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Feshbach resonances with large background scattering length: Interplay
with open-channel resonances
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Feshbach resonances are commonly described by a single-resonance Feshbach model, and open-channel
resonances are not taken into account explicitly. However, an open-channel resonance near threshold limits the
range of validity of this model. Such a situation exists when the background scattering length is much larger
than the range of the interatomic potential. The open-channel resonance introduces strong threshold effects not
included in the single-resonance description. We derive an easy-to-use analytical model that takes into account
both the Feshbach resonance and the open-channel resonance. We apply our ft&ielbich has a large
background scattering length, and show that the agreement with coupled-channel calculations is excellent. The
model can be readily applied to other atomic systems with a large background scattering length, &iich as
and 13%Cs. Our approach provides full insight into the underlying physics of the interplay between open-
channel(or potential resonances and Feshbach resonances.
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I. INTRODUCTION below the BEC transition temperatyrE9-21. In the case of
bosonic systems, Feshbach resonances have been utilized to
A magnetically induced Feshbach resonafite] is an  produce ultracold sodium, cesium, and rubidium molecules
indispensable tool to control the atom-atom interaction in[22_24_
ultracold gases. By simply changing the magnetic field cjose to the magnetic field value of resonargg the

around resonance, trewave scattering length, which is a save scattering length shows a characteristic dispersive
measure of the strength of the interactions, can be giveRehavior and is given by

basically any value. Exactly on resonance, the scattering

length is infinite, and its value is therefore much larger than

any other length scale that characterizes the atomic gas sys- a(B) = ab9<1 "B- Bo>' (1)

tem. This means that the scattering length effectively drops

out of the physical problem. For very low temperatures andrhe background part of the scattering lengil, summa-

on resonance, universal behavior has been predi&gdl. rizes the effect of the direct scattering processes in the open

For higher temperatures or for situations further away fromchannelwithout coupling to other closed spin channedB

resonance, knowledge about the correct energy dependenisethe field width of the Feshbach resonance. An example of

of the scattering phase shift will be needed to account for athis behavior can be seen in Fig. 1. Since the Feshbach reso-

accurate description of a resonant two-body interadtio@. nance is responsible for the dramatic behavior of the scatter-
Crossing the Feshbach resonance, the scattering lengthing length, the background process is usually considered not

goes from positive to negative values through infinity, andvery interesting and is in some cases even neglected. The

the effective interaction changes accordingly from repulsivedirect process is then associated with nonresonant scattering,

(a>0) to attractive(a<0). Using two atomic-spin states of where the value oé,, should be of the order of the van der

a fermionic gas, it is possible to study the crossover regioiWaals potential range,= (uCq/8%2)Y* [25], with u the re-

between a BCS superfluid and a Bose-Einstein condensatkiced mass an@g the van der Waals coefficient. This, how-

(BEC) of molecules[7—9]. ever, is only true when there is no potential resonance close
The Feshbach resonance is associated with a moleculsw the collision threshold.

state just below the collision threshold. When the magnetic The effect of potential resonances can be easily estimated

field is changed during an experimeiguasibounyl mol- by comparing the value ddy,q to the potential range,. For

ecules can be formefl0—12 while sweeping through the example, in the case 8fRb, the direct interaction potential

resonance. At JILA, coherent oscillations between atoms an nonresonant sincay,,=1008, [26] andr is of the same

molecules have been observed by applying two magnetioarder for rubidium. There are also situations where this is not

field “Ramsey” pulses close to resonang,14. The oscil-  the case. Whemy, is large and positive, there is an open-

lation frequency was directly related to the binding energy ofchannel bound state very close to threshold. For example,

the molecules. More recently, Feshbach resonances were uthis occurs for3%Cs, wherea,;=90%, [27,2§ is much

lized in the formation of ultracold molecules from a degen-larger thanrg. In other situationsy,q can be large and nega-

erate atomic Fermi gagl5-1g. Here molecules could be tive, indicating that the interaction potential has a virtual

produced reversibly by sweeping twice through resonancestate near threshold. Examples here &b with a,,=

In some cases these dimers have been cooled further dow#43a, [14], and°Li where apg=~—200C8, [29,30. In these
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-2000 T T FIG. 2. (Color onling Left part of figure: schematic illustration
1007.0 1007.5 1008.0 of the P-channel(dashedl and Q-channel(solid) interaction poten-
B(G) tials for B=0. Right part of figure: the interaction potentials are

asymptotically connected to the magnetic-field-dependent two-
FIG. 1. Scattering length as a function of the magnetic field forparticle hyperfine-Zeeman eigenenergies. Also shown are the high-
87Rb in the|f,m;)=|1,1) hyperfine channel. The horizontal dashed estP-channel vibrational bound statep s, and aQ-channel vi-
line indicates the direct scattering lengih,=1008, (with a, the brational bound statévg) close to the collision threshold. At the
Bohr radiug, and the vertical dotted line indicates the resonantresonant magnetic fiel8, the coupling between th&-channel
magnetic fieldBy=1007.4 G. The field width is given by\B bound state and the-channel scattering state becomes resonant.
=0.2 G.

cases, the nonresonant description of the background scatt&@nces and Feshbach resonances. We first introduce the
ing process is not correct. This can be seen from a comparf-€shbach resonance with a nonresonant background scatter-
son between the single-resonance Feshbach model and a fli Process—i.e., with a background scattering length on the

coupled-channel calculation over the range of energies ofrder of the range of the interatomic potential. Then we dis-
interest for current experiments, as will be shown in the fol-cuss a single-channsiwave resonance and its relation to the

lowing. poles of the scattering matrix. In case the background scat-
In this paper, we demonstrate how the potential resonandering length is large, this indicates that the open channel is

can be taken into account analytically by properly describingnearly resonant, even without coupling to other channels.

the interplay between the open-channel resonance and tfignen, we investigate the effect of the open-channel reso-

Feshbach resonance. The open-channel resonance is assogince on the Feshbach resonance. We study two different

ated with a pole of the direct part of the scattering matrix. Incases: one with large positive and one with large negative

our approach, we include this open-channel pole in the mulabg_

tichannel Feshbach formalism. The resonance phenomena

discussed here in the context of cold atomic collisions are A. Feshbach resonances

quite general and have been studied before in the context of e |ocation of the vibrational bound states in the inter-

nuclear physics[31], electron-atom collisiong32], and  5.tion potential determines the scattering properties in ultra-

electron-molecule collisiong33]. In previous work the po- old atomic collisions. In a multichannel collision the incom-

tential respnance is indirectly mc_luded in the clg)sed—channeI g channel may be coupled to othespen and closed
subspace; however, the potential resonance is actually 1o

cated in the open-channel subspace. In our approach, t gannels during the collision. A channel is energetically open

distinction between open-channel and closed-channel restt/0S€d when the total energy of the two-atom system is

nances is clearly made, which results in a better understan@P0Ve (below the dissociation threshold energy of the in-

ing of the underlying physics. coming channel. In the Feshbach formalism the total Hilbert

The paper is outlined as follows. In Sec. Il we introduceSPace describing the spatial and spin degrees of freedom is
the basic ideas behind our approach. In Sec. Ill we brieflydivided into two subspaces, indicated Byand Q. Generally,
discuss the theory of Feshbach resonances, based onth® open channels are located #hspace and the closed
projection-operator approach. In Sec. IV we discuss th&hannels inQ space. As a model example, we consider the
properties of potential resonances and explain how the s@ase with only one ope(P) and one closedQ) channel. A
called Mittag-Leffler expansion can be used to account foschematic illustration of the interaction potentials associated
these resonances. The Mittag-Leffler expansion is used iwith these two channels is shown in the left part of Fig. 2.
Sec. V to discuss the interplay between Feshbach resonanc8mce the total energy is above tRethreshold, thisP chan-
and potential resonances. In Sec. VI we give a thorough dismel is automatically the incoming and outgoing channel.
cussion of the results of our model. We compare our model ater on, we also consider the case where the total energy is
with other commonly used approaches in Sec. VII, and conbelow the P threshold. Strictly speaking, the channel is
clusions are drawn in Sec. VIII. then energetically closed and should belong to @eub-
space. However, for convenience we will still use the label-
ing P and Q to distinguish between these two channels.

In this section, we introduce the basic ideas which are In the case of alkali-metal atoms, tfeand Q channels
needed to describe the interplay between potential res@re associated with different spin configurations and have a

II. BASIC IDEAS
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different effective magnetic moment. The energy difference Im (k)
between the channels can be tuned by changing the external
magnetic field. This means that tReandQ potentials can be
shifted relative to each other. The Zeeman energy shift of the ¢ bound state
P-channel andQ-channel thresholds is schematically shown
in the right part of the figure. Also indicated is the energy of
the highestP-channel vibrational bound statep 5, and a
Q-channel vibrational bound stateg) close to theP thresh-

Re(k)
old.
During the collision the atoms are coupled from tRe
channel to theQ channel. The scattering process becomes ‘L
resonant when &-channel bound state is located close to @ virtual state

the P-channel collision threshold, giving rise to a Feshbach
resonance. The unperturb@lchannel bound state is dressed
by the coupling to thé® channel. This dressed state can be
considered as @uasjbound state of the total scattering sys-  FIG. 3. Schematic illustration of the poles of tBenatrix in the
tem. The colliding atoms are temporarily captured in thecomplexk plane. The bound-state pole is located at the positive
(quasjbound state, and after a characteristic time2z/1°,  imaginaryk axis. For a less attractive potential, this pole will move
with T" the decay width of théquas)bound state, they return down the imaginark axis, giving rise to a virtual state.

to the P channel. At the magnetic field valu®,, where the

dressed state crosses tRethreshold, the scattering length the scattering matri%35]. For single-channet-wave colli-
has a singularity. The resulting behavior of the scattering;jons, the poles in the upper half of the compkepane can
length was already shown in Fig. 1. _ . only be located on the imaginakyaxis. Sufficiently close to
The scattering length is related to the zero-energy limit ofne origin (k=0), the poles in the lower half-plane can only
the scattering matrix. In the Feshbach description the energy;e |ocated on the imaginary axis as w@6]. As a result, the
dependent scattering matrix is divided into two parts. Theenergy E=#2k?/2u associated with these poles will be
direct partSj., describes the scattering processes inRhe  gyrictly negative. TheP-channel bound state is related to a
channel,wnlhout cogpllng to theQ channel. The Feshpach pole of S, . on the positive imaginark axis, as indicated in
resonance is described by the resonant§aetThe resulting  Fig 3, If the bound state is located just below threshold, this
total scattering matrixS=S;, .S summarizes the energy pole is located close to the origin.
and field dependence of the scattering process around reso- now imagine that the potential gradually becomes less
nance. _ _ attractive. Then, the bound states will move towards thresh-
The direct part of the scattering process is usually asp|q and the poles of the matrix will move down the imagi-
sumed to be nonresonant. In the treatment by Moe®tifd. 51y k axis. Consequently, the bound-state pole close to the
[34] the direct part of the scattering matrix is descr!bed by 3origin will move towardsk=0, cross the origin when the
single parameter 0“|>5dpirecn(k)=exd_2'k_abg]’ wherekisthe  poynd state is located exactly at threshold, and eventually
relative wave number of the two colliding particles. In the trn into a so-called virtual-state pole on the negative imagi-
caseay, is of order of the range of the potentia), the  nary k axis. The energy associated with this virtual state is
resulting single-resonance Feshbach model accurately surfegative, but there is no proper physical bound state associ-
marizes the scattering process for the energies and magnefiged with this energy. A virtual state can be regarded as a
fields of interest. nearly bound state that behaves much like a real bound state
in the inner region of the interaction potential. Only in the
asymptotic regiorir — «) does the virtual state “discover” it

The direct scattering properties are determined by the logoes not quite fit to the size of the interaction potential, and
cation of the bound states in tifechannel potential. In case the virtual state exponentially explodes.

the P channel has a bound state close to threShC)ld, this chan- The direct part of the Scattering matrix can be divided into

nel is nearly resonant araj is large and positive. This has 3 resonant and a nonresonant pﬁp-ectzgsgsfes The back-

several important implications, which have not been considground part is now related to the true range of the potential,
ered before in the description of Feshbach resonances in cojghjle the resonant part takes the form

atomic collisions. TheP-channel potential resonance intro-

duces a resonance energy dependenc;af, not included _ k+ixk

in the simple description based ag, only. It is not straight- SrZs(k) T k—ik (2)

forward to describe this resonance by means of a projection

formalism analogous to the Feshbach approach, since thghereix is the location of the pole on the imaginakyaxis.

bound state is located in the open channel. Still, it is possiblén the zero-energy limit, the direct part of the scattering ma-

to understand the resonance behavior by studying the polégx is related to the background scattering lengthagg

of the scattering matrix. =a,f,’g+ 1/k. Here af,’g is of orderrg, while the resonant con-
There is a general connection between the resonances attibution of the P channel is given by 14. The important

bound states of a scattering system and the various poles effect of a bound or virtual state near threshold is the intro-

B. Potential resonances
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a P-channel and &-channel bound state. The energy of the bare
bound states is indicated by the horizontal and slanted lines. The FIG. 5. (Color onling Effect of virtual state on Feshbach reso-
energies of the dressed states are indicated by the solid lines. One#nce in®Rb in the|2,-2) hyperfine channel. Shown are the en-
the dressed states crossesfhttreshold aB,. The bareQ-channel  ergy of the unperturbe@-channel bound stat@lotted ling and of
bound state crosses tRethreshold aB,. Note that the energies are the (quasjbound statesolid line) which is “dressed” by the cou-
give relative to theP-channel collision threshol¢horizontal solid ~ Pling to theP channel. Thequasjbound state crosses the collision
line). threshold aBy; the unperturbe@-channel bound state crosses the
collision threshold aB,. Note that the energies are give relative to

duction of a resonance energy dependenCQ)pgcr More the P-channel collision threshol¢thorizontal solid ling.

details will be given in Sec. IV. bound state. Exactly &, thes-wave scattering length goes
through infinity. Note that the binding energy of the dressed
state curves quadratically towards threshold according to the
C. Interplay

_ . _ well-known relation e,i,((B) =-#2/[2ua?(B)]* (B-By)?, as
Now we return to a multichannel collision, with & Fesh- 105 from Eq.(1). At threshold, the slope of the dressed-
bach resonance resulting from coupling @ space and a  giate energy shows a discontinuity resulting from a nonzero
potential resonance associated wRfspace. The total scat- gecay width above threshold. We stress that, although the
tering matrix takes the forn$=S{ S, 52, where the back- pehavior of the dressed states shows some resemblance with
ground part is related to the true range of the potential. In ge yo-level Landau-Zener description, this model does not
multichannel problem, the bound and quasibound states gfic|yde these threshold effects and cannot be used to prop-

the scattering system are related to the poles of the ®tal gy gescribe the interplay between a potential resonance and
matrix. The bound-state poles are located on the positivg Foshbach resonance.

imaginaryk axis, whereas the quasibound-state poles are lo- £, a,, large and negative, there isRrchannel virtual
cated in the lower half of the compléxplane. These poles a0 negr threshold. Examples here &b and®Li. An

are generally not located on the imaginary axis, as they argyample of the energy of the dressed states for this situation
related to complex energiés,—il'/2. HereEr is the energy, s given in Fig. 5. Here the difference with the Landau-Zener
andI" the decay width of the quasibound state. The decay,qqe| is even more striking. The behavior of the dressed-
width is related to the lifetime of the quasibound Feshbachi,ia energies cannot be understood on the basis of an

resonance state. avoided crossing between tiiechannel bound state and the

In Fig. 4, we consider the case where thehannel has a  p_channel threshold. Based on a Landau-Zener approach, the
bound state just below threshold. This means #givill be  yressed state above tRethreshold would be located at the
large and positive, which is the case f6#Cs, for example. yight hand side of the bar@-channel bound state, which
The bare bound states of tReandQ channels are indicated ¢jearly is not the case. The binding energy still curves qua-
by the horizontalvp ma) a@nd slantedwo) lines, respectively.  yratically towards threshold, which it crosses at the magnetic
These bare states are eigenstates in the uncoUped Q  fied B, From the inset it can be seen that the slope of the
subspaces. The bar@-channel bound state crosses thegressed-state energy shows a discontinuity at threshold,
P-channel threshold at the magnetic field valBg The  which is even more distinct than the situation given in Fig. 4.
dressed states are indicated by the solid lines. For larger collision energies, the dressed quasibound state

Below theP threshold, the behavior of the dressed stategurves back to the bai®@-channel bound statg9].
resembles an avoided crossing as described by a two-level In the following we derive an analytical model that de-
Landau-Zener model. In the inset, the behavior of thescribes the interplay between potential resonances and Fesh-
dressed state is shown close to rehannel threshold. At bach resonances. We used this model to obtain Figs. 4 and 5,
B, one of the dressed bound states crosses the collisiomhich are model examples applicable'f3Cs and®Rb, re-
threshold, acquires a decay width, and turns into a quasspectively. In Sec. VI we show that the agreement between
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our model and full coupled-channel calculations is excellenscribes the coupling ofP space toQ space, propagation
for a large domain of energies and magnetic fields, while thehrough © space, and coupling back @ space again.
single-resonance Feshbach model gives poor results in the The resolvent operatdgo can be expanded in terms of
same domain. We compare our model with other approacheke discrete(|¢;)) and continuum(|¢(e))) eigenstates of
in Sec. VILI. Hoo:

ll. FESHBACH RESONANCE THEORY 1 |¢.><¢|I |¢(e))(¢(e)|d6 o
Feshbach resonances in two-body collisions are related to E* HQQ E- f S

the coupling of different spin channels and can be conve-

niently described in an approach due to FeshiacBg. In  Now suppose there is onIy one discrete bound stateRf

this approach the total Hilbert spagedescribing the spatial for which the eigenvalueg is close to the collision enerdy

and spin degrees of freedom is divided into two subsp@tes Of the scattering state. That is, the otf@ichannel bound

and Q. In generalP contains the open channels agithe  states are located sufficiently far away from fe¢hreshold

closed channels. Th® and T matrices, which are related to SO that their contribution can be safely neglected. In this case

the transition probabilities of the scattering process, are sep#l€ can also neglect the continuum expansiorHgf, and

rated in two parts accordingly. THepart describes the direct the problem in theP subspace reduces to

interactions in the open-channel subspace, andQhgart

describes the effect of the coupling to the closed channels. |¢>b><¢>b|

Usually theQ part contains the resonances and Fhpart is

assumed to be nonresonant. We discuss in Sec. IV why in

some cases th® part can introduce resonant features as  Now we can formally solve the coupled problem by mul-

well. In Sec. V we show how these-channel resonances tiPlying from the left with the resolvent operat@pp(E")

can be taken into account analytically. First we discuss thé=[E*~Hppl ™

Feshbach projection formalism in this section.

(E=Hpp)|¥p) = HPQ HQP|‘I'P> (8)

One can construct projection operatdtsand Q, which - |¢b><¢b|
project onto the subspaceB and Q, respectively. The (W)= [Vp) + E*—Hpp Heq E- HQPN’P) )
Schrédinger equation for the two-body collision can then be
written as a set of coupled equations: The scattering statéV) corresponds to the homogeneous
(Evot = Hop)[Wp) = HpQ|‘I’Q> 3) part of the Schrodinger equation projected iftspace and

is an eigensolution oHpp with outgoing spherical wave
boundary conditions. The scattering states are energy nor-

(EtO‘_HQQ)|\PQ>:HQP|\PP>' (4) malized as(W5(E)|VH(E'))=8E-E’), where &E) is the
Here we use the notatiofWp)=P[V), [V,)=Q|¥), Hpp  Dirac delta function.
=PHP, Hpo=PHQ, etc., andE,=E+Ey, is the total en- Before calculating th& and T matrices, we introduce the

ergy of the colliding atoms, witlE the kinetic energy and Lipmann-Schwinger equations fd#%), where the super-
Eu the energy of the open-channel threshold. As alreadgcript + (—) indicates outgoingincoming spherical-wave
mentioned, we are only interested in scattering processd¥undary condition$41]:
with only one open channel. THe channel is then simulta-
neously the incoming and outgoing channel. Also note that £ _ 1
all energies in the following are given with respect to the (W) = |xp) + = __HPPVPP|XP>- (10
open-channel collision threshold.

We multiply Eg.(4) from the left with the resolventor  Here the Hamiltonian irP space is written a#lpp=HS,

Green'y operatorGoo(E") =[E*~Hgol ™ +Vpp, WhereH3, represents the sum of the relative kinetic
energy operator and the two-particle hyperfine-Zeeman inter-
1 : . S ! .
|qu> =— HQP|‘1’P>, (5) actions, andVpp the interatomic interactions, both projected
E"-Hqo onto theP-channel subspace. The unscattered stgtgsare

eigenstates oflS.
The Tp matrix, giving the transition amplitude due to scat-
tering in the’P subspace only, can now be calculated as

whereE*=E+i§ with § approaching zero from positive val-
ues. Substituting the expression fo¥ o) into Eq. (3), the
problem in theP subspace is equivalent to solving the
Schrodinger equatiofE-Hgy)|Wp)=0, where the effective 1
Hamiltonian is given by (xplTelxp) = <XP|VPP|:1 +WVPP:||XP>
~— Hpp
1
Herr = Hpp + Hpo s Hop. (6) = (xp|Vppl¥p). (1)
E"-Hoo

The first term in the effective Hamiltonian describes the di-Introducing the second term in the effective Hamiltonian, Eq.
rect effect of the open-channel subspd@en the scattering (6), according to the two-potential theorefal] the total T
process. The second term in the effective Hamiltonian dematrix is given by
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1 The direct part of th& matrix is related to the direct part
(xelT |xp) = xpl| Vep+ HPQWHQP [Wp) of the scattering length &8(k) =exf-2ika,], and the sec-
QQ . ond term describes the resonant behavior due to coupling to
_ + - Q space. In the limitkk | O this single-resonance expression
= xplVerl V) + <\PP|HPQE+ - HQQHQF"\I’F’)’ for the S matrix gives the dispersive behavior of Ha).
(12) However, the single-resonance approximation has a lim-
ited range of validity. More specifically, it is based on the
where we have used the formal solution fdfp) given by  assumption that the scattering wave functidfy) can be
Eq. (9) together with relatiori10). We see that apart from the approximated by its low-energywave limit, which is pro-
direct term Tp, the transition amplitude contains a term portional tok'? (also known as Wigner’s threshold lawf
which results from the coupling to the closed-channel subthe P channel has a low-energy resonance, such(agsarly)

spaceQ. bound state(with e =-%2«%/2u) close to threshold, this

res
The relation between tr@matrix S(k)=(xp|S|xp) and the  approximation breaks down whé/ e,/ <1 is not satisfied.
T matrix T(k)=(xp|7|xp) is given by the operator equation In the following we show that the assumptions about the
S=1-27i7T. From this equality, together with the expansion trivial energy dependence & (k) andA(E) are not valid in

of the resolventGqq, it follows that theS matrix of the the case th@ channel is nearly resonant. We derive how the

effective problem inP space is given by full energy dependence can be taken into account analyti-
- cally. In Sec. IV we discuss the Mittag-Leffler expansion of
S(k) = Sp(k) - 27 (WplHegl ¢b><¢b|HQP|\I’P>_ (13  the resolvent operatdE*~Hpp] ™ based on Gamow reso-
E- 68 nance states, which takes theBechannel resonances into

account. In Sec. V we derive analytical expressions for the

Here Sp(K)=(W5(E)| W5(E)) is the direct part of theS ma- energy shift and width based on this expansion.

trix, which describes the effect of the scattering procesB in

space only, without coupling to the closed channelsQin

space. IV. OPEN-CHANNEL RESONANCES
We can finally solve fotWp) by multiplying Eq.(9) from

the left with (¢/Hop, which reslts in Without coupling to the closed-channel subspaethe

scattering properties in the open-channel subspacare

_ [ poHop PR governed by the uncoupled Schrédinger equatidh
Sk = SP(k)(l ~ 2 E-2-AE) /)’ (14) —Hpp)|¥p)=0, which has scattering solutiofi¥'r). We as-
sume that the interatomic potential is of finite range; i.e., it

The term can be neglected beyond some radigsand is of the form
1
A(E) = (¢p|Hop——Hpol v (15) [ Vep(r) foro=r <Ry,
FE —Hpp O Vpp(r) = 0 forr=R, (17)

in the denominator is the complex energy shift, which is th
energy difference between the bare bound siate and the
dressedquasjbound state.

Inserting a complete set of eigenstatesHf,, the com-
plex energy shift can be written asA\(E)=A{E)
—(i/2)I'(E). The real partA,.{E) shifts the unperturbed en-

Q . .
ergy &, and the imaginary paif(E) turns the unperturbed coupledP-space scattering solutions. In the low-energy limit

bound state ) into a quasibound state. Note thaE) is  he scattering properties for single-channel problems are de-
purely real for energies below tife threshold(i.e., E<0).  termined by theswave part of the scattering wave function
The energy of the dre_ssed states can be found by solving f%(r)z(r |y%). If there are no low-energy potential reso-
the poles of theS malrix. nances, the scattering lengil, of the uncoupledpp prob-

In the low-energy doma_un itis usually assumed that the1em encapsulates the direct part of the scattering process in
real part of the energy shift can be taken as approxmatelyhe low-energy domain

constant, Afes(E):Aae%(E:O)' T.he energy Wid?h ,F(E) However, if Hop possesses a low-energy potential reso-
=2m|(p|HopWp(E))|* is proportional tok in the limit for - pance  this is not true in general. TBe matrix contains a
kO, Whlch is a consequence of the survivigg/ave part of  resonant feature and becomes strongly energy dependent
the scattering wave function. Therefore it is usually assumegegr the collision threshold. The direct part of Benatrix

that F(E)zZCK with C a constant that charactgrizes the takes the forrTSp=S§gS',°es where the background part of the
coupling strength betweeR and Q [34]. The resulting ex- s matrix, described” byS);=exd-2ikaf,], summarizes the
pression for thes matrix, effect of theP-channel potential on the scattering solutions,

®The potentials used in the description of weakly interacting
cold alkali gases have the asymptotic fowftr) ~—Cg/r®. If
we take R, such thatV(R,) is small compared to the
asymptotic kinetic energ¥, the finite-range approximation
can be applied, retaining high accurdé?].

The direct part of theS matrix is determined by the un-

2iCk excludingthe resonant part. The resonant part is described by
S(k) = Sp(k)<1 TE- QB A+ iCk)’ (16) <. Note that we added a superscriptto distinguish the
b res P-channel resonance from the Feshbach resonance, which is
will be referred to as theingle-resonancepproximation. induced by coupling to th® channel.
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The resonances and bound states of Rhehannel inter- Im(k) Im(E)
action potential correspond to the polesSaf More specifi-
cally, the energy dependence of the resonant §agis de-
termined by the analytical properties of tffe-channel Jost bound
function F(k) [44]. The Jost function is related to tH& Re) state Re(B)
matrix asSp(k) = F(-k)/ F(k), and the zeros of the Jost func- o ¢

s bound state

tion correspond to the poles of I8 matrix. . ::izal
The Jost functioF(K) is an entire function irk for finite- p virtual state
range potentials. In the general case, the zerd5(kf in the
u_p_per.half—plane are only located at the imaginkagaxis, are @ ®)
finite in number, and correspond to the bound state® in
space. Note that sinde<0 in this case, th@ subspace is in FIG. 6. Schematic illustration of the movement of the poles of

fact also energetically closed. There is a countable, infinitéhe S matrix in the complex plane(a) and the two-sheeted com-
number of zeros ofF(k) in the lower half-plane. The poles PlexE plane(b). The solidE axes correspond to the firgir physi-
located in the third and fourth quadrants correspond to th&2) Riemann sheet, while the dashédaxes correspond to the
resonances associated with a nonzero angular momentum gfcondor nonphysical Riemann sheet. Both sheets have a branch-
the colliding particles and are located symmetrically with €Ut discontinuity on the real axis running from O ta The two
respect to the imaginark axis. The poles located at the Riemann sheets are connected by the positive real axis, where

S . . T CI{n(k):o. Initially, the pole is located at the positive imagindey
negative imaginary axis are finite in number and correspon

. . axis, which corresponds to a bound-state pole on the negative real
to the_s-wave Vlrtua_l states. Labeling the zeroskpythe Jost axis on the first Riemann sheet. If the interaction potential effec-
function can be written as the prodyet4]

tively gets less attractive, the pole moves towakd®), at some
point crosses the origin, and turns into a virtual-state pole at the
* k negative imaginark axis. This corresponds to a virtual-state pole at
Fk) = H (1 - k—)h(k), (18) the negative redE axis on the second Riemann sheet.
n=1 n
A. Virtual states

whereh(k) is a smooth function related to the range of the
potentialr,. This expression is normalized such that it repro-  If the potentialV effectively gets less attractive, the bound
duces the correct behavior near threshofgk) — 1, for k. states of the potential will move towards the collision thresh-
—0. Note that the physical parametgrshould not be con- old. At some point the highest bound state will cross the
fused with the cutoff radiu®,, and typicallyr,<R,. collision threshold and turn into a virtual state in the case of

From the relatiorE=%2k?/ 2 it follows that the mapping Swave collisions. The corresponding transition of a bound-
from k to E is two to one. As a result the single-valued State pole into a virtual-state pole is schematically illustrated
functions ofk, such as the Jost function and tBamatrix, in Flg 6. A virtual state behaves much like a bound state in
will be double-valued functions of the Comp|ex energy the inner region of the potential, but it is not a proper bound
However, we can map the upper and lower halves of thétate as it behaves asymptotically @s". The important
complexk plane to two different complex energy planes. Theeffect of a low-energy virtual state is that it introduces a
upper halffim(k)>0] is mapped onto the so-called physical resonance feature in ti& matrix.
(or first) sheet, whereas the lower hélin(k) <0] is mapped In Sec. VI we calculate the position of the poles of Se
onto the nonphysicalor second sheet. If we consider the ~ Matrix in the case of**Rb and find a virtual state at
plane as a two-sheeted Riemann surfat®, the aforemen-  €vinva/ Ks=—6.45uK. This is close to threshold, since the
tioned functions are single-valued functions of the endgy tyPical energies in current experimental setups are of the
Both sheets have a branch-cut discontinuity on the real axigrder of microkelvins. We discuss how this virtual state can
running from O toe. The two Riemann sheets are con- P€ accounted for in the following. The zero of the Jost func-
nected by the positive re&@ axis, where Ink)=0. tion associated with the virtual state is labeled bk

The bound states and resonances of a scattering systéﬁl."efeKvs is a positive constant. Furthermqre, all other poles
correspond to the poles &K). If we consider the scattering ©f the Se matrix are located far from the origkw=0, and the
matrix as a function of the collision energy, which we will contribution of these distant poles to thg matrix is sum-
loosely write asS(E), there is a similar relation between the Marized by a smooth functiog(k). The Jost function can
poles ofS(E) on the two Riemann sheets and the bound andnen be written as
resonance states of a scattering system. The bound states
correspond to the poles &E) at the negative redt axis on
the physical(or first) Riemann. sheet.. The# 0 resonances FK) = <1 +.L)g(k). (19)
correspond to the poles &E) in the first and fourth quad-
rants of the complek plane on the nonphysicébr secondgl
Riemann sheet. The-wave virtual states correspond to the
poles of S(E) at the negative redt axis on the nonphysical For realk it follows that the direct part of th& matrix is
Riemann sheet. given by

Kys
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1.0 T Comparing the virtual-state expression fé{k) with the
numerical results, the agreement is excellent. If we compare
0.8 J the numerical results with the contact potential expression, it
is immediately seen that this expression already starts to de-
et viate significantly at a few microkelvin. This indicates that
0.6 1 the scattering length parameter only does not fully encapsu-
late the energy dependence of the scattering physics, and the
% 0.4 | P-channel resonance should be taken into account explicitly.
0.2 . B. Mittag-Leffle series
The S matrix, T matrix, and the resolventor Green’s
0.0 . operatorGpp(E) =[E-Hpp]™* have their poles in common
0 10 50 30 [47]. This suggests it is possible to expand the resolvent in a
E (uK) Mittag-Leffler serieq44], where the resolvent is written as a

sum over the different pole contributions. The corresponding
FIG. 7. Scattering phas&k) for 8Rb in the|f,m;)=|2,-2 spin  residues are related to the bound and resonance states, which
channel. The black dots represent the numerical results. The solidre eigensolutions dfipp. The scattering and transition ma-
line is obtained from Eq21). The dashed line is obtained from the trix can then be written as a sum over the pole contributions
contact potential approximatiod(k) = -arctafika,y]. The scattering  as well.
length of 8Rb in this channel isy,=-443, in agreement with Eigensolutions associated with poles of the scattering ma-
coupled-channel calculations. The background scattering length igix were first introduced by Gamow in his theoretical de-
apg=*11%, and the virtual state is located kf=-ixs=-1.78  scription of « decay[48]. In the case ok-wave scattering,
X 107%[1/a], which corresponds to the term -44=-562 in  the Gamow functiorf,(r)=(r | Q) associated with the pole
the expression foapg k, of the scattering matrix is defined as the solution to the
radial Schrédinger equation that satisfies the boundary con-
Sk = e_ZiKang Kys ™~ k, (20 ditions
i kyst K

{Qn<r>|r:o:o, o

where the background factor e[x;?ikag'g] summarizes the %Qn(r)“:R:ikngn(r)h:R-
effect of all the nonresonant poles of tBg matrix. _ ) o
The scattering phasé(k) is related to theS, matrix as ~ 1he radiusR has to be chosen such that-Ry; i.e., it is
So(k)=exg2i k)] and is evaluated as apphed in the_ asymptotically fre@/=0) region of the inter-
action potential.
_ P The Gamow states behave asymptotically Qs(r)
a(k) = —kagy + arctar{K—vj . (21) cexfdikyr]. For the bound-state pol&s=i«,, with «, a posi-
. ) tive constant, the Gamow states are just ¢heperly nor-
The background part is related to the phasey@§ and is  malizeg bound-state wave functions. However, for the poles
linear ink in the low-energy limif46]. The resonant part is with Im(k,) <0 the Gamow states exponentially diverge.
related to the pole at=—ix, and causes a “bump” in the pye to this exponential divergence, the Gamow states do not
scattering phase at low energies. Moreover, if the virtualtorm an orthonormal basis for the subspace. Defining a
state pole gets closer to threshdld,s— 0), the scattering qyual set of Gamow states 2=, the Gamow states do
lengtha,g=apg— 1/« will become more and more negative. form a biorthogonal set in the sense tHEI®| Q)= 8,y
Tp _show_that this virtual state hgs to be taken int_o accounfyere 5. is the Kronecker delta, and the inner product is
explicitly, Fig. 7 shows the scattering phase fRb in the  (efined by means of analytic continuationkiof the proper
|f,m)=[2,-2) P channel, without coupling to th@ chan- . state eigensolutions to the resonance poles in the

nels. The black dots represent the numerical results, whicly er half of the complex plane[49,50. The normalization
are obtained by solving the Schrédinger equation using thegnqition takes the form ’

proper physical and state-of-the-art rubidium potentials. The
solid line is obtained from the virtual-state expression, and D R, i
the dashed line is obtained from the usual contact potential (] :f Qr(rdr + Eﬂn(R) =1 (23

. . . 0 n
approximationd(k) = -arctafika,g] [35]. Let us stress again
that Fig. 7 shows the scattering phase forkhehannel only, Note that, as beforéR has to be chosen such tHRt R, in
and the coupling to th€ channel has been excluded from which case the normalization condition does not actually de-
this calculation. For this particular channel,;=-443, pend on the precise choice Bf
[14]. The virtual state contributes to the scattering length as The Gamow staté),)) is an eigenstate dfipp and has an
-1/kys=—5628, andagg:+11930 is now of the order of the  eigenvaluek,. The dual staté(P) is an eigenstate ofl)p
potential range,. More details about the numerical calcula- with the eigenvalud,. This can be written in Dirac notation
tion can be found in Sec. VI. as
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Hppl Q) = Eq|Q0), dent as well. It then follows that the energy dependence of
A(E) is fully determined by the denominator in ER7),
(QP|Hpp=E(QP| (24y  Which is proportional to 1(k—kys).
n ni-

As the numerator of Eq.27) is a real constant anki,s=
From these last expressions it is immediately seen that thejx,  we can write the complex energy shift as
HamiltonianHpp is diagonal with respect to the biorthogonal
set of Gamow functions. The matrix elementsf, can be
evaluated a$QP|Hpp|/ Q) =Ep Sy

Using the Gamow resonance states, the resolvent operator

[E-Hpp] ™! can be expanded as a sum over eigenstates ass¢here A,s=—(¢p|Hopl 0, (Q0IHpgl 1) is a positive con-
ciated with poles of the scattering matrix. This type of ex-stant. The extra minus sign in this constant shows up for
pansion is known as the Mittag-Leffler expansion. The propA/il’tua| states due to the normalization condition of the
erties of the Mittag-Leffler expansion in terms of the GamowGamow states.
resonance states have been extensively studied in the litera- For real and positivé (or, equivalently, for real and posi-
ture; see, e.g., Ref$50-53. We will therefore not give a tive E on the physical Riemann shgete can multiply the
derivation of the Mittag-Leffler expansion, but refer the numerator and denominator witk—ix,s) and take the real
reader to the literature. We here just give the Mittag-Lefflerand imaginary parts oA(E):
expansion of the resolvent operator:

—iAvs

AB) = 2kys(K + i Kyg) ,

(28)

1
~ A
1 * |Qn><QD| AredE) = > 2 25 ) (29
= 2 n , (25) k®+ Kys
E-Hpp no1 2Kn(k—ky)
wheren runs over all poles of th& matrix. For notational T'(E) = Av—sk (30)
convenience, we have used units such #irmPu=1 so that Kys(K2 + K\Z,S)

k corresponds to the energy Bsk?. Note thatE can be any ) o ) ) )
complex energy in Eq25) in principle. In Sec. V we discuss Fork=ik on the positive imaginary axigr, equivalently, for
how the Mittag-Leffler expansion can be used to find the'¢@l and negativ& on the physical Riemann shg¢he en-

energy dependence &{E) analytically. ergy shift is real valued and given as
_1
V. INTERPLAY BETWEEN FESHBACH RESONANCES AdE) = #AVS (31
AND POTENTIAL RESONANCES Kys(K + Kyo)
Inserting the Mittag-Leffler series, E¢25), in the com- The energies of the dressed states are given by the poles
o (BolHopl QX QRIHpol 1) (k+iky)[E -~ €(B) - AE)]=0. (32)
AE) =2 (26) . .
=1 2Kq(k=kKp) We see that in the presence of a virtual-state pole close to

.threshold, the denominator df,.{E) gets close to zero for

The complex energy shift of the unperturbed b_oun_d state M o. Therefore, the energy of the dressed molecular Fesh-
B e e o o s, .o (E).arongl depends on e enery
P g ‘ E close to threshold. For positive energies, the energy shift

expression for th? complex energy .‘c’h'ﬁ derived here'ls th%re;E) and widthI'(E), related to the quasibound Feshbach
most important difference with previous work on the inter-
state, depend strongly on the energy as well.

play between single-channel and multichannel resonances. In order to aive an rate description of the dr q
We now illustrate the impact of a virtual state close to the (quas;)boﬁn dongheb;ch iigtjeaitetur?g:oﬁt (t)ha'?in tﬁe czizeof
collision threshold on the coupling between the spin chang5Rb the influence of the higheSt-channel bound state on

nelsP and Q. The full S matrix has the forn8=5 §.S%, : : :
. . ' the energy shift and width should be taken into account as
and the poles of thi§ matrix correspond to the energies of well (see Sec. Vil As can be seen in Fig. 10, below, this

the dressedquasjbound states. In Sec. IV we already men-
tioned that in the case 8PRb there is a virtual state close to P-channel'bound sta_te and t@qhannel bound state ha\{e a
threshold. We assume that this pole is dominant, and thgroad avoided crossing. In _th_e inset, the effect of the virtual
effect of all other poles of th® channel can be summarized State close to threshold is visible. Howeve_r, on a larger scale
by a background term. The energy shift due to coupling theﬁt is clear that thgquasj)bound state has still not converged
takes the form to the bareQ—state energy. _ o _
The expressions for the energy shift and width including
(| Hopl (v Hpgl o) both pole contributions are given in the following. The pole
A(E) = Dleo(k — ko) . (27) associated with the higheBtchannel bound state is denoted
Ve v by kps=ikps For real and positivé (or, equivalently, for real
The basid(),)) is energy independent, as is tQechannel and positiveE on the physical Riemann shgete take the
bound statéy,). The couplingHpg= ng is energy indepen- real and imaginary parts &(E):
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1 1 10
= 5As EAbs ' '
AedE) = =2
res( ) k2 + Kss k2 + Kgs, (33)
5 E
Ak ApK
I'(E) = S+ > o (34)
Kys(K + Kvs) Kpg(K™+ Kbs) 0
Here A, is a positive constant related to the coupling of the
P-channel bound state to th@-channel bound state. Fér
=ik on the positive imaginary axi®r, equivalently, for real -5 ]
and negativeE on the physical Riemann shgehe energy
shift operator is real valued and given as
-10 : r
1 1 -30 -20 -10 0
~ A oA
AedE) = 22—y 222 (35 E on 2" Riemann sheet (K)

Kys(K + Kys)  Kpd K + Kpg) '

The constantg,s and A, can be found from the input of FIG. 8. S, matrix for negative energies on the nonphysical Rie-
coupled-channel calculations or, equivalently, from measureMann sheet fofRb in the[2,-2 hyperfine channel. The pole of
ment(see Sec. VJl Note that the contribution of the virtual theSe matrix on this sheet is located)ia/ks=-6.45 uK.
state to the energy shift is negative valued and the contribu-
tion of the proper bound state is positive valued. Let us stress d8(E,B) Au™I(E)/2
that there are no free parameters in this model. The model is B = [€(B) + A, {E) - EP +[T(E)/2]2 (36)
fully characterized by only a few parameters, which are de- b e
termined by physical quantities directly related to the trueHere A/Lmag is the relative magnetic moment of the bare
interaction potentials. These parameters can be extracted.channel bound state with respect to fiehannel thresh-
from numerical coupled-channel calculations or directlyold. This derivative function is the well-known Lorentz
from experimental measurements. More details are given igurve. The center of the Lorentz curve is given by the con-
Sec. VI. dition E=e€Q(B)+A,{E), which determines the location of

the dressed quasibound Feshbach state. The energy width of
VI. NUMERICAL METHOD AND RESULTS this state equals the width of the Lorentz curve. We can thus
calculate the position and width of the quasibound Feshbach

The numerical results in this section are based orstate as a function of the collision energy.
coupled-channel calculatiofiS4] for rubidium, based on the For negative energies with respect to tiechannel
most recent knowledge of the interaction potent[d4,26.  threshold, the coupled-channel Schrédinger equation is inte-
These calculations take the coupling between the relevajrated outward, starting in the inner region of the interaction
spin channels into account; i.e?, and Q are coupled. In  potential to some matching rading. The Schrédinger equa-
order to find the physical properties of the open channel onlytion is also integrated inward from somg,, to the matching
we “turn off” the coupling betwee® andQ. This allows us  radiusr,, The boundary conditions af,,, are such that the
to calculate the single-channg matrix and find its poles solution asymptotically vanishes and is physically accept-
and the background scattering length. In order to find thexble. If the two solutions obtained in this way are linearly
other model parameters, we perform a calculation where thgependent, the corresponding energy is an eigenenergy. At
coupling betweerP and Q is again taken into account. In this energy, the full coupled potential has a bound state. This
principle, only two data points are needed to determine thealculation is repeated as a function of magnetic field and

constantsA s and Ay thus gives the field-dependent position of the dressed mo-
In Fig. 8 theS; matrix is shown for negative energies on |ecular Feshbach state.
the nonphysical Riemann sheet—i.e.,(kn<0, for ®*Rb in The energy width of the dressed quasibound Feshbach

the [2,-2) hyperfine channel. The pole of ti& matrix on  state as calculated with a coupled-channel method is shown
this sheet is located af;y,q/kg=-6.45uK. This indicates in Fig. 9(black dot3. The dotted line shows the energy width
that theP-channel interaction potential has a virtual state ataccording to our model, where only tHe-channel virtual
this energy. The phase of ti8 matrix for positive energies state is taken into account. The constaptis determined by
(on the physical shegtvas already shown in Fig. 7. comparing Eq(30) with a single low-energy data point. We

In order to compare the results of our model with thesee that for low energies the virtual-state expression and the
numerical coupled-channel calculation, we perform a fullcoupled-channel data agree very well. However, for energies
calculation over a large energy and magnetic field rangearger than roughly 1K, the virtual-state expression starts
around threshold and resonance. For positive energies witfo deviate.
respect to theP-channel threshold, the scattering phase The solid line shows the energy width according to our
4(E,B) is calculated. At each energy value the derivative ofmodel, taking the highest bound state of fa€hannel into
&(E,B) with respect tdB is calculated. According to E@14)  account as well. The energy width is now accurately de-
the derivative is given by the following expression: scribed by our model for a large energy domain. We obtain
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FIG. 9. Energy width of the dressed quasibound Feshbach state F|G. 11.(Color onling Same as in Fig. 10, but now for energies
for 8Rb in the|2,-2) hyperfine channel. The dotted line shows the closer to theP-channel threshold.
energy width according to Eq30), where only the virtual state,
with k,s=2.54x 10°% K12 is taken into account, ané,=1.94
X 1078 K2. The solid line shows the energy width according to Eq.

(34), where the highest bound state of tAehannel is included as in closer to theP-channel threshold. .
well, with xp=0.103 KV2. In this case,A,=1.92x 10¢ K2 and The unperturbedor barg bound state in th&-channel

Ap=1.26% 105 K2, subspace is dressed by the coupling to Brehannel sub-
° space. This induces an avoided crossing with the highest
. P-channel bound state. The avoided crossing is broad in the
;he two parameter,s andAps from a fit of EQ.(34) 0 W0 gonge that, even though the unperturtiedhannel bound
ata points. state is located at roughlg,,.nd ks =—-10 mK, close to the

We now in_sert these parameters into the expressions fcH’—channel threshold the dressed state still has not converged
the energy shifi\ .{E) to describe the energy of the dressedtO the bareQ-channel bound state.

(quasjbound Feshbach state. The result is shown in Fig. 10, The p_channel virtual state is not located at the physical
where the black dots indicate the coupled-channel results a’lgnergy sheet, and there is no avoided crossing of the usual
kind between the dressd&@-channel(quasjbound state and

the virtual state. However, the virtual state is located close to
the collision threshold and induces a strong threshold effect.
This threshold effect dominates the behavior of the molecu-
lar binding energy near the collision threshold and has to be
taken into account explicitly. In our model we take the rel-
evantP-channel bound and/or virtual states into account ana-
lytically. From these figures it is immediately seen that our
model agrees perfectly with full coupled-channel calcula-
tions for a very large energy domain. The binding energy of
the dressed molecular state that has been measured in Refs.
[13,14 is described analytically with high precision.

the solid line is obtained from our model. In Fig. 11 we zoom

VIl. OTHER APPROACHES

In this section, we compare our model with some other
approaches commonly used in the description of Feshbach
resonances. A model which is conveniently used in many-
204 body theories is the contact potent{@r zero-range poten-

200 250 tial). In this approach the real interaction potentials are re-
placed bys functions or pseudopotentials, proportional to the
s-wave scattering lengtl. In the vicinity of a Feshbach

FIG. 10. (Color onling Energy of the dressedquasjbound resonance _the dispersive formula, Ef), is used. The scat-
Feshbach state. The black dots indicate the coupled-channel da{g.”ng matrix takes the forrfa4]

The thick solid line indicates the energy according to our model. 1 -ika(B)

The thin solid line is the energy of the unperturb@dchannel SK)y=—7——.

bound state, which around threshold is given by the linear expres- 1 +ika(B)
sion  e3(B)=Au™94B-By), with AuM™9=-1.75<x104K/G=  The molecular binding energy is determined by the pole of
-3.64 MHz/G andB,=160.1G. Sk) and is given ase,,q=-%2/[2ua?(B)]. In Fig. 12 we

B (G)

(37
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field-dependent effective range model agrees reasonably well
with the coupled-channel binding energy for magnetic fields
close toB,, it breaks down for fields larger thaB~ 164 G
and cannot be applied further away from threshold.

Summarizing, the contact model, single-resonance Fesh-
bach model, and effective range model are low-energy ap-
proximations of the exact scattering matrix. These ap-
proaches give reasonable agreement with the coupled-
channel molecular binding energy close to the resonant
magnetic fieldB,, but for energies further away from thresh-
old these descriptions give poor agreement.

Our model has several important advantages compared to
: the models discussed here. First of all, our model is directly
155 160 based on the underlying physics of the interplay between

B(G) potential and Feshbach resonances. The contact potential

model is based on the assumption that the scattering phase
can be replaced by its low-energy limit,do(k)=
—arctaka(B)]. As we have seen, the potential resonance and
line), the effective range modgtlashed ling and our virtualstate Feshbach resonance |ntr0dUce add_ltlonal energy dependence
model(solid line). Although for the magnetic fields shown the ef- of the scatterm_g phase shift. The smg_le-_resonance F_eshl_)ach
fective range model and our model give comparable results, ou'mOdel WO_Uld give an adequate description for the, situation
model gives an analytical expression for the binding energy. This i¥Vheréayq is on the order of the range of the potential. How-
not the case for the effective range model, where afield-depende@Ver, Whenay, is large compared to this range, this model
parametery(B) has to be taken into account that has to be calcureaks down as well. The effective range approach gives a
lated numerically. better description of the binding energy compared to the two
previous models. However, it still breaks down at some
point, and moreover, it does not give much physical insight
into the mechanism behind the additional energy dependence

the resonance magnetic fieB}, the contact model binding of various cold-cqllision properties. Another clear disadvan-
energy agrees quite well with the coupled-channel bindindﬁ‘fj‘ge of the effectl\_/e range approgch is that we hav_e to cal-
energy. Further away from the resonance, the contact mod p!atero(B) numerically as a function of the magnetic .f|el'd
energy starts to deviate significantly from the exact binding'Sind & coupled-channel method. In our model the binding
energy. energy is given by_ a_S|mpIe analytical fo_rmL_JIa, which gives

In Eq. (16) the Smatrix for the single-resonance Feshbach@n €xcellent description even for magnetic fields far friggmn
model is given. The pole of this matrix gives the energies and energies of the order of millikelvin. Our model is fully
of the dressedquasjbound state. This energy is indicated by characterized by only a few parameters, which can be ex-
the dash-dotted line in Fig. 12. It can be clearly seen, glracted from coupled-channel calculations or directly from
expected, that the single-resonance model fails already rel§€asurements.
tively close to threshold.

Another commonly used model originates from the effec-
tive range approach. In the contact model the scatterimt;
phase 8(k) is approximated asi(k)=-arctaka], but this 0
approximation already breaks down at low energies. In th
effective range model a second term is included to describ
S(k) further away from the collision threshold. The scattering

-504

E (uK)
E (MHz)

-1004

FIG. 12. (Color onling Comparison of coupled-channel calcu-
lations of the binding energgblack dot3 with the contact model
(dotted ling, the single-resonance Feshbach mog@kish-dotted

compare the resulting binding energyotted ling with the
coupled-channel resultblack dot$. It is clear that close to

Two resonances inQ space

Another approach that has been proposed in & is

use a double-resonance parametrization of the scattering
énatrix within the Feshbach projection formalism. The sec-
nd resonance introduced should account for the influence of
e potential resonance on the properties of the Feshbach

matrix is given as resonance. _— .
The Feshbach projection formalism can be used to de-
- 1/a(B) + ro(B)k?/2 +ik scribe potential resonances, albeit in a rather indirect manner.
S(k) = — 1/a(B) + ro(B)K2 —ik’ (38 In a paper by Domckg33], the Feshbach projection-operator
0

approach is used to describe potential resonances in scatter-
wherery(B) is the effective range parametg4]. The mo- ing systems. The projector onto the resonance states is de-

lecular binding energy can again be found by solving fined asQ=21_y|#n)(¢n|, where the set of functionr | ¢y}
is an arbitrary orthonormal set of square-integrable func-
_1 + lro(B)kZ —ik=0 (39) tipns. The formal requirement on the projection oper&las
aB) 2 given as
and is shown in Fig. 12dashed ling We determined y(B) (r|Qlepy — O for anyfe). (40)
r—oo

anda(B) simultaneously from a coupled-channel calculation,
by fitting to the scattering phase for two different energyThe formalism leads to a decomposition of the scattering
values, for several values of the magnetic field. Although thematrix into a resonant and a nonresonant part, where the
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resonances are all containeddhspace ifN is chosen large —¢,—A,—the two approaches are equivalent if the following
enough. The choice of the states,) to be used is arbitrary, relations are satisfied:

however, and the correspondence between these states and A

the real resonance statémich as the Gamow stajes not o (44)
ors . VSy
clear. More specifically, the Gamow states in general do not G,
satisfy relation(40) and cannot be used to construct an op-
erator onto the real resonance states within this formalism. Ap
However, as Domcke argues, increasing the number of Cbz—K—. (45)
VS

states used in the project@ by 1 seems to remove exactly
one resonance pole from the background part of the scattefFhese relations show how the double-resonance parameters
ing matrix. One could therefore hope that adding an approare related to the position of the virtual statkescribed by
priate bound stathp;), the virtual-state resonance due to the ,s) and the zero-energy shift of the dressed Feshbach reso-
Gamow resonance stgd@, ) can be indirectly included in  nance stateA,=A{E=0). Note that the energf always
the Q subspace. This is the approach followed in RBf],  has to be negligible compared tg+A,; otherwise, the
in order to account for the interplay between a Feshbaclklouble-resonancg matrix will introduce a nonphysical en-
resonance and a potential resonancélin collisions. We  ergy dependence in the scattering phase shift.
will refer to this as the double-resonance approach. The double-resonance model does give an equivalent de-
Although the bound state introduced to account for thescription of the scattering process and can be used to param-
second resonance is not clearly linked to thehannel vir-  etrize the scattering matrix and/or scattering length. The link
tual state that gives rise to the potential resonance, thbetween the properties of the open-channel resonance and
double-resonance approach is mathematically equivalent tdve second resonance introduced in the double-resonance
our model under some constraints. We will show this in themodel is not really clear. Our model has the important ad-
following. vantage that it is directly related to the underlying physics
Introducing twoQ-channel bound statdg;), one to ac-  giving rise to theP-channel resonance.
count for the Feshbach resonar{ceb) and one to account
for the virtual-state resonandé=v), the direct part of the
scattering matrix does not contain a resonant feature any-
more and takes the for®, =ex{-2ikag ], whereaf is on In this paper, we have derived an analytical model that
the order of the range of the interaction potential. Te describes the cold-collision properties of two interacting par-
subspace contains the two resonances introduced above, aticles near a Feshbach resonance with large background scat-
the total scattering matrix takes the fof&b] tering length. The large background scattering length results
) from an open-channel resonance near threshold, and this
W= (1 _ 2k(CpA, + C Ap) ) (41y  resonance has to be treated explicitly. The open-channel scat-
9 ApA, +ik(CyA, + C Ap) tering is included in the Feshbach theory of resonances via a
. . o contribution from its poles of th& matrix and its nonreso-
HereA;=E~€?-A, is the detuning of the dressed stateith  nant open-channel background scattering length. Here the
energye?+A,. The decay width of the dressed state given  |atter corresponds to the true range of the potential. As an
by I'i=2Cik. Note that the energy shift of both resonanceexample, we study th®,=155 G Feshbach resonance of
states is approximately constant, and the decay width scalésRp, and we show that our model compares excellently with
W|th k according to the Wigner threshold IaW. Th|S iS a directnumerica| Coup|ed_channe| Calcu|ati0ns in a |arge range of
consequence of the removal of the low-energy resonancgnergies around threshold.
from the direct channel by including the stéi) into the Q Our model offers a simple physical picture for the under-
subspace. standing of threshold effects around resonance. It explains
The poles of the scattering matrix determine feem-  how the energy shift between the dressepiasjbound
plex) energy of the dressed resonance states. In the doublgeshbach state and the bare molecular state can be found. In
resonance approach these poles are determined by the cqRe literature, several other models have been proposed to
dition describe the formation ofguasibouny molecules(see, for
. instance,[11,12,56,57). We discuss in the following how
ApA, +Tk(CpA, + CyAp) =0. (42 5ur model compares to some other models.
Several ideas have been proposed to describe the forma-
tion of (quasiboung molecules. In some descriptiorisf.
(k+iK,d(E- el —-A(E) =0, (43 [11,12,56) the threshold angbare molecular states are re-
garded as a two-level system, with an effective coupling that
if we only take theP-channel virtual state and tl@@-channel accounts for the coupling between the open and closed chan-
bound state into account. In other words, we neglect theels. This results in a Landau-Zener crossing between the
avoided crossing with the highest-channel bound state. threshold state and the molecular state. As can be seen from
Under the constraint that the dressed bound state that r&ig. 5, a Landau-Zener crossing does not correctly describe
moves the potential resonance from the direct channel bthe dressed molecular state in case the open channel has a
located far away from the collision threshold—i.&\, = virtual state near threshold. The difference is striking, since

VIIl. CONCLUSIONS

In our model the poles are determined by the condition
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the quasibound state in the continuum starts from thresholdound Feshbach state in the free-atom case. In the situation
at By (wherea is infinity) and then curves towards the bare of a virtual state in the open channétf. Fig. 5), the
Feshbach state. In the Landau-Zener model the quasibourgiasibound-state energy changes its slope in a region close
state curves towards threshold at the other side of the barg threshold. The avoided crossings between bare trap levels
Feshbach state. In case there is a real bound state in the opgid quasibound Feshbach state should therefore follow this
channel, the behavior of the dressed quasibound state agehavior.
pears to be qu_alitatively in agreement with the Landau-_Zener The interplay between an open-channel resonance and a
crossing(cf. Fig. 4. However, this is only the case since peghpach resonance is usually not taken into account in the
there is a real avoided crossing below threshold between thg, cription of resonance many-body systei®8-69. The
Ff?shbach .Stf‘te. anﬁ the open-channel bound St?te' .Thr:shg n channel will have an important effect in a regime where
Eaﬁggu(-vzlzlr?e? é?otss?nénse)t are not accounted for in the the energies of the system are of the order of or larger than
VS the energy of the open-channel virtual state. A clear example
In other descriptiongcf. [57]) the energy levels of an where this effect is visible is the Ramsey-fringe experiment

interacting pair of atoms in a harmonic trap are calculatedwirlih 85RD [13,14, where the range of binding energies is so

Here the lowest state behaves as the Feshbach bound statq N that the bound stat b v d bed b
the free-particle case farsmall and positive and connects to arge that Ine bound state cannot be properly described by a
the lowest harmonic oscillator state faismall and negative. single-resonance model.

All other trap states start on one side of the reson&ace0)

in a particular trap state and are connected on the other side

of the resonancé&a < 0) to a trap state+1. There is a strong ACKNOWLEDGMENTS
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