 1). Note that, in all cases,dE is
finite for C1.

In Fig. 3, r2 is fixed at 1 a.u. For the special caseu12=0,
the operatorH128 gives no contribution to the local energy.
For the separable solutionsC1 and CP, the local energy is
exactly constant, as given by(23): by construction,dE is
smaller forCP than forC1. For CA, on the other hand,dE is
not constant. A singularity appears forr1=1 a.u., i.e., when
r12→0, which corresponds to the failure in satisfying the
Kato cusp condition(18c). For u12=0.5p andu12=p, dE is
finite for C1 andCA, with reasonable asymptotic values. For

FIG. 1. Behavior ofC0 (dotted
line), C1 (dashed line), and CP

(solid line) multiplied by eZsr1+r2d

as a function ofr12.
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CP, on the other hand,dE is finite at short distances but
decreases rapidly, and presents a singularity(not shown)
when r12 takes the value corresponding to the first node of
hsr12d, at aboutr12.16 a.u.(see Fig. 1).

The situations selected in the three-dimensional space,
presented in Figs. 2 and 3, illustrate some of the deficiencies
of the wave functions considered, in particular thedE infinite
values found forCP and CA (these singularities disappear
when calculating the mean energy). From this point of view,
the comparison also seems to indicate thatC1 yields a local
energy which is overall better thanCP andCA, althoughC1
produces a slightly worse mean energy.

In the next section, we shall compare the cross sections
calculated with the four wave functionsC0, C1, CP, andCA.

IV. NUMERICAL RESULTS

All fivefold differential cross sections presented here have
been calculated with the 3C model in the first Born approxi-
mation (as described in Sec. II), but with different bound
state helium wave functionsCi in (3). Our calculations with
the Pluvinage wave functionCP agree perfectly with the

calculations of[3]; note that the numerical approaches differ
since we use a three-dimensional quadrature(see the end of
Sec. II).

We start by comparing cross sections with the absolute
measurements of[2] where all angles are measured in the
same sense with respect to the incident beam direction. For
illustration purposes, we have selected four ejected anglesua,
out of the 20 presented in[2] (calculations at other ejected
angles have been done and give the same conclusions). Two
of them correspond to the direction of the momentum trans-
fer ua=319° and its oppositeua=139°; the results obtained
with CP are good[3]. In the other two casesua=83° and
ua=207°; the results of[3] are not in good agreement. The
cross sections are plotted as a function of the angle of one of
the ejected electronssubd while the other is fixedsuad. For
comparison purposes, the same scale(in a.u.) is used in Figs.
4–7.

In Fig. 4 we compare the cross sections obtained with
three Hylleraas-type initial wave functions for the
helium ground state: Bonham and Kohl — number 7[18] (E
=−2.8757 a.u.; withradial correlation onlyd, Bonham and
Kohl—number 19f18g sE=−2.9035 a.u.; withradial and
angular correlationsd and Le Sechf19g sE=−2.9020 a.u.d.

FIG. 2. Variation of dE
=Esr1,r2,r12d−Eexact obtained for
CA (dotted line), C1 (dashed line),
and CP (solid line). dE is plotted
as a function ofr1, for r2=5r1 and
for three values of the mutual
angleu12: 0.1 p (left panel), 0.5 p
(middle panel), and 0.9p (right
panel).

FIG. 3. The same as Fig. 2 but
for r2=1 a.u. and for three values
of the mutual angleu12: 0 p (left
panel), 0.5 p (middle panel) and
p (right panel).
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The results obtained with these wave functions yield simi-
lar shapes and magnitudes, the curves being bunched to-
gether. The magnitude is about a factor 2 larger and thus
clearly in disagreement with experimental data. As noted
in f3g, this is quite different from the factor 10 found in
f2g with a three-parameter Hylleraas wave functionsnote
that in the kinematics considered, the use of effective
charges rather than integer charges plays only a minor
roled. We would like to point out that the Le Sech wave

function f19g can be considered, in some respects, as an
improvement of the original Pluvinage wave function
since sid it introduces a screening in both the electron-
electron and in the electron-nucleus interaction;sii d it sat-
isfies the Kato’s cusp conditions;siii d yields a much better
mean energyswith 96% of the correlation energyd.

We have also performed calculations with the simple hy-
drogenic(Slater) wave function(e−asr1+r2d with the effective
chargea=27/16): the cross sections(not shown) have a

FIG. 4. Fivefold differential cross section(FDCS) for se,3ed ionization of the helium ground state, as a function of the angle of one of
the ejected electronsub. The incident electron(at ,5.6 keV) is scattered at 0.45° and the other ejected electron is detected atua which is
indicated in each box. The two ejected electrons escape with equal energys10 eVd. The absolute experimental data[2]: full squares. The
three curves are obtained with the 3C model but with different initial wave functions for the helium ground state: Bonham and Kohl —
number 7[18] (dotted line), Bonham and Kohl—number 19[18] (dashed line) and Le Sech[19] (solid line).

FIG. 5. The same as in Fig. 4,
but with the Pluvinage wave func-
tion for the helium ground state,
corresponding to three different
values ofk (see the text): k=0.31
(dotted line), k=kP=0.41 (solid
line), andk=0.51 (dashed line).
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similar shape to those shown in Fig. 4, but with a magnitude
only about 1.5 larger than the experiments, as indicated in
[3].

In Fig. 5 we present the cross sections(solid curve) ob-
tained with CP given by (24c); they coincide with those
published by[3]. We observe that the shapes are essentially
similar to those of Fig. 4, but the magnitude is lowered by a
factor 2, thus giving the good agreement with experimental
data found in 16 out of the 20 geometrical situations[3] (as
stated earlier, this agreement is shown here only forua
=319° andua=139°). We have also studied the sensitivity to
the parameterk in (24c), by comparing the results obtained
with k=0.31 (dotted curve) andk=0.51 (dashed curve). We
observe that a small variation ofk, which yields only a tiny
difference in the mean energy(EPfk=0.31g=−2.8783 a.u.,

EPfk=0.51g=−2.8778 a.u.), produces a relatively important
change in the magnitude of the cross sections. Such sensitiv-
ity on a parameter is rarely seen with other trial wave func-
tions.

The cross sections obtained with the three wave functions
C0 (dotted line), C1 (dashed line) and CP (solid line), are
presented in Fig. 6. We immediately observe that the results
with C0 give a similar disagreement in magnitude with the
experimental data as those shown in Fig. 4. On the other
hand, the use ofC1 yields cross sections, similar in shape,
but with a magnitude which is intermediate between those
obtained withC0 and CP [21]. From Fig. 6, it clearly ap-
pears that, whenCP gives good agreement(ua=319° and
ua=139°), the two wave functionsC0 andC1 do not. Jones
and Madison[3] relate the agreement in magnitude obtained

FIG. 6. The same as in Fig. 4,
but with different initial wave
functions for the helium ground
state:C0 (dotted line), C1 (dashed
line), andCP (solid line).

FIG. 7. The same as in Fig. 4,
but with different initial wave
functions for the helium ground
state: CA (dotted line) and CP

(solid line).
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with the functionCP to the fact that the latter describes the
region of space—where the two electrons are close
together—better than the Hylleraas-type wave function. In-
deed,CP satisfies the cusp conditions, but so do the wave
function proposed by Le Sech[19], and the separable solu-
tions C0 and C1. One could then argue that the Le Sech
wave function does not diagonalize the Hamiltonian in the
three Coulomb singularities, butC0 and C1 do so by con-
struction. The results obtained withC0 andC1 presented in
Fig. 6 indicate therefore that the agreement with experimen-
tal datacannotbe related to the fact that the initial helium
wave function diagonalizes the Hamiltonian.

We have also calculated the corresponding cross sections
with the functionCA. The results are compared in Fig. 7 to
those obtained withCP. It is clear that there is very little
difference between the two sets of results(this is valid for all
20 experimental situations[2]). This figure therefore clearly
demonstrates that agreement with experimental data within
the 3C model can be obtained also with a wave function
which—in principle—cannot be considered as good as the
Pluvinage wave function(see details in Sec. III).

Jones and Madison[3] conclude their letter with the fol-
lowing: “Consequently, electron-electron correlation is
treated precisely (and the cusp conditions of Kato are satis-
fied exactly) by both our initial and final target wave func-
tions and we found that this is crucial for reproducing the
absolute measurements.” Although we agree that treating
electron-electron correlation precisely is crucial, we believe
that this conclusion is somewhat too hasty. Indeed, the re-
sults presented in Figs. 6 and 7 clearly show that(i) a wave
function (e.g., C0 or C1) which diagonalizes the Hamil-
tonian does not necessarily reproduce the magnitude of the

experimental data;(ii ) a wave function(e.g.,CA) which does
not diagonalize the Hamiltonian is able to do it. This may be
considered as the main result of this paper.

Let us now briefly discuss the influence of orthogonaliz-
ing the final stateC f

− to the initial stateCi [see Eq.(8)]. For
all the initial state wave functions considered above, the
magnitude changes by about 10−15%(as stated in[3]), but
the shape is not affected(result not shown). From this point
of view, we may thus consider the 3C model to be satisfac-
tory in these geometries and kinematics.

Before concluding, let us consider now the relativese,3ed
measurements of Dornet al. [22] at 2 keV incident energy,
where the two ejected electrons escape with equal energy
s25 eVd, and the scattered electron is detected at −9.428°

(momentum transfer of 2 a.u.; impulsive regime). At this in-
cident energy, the use of the 3C model within the FBA
should also be justified. The calculated cross sections are
presented in Fig. 8 and compared to the relative data as pub-
lished in [22]. On the left panel(a) are shown the results
obtained with the same three Hylleraas-type wave functions
considered in Fig. 4: the agreement is poor as the experimen-
tal peak ratio is not reproduced. The 3C results published in
[22] also fail to reproduce this ratio, but are in sharp contrast
with ours. In the middle panel(b) we present the cross sec-
tions obtained withC0, C1 andCP, on the same scale as in
(a). The results obtained withC1 andCP are clearly not in
agreement with the experimental data; the results are even
worse than those[see panel(a)] obtained with the Hylleraas-
type wave functions. The cross section obtained withC0, on
the other hand, is relatively in better agreement, with a better
ratio of the two peaks. From this figure the conclusion would
not be in favor ofC1 andCP, but rather ofC0. Similarly to

FIG. 8. Fivefold differential cross section(FDCS) for se,3ed ionization of the helium ground state, as a function of the angle of one of
the ejected electronsub. The incident electron(at 2 keV) is scattered at −9.428° and the other ejected electron is detected atua=0°. The two
ejected electrons escape with equal energys25 eVd. The relative experimental data[22]: full squares. All curves are obtained with the 3C
model but with different initial wave functions for the helium ground state. Panel(a) Bonham and Kohl—number 7[18] (dotted line);
Bonham and Kohl—number 19[18] (dashed line); and Le Sech[19] (solid line). Panel(b) [the same scale as panel(a)]: C0 (dotted line),
C1 (dashed line) andCP (solid line). Panel(c): CP (solid line) andCP without orthogonalizing as in Eq.(8) (dotted line).
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what is shown in Fig. 7, the cross sections obtained withCA
are almost identical to those obtained withCP (result not
shown). The analysis of these results would lead to different
conclusions than those reached before. The comparison of
theoretical cross sections with experimental data of Dornet
al., however, cannot provide valid conclusions. Indeed, al-
though 2 keV can be considered as sufficiently high incident
energy in order to apply the FBA, the 3C model does not
seem to be applicable for these experimental geometry and
kinematics(also see the paper[23] where the dependence on
the momentum transfer is discussed): the orthogonalization
of the final stateC f

− to the initial stateCi gives large spuri-
ous contributions. For all initial state wave functions, the
cross sections without orthogonalization are very different,
with the right-hand side peak a factor 3 to 4 times larger and
the left-hand side peak becoming a shoulder; the shape is
then similar to the 3C result published in[22]. This is illus-
trated on the right panel,(c), in the case ofCP. It is inter-
esting to notice that the CCC model gives a good agreement
with the relative experimental data of Dornet al. [22] and
with those of Lahmam-Bennaniet al. [2] but it is not able to
reproduce its magnitude(factor 3) [24].

V. CONCLUDING REMARKS

In this paper we have critically analyzed the recent agree-
ment with experimental data obtained by FBA calculations
based on the 3C model and the use of the Pluvinage wave
function,CP, for the initial helium bound state[3]. We have
constructed three other initial state wave functions: two with
similar properties(C0 and C1) and one which is different
sCAd. Keeping the 3C model, the comparison of calculated

se,3ed cross sections with absolute experimental data shows
that the conclusions of Jones and Madison are not correct.
The demonstration is build on the following two arguments:
(i) we have compared the cross sections obtained with three
bound state wave functions(C0, C1 andCP) which are such
that the Hamiltonian is diagonal in all three Coulomb inter-
actions, and hence satisfy Kato’s cusp conditions. Only one
of them, the Pluvinage wave functionCP, gives good overall
agreement with experimental data;(ii ) on the other hand, the
wave functionCA which does not have the same properties
yields results as good as those published by Jones and Madi-
son[3] with the Pluvinage wave functionCP. It is then clear
that the fact that the bound state wave function diagonalizes
the Hamiltonianis not the deciding factor in obtaining agree-
ment with the absolute experimental data. Certainly, satisfy-
ing Kato’s cusp conditions is a mathematical requirement of
the Schrödinger equation, while making the Hamiltonian di-
agonal is only one way of removing the Coulomb singulari-
ties. Both these properties, however, are not enough to fully
deal with the complete Hamiltonian because of the presence
of the (nondiagonal,H128 ) term which mixes the variables
r1,r2 andr12: the three-body system cannot be reduced to the
product of three two-body systems.

For double ionization processes, treating the electron-
electron correlation precisely is certainly crucial. It would be
interesting to make an analysis similar to the present one in
the case of double photoionization and simultaneous
ionization-excitation by electron impact.
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