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Role of the helium ground state in(e,3e) processes
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Absolute (e,3e) measurements on helium, at high incident energy, have been recently reproduced by a
calculation in the first Born approximatighys. Rev. Lett91, 73201(2003]. The theoretical model is based
on the product of three Coulomb waves for the final state and the use of Pluvinage wave function for the initial
helium ground state. The authors suggest that the good agreement obtained is strongly related to the quality of
the initial state, in particular to the fact that it is diagonal in all Coulomb interactions. In this paper, we show
that this conclusion is not correct. We construct three other helium ground states to demonstrate that diago-
nalizing the Hamiltonian is not the deciding factor in obtaining agreement with the absolute experimental data.
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[. INTRODUCTION Hamiltonian in all three Coulomb singularities. In this con-
tribution, we would like to show that this claim is not cor-
lonization of atoms and molecules by electron impact isrect. The comparison of calculatée, 3e) cross sections ob-
one of the fundamental processes of atomic physics. Thgyined with three other helium bound state functions will
comprehension of such processes is important for plasm@emonstrate that diagonalizing the Hamiltonian is not the
physics and nuclear fusion devices. The study of kinematiyeciding factor in obtaining agreement with the absolute ex-
cally complete double ionization experiments by electron imperimental data. We therefore believe that Jones and Madi-
pact is a very powerful tool to investigate the role of son have made hasty conclusions, since the good agreement
electron-electron correlation. In the so-call@3e) experi-  with experimental data can be reproduced also with a wave
ments the three electrorihe two ejected and the scatteyed function which does not diagonalize the Hamiltonian.
are detected in coincidenc¢see the review pap¢t]). These In Sec. Il, we briefly describe the 3C model within the
difficult measurements allow us to check with a good accuFBA. The choice and properties of several bound state he-
racy the different theories. Helium is an ideal theoretical tar-ﬁum wave functions are discussed in Sec. lll. Calculated
get as its final state is a bare nucleus. cross sections with these initial state wave functions are
The coplanare, 3e) experiments on helium of Lahmam- compared in Sec. IV. Concluding remarks are given in
Bennaniet al. [2] have been performed at an incident energySec. V.
of ~5.6 keV and under a small projectile’s scattering angle
of 0.45 (momentum transfer of 0.24 a.u.; dipolar regjme

The two ejected electrons have been detected with equal en- !l 3C MODEL FOR (e, 3e) CROSS SECTIONS
ergy (10 eV) and absolute angular cross sections have been 1. fivefold differential cross sectiotFDCS corre-
measured. _ . sponding to thee, 3e) reaction,
Several theoretical description have been proposed for the
calculation of(e,3e) cross sectiongsee Sec. Il for more e +He— 3¢ + He™, (1)
details, and 1] for a review. For the kinematical situation . .
selected in the measurements of Rel, the first Born ap- is given by
proximation (FBA)—with respect to the interaction of the o kekaKo — 1
fast projectile with the target—should apgi$]; moreover, dQ, dQ, dQ, dE, dE, = " |Tsl*, 2

the 3C model4,5|—where the final state is described by a

product of three Coulomb waves—seems also sufficient. Invhered(Qg,d(), and d(), denote, respectively, the elements

this paper, we shall restrict the discussion to the 3C modedf the solid angle for the scattered and the two ejected elec-

within the FBA. trons. The energy intervals of the two ejected electrons are
What remains is the question of what to use for the detepresented byE, anddE,. The momenta of incident, scat-

scription of the helium bound state. Hydrogenic and Hyller-tered, the first and second ejected electrons are denoted, re-

aas wave function§f] yield cross sections similar in shape spectively, byk;, ks, ks, andk,.

and magnitude, but are in bad agreeni{@ptwith the experi- The dominant theoretical models used to desc(éBe)
mental results. Jones and Madis[8] have therefore sug- processes argl] the following.
gested using the wave function introduced by Pluving@e (i) The 3C mode{or BBK mode) where the final state is

The calculatede, 3e) cross sections are then in overall good described by a product of three Coulomb waves which ac-
agreementin 16 out of the 20 geometrical situationsith count for the interaction between each electron and the
the experimental data ¢2]. The authors therefore conclude nucleus, and for the electron-electron repulsjdrb]. This

that this agreement is related to the quality of Pluvinagedouble-continuum final state is asymptotically exact. An im-
wave function, in particular because it diagonalizes theprovement of the 3C approach consists in using effective
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chargegmodel C4FS2]) for describing the correlated four- - 1 P e ] _ R

body final state. ek = (277)3,29” (1 +ine Fi(=in,1,~i(kr+kr),
(i) The convergent close couplin@CC) model[8]. This

model consists in solving the Lippmann-Schwinger equation (6)

for the three-body problem. Technically the double ioniza’wheren:Z/k and,F, is the confluent hypergeometric func-

tion process is identified as an excitation of the positive-, -T S . .
energy pseudostate of the ion. tion. The termx(|ka—_ ko|,F1,) takes into account the repulsion

(i) The Green's function expansion of RéB] which ~ Petween the two ejected electrons,
corresponds to the well established Faddeev equafitis e g )
for three particlesit is the lowest order iteration of an incre- X(Ika = k|, F12) = €772 °T' (1 ~ i 77,p)
mental approach to the four-body Coulomb probjeifhe . . >
use of this model is, however, limited by numerical difficul- X P11 700, 1, =1 kapl 12+ Kaf 1)), (7)
ties. 1k —k e — (e —Lk

: _ _ where 7,,=1/|k,—ky| andkqp=(k,—ky)/2.

.('V)f. Tr:e 6C mode[s,;l,labtakes mto”afccount thedf):r— The final double-continuum stat&; and the initial

wise final state interactions between all four partiof ground stateb; are, in principle, orthogonal because they are

scattered electron, the two ejected electrons and the nycleu igenfunctions of the same Hamiltonian. However, since in

This model c_orresponds. to a pro_duct .Of SIx _Coulomb WaVe34ch case we do not know the exact solutions, any approxi-
and necessitates a difficult nine-dimensional numeric

ation will break the orthogonality. The latter can be re-

integral. P o
As we restrict our study to high incident energies, WeStored by an artificial orthogonalization through
L . o N ) .
shall only use the 3C model within the FBA. This choice is (W5 | = (W] = (W | W (0. (8)

guided by the fact thai) calculations with electron and pos-

itron impact have shown the validity of the FBA]J; (ii) the  If this operation leads to important corrections in the cross

3C model seems sufficient because there is practically neections, it indicates that the model possibly breaks down.

difference between the results of the 3C model and those of For the calculation of the nine-dimensional integ(a),

the 6C model3]. we first use the Bethe transformation for the integration over
When considering high impact energies, it is reasonable toy,

describe the incoming and scattered electrons by plane waves

(FBA for the description of the projectile-target interaction e"zé 1 eik} .
Moreover, since the scattered electron is faster than the ?:E |r»_5|drv 9
ejected electrons, the effect of their exchange can be safely
neglected. In the FBA, the matrix element is tHéh to reduce it to a six-dimensional integral ovgrandr,,
Tfi == 2—<e'ksr0\]f;(rl,r2’ka’ kb)|V(rO,rl,r2)|\IIi(r1,r2)e'kir0>, Tfi = K2<\I,f(r1:r2:kaa kb)|eI 1+ehh2 Z|‘Pi(r1:r2)>:
a
(3) (10

whereK=k;—kg is the momentum transfer.

When the initial statel; is described by a Hylleraas-type
functione "1 A"2r e 12, the calculation of the matrix ele-
ment T;; can be reduced to a double numerical integration

V(ro,rl,rz):—5+ 1 1 (4) (see details irj4,5). o
ro |fo—T1 [fo—T3 When the Pluvinage wave function is ugsege Eq(240),
next sectiof, we have been able to reduce the six-

(ro is the distance between the incident electron and théimensional integral to a three-dimensional numerical
nucleus,ry,r, are the distances between one of the helium(Gauss-Legendyequadrature—instead of a six-dimensional
electron and its nucleysin Eq. (3), W,(fy,f>) is the initial ~ Numerical quadrature as B]. To do this, we first replace the
bound state of helium. The final state in the 3C model isconfluent hypergeometric function of Pluvinage wave func-
described by a symmetrized product of three Coulombic distion with parametek by using the transformatiofi3.2.] of
tortion factors(one for each two-body Coulomb interactjon [13],

whereV is the Coulomb interaction between the projectile
and the helium atongiZ=2),

[4,5], i
1F1(1_E(,2,2kr12>
S 1 - e - >
Wi (r1, 0o, Ka Ky) = _/—[<P(ka,r1)<P(kb,r2) + @(Ka, 1) @(Kp, 1) ] r'(2) 1
V2 - Jezikrlztt—i/Zk(l_t)i/Zk dt, (11)
.. i i\ Jo ’
- . Mi+—|rf1-—
with so that the matrix element becomes
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2 r2 o : VIH[W
Tﬁ - _ NP_2 : ( ) . f t—|/2k(l _t)|/2k dt E= w, (16)
K ! 0 (¥|W)
Ni+—ri1-—
2k 2k is usually minimized with trial wave functiongsariational
) . method. The energy, which can be consideredrasneri-
X f e e 22 A2 DT (£, Ty, Ky, ko) cally exact of the 'S, ground state of(13) iS Egyact
o =-2.903724 a.u[14].
X (K1 + eiKFZ_Z)dFl dr,. (12) Let us define the local enerdy5],
The six-dimensional integral appearing (h2) can be re- E(ry,rpri) = HW(ry,rpr). (17)

duced to a linear combination of several two-dimensional W(ry,rar)
integrals as indicated in detail in the appendiceg4b].
Hence, the calculation of the matrix element is reduced to
sum of three-dimensional integrations.

Only for the exact solution, this local energy will be a con-
2tant throughout the entire configuration space, i.e., an eigen-
value of(13), and hence equal to the mean endittys is the
case, for example, for the hydrogenic ions of nuclear charge
1. HELIUM GROUND STATE WAVE FUNCTION Z, for which the local and mean energies are equaEto

. . =-272/2n? (a.u)]. For any other trial wave function, the local
Jones and Madisof8] have claimed that the good agree- oaqv will not be a constant value; the averaging over the

ment of their theoretical calculations with experimental ;o q spacdsee Eq(16)] smooths out the variations of the
(e,3¢) data is directly related to the quality of the Pluvinage .o energy and provides a finite constant value as close as
wave function for the helium bound state, in particular be'possible to the numerically exact value. For the study of
cause it diagonalizes the Hamiltonian in all three Coulombygiisions with a helium atom. it is necessary to have a good
singularities. In this section, we shall analyze some propery,ave function and not only a good mean enefiipe latter is

ties of this and other initial state wave functions to CheCkenough for spectroscopical purpoge©btaining a good

whether this is true. mean energy is not a sufficient criterion to state that a trial

Let us start vyith the nonrelatiyistic Schrb‘dinger equation,yave function is good16]. Having an almost constant local
(SE) for the helium atom(Z=2), in which we neglect the energy is a much stronger quality test.

nucleus mass effects. Letandr, be the two electrons radial Bartlett [15] has shown that Hylleraas wave functions
coordinate, and;,=[r1~r,| the electron-electron distance. proyide local energies ranging frome-to . Infinite local
Considering S-states onlyand in particular the', ground  energies can come from two sourcéiy:the wave function
statg, the six-dimensional SE reduces to the well knownhag nodes andw + 0; (ii) one or several of the singularities
three-dimensional Hylleraas equatidE). The latter is ex-  of the potential terms i, ,H, andHy, (i.e., r;=0,r,=0 or
pressed as r,=0) are not compensated by the corresponding kinetic
terms. The study of the singularities has led K@id] to

HW(ry,rr10) = EW(ry,rar), (13) provide mathematical conditions thiitt must satisfy(the so-
where the Hamiltoniam can be written as called “cusp conditiong”in order to eliminate these singu-
larities:
H=H;+Hy+Hp+Hi,, (14) A
v =—=Z¥(0,ryrq9) (183
with _arl_r1—>0_ I2,r12),
1/ # 29 Z L
2 ﬁri ri ari ri T == Z\I,(rlaoarlz)v (18b)
L arZ_ r24>0
P2 4 a
e (L 222 s _
ar r1o0r r v 1 . 1 - -
ot e {—] =SW(rr0), with =2 +r),
Iz e -0 2
2_ 2,2 2 2_,2,,2
HY,= - ri-r3+r, & rp-ritrp & . (150 (180
2ririp  drydron 2150, drpdryn

whereW means the average ®f over a very small sphere of
In Hy,, the quantitye is introduced to “turn on(a=1) or  radiusr, (respectively,r, or ry,) keeping the other values
“switch off” («=0) the electron-electron interaction; no ana- fixed. Relationg18a—18¢) provide the linear behavior that
lytical solution exists today for Eq(13) for the physical ¥ must have close to the singularity points.

situation (e=1). Note that three singularitieg.e., r;=0,r, If the electron-electron interaction is neglected=0), r;,

=0 orrq,=0) appear inH, and the factors multiplying the is no longer needed i¥. The exact solution of13) is the

mixed partial derivatives if;, are always finite. product of two hydrogenic Héls) functions e 41*2)
The mean energy, which yields the mean or local energg% Of course, in the
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physical caser=1, ¥ will depend also o, and the elec- form of an exponential times a polynomial has been used in
tronic structure of the helium ground state is substantiallymany trial wave functionge.g.,[6,18,19). However, usu-
modified. A first approach is to consider wave functions ofally, the parameters appearing in both the exponential and in
the kind the polynomial are chosen in order to optimize the mean
energy rather than to eliminate the singularity of the potential
frof(rah(re), 19 term 1k 4, and hence satisfy Kato's cusp conditi¢¥80).
where h(ry,) is a correlation function(note that, for the In the calculations ofe, 3e) cross sections which we will
ground statel is symmetric inrq,r,). The product(19), present in the next section, we shall consider four bound
however, can never be the solution(@B) since the equation state wave functions corresponding to four different correla-
is not separable in the three variablesr,,r, because of the tion functionsh(r;,). The first three are of the famil§22),
presence of;,. i.e., separable solutions which automatically satisfy Kato
For the purpose of the present study, let us ignorehe cusp conditions. Two of them, and ¥4, areg.(r;,) func-
term of the Hamiltoniar(this term has no singularityThis  tions corresponding, respectively, =0 (k,=—1/2) and
corresponds to replacing the three-body system to 3 twoN=1 (k;=—1/4). A third one, ¥, is ag_(r,,) function cor-
body systems; Eq13) is then fully separable and the solu- responding to the valuk=kp=0.410 which minimizes the
tion can be written as if19). Building up from thea=0  mean energythis is Pluvinage choic€7] as used by Jones
solution, let us consider the hydrogenic functiof8;))  and Madisor{3]). The fourth oneW,, has an(r,,) function
=e %, and h(r;,) an eigenfunction ofH;,. The latter are  which is not solution of20) and is mathematically similar to
exact solutions of the well known Coulomb-type differential the correlation factor of Le Sech functigh9] but with the

equation(without centrifugal termL=0) numbers ofW¥,. The normalized wave functions, with the
P 2 corresponding mean energies are
| —+—— ] +—|g(rp) =eg(r 20
{ (ariz rlzarlz) rljg( 12 =e9(ra), - (20 Po=Nye 21t2eM2r2 - g = - 28561 a.u., (24a

and are given by the Coulomb-type functigd8] with either
a positive(e>0) or negative(e <0) eigenvalue. Consider- p, = Nle‘z“l"rz)e(l"‘)rﬂ(l + r_12> E,=-2.8721 a.u.,
ing only regular solutions at;,=0, we have 4
(24b)
0.(rp) =ek2 Fy (1 +— x ,2, 2kr12), with e=-k?<0,

(219  Vp=Npe@tdgikiny F ( 2, 2ikr12>,

2k

Er=-2.8788 a.u., 240
g-(r;p) =e 2 F (1—i%(,2,2’kr12), with e=k?*>0, P (249

(21  y,=N e'z(rl”Z)(l NPTLIRE 2 ) E,=—2.8766 a.u.

wherek is a real numbernote that, because of Kummer’s 24
relations[13], k and —k give the same solutioinsbothg,(r;,) (24d

andg-(ri) are real functions of 5. The first(g.(r12) cor-  where N,=1.343,N;=1.429,Np=1.535 and N,=1.797.
respond to bound solutiorié the sense of negative enejgy These four wave functions have comparable mean energies
while the secondg-(r;2)) to continuum solutions. Hence, which are not so good when compared to the values obtained
the wave function(19), with other wave functions available in the literature. In the
e ZngZr, best case, th#p wave function yields only about 40% of the
9:(r1p) (22 : — . .

correlation energy, which is defined to be the difference be-
is a product of three Coulomb functions and is analogous teween Eg,,. and the Hartree-Fock energy. However, their
the 3C final state in(5). Each of the two-body Coulomb analytical forms are simple, and practical for collision calcu-
interactions for the bound state is treated exactly and hendations. Higher order Laguerre polynomials can be easily en-
the Kato cusp conditiongl8a8—(18c) are automatically sat- visaged, but they provide only a slight improvement to the

isfied. mean energyof the order of 0.0033 a.u. at mgsit the cost
If we ignoreH},, the exact separable soluti¢®2) yields  of a slightly longer analytical form.
a local(and meanenergy of Let us now describe some of the properties of the first
E=—72 712 (23) three functions¥,, ¥, and W, which are exact separable

solutions. The corresponding correlation functioh@ ,)
In the case of the bound solutiogs(r;,), we have a special with the normalization factors as given {24a—24c) are
situation whenl+1/%=-N whereN>0 is an integer. In- plotted in Fig. 1 as a function of;,. They are regular at
deed, the confluent hypergeometric function reduces then t0,=0, but behave quite differently at asymptotic distances
a Laguerre polynomial of orde¥, i.e., Ly(kry)/(N+1) [13] (rip—0). For ¥y and¥,, h(ry,) increases at large distances
and g.(r1») to a hydrogenic functioriexponential times a while, for ¥p, it tends to zero in an oscillatory way. The
polynomia). The use of a correlation functidn(r,,) in the  Pluvinage function¥p has therefore an infinite number of
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nodes, although for large value iof, only. Note that none of rior to the Pluvinage wave functioWp, except possibly for
the three wave functions has the correct global three-bodthe value of the mean energy.
asymptotic behaviof20]. The fourth wave function is given by(24d); the cor-
Since the electron-electron interaction is repulsive itresponding correlation function has no nodes and behaves
makes sense, at a first glance, to believe that a continuuwery similarly to that shown in Fig. 1 fow, (the dominant
wave functiong_(r1,) for h(ry,) is a better choice than a asymptotic term is the samelhe functionW, is not a sepa-
bound solutiory,(r;,). Indeed, the former contributes with a rable solution, so that it does not diagonalize the Hamil-
positive (rather than negatiyeenergy, and hence provides a tonian in all Coulomb singularities and does not satisfy Ka-
local energy(23) closer to the exact value. This, however, to’s cusp condition(180). In this respect¥', should be a
will not be necessarily true when the full Hamiltonian is much worse representation of the helium ground state than
considered since the operatdf, mixes the variables;,r,  the previous three wave functions.
andr,, and the local energy is not constant anymore. Some of the properties of the four wave functions can be
Another argument seemingly in favor of the continuumillustrated by comparing their local energi€s). The varia-
solution is that the function goes asymptotically,—o) to  tion with respect to the exact numerical value may be repre-
zero in one case and increases to infinity in the ofisee  sented by the quantityE=E(ry,r;,r12) ~Eexact Small values
Fig. 1). One must not forget, however, that the exponentialof 6E are a sign that a wave function behaves well locally.
termse 20'1*2) will dominate the large distance behavior en- For illustration purposes, we have chosen to select, in the
suring that the function22) will represent a bound state. three dimensional space;,r,,r;,), the following situations:
Indeed, whem, is large, either, orr,, or both must also be r,=5r; (Fig. 2) andr,=1 a.u.(Fig. 3). In each case the
large; as long as it does not increase exponentially faster thamutual anglef;,= arccoé(r§+r%—riz)/(Zrlrz)] is fixed, and
e“"12, h(r,,) does not need, therefore, to go to zero at largeSE is plotted versus,. The same vertical scale is used in
distances. Moreover, the correlation functibfr,,) repre- both figures and, to avoid overloading them, we consider
sents the influence of the electron-electron interaction, buenly ¥, ¥p and¥,.
does not necessarily represent a physical bound state on its In Fig. 2, whenr; tends to zero, the variables andr,
own. Let us remind that the helium three-body system canndend to zero as well becausg=5r;. A singularity in 6E
be reduced to the product of 3 two-body systems. appears forV,, but not for¥,; and Wp: this is directly re-
One of the arguments put forward in the paper of Jonedated to the fact tha¥’, does not satisfy the Kato cusp con-
and Madison[3] is that Wy diagonalizes the Hamiltonian in dition (18¢c), while ¥, and¥p do. At larger values of,, 6E
all Coulomb interactions. By construction, baih, and¥;  tends to a finite value foW’; and W,, whereas it varies
have the same property. As stated 3}, the remaining term enormously for¥p with divergences at the corresponding
in the Hamiltonian,H},, does not have singularities. How- nodes ofh(r;,) (see Fig. 1 Note that, in all casesjE is
ever, since the Pluvinage wave functitfp has nodegsee finite for W,.
Fig. 1), the contribution ofH;, to the local energy17) has In Fig. 3,1, is fixed at 1 a.u. For the special cagg=0,
an infinite number of infinite values. This is exactly one of the operatoH;, gives no contribution to the local energy.
the deficiencies of Hylleraas wave functions as pointed oufor the separable solutionk; and ¥p, the local energy is
by Bartlett[15] and quoted by{3]. The wave functionsl,  exactly constant, as given b{23): by construction,sE is
andW¥,, on the contrary, do not have any nodes, and providemaller for¥ than for¥;. For¥,, on the other handjE is
a local energy finite everywhere. This will be illustrated be-not constant. A singularity appears for=1 a.u., i.e., when
low. r.,— 0, which corresponds to the failure in satisfying the
In summary, when comparing the properties of the threé<ato cusp condition(18c). For 6;,=0.57 and #,,=, 6E is
wave functionsg24a8—(24c), ¥, and¥; should not be infe- finite for ¥; and¥,, with reasonable asymptotic values. For
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FIG. 2. \Variation of J6E
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W (dotted ling, ¥, (dashed ling
and V¥ (solid line). 6E is plotted
as a function of 4, for r,=5r; and
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angle#,,: 0.1 7 (left pane), 0.5 7
(middle panel, and 0.97 (right
pane).
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¥y, on the other handgkE is finite at short distances but calculations of 3]; note that the numerical approaches differ
decreases rapidly, and presents a singulaityt shown  since we use a three-dimensional quadratee the end of
whenr,, takes the value corresponding to the first node ofSec. I).

h(r,,), at aboutr;,=16 a.u.(see Fig. L We start by comparing cross sections with the absolute
The situations selected in the three-dimensional spacéneasurements di2] where all angles are measured in the
presented in Figs. 2 and 3, illustrate some of the deficienciez@Me Sense with respect to the incident beam direction. For
of the wave functions considered, in particular #einfinite  Illustration purposes, we have selected four ejected argles
values found for¥, and W, (these singularities disappear out of the 20 presented if2] (qalculatlons at other ejected

when calculating the mean enejgiFrom this point of view, angles have been done and give the same conclysibre

the comparison also seems to indicate tiatyields a local of them correspond to the direction of the momentum trans-

o fer #,=319 and its opposited,=139; the results obtained
energy which is overall better thakh, and WV ,, although¥, - a R
produces a slightly worse mean energy. with ¥ are good[3]. In the other two caseg,=83 and

I the nextsecon, we shall compare he cross sectonfes 277 1 (S 010 40 ot dood Saeerent, The
calculated with the four wave functionls,, ¥, ¥p, andW,. P g

the ejected electron&),) while the other is fixed 6,). For
comparison purposes, the same sc¢alea.u) is used in Figs.
4-7.

In Fig. 4 we compare the cross sections obtained with

All fivefold differential cross sections presented here havehree Hylleraas-type initial wave functions for the
been calculated with the 3C model in the first Born approxi-helium ground state: Bonham and Kohl — numbdt.8] (E
mation (as described in Sec.)]Ibut with different bound =-2.8757 a.u.; withradial correlation only, Bonham and
state helium wave functiord; in (3). Our calculations with  Kohl—number 19[18] (E=-2.9035 a.u.; withradial and
the Pluvinage wave functioWr agree perfectly with the angular correlationsand Le SecH{19] (E=-2.9020 a.y.

IV. NUMERICAL RESULTS

1.0 — 1.0

8,=0n 6,,=05~r 8,,=7

FIG. 3. The same as Fig. 2 but
for r,=1 a.u. and for three values
of the mutual angled;,: 0 7 (left
pane), 0.5 7 (middle panel and
a (right pane).

E(r1’r2’r12)-EeXact (a'u')

SE =

012711-6



ROLE OF THE HELIUM GROUND STATE IN(e, 3e)...

FDCS (a.u.)

0
0.020

80

120 180

PHYSICAL REVIEW A 70, 012711(2004

240

300 360

0.015+

0.010 4

0.005

0,=139"]

0015+

0.010

0.005 4

0.004

0.003

0.002

0.001

0.000

0.000

T T T T T T T T
0 60 120 180 240 300 360 60 120 180 240 300 360

6, (deg) 6, (deg)

FIG. 4. Fivefold differential cross sectiqgifDCS for (e, 3e) ionization of the helium ground state, as a function of the angle of one of
the ejected electrong,. The incident electroiiat ~5.6 keV) is scattered at 0.4%nd the other ejected electron is detected,aivhich is
indicated in each box. The two ejected electrons escape with equal €d€rgy). The absolute experimental ddi@: full squares. The
three curves are obtained with the 3C model but with different initial wave functions for the helium ground state: Bonham and Kohl —
number 7[18] (dotted ling, Bonham and Kohl—number 1@8] (dashed lingand Le Sect19] (solid line).

The results obtained with these wave functions yield simifunction [19] can be considered, in some respects, as an
lar shapes and magnitudes, the curves being bunched tonprovement of the original Pluvinage wave function
gether. The magnitude is about a factor 2 larger and thusince (i) it introduces a screening in both the electron-

clearly in disagreement with experimental data. As notecelectron and in the electron-nucleus interacti@n; it sat-
in [3], this is quite different from the factor 10 found in isfies the Kato's cusp conditionsiji) yields a much better

[2] with a three-parameter Hylleraas wave functiomote

mean energywith 96% of the correlation energy

that in the kinematics considered, the use of effective We have also performed calculations with the simple hy-
charges rather than integer charges plays only a minadrogenic(Slatey wave function(e™*1*"? with the effective
role). We would like to point out that the Le Sech wave charge «=27/16: the cross sectiongnot shown have a
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FIG. 5. The same as in Fig. 4,
but with the Pluvinage wave func-
tion for the helium ground state,
corresponding to three different
values ofk (see the text k=0.31
(dotted ling, k=kp=0.41 (solid
line), andk=0.51(dashed ling
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FIG. 6. The same as in Fig. 4,
but with different initial wave
functions for the helium ground
state:¥, (dotted ling, ¥, (dashed
line), and WV (solid line).
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similar shape to those shown in Fig. 4, but with a magnitudeEg[k=0.51]=-2.8778 a.y, produces a relatively important
only about 1.5 larger than the experiments, as indicated igchange in the magnitude of the cross sections. Such sensitiv-
[3]. ity on a parameter is rarely seen with other trial wave func-
In Fig. 5 we present the cross sectiqsslid curvg ob-  tions.
tained with W, given by (240); they coincide with those The cross sections obtained with the three wave functions
published by[3]. We observe that the shapes are essentially, (dotted ling, ¥, (dashed ling and ¥, (solid line), are
similar to those of Fig. 4, but the magnitude is lowered by apresented in Fig. 6. We immediately observe that the results
factor 2, thus giving the good agreement with experimentaivith ¥ give a similar disagreement in magnitude with the
data found in 16 out of the 20 geometrical situatif8s(as  experimental data as those shown in Fig. 4. On the other
stated earlier, this agreement is shown here only dpr hand, the use o, yields cross sections, similar in shape,
=319 and ,=139). We have also studied the sensitivity to but with a magnitude which is intermediate between those
the parametek in (240, by comparing the results obtained obtained withW, and ¥, [21]. From Fig. 6, it clearly ap-
with k=0.31 (dotted curvg andk=0.51 (dashed curve We  pears that, whenV, gives good agreemeri,=319 and
observe that a small variation &f which yields only a tiny  6,=139), the two wave function®, and ¥, do not. Jones
difference in the mean energ¥pk=0.31]=-2.8783 a.u.,, and Madison{3] relate the agreement in magnitude obtained
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FIG. 8. Fivefold differential cross sectiqrDCS) for (e, 3e) ionization of the helium ground state, as a function of the angle of one of
the ejected electrong,. The incident electrogat 2 keV) is scattered at —9.42@nd the other ejected electron is detected,at0". The two
ejected electrons escape with equal end@fyeV). The relative experimental dafa2]: full squares. All curves are obtained with the 3C
model but with different initial wave functions for the helium ground state. PaeBonham and Kohl—number 18] (dotted ling;
Bonham and Kohl—number 1@8] (dashed ling and Le Sect19] (solid line). Panel(b) [the same scale as pan@)]: ¥, (dotted ling,

V¥, (dashed lingand W (solid ling). Panel(c): Wp (solid line) and W without orthogonalizing as in Eq8) (dotted ling.

with the functionW to the fact that the latter describes the experimental datgji) a wave functione.g., ¥ ,) which does
region of space—where the two electrons are closaot diagonalize the Hamiltonian is able to do it. This may be
together—Dbetter than the Hylleraas-type wave function. Inconsidered as the main result of this paper.
deed, ¥ satisfies the cusp conditions, but so do the wave Let us now briefly discuss the influence of orthogonaliz-
function proposed by Le Sedi9], and the separable solu- ing the final statel; to the initial stateV; [see Eq(8)]. For
tions ¥, and ¥,. One could then argue that the Le Sechall the initial state wave functions considered above, the
wave function does not diagonalize the Hamiltonian in themagnitude changes by about 10-1%&6 stated irf3]), but
three Coulomb singularities, bty and ¥, do so by con- the shape is not affectgdesult not shown From this point
struction. The results obtained with, and ¥, presented in  of view, we may thus consider the 3C model to be satisfac-
Fig. 6 indicate therefore that the agreement with experimentory in these geometries and kinematics.
tal datacannotbe related to the fact that the initial helium Before concluding, let us consider now the relatieg3e)
wave function diagonalizes the Hamiltonian. measurements of Doret al. [22] at 2 keV incident energy,
We have also calculated the corresponding cross sectionghere the two ejected electrons escape with equal energy
with the functionW,. The results are compared in Fig. 7 to (25 eV), and the scattered electron is detected at -9.428
those obtained withPp. It is clear that there is very little (momentum transfer of 2 a.u.; impulsive regimat this in-
difference between the two sets of resyttss is valid for all ~ cident energy, the use of the 3C model within the FBA
20 experimental situation]). This figure therefore clearly should also be justified. The calculated cross sections are
demonstrates that agreement with experimental data withipresented in Fig. 8 and compared to the relative data as pub-
the 3C model can be obtained also with a wave functiorlished in[22]. On the left panela) are shown the results
which—in principle—cannot be considered as good as th@btained with the same three Hylleraas-type wave functions
Pluvinage wave functiogsee details in Sec. I considered in Fig. 4: the agreement is poor as the experimen-
Jones and Madisof8] conclude their letter with the fol- tal peak ratio is not reproduced. The 3C results published in
lowing: “Consequently, electron-electron correlation is [22] also fail to reproduce this ratio, but are in sharp contrast
treated precisely (and the cusp conditions of Kato are satiswith ours. In the middle pangb) we present the cross sec-
fied exactly) by both our initial and final target wave func- tions obtained withV,, W, andWp, on the same scale as in
tions and we found that this is crucial for reproducing the (a). The results obtained with; and W are clearly not in
absolute measuremeritsAlthough we agree that treating agreement with the experimental data; the results are even
electron-electron correlation precisely is crucial, we believeworse than thosgsee pane{a)] obtained with the Hylleraas-
that this conclusion is somewhat too hasty. Indeed, the retype wave functions. The cross section obtained Wit on
sults presented in Figs. 6 and 7 clearly show tha& wave the other hand, is relatively in better agreement, with a better
function (e.g., ¥, or ¥;) which diagonalizes the Hamil- ratio of the two peaks. From this figure the conclusion would
tonian does not necessarily reproduce the magnitude of theot be in favor of¥; andW¥p, but rather of¥’,. Similarly to

012711-9
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what is shown in Fig. 7, the cross sections obtained With (e, 3e) cross sections with absolute experimental data shows
are almost identical to those obtained wilh, (result not  that the conclusions of Jones and Madison are not correct.
shown. The analysis of these results would lead to differentThe demonstration is build on the following two arguments:
conclusions than those reached before. The comparison ¢f) we have compared the cross sections obtained with three
theoretical cross sections with experimental data of Deirn  bound state wave functiori®,, W, andWp) which are such

al., however, cannot provide valid conclusions. Indeed, althat the Hamiltonian is diagonal in all three Coulomb inter-
though 2 keV can be considered as sufficiently high incidengctions, and hence satisfy Kato's cusp conditions. Only one
energy in order to apply the FBA, the 3C model does notof them, the E’Iuwnagg wave func_tllohp, gives good overall
seem to be applicable for these experimental geometry arf@reement with experimental daté) on the other hand, the

kinematics(also see the pap§23] where the dependence on Wave function¥, which does not have the same properties
the momentum transfer is discusgethe orthogonalization yields results as goqd as those publ|s_,hed by_Jones and Madi-
of the final statel; to the initial stateW; gives large spuri- SON[3l with the Pluvinage wave functioi. It is then clear

ous contributions. For all initial state wave functions, thethat the fact that the bound state wave function diagonalizes

cross sections without orthogonalization are ver differentthe Hamiltonianis notthe deciding factor in obtaining agree-
9 y ment with the absolute experimental data. Certainly, satisfy-

then similar to the 3C result published [iB2]. This is illus-
trated on the right pane(g), in the case of¥p. It is inter-

agonal is only one way of removing the Coulomb singulari-
ties. Both these properties, however, are not enough to fully

esting to notice that the CCC model gives a good agreemenfea| with the complete Hamiltonian because of the presence

with the relative experimental data of Doat al. [22] and
with those of Lahmam-Bennasi al.[2] but it is not able to
reproduce its magnitud@actor 3 [24].

V. CONCLUDING REMARKS

of the (nondiagonalH;,) term which mixes the variables
r{,r> andry,: the three-body system cannot be reduced to the
product of three two-body systems.

For double ionization processes, treating the electron-
electron correlation precisely is certainly crucial. It would be
interesting to make an analysis similar to the present one in

In this paper we have critically analyzed the recent agreethe case of double photoionization and simultaneous
ment with experimental data obtained by FBA calculationsionization-excitation by electron impact.

based on the 3C model and the use of the Pluvinage wave

function, Wp, for the initial helium bound statg3]. We have
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