
Feshbach resonances with large background scattering length: Interplay
with open-channel resonances

B. Marcelis,1 E. G. M. van Kempen,1 B. J. Verhaar,1 and S. J. J. M. F. Kokkelmans1,2

1Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2Laboratoire Kastler Brossel, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris 05, France

(Received 10 February 2004; published 1 July 2004)

Feshbach resonances are commonly described by a single-resonance Feshbach model, and open-channel
resonances are not taken into account explicitly. However, an open-channel resonance near threshold limits the
range of validity of this model. Such a situation exists when the background scattering length is much larger
than the range of the interatomic potential. The open-channel resonance introduces strong threshold effects not
included in the single-resonance description. We derive an easy-to-use analytical model that takes into account
both the Feshbach resonance and the open-channel resonance. We apply our model to85Rb, which has a large
background scattering length, and show that the agreement with coupled-channel calculations is excellent. The
model can be readily applied to other atomic systems with a large background scattering length, such as6Li
and 133Cs. Our approach provides full insight into the underlying physics of the interplay between open-
channel(or potential) resonances and Feshbach resonances.
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I. INTRODUCTION

A magnetically induced Feshbach resonance[1,2] is an
indispensable tool to control the atom-atom interaction in
ultracold gases. By simply changing the magnetic field
around resonance, thes-wave scattering length, which is a
measure of the strength of the interactions, can be given
basically any value. Exactly on resonance, the scattering
length is infinite, and its value is therefore much larger than
any other length scale that characterizes the atomic gas sys-
tem. This means that the scattering length effectively drops
out of the physical problem. For very low temperatures and
on resonance, universal behavior has been predicted[3,4].
For higher temperatures or for situations further away from
resonance, knowledge about the correct energy dependence
of the scattering phase shift will be needed to account for an
accurate description of a resonant two-body interaction[5,6].

Crossing the Feshbach resonance, the scattering lengtha
goes from positive to negative values through infinity, and
the effective interaction changes accordingly from repulsive
sa.0d to attractivesa,0d. Using two atomic-spin states of
a fermionic gas, it is possible to study the crossover region
between a BCS superfluid and a Bose-Einstein condensate
(BEC) of molecules[7–9].

The Feshbach resonance is associated with a molecular
state just below the collision threshold. When the magnetic
field is changed during an experiment,(quasibound) mol-
ecules can be formed[10–12] while sweeping through the
resonance. At JILA, coherent oscillations between atoms and
molecules have been observed by applying two magnetic-
field “Ramsey” pulses close to resonance[13,14]. The oscil-
lation frequency was directly related to the binding energy of
the molecules. More recently, Feshbach resonances were uti-
lized in the formation of ultracold molecules from a degen-
erate atomic Fermi gas[15–18]. Here molecules could be
produced reversibly by sweeping twice through resonance.
In some cases these dimers have been cooled further down

below the BEC transition temperature[19–21]. In the case of
bosonic systems, Feshbach resonances have been utilized to
produce ultracold sodium, cesium, and rubidium molecules
[22–24].

Close to the magnetic field value of resonanceB0, the
s-wave scattering lengtha shows a characteristic dispersive
behavior and is given by

asBd = abgS1 −
DB

B − B0
D . s1d

The background part of the scattering length,abg, summa-
rizes the effect of the direct scattering processes in the open
channel,without coupling to other closed spin channels.DB
is the field width of the Feshbach resonance. An example of
this behavior can be seen in Fig. 1. Since the Feshbach reso-
nance is responsible for the dramatic behavior of the scatter-
ing length, the background process is usually considered not
very interesting and is in some cases even neglected. The
direct process is then associated with nonresonant scattering,
where the value ofabg should be of the order of the van der
Waals potential ranger0;smC6/8"2d1/4 [25], with m the re-
duced mass andC6 the van der Waals coefficient. This, how-
ever, is only true when there is no potential resonance close
to the collision threshold.

The effect of potential resonances can be easily estimated
by comparing the value ofabg to the potential ranger0. For
example, in the case of87Rb, the direct interaction potential
is nonresonant sinceabg=100a0 [26] and r0 is of the same
order for rubidium. There are also situations where this is not
the case. Whenabg is large and positive, there is an open-
channel bound state very close to threshold. For example,
this occurs for 133Cs, whereabg=905a0 [27,28] is much
larger thanr0. In other situationsabg can be large and nega-
tive, indicating that the interaction potential has a virtual
state near threshold. Examples here are85Rb with abg=
−443a0 [14], and 6Li where abg<−2000a0 [29,30]. In these
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cases, the nonresonant description of the background scatter-
ing process is not correct. This can be seen from a compari-
son between the single-resonance Feshbach model and a full
coupled-channel calculation over the range of energies of
interest for current experiments, as will be shown in the fol-
lowing.

In this paper, we demonstrate how the potential resonance
can be taken into account analytically by properly describing
the interplay between the open-channel resonance and the
Feshbach resonance. The open-channel resonance is associ-
ated with a pole of the direct part of the scattering matrix. In
our approach, we include this open-channel pole in the mul-
tichannel Feshbach formalism. The resonance phenomena
discussed here in the context of cold atomic collisions are
quite general and have been studied before in the context of
nuclear physics[31], electron-atom collisions[32], and
electron-molecule collisions[33]. In previous work the po-
tential resonance is indirectly included in the closed-channel
subspace; however, the potential resonance is actually lo-
cated in the open-channel subspace. In our approach, the
distinction between open-channel and closed-channel reso-
nances is clearly made, which results in a better understand-
ing of the underlying physics.

The paper is outlined as follows. In Sec. II we introduce
the basic ideas behind our approach. In Sec. III we briefly
discuss the theory of Feshbach resonances, based on a
projection-operator approach. In Sec. IV we discuss the
properties of potential resonances and explain how the so-
called Mittag-Leffler expansion can be used to account for
these resonances. The Mittag-Leffler expansion is used in
Sec. V to discuss the interplay between Feshbach resonances
and potential resonances. In Sec. VI we give a thorough dis-
cussion of the results of our model. We compare our model
with other commonly used approaches in Sec. VII, and con-
clusions are drawn in Sec. VIII.

II. BASIC IDEAS

In this section, we introduce the basic ideas which are
needed to describe the interplay between potential reso-

nances and Feshbach resonances. We first introduce the
Feshbach resonance with a nonresonant background scatter-
ing process—i.e., with a background scattering length on the
order of the range of the interatomic potential. Then we dis-
cuss a single-channels-wave resonance and its relation to the
poles of the scattering matrix. In case the background scat-
tering length is large, this indicates that the open channel is
nearly resonant, even without coupling to other channels.
Then, we investigate the effect of the open-channel reso-
nance on the Feshbach resonance. We study two different
cases: one with large positive and one with large negative
abg.

A. Feshbach resonances

The location of the vibrational bound states in the inter-
action potential determines the scattering properties in ultra-
cold atomic collisions. In a multichannel collision the incom-
ing channel may be coupled to other(open and closed)
channels during the collision. A channel is energetically open
(closed) when the total energy of the two-atom system is
above (below) the dissociation threshold energy of the in-
coming channel. In the Feshbach formalism the total Hilbert
space describing the spatial and spin degrees of freedom is
divided into two subspaces, indicated byP andQ. Generally,
the open channels are located inP space and the closed
channels inQ space. As a model example, we consider the
case with only one opensPd and one closedsQd channel. A
schematic illustration of the interaction potentials associated
with these two channels is shown in the left part of Fig. 2.
Since the total energy is above theP threshold, thisP chan-
nel is automatically the incoming and outgoing channel.
Later on, we also consider the case where the total energy is
below theP threshold. Strictly speaking, theP channel is
then energetically closed and should belong to theQ sub-
space. However, for convenience we will still use the label-
ing P andQ to distinguish between these two channels.

In the case of alkali-metal atoms, theP and Q channels
are associated with different spin configurations and have a

FIG. 1. Scattering length as a function of the magnetic field for
87Rb in theuf ,mfl= u1,1l hyperfine channel. The horizontal dashed
line indicates the direct scattering lengthabg=100a0 (with a0 the
Bohr radius), and the vertical dotted line indicates the resonant
magnetic fieldB0=1007.4 G. The field width is given byDB
=0.2 G.

FIG. 2. (Color online) Left part of figure: schematic illustration
of the P-channel(dashed) andQ-channel(solid) interaction poten-
tials for B=0. Right part of figure: the interaction potentials are
asymptotically connected to the magnetic-field-dependent two-
particle hyperfine-Zeeman eigenenergies. Also shown are the high-
est P-channel vibrational bound statesnP,maxd and aQ-channel vi-
brational bound statesnQd close to the collision threshold. At the
resonant magnetic fieldB0 the coupling between theQ-channel
bound state and theP-channel scattering state becomes resonant.
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different effective magnetic moment. The energy difference
between the channels can be tuned by changing the external
magnetic field. This means that theP andQ potentials can be
shifted relative to each other. The Zeeman energy shift of the
P-channel andQ-channel thresholds is schematically shown
in the right part of the figure. Also indicated is the energy of
the highestP-channel vibrational bound statesnP,maxd and a
Q-channel vibrational bound statesnQd close to theP thresh-
old.

During the collision the atoms are coupled from theP
channel to theQ channel. The scattering process becomes
resonant when aQ-channel bound state is located close to
the P-channel collision threshold, giving rise to a Feshbach
resonance. The unperturbedQ-channel bound state is dressed
by the coupling to theP channel. This dressed state can be
considered as a(quasi)bound state of the total scattering sys-
tem. The colliding atoms are temporarily captured in the
(quasi)bound state, and after a characteristic timet=2" /G,
with G the decay width of the(quasi)bound state, they return
to the P channel. At the magnetic field valueB0, where the
dressed state crosses theP threshold, the scattering length
has a singularity. The resulting behavior of the scattering
length was already shown in Fig. 1.

The scattering length is related to the zero-energy limit of
the scattering matrix. In the Feshbach description the energy-
dependent scattering matrix is divided into two parts. The
direct partSdirect

P describes the scattering processes in theP
channel,without coupling to theQ channel. The Feshbach
resonance is described by the resonant partSres

Q . The resulting
total scattering matrixS=Sdirect

P Sres
Q summarizes the energy

and field dependence of the scattering process around reso-
nance.

The direct part of the scattering process is usually as-
sumed to be nonresonant. In the treatment by Moerdijket al.
[34] the direct part of the scattering matrix is described by a
single parameter only:Sdirect

P skd=expf−2ikabgg, wherek is the
relative wave number of the two colliding particles. In the
caseabg is of order of the range of the potentialr0, the
resulting single-resonance Feshbach model accurately sum-
marizes the scattering process for the energies and magnetic
fields of interest.

B. Potential resonances

The direct scattering properties are determined by the lo-
cation of the bound states in theP-channel potential. In case
theP channel has a bound state close to threshold, this chan-
nel is nearly resonant andabg is large and positive. This has
several important implications, which have not been consid-
ered before in the description of Feshbach resonances in cold
atomic collisions. TheP-channel potential resonance intro-
duces a resonance energy dependence ofSdirect

P , not included
in the simple description based onabg only. It is not straight-
forward to describe this resonance by means of a projection
formalism analogous to the Feshbach approach, since the
bound state is located in the open channel. Still, it is possible
to understand the resonance behavior by studying the poles
of the scattering matrix.

There is a general connection between the resonances and
bound states of a scattering system and the various poles of

the scattering matrix[35]. For single-channels-wave colli-
sions, the poles in the upper half of the complexk plane can
only be located on the imaginaryk axis. Sufficiently close to
the origin sk=0d, the poles in the lower half-plane can only
be located on the imaginary axis as well[36]. As a result, the
energy E="2k2/2m associated with these poles will be
strictly negative. TheP-channel bound state is related to a
pole ofSdirect

P on the positive imaginaryk axis, as indicated in
Fig. 3. If the bound state is located just below threshold, this
pole is located close to the origin.

Now imagine that the potential gradually becomes less
attractive. Then, the bound states will move towards thresh-
old, and the poles of theSmatrix will move down the imagi-
nary k axis. Consequently, the bound-state pole close to the
origin will move towardsk=0, cross the origin when the
bound state is located exactly at threshold, and eventually
turn into a so-called virtual-state pole on the negative imagi-
nary k axis. The energy associated with this virtual state is
negative, but there is no proper physical bound state associ-
ated with this energy. A virtual state can be regarded as a
nearly bound state that behaves much like a real bound state
in the inner region of the interaction potential. Only in the
asymptotic regionsr → ` d does the virtual state “discover” it
does not quite fit to the size of the interaction potential, and
the virtual state exponentially explodes.

The direct part of the scattering matrix can be divided into
a resonant and a nonresonant part:Sdirect

P =Sbg
P Sres

P . The back-
ground part is now related to the true range of the potential,
while the resonant part takes the form

Sres
P skd = −

k + ik

k − ik
, s2d

whereik is the location of the pole on the imaginaryk axis.
In the zero-energy limit, the direct part of the scattering ma-
trix is related to the background scattering length asabg
=abg

P +1/k. Hereabg
P is of orderr0, while the resonant con-

tribution of the P channel is given by 1/k. The important
effect of a bound or virtual state near threshold is the intro-

FIG. 3. Schematic illustration of the poles of theSmatrix in the
complex k plane. The bound-state pole is located at the positive
imaginaryk axis. For a less attractive potential, this pole will move
down the imaginaryk axis, giving rise to a virtual state.
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duction of a resonance energy dependence ofSdirect
P . More

details will be given in Sec. IV.

C. Interplay

Now we return to a multichannel collision, with a Fesh-
bach resonance resulting from coupling toQ space and a
potential resonance associated withP space. The total scat-
tering matrix takes the formS=Sbg

P Sres
P Sres

Q , where the back-
ground part is related to the true range of the potential. In a
multichannel problem, the bound and quasibound states of
the scattering system are related to the poles of the totalS
matrix. The bound-state poles are located on the positive
imaginaryk axis, whereas the quasibound-state poles are lo-
cated in the lower half of the complexk plane. These poles
are generally not located on the imaginary axis, as they are
related to complex energiesER− iG /2. HereER is the energy,
and G the decay width of the quasibound state. The decay
width is related to the lifetime of the quasibound Feshbach
resonance state.

In Fig. 4, we consider the case where theP channel has a
bound state just below threshold. This means thatabg will be
large and positive, which is the case for133Cs, for example.
The bare bound states of theP andQ channels are indicated
by the horizontalsnP,maxd and slantedsnQd lines, respectively.
These bare states are eigenstates in the uncoupledP andQ
subspaces. The bareQ-channel bound state crosses the

P-channel threshold at the magnetic field valueB̄0. The
dressed states are indicated by the solid lines.

Below theP threshold, the behavior of the dressed states
resembles an avoided crossing as described by a two-level
Landau-Zener model. In the inset, the behavior of the
dressed state is shown close to theP-channel threshold. At
B0 one of the dressed bound states crosses the collision
threshold, acquires a decay width, and turns into a quasi-

bound state. Exactly atB0, thes-wave scattering length goes
through infinity. Note that the binding energy of the dressed
state curves quadratically towards threshold according to the
well-known relationebindsBd=−"2/ f2ma2sBdg~ sB−B0d2, as
follows from Eq.(1). At threshold, the slope of the dressed-
state energy shows a discontinuity resulting from a nonzero
decay width above threshold. We stress that, although the
behavior of the dressed states shows some resemblance with
the two-level Landau-Zener description, this model does not
include these threshold effects and cannot be used to prop-
erly describe the interplay between a potential resonance and
a Feshbach resonance.

For abg large and negative, there is aP-channel virtual
state near threshold. Examples here are85Rb and 6Li. An
example of the energy of the dressed states for this situation
is given in Fig. 5. Here the difference with the Landau-Zener
model is even more striking. The behavior of the dressed-
state energies cannot be understood on the basis of an
avoided crossing between theQ-channel bound state and the
P-channel threshold. Based on a Landau-Zener approach, the
dressed state above theP threshold would be located at the
right-hand side of the bareQ-channel bound state, which
clearly is not the case. The binding energy still curves qua-
dratically towards threshold, which it crosses at the magnetic
field B0. From the inset it can be seen that the slope of the
dressed-state energy shows a discontinuity at threshold,
which is even more distinct than the situation given in Fig. 4.
For larger collision energies, the dressed quasibound state
curves back to the bareQ-channel bound state[39].

In the following we derive an analytical model that de-
scribes the interplay between potential resonances and Fesh-
bach resonances. We used this model to obtain Figs. 4 and 5,
which are model examples applicable to133Cs and85Rb, re-
spectively. In Sec. VI we show that the agreement between

FIG. 4. (Color online) Example of an avoided crossing between
a P-channel and aQ-channel bound state. The energy of the bare
bound states is indicated by the horizontal and slanted lines. The
energies of the dressed states are indicated by the solid lines. One of
the dressed states crosses theP threshold atB0. The bareQ-channel

bound state crosses theP threshold atB̄0. Note that the energies are
give relative to theP-channel collision threshold(horizontal solid
line).

FIG. 5. (Color online) Effect of virtual state on Feshbach reso-
nance in85Rb in the u2,−2l hyperfine channel. Shown are the en-
ergy of the unperturbedQ-channel bound state(dotted line) and of
the (quasi)bound state(solid line) which is “dressed” by the cou-
pling to theP channel. The(quasi)bound state crosses the collision
threshold atB0; the unperturbedQ-channel bound state crosses the

collision threshold atB̄0. Note that the energies are give relative to
the P-channel collision threshold(horizontal solid line).

MARCELIS et al. PHYSICAL REVIEW A 70, 012701(2004)

012701-4



our model and full coupled-channel calculations is excellent
for a large domain of energies and magnetic fields, while the
single-resonance Feshbach model gives poor results in the
same domain. We compare our model with other approaches
in Sec. VII.

III. FESHBACH RESONANCE THEORY

Feshbach resonances in two-body collisions are related to
the coupling of different spin channels and can be conve-
niently described in an approach due to Feshbach[1,38]. In
this approach the total Hilbert spaceH describing the spatial
and spin degrees of freedom is divided into two subspacesP
andQ. In generalP contains the open channels andQ the
closed channels. TheS andT matrices, which are related to
the transition probabilities of the scattering process, are sepa-
rated in two parts accordingly. TheP part describes the direct
interactions in the open-channel subspace, and theQ part
describes the effect of the coupling to the closed channels.
Usually theQ part contains the resonances and theP part is
assumed to be nonresonant. We discuss in Sec. IV why in
some cases theP part can introduce resonant features as
well. In Sec. V we show how theseP-channel resonances
can be taken into account analytically. First we discuss the
Feshbach projection formalism in this section.

One can construct projection operatorsP and Q, which
project onto the subspacesP and Q, respectively. The
Schrödinger equation for the two-body collision can then be
written as a set of coupled equations:

sEtot − HPPduCPl = HPQuCQl, s3d

sEtot − HQQduCQl = HQPuCPl. s4d

Here we use the notationuCPl; PuCl, uCQl;QuCl, HPP
; PHP, HPQ; PHQ, etc., andEtot=E+Ethr is the total en-
ergy of the colliding atoms, withE the kinetic energy and
Ethr the energy of the open-channel threshold. As already
mentioned, we are only interested in scattering processes
with only one open channel. TheP channel is then simulta-
neously the incoming and outgoing channel. Also note that
all energies in the following are given with respect to the
open-channel collision threshold.

We multiply Eq. (4) from the left with the resolvent(or
Green’s) operatorGQQsE+d;fE+−HQQg−1:

uCQl =
1

E+ − HQQ
HQPuCPl, s5d

whereE+=E+ id with d approaching zero from positive val-
ues. Substituting the expression foruCQl into Eq. (3), the
problem in theP subspace is equivalent to solving the
Schrödinger equationsE−HeffduCPl=0, where the effective
Hamiltonian is given by

Heff = HPP + HPQ
1

E+ − HQQ
HQP. s6d

The first term in the effective Hamiltonian describes the di-
rect effect of the open-channel subspaceP on the scattering
process. The second term in the effective Hamiltonian de-

scribes the coupling ofP space toQ space, propagation
throughQ space, and coupling back toP space again.

The resolvent operatorGQQ can be expanded in terms of
the discretesufild and continuumsufsedld eigenstates of
HQQ:

1

E+ − HQQ
= o

i

ufilkfiu
E − ei

Q +E ufsedlkfsedu
E+ − e

de. s7d

Now suppose there is only one discrete bound state ofHQQ
for which the eigenvalueeb

Q is close to the collision energyE
of the scattering state. That is, the otherQ-channel bound
states are located sufficiently far away from theP threshold
so that their contribution can be safely neglected. In this case
we can also neglect the continuum expansion ofHQQ, and
the problem in theP subspace reduces to

sE − HPPduCPl = HPQ

ufblkfbu
E − eb

Q HQPuCPl. s8d

Now we can formally solve the coupled problem by mul-
tiplying from the left with the resolvent operatorGPPsE+d
;fE+−HPPg−1:

uCPl = uCP
+l +

1

E+ − HPP
HPQ

ufblkfbu
E − eb

Q HQPuCPl. s9d

The scattering stateuCP
+l corresponds to the homogeneous

part of the Schrödinger equation projected intoP space and
is an eigensolution ofHPP with outgoing spherical wave
boundary conditions. The scattering states are energy nor-
malized askCP

+sEd uCP
+sE8dl=dsE−E8d, where dsEd is the

Dirac delta function.
Before calculating theS andT matrices, we introduce the

Lipmann-Schwinger equations foruCP
±l, where the super-

script 1 (2) indicates outgoing(incoming) spherical-wave
boundary conditions[41]:

uCP
±l = uxPl +

1

E± − HPP
VPPuxPl. s10d

Here the Hamiltonian inP space is written asHPP;HPP
0

+VPP, whereHPP
0 represents the sum of the relative kinetic

energy operator and the two-particle hyperfine-Zeeman inter-
actions, andVPP the interatomic interactions, both projected
onto theP-channel subspace. The unscattered statesuxPl are
eigenstates ofHPP

0 .
TheTP matrix, giving the transition amplitude due to scat-

tering in theP subspace only, can now be calculated as

kxPuTPuxPl ; kxPuVPPF1 +
1

E+ − HPP
VPPGuxPl

= kxPuVPPuCP
+l. s11d

Introducing the second term in the effective Hamiltonian, Eq.
(6), according to the two-potential theorem[41] the totalT
matrix is given by
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kxPuT uxPl = kxPuFVPP + HPQ
1

E+ − HQQ
HQPGuCPl

= kxPuVPPuCP
+l + kCP

−uHPQ
1

E+ − HQQ
HQPuCPl,

s12d

where we have used the formal solution foruCPl given by
Eq. (9) together with relation(10). We see that apart from the
direct term TP, the transition amplitude contains a term
which results from the coupling to the closed-channel sub-
spaceQ.

The relation between theSmatrix Sskd=kxPuSuxPl and the
T matrix Tskd=kxPuT uxPl is given by the operator equation
S=1−2piT. From this equality, together with the expansion
of the resolventGQQ, it follows that theS matrix of the
effective problem inP space is given by

Sskd = SPskd − 2pi
kCP

−uHPQufblkfbuHQPuCPl
E − eb

Q . s13d

Here SPskd=kCP
−sEd uCP

+sEdl is the direct part of theS ma-
trix, which describes the effect of the scattering process inP
space only, without coupling to the closed channels inQ
space.

We can finally solve foruCPl by multiplying Eq.(9) from
the left with kfbuHQP, which results in

Sskd = SPskdS1 − 2pi
ukfbuHQPuCP

+lu2

E − eb
Q − AsEd

D . s14d

The term

AsEd ; kfbuHQP
1

E+ − HPP
HPQufbl s15d

in the denominator is the complex energy shift, which is the
energy difference between the bare bound stateufbl and the
dressed(quasi)bound state.

Inserting a complete set of eigenstates ofHPP, the com-
plex energy shift can be written asAsEd=DressEd
−si /2dGsEd. The real partDressEd shifts the unperturbed en-
ergy eb

Q, and the imaginary partGsEd turns the unperturbed
bound stateufbl into a quasibound state. Note thatAsEd is
purely real for energies below theP threshold(i.e., E,0).
The energy of the dressed states can be found by solving for
the poles of theS matrix.

In the low-energy domain it is usually assumed that the
real part of the energy shift can be taken as approximately
constant, DressEd.DressE=0d. The energy width GsEd
=2pukfbuHQPuCP

+sEdlu2 is proportional tok in the limit for
k↓0, which is a consequence of the survivings-wave part of
the scattering wave function. Therefore it is usually assumed
that GsEd.2Ck, with C a constant that characterizes the
coupling strength betweenP and Q [34]. The resulting ex-
pression for theS matrix,

Sskd = SPskdS1 −
2iCk

E − eb
QsBd − Dres+ iCk

D , s16d

will be referred to as thesingle-resonanceapproximation.

The direct part of theS matrix is related to the direct part
of the scattering length asSPskd=expf−2ikabgg, and the sec-
ond term describes the resonant behavior due to coupling to
Q space. In the limitk↓0 this single-resonance expression
for the S matrix gives the dispersive behavior of Eq.(1).

However, the single-resonance approximation has a lim-
ited range of validity. More specifically, it is based on the
assumption that the scattering wave functionuCP

+l can be
approximated by its low-energys-wave limit, which is pro-
portional tok1/2 (also known as Wigner’s threshold law). If
theP channel has a low-energy resonance, such as a(nearly)
bound state(with eres

P =−"2k2/2m) close to threshold, this
approximation breaks down whenuE/eres

P u!1 is not satisfied.
In the following we show that the assumptions about the

trivial energy dependence ofSPskd andAsEd are not valid in
the case theP channel is nearly resonant. We derive how the
full energy dependence can be taken into account analyti-
cally. In Sec. IV we discuss the Mittag-Leffler expansion of
the resolvent operatorfE+−HPPg−1 based on Gamow reso-
nance states, which takes theseP-channel resonances into
account. In Sec. V we derive analytical expressions for the
energy shift and width based on this expansion.

IV. OPEN-CHANNEL RESONANCES

Without coupling to the closed-channel subspaceQ, the
scattering properties in the open-channel subspaceP are
governed by the uncoupled Schrödinger equationsE
−HPPduCPl=0, which has scattering solutionsuCP

+l. We as-
sume that the interatomic potential is of finite range; i.e., it
can be neglected beyond some radiusR0 and is of the form

VPPsrd = HVPPsrd for 0 ø r , R0,

0 for r ù R0.
s17d

The potentials used in the description of weakly interacting
cold alkali gases have the asymptotic formVsrd,−C6/ r6. If
we take R0 such that VsR0d is small compared to the
asymptotic kinetic energyE, the finite-range approximation
can be applied, retaining high accuracy[42].

The direct part of theS matrix is determined by the un-
coupledP-space scattering solutions. In the low-energy limit
the scattering properties for single-channel problems are de-
termined by thes-wave part of the scattering wave function
cP

±sr d=kr ucP
±l. If there are no low-energy potential reso-

nances, the scattering lengthabg of the uncoupledHPP prob-
lem encapsulates the direct part of the scattering process in
the low-energy domain.

However, if HPP possesses a low-energy potential reso-
nance, this is not true in general. TheSP matrix contains a
resonant feature and becomes strongly energy dependent
near the collision threshold. The direct part of theS matrix
takes the formSP=Sbg

P Sres
P , where the background part of the

S matrix, described bySbg
P =expf−2ikabg

P g, summarizes the
effect of theP-channel potential on the scattering solutions,
excludingthe resonant part. The resonant part is described by
Sres

P . Note that we added a superscriptP to distinguish the
P-channel resonance from the Feshbach resonance, which is
induced by coupling to theQ channel.
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The resonances and bound states of theP-channel inter-
action potential correspond to the poles ofSP. More specifi-
cally, the energy dependence of the resonant partSres

P is de-
termined by the analytical properties of the(P-channel) Jost
function Fskd [44]. The Jost function is related to theSP

matrix asSPskd=Fs−kd /Fskd, and the zeros of the Jost func-
tion correspond to the poles of theSP matrix.

The Jost functionFskd is an entire function ink for finite-
range potentials. In the general case, the zeros ofFskd in the
upper half-plane are only located at the imaginaryk axis, are
finite in number, and correspond to the bound states inP
space. Note that sinceE,0 in this case, theP subspace is in
fact also energetically closed. There is a countable, infinite
number of zeros ofFskd in the lower half-plane. The poles
located in the third and fourth quadrants correspond to the
resonances associated with a nonzero angular momentum of
the colliding particles and are located symmetrically with
respect to the imaginaryk axis. The poles located at the
negative imaginary axis are finite in number and correspond
to thes-wave virtual states. Labeling the zeros bykn, the Jost
function can be written as the product[44]

Fskd = p
n=1

` S1 −
k

kn
Dhskd, s18d

wherehskd is a smooth function related to the range of the
potentialr0. This expression is normalized such that it repro-
duces the correct behavior near threshold,Fskd→1, for k
→0. Note that the physical parameterr0 should not be con-
fused with the cutoff radiusR0, and typicallyr0!R0.

From the relationE="2k2/2m it follows that the mapping
from k to E is two to one. As a result the single-valued
functions ofk, such as the Jost function and theS matrix,
will be double-valued functions of the complex energyE.
However, we can map the upper and lower halves of the
complexk plane to two different complex energy planes. The
upper halffImskd.0g is mapped onto the so-called physical
(or first) sheet, whereas the lower halffImskd,0g is mapped
onto the nonphysical(or second) sheet. If we consider theE
plane as a two-sheeted Riemann surface[45], the aforemen-
tioned functions are single-valued functions of the energyE.
Both sheets have a branch-cut discontinuity on the real axis
running from 0 to`. The two Riemann sheets are con-
nected by the positive realE axis, where Imskd=0.

The bound states and resonances of a scattering system
correspond to the poles ofSskd. If we consider the scattering
matrix as a function of the collision energy, which we will
loosely write asSsEd, there is a similar relation between the
poles ofSsEd on the two Riemann sheets and the bound and
resonance states of a scattering system. The bound states
correspond to the poles ofSsEd at the negative realE axis on
the physical(or first) Riemann sheet. Thel Þ0 resonances
correspond to the poles ofSsEd in the first and fourth quad-
rants of the complexE plane on the nonphysical(or second)
Riemann sheet. Thes-wave virtual states correspond to the
poles ofSsEd at the negative realE axis on the nonphysical
Riemann sheet.

A. Virtual states

If the potentialV effectively gets less attractive, the bound
states of the potential will move towards the collision thresh-
old. At some point the highest bound state will cross the
collision threshold and turn into a virtual state in the case of
s-wave collisions. The corresponding transition of a bound-
state pole into a virtual-state pole is schematically illustrated
in Fig. 6. A virtual state behaves much like a bound state in
the inner region of the potential, but it is not a proper bound
state as it behaves asymptotically ase+ukur. The important
effect of a low-energy virtual state is that it introduces a
resonance feature in theSP matrix.

In Sec. VI we calculate the position of the poles of theSP
matrix in the case of85Rb and find a virtual state at
evirtual/kB=−6.45mK. This is close to threshold, since the
typical energies in current experimental setups are of the
order of microkelvins. We discuss how this virtual state can
be accounted for in the following. The zero of the Jost func-
tion associated with the virtual state is labeled by −ikvs,
wherekvs is a positive constant. Furthermore, all other poles
of theSP matrix are located far from the origink=0, and the
contribution of these distant poles to theSP matrix is sum-
marized by a smooth functiongskd. The Jost function can
then be written as

Fskd = S1 +
k

ikvs
Dgskd. s19d

For realk it follows that the direct part of theS matrix is
given by

FIG. 6. Schematic illustration of the movement of the poles of
the S matrix in the complexk plane(a) and the two-sheeted com-
plex E plane(b). The solidE axes correspond to the first(or physi-
cal) Riemann sheet, while the dashedE axes correspond to the
second(or nonphysical) Riemann sheet. Both sheets have a branch-
cut discontinuity on the real axis running from 0 tò. The two
Riemann sheets are connected by the positive real axis, where
Imskd=0. Initially, the pole is located at the positive imaginaryk
axis, which corresponds to a bound-state pole on the negative realE
axis on the first Riemann sheet. If the interaction potential effec-
tively gets less attractive, the pole moves towardsk=0, at some
point crosses the origin, and turns into a virtual-state pole at the
negative imaginaryk axis. This corresponds to a virtual-state pole at
the negative realE axis on the second Riemann sheet.
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SPskd = e−2ikabg
P ikvs − k

ikvs + k
, s20d

where the background factor expf−2ikabg
P g summarizes the

effect of all the nonresonant poles of theSP matrix.
The scattering phasedskd is related to theSP matrix as

SPskd=expf2idskdg and is evaluated as

dskd = − kabg
P + arctanF k

kvs
G . s21d

The background part is related to the phase ofgskd and is
linear in k in the low-energy limit[46]. The resonant part is
related to the pole atk=−ikvs and causes a “bump” in the
scattering phase at low energies. Moreover, if the virtual-
state pole gets closer to thresholdskvs→0d, the scattering
lengthabg=abg

P −1/kvs will become more and more negative.
To show that this virtual state has to be taken into account

explicitly, Fig. 7 shows the scattering phase for85Rb in the
uf ,mfl= u2,−2l P channel, without coupling to theQ chan-
nels. The black dots represent the numerical results, which
are obtained by solving the Schrödinger equation using the
proper physical and state-of-the-art rubidium potentials. The
solid line is obtained from the virtual-state expression, and
the dashed line is obtained from the usual contact potential
approximationdskd=−arctanfkabgg [35]. Let us stress again
that Fig. 7 shows the scattering phase for theP channel only,
and the coupling to theQ channel has been excluded from
this calculation. For this particular channel,abg=−443a0
[14]. The virtual state contributes to the scattering length as
−1/kvs=−562a0, andabg

P =+119a0 is now of the order of the
potential ranger0. More details about the numerical calcula-
tion can be found in Sec. VI.

Comparing the virtual-state expression fordskd with the
numerical results, the agreement is excellent. If we compare
the numerical results with the contact potential expression, it
is immediately seen that this expression already starts to de-
viate significantly at a few microkelvin. This indicates that
the scattering length parameter only does not fully encapsu-
late the energy dependence of the scattering physics, and the
P-channel resonance should be taken into account explicitly.

B. Mittag-Leffle series

The S matrix, T matrix, and the resolvent(or Green’s)
operatorGPPsEd;fE−HPPg−1 have their poles in common
[47]. This suggests it is possible to expand the resolvent in a
Mittag-Leffler series[44], where the resolvent is written as a
sum over the different pole contributions. The corresponding
residues are related to the bound and resonance states, which
are eigensolutions ofHPP. The scattering and transition ma-
trix can then be written as a sum over the pole contributions
as well.

Eigensolutions associated with poles of the scattering ma-
trix were first introduced by Gamow in his theoretical de-
scription of a decay[48]. In the case ofs-wave scattering,
the Gamow functionVnsrd=kr uVnl associated with the pole
kn of the scattering matrix is defined as the solution to the
radial Schrödinger equation that satisfies the boundary con-
ditions

HVnsrdur=0 = 0,
d
drVnsrdur=R = iknVnsrdur=R.

s22d

The radiusR has to be chosen such thatR.R0; i.e., it is
applied in the asymptotically freesV=0d region of the inter-
action potential.

The Gamow states behave asymptotically asVnsrd
~expfiknrg. For the bound-state poleskn= ikn, with kn a posi-
tive constant, the Gamow states are just the(properly nor-
malized) bound-state wave functions. However, for the poles
with Imsknd,0 the Gamow states exponentially diverge.
Due to this exponential divergence, the Gamow states do not
form an orthonormal basis for theP subspace. Defining a
dual set of Gamow states asVn

D;Vn
* , the Gamow states do

form a biorthogonal set in the sense thatkVn
D uVn8l=dnn8.

Here dnn8 is the Kronecker delta, and the inner product is
defined by means of analytic continuation ink of the proper
bound-state eigensolutions to the resonance poles in the
lower half of the complexk plane[49,50]. The normalization
condition takes the form

kVn
DuVnl =E

0

R

Vn
2srddr +

i

2kn
Vn

2sRd = 1. s23d

Note that, as before,R has to be chosen such thatR.R0, in
which case the normalization condition does not actually de-
pend on the precise choice ofR.

The Gamow stateuVnl is an eigenstate ofHPP and has an
eigenvalueEn. The dual stateuVn

Dl is an eigenstate ofHPP
†

with the eigenvalueEn
* . This can be written in Dirac notation

as

FIG. 7. Scattering phasedskd for 85Rb in theuf ,mfl= u2,−2l spin
channel. The black dots represent the numerical results. The solid
line is obtained from Eq.(21). The dashed line is obtained from the
contact potential approximationdskd=−arctanfkabgg. The scattering
length of 85Rb in this channel isabg=−443a0, in agreement with
coupled-channel calculations. The background scattering length is
abg

P =+119a0, and the virtual state is located atkvs=−ikvs=−1.78
310−3if1/a0g, which corresponds to the term −1/kvs=−562a0 in
the expression forabg.
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HPPuVnl = EnuVnl,

kVn
DuHPP = EnkVn

Du. s24d

From these last expressions it is immediately seen that the
HamiltonianHPP is diagonal with respect to the biorthogonal
set of Gamow functions. The matrix elements ofHPP can be
evaluated askVn

DuHPPuVn8l=En8dnn8.
Using the Gamow resonance states, the resolvent operator

fE−HPPg−1 can be expanded as a sum over eigenstates asso-
ciated with poles of the scattering matrix. This type of ex-
pansion is known as the Mittag-Leffler expansion. The prop-
erties of the Mittag-Leffler expansion in terms of the Gamow
resonance states have been extensively studied in the litera-
ture; see, e.g., Refs.[50–53]. We will therefore not give a
derivation of the Mittag-Leffler expansion, but refer the
reader to the literature. We here just give the Mittag-Leffler
expansion of the resolvent operator:

1

E − HPP
= o

n=1

` uVnlkVn
Du

2knsk − knd
, s25d

wheren runs over all poles of theSP matrix. For notational
convenience, we have used units such that"=2m=1 so that
k corresponds to the energy asE=k2. Note thatE can be any
complex energy in Eq.(25) in principle. In Sec. V we discuss
how the Mittag-Leffler expansion can be used to find the
energy dependence ofAsEd analytically.

V. INTERPLAY BETWEEN FESHBACH RESONANCES
AND POTENTIAL RESONANCES

Inserting the Mittag-Leffler series, Eq.(25), in the com-
plex energy shift, Eq.(15), results in

AsEd = o
n=1

` kfbuHQPuVnlkVn
DuHPQufbl

2knsk − knd
. s26d

The complex energy shift of the unperturbed bound state in
the Q channel is thus expanded over the contribution of the
various poles of theP-channel scattering matrix. The exact
expression for the complex energy shift derived here is the
most important difference with previous work on the inter-
play between single-channel and multichannel resonances.

We now illustrate the impact of a virtual state close to the
collision threshold on the coupling between the spin chan-
nels P andQ. The full S matrix has the formS=Sbg

P Sres
P Sres

Q ,
and the poles of thisS matrix correspond to the energies of
the dressed(quasi)bound states. In Sec. IV we already men-
tioned that in the case of85Rb there is a virtual state close to
threshold. We assume that this pole is dominant, and the
effect of all other poles of theP channel can be summarized
by a background term. The energy shift due to coupling then
takes the form

AsEd =
kfbuHQPuVvslkVvs

D uHPQufbl
2kvssk − kvsd

. s27d

The basisuVnl is energy independent, as is theQ-channel
bound stateufbl. The couplingHPQ=HQP

† is energy indepen-

dent as well. It then follows that the energy dependence of
AsEd is fully determined by the denominator in Eq.(27),
which is proportional to 1/sk−kvsd.

As the numerator of Eq.(27) is a real constant andkvs=
−ikvs, we can write the complex energy shift as

AsEd =
− iAvs

2kvssk + ikvsd
, s28d

where Avs=−kfbuHQPuVvslkVvs
D uHPQufbl is a positive con-

stant. The extra minus sign in this constant shows up for
virtual states due to the normalization condition of the
Gamow states.

For real and positivek (or, equivalently, for real and posi-
tive E on the physical Riemann sheet) we can multiply the
numerator and denominator withsk− ikvsd and take the real
and imaginary parts ofAsEd:

DressEd =
− 1

2Avs

k2 + kvs
2 , s29d

GsEd =
Avsk

kvssk2 + kvs
2 d

. s30d

For k= ik on the positive imaginary axis(or, equivalently, for
real and negativeE on the physical Riemann sheet) the en-
ergy shift is real valued and given as

DressEd =
− 1

2Avs

kvssk + kvsd
. s31d

The energies of the dressed states are given by the poles
of the full S matrix and can be found by solving

sk + ikvsdfE − ebsBd − AsEdg = 0. s32d

We see that in the presence of a virtual-state pole close to
threshold, the denominator ofDressEd gets close to zero for
E→0. Therefore, the energy of the dressed molecular Fesh-
bach state,ebind=eb+DressEd, strongly depends on the energy
E close to threshold. For positive energies, the energy shift
DressEd and widthGsEd, related to the quasibound Feshbach
state, depend strongly on the energy as well.

In order to give an accurate description of the dressed
(quasi)bound Feshbach state, it turns out that in the case of
85Rb the influence of the highestP-channel bound state on
the energy shift and width should be taken into account as
well (see Sec. VI). As can be seen in Fig. 10, below, this
P-channel bound state and theQ-channel bound state have a
broad avoided crossing. In the inset, the effect of the virtual
state close to threshold is visible. However, on a larger scale
it is clear that the(quasi)bound state has still not converged
to the bareQ-state energy.

The expressions for the energy shift and width including
both pole contributions are given in the following. The pole
associated with the highestP-channel bound state is denoted
by kbs= ikbs. For real and positivek (or, equivalently, for real
and positiveE on the physical Riemann sheet) we take the
real and imaginary parts ofAsEd:
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DressEd =
− 1

2Avs

k2 + kvs
2 +

1
2Abs

k2 + kbs
2 , s33d

GsEd =
Avsk

kvssk2 + kvs
2 d

+
Absk

kbssk2 + kbs
2 d

. s34d

HereAbs is a positive constant related to the coupling of the
P-channel bound state to theQ-channel bound state. Fork
= ik on the positive imaginary axis(or, equivalently, for real
and negativeE on the physical Riemann sheet) the energy
shift operator is real valued and given as

DressEd =
− 1

2Avs

kvssk + kvsd
+

1
2Abs

kbssk + kbsd
. s35d

The constantsAvs andAbs can be found from the input of
coupled-channel calculations or, equivalently, from measure-
ment (see Sec. VI). Note that the contribution of the virtual
state to the energy shift is negative valued and the contribu-
tion of the proper bound state is positive valued. Let us stress
that there are no free parameters in this model. The model is
fully characterized by only a few parameters, which are de-
termined by physical quantities directly related to the true
interaction potentials. These parameters can be extracted
from numerical coupled-channel calculations or directly
from experimental measurements. More details are given in
Sec. VI.

VI. NUMERICAL METHOD AND RESULTS

The numerical results in this section are based on
coupled-channel calculations[54] for rubidium, based on the
most recent knowledge of the interaction potentials[14,26].
These calculations take the coupling between the relevant
spin channels into account; i.e.,P and Q are coupled. In
order to find the physical properties of the open channel only,
we “turn off” the coupling betweenP andQ. This allows us
to calculate the single-channelSP matrix and find its poles
and the background scattering length. In order to find the
other model parameters, we perform a calculation where the
coupling betweenP and Q is again taken into account. In
principle, only two data points are needed to determine the
constantsAvs andAbs.

In Fig. 8 theSP matrix is shown for negative energies on
the nonphysical Riemann sheet—i.e., Imskd,0, for 85Rb in
the u2,−2l hyperfine channel. The pole of theSP matrix on
this sheet is located atevirtual/kB=−6.45mK. This indicates
that theP-channel interaction potential has a virtual state at
this energy. The phase of theSP matrix for positive energies
(on the physical sheet) was already shown in Fig. 7.

In order to compare the results of our model with the
numerical coupled-channel calculation, we perform a full
calculation over a large energy and magnetic field range
around threshold and resonance. For positive energies with
respect to theP-channel threshold, the scattering phase
dsE,Bd is calculated. At each energy value the derivative of
dsE,Bd with respect toB is calculated. According to Eq.(14)
the derivative is given by the following expression:

]dsE,Bd
]B

=
DmmagGsEd/2

feb
QsBd + DressEd − Eg2 + fGsEd/2g2 . s36d

Here Dmmag is the relative magnetic moment of the bare
Q-channel bound state with respect to theP-channel thresh-
old. This derivative function is the well-known Lorentz
curve. The center of the Lorentz curve is given by the con-
dition E=eb

QsBd+DressEd, which determines the location of
the dressed quasibound Feshbach state. The energy width of
this state equals the width of the Lorentz curve. We can thus
calculate the position and width of the quasibound Feshbach
state as a function of the collision energy.

For negative energies with respect to theP-channel
threshold, the coupled-channel Schrödinger equation is inte-
grated outward, starting in the inner region of the interaction
potential to some matching radiusrm. The Schrödinger equa-
tion is also integrated inward from somermax to the matching
radiusrm. The boundary conditions atrmax are such that the
solution asymptotically vanishes and is physically accept-
able. If the two solutions obtained in this way are linearly
dependent, the corresponding energy is an eigenenergy. At
this energy, the full coupled potential has a bound state. This
calculation is repeated as a function of magnetic field and
thus gives the field-dependent position of the dressed mo-
lecular Feshbach state.

The energy width of the dressed quasibound Feshbach
state as calculated with a coupled-channel method is shown
in Fig. 9 (black dots). The dotted line shows the energy width
according to our model, where only theP-channel virtual
state is taken into account. The constantAvs is determined by
comparing Eq.(30) with a single low-energy data point. We
see that for low energies the virtual-state expression and the
coupled-channel data agree very well. However, for energies
larger than roughly 10mK, the virtual-state expression starts
to deviate.

The solid line shows the energy width according to our
model, taking the highest bound state of theP channel into
account as well. The energy width is now accurately de-
scribed by our model for a large energy domain. We obtain

FIG. 8. SP matrix for negative energies on the nonphysical Rie-
mann sheet for85Rb in the u2,−2l hyperfine channel. The pole of
the SP matrix on this sheet is locatedevirtual/kB=−6.45mK.
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the two parametersAvs andAbs from a fit of Eq.(34) to two
data points.

We now insert these parameters into the expressions for
the energy shiftDressEd to describe the energy of the dressed
(quasi)bound Feshbach state. The result is shown in Fig. 10,
where the black dots indicate the coupled-channel results and

the solid line is obtained from our model. In Fig. 11 we zoom
in closer to theP-channel threshold.

The unperturbed(or bare) bound state in theQ-channel
subspace is dressed by the coupling to theP-channel sub-
space. This induces an avoided crossing with the highest
P-channel bound state. The avoided crossing is broad in the
sense that, even though the unperturbedP-channel bound
state is located at roughlyebound/kB<−10 mK, close to the
P-channel threshold the dressed state still has not converged
to the bareQ-channel bound state.

The P-channel virtual state is not located at the physical
energy sheet, and there is no avoided crossing of the usual
kind between the dressedQ-channel(quasi)bound state and
the virtual state. However, the virtual state is located close to
the collision threshold and induces a strong threshold effect.
This threshold effect dominates the behavior of the molecu-
lar binding energy near the collision threshold and has to be
taken into account explicitly. In our model we take the rel-
evantP-channel bound and/or virtual states into account ana-
lytically. From these figures it is immediately seen that our
model agrees perfectly with full coupled-channel calcula-
tions for a very large energy domain. The binding energy of
the dressed molecular state that has been measured in Refs.
[13,14] is described analytically with high precision.

VII. OTHER APPROACHES

In this section, we compare our model with some other
approaches commonly used in the description of Feshbach
resonances. A model which is conveniently used in many-
body theories is the contact potential(or zero-range poten-
tial). In this approach the real interaction potentials are re-
placed byd functions or pseudopotentials, proportional to the
s-wave scattering lengtha. In the vicinity of a Feshbach
resonance the dispersive formula, Eq.(1), is used. The scat-
tering matrix takes the form[44]

Sskd =
1 − ikasBd
1 + ikasBd

. s37d

The molecular binding energy is determined by the pole of
Sskd and is given asebind=−"2/ f2ma2sBdg. In Fig. 12 we

FIG. 9. Energy width of the dressed quasibound Feshbach state
for 85Rb in theu2,−2l hyperfine channel. The dotted line shows the
energy width according to Eq.(30), where only the virtual state,
with kvs=2.54310−3 K1/2 is taken into account, andAvs=1.94
310−8 K2. The solid line shows the energy width according to Eq.
(34), where the highest bound state of theP channel is included as
well, with kbs=0.103 K1/2. In this case,Avs=1.92310−8 K2 and
Abs=1.26310−5 K2.

FIG. 10. (Color online) Energy of the dressed(quasi)bound
Feshbach state. The black dots indicate the coupled-channel data.
The thick solid line indicates the energy according to our model.
The thin solid line is the energy of the unperturbedQ-channel
bound state, which around threshold is given by the linear expres-

sion eb
QsBd=DmmagsB−B̄0d, with Dmmag=−1.75310−4 K /G=

−3.64 MHz/G and B̄0=160.1G.

FIG. 11. (Color online) Same as in Fig. 10, but now for energies
closer to theP-channel threshold.
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compare the resulting binding energy(dotted line) with the
coupled-channel results(black dots). It is clear that close to
the resonance magnetic fieldB0, the contact model binding
energy agrees quite well with the coupled-channel binding
energy. Further away from the resonance, the contact model
energy starts to deviate significantly from the exact binding
energy.

In Eq. (16) theSmatrix for the single-resonance Feshbach
model is given. The pole of thisS matrix gives the energies
of the dressed(quasi)bound state. This energy is indicated by
the dash-dotted line in Fig. 12. It can be clearly seen, as
expected, that the single-resonance model fails already rela-
tively close to threshold.

Another commonly used model originates from the effec-
tive range approach. In the contact model the scattering
phasedskd is approximated asdskd=−arctanfkag, but this
approximation already breaks down at low energies. In the
effective range model a second term is included to describe
dskd further away from the collision threshold. The scattering
matrix is given as

Sskd =
− 1/asBd + r0sBdk2/2 + ik

− 1/asBd + r0sBdk2/2 − ik
, s38d

wherer0sBd is the effective range parameter[44]. The mo-
lecular binding energy can again be found by solving

−
1

asBd
+

1

2
r0sBdk2 − ik = 0 s39d

and is shown in Fig. 12(dashed line). We determinedr0sBd
andasBd simultaneously from a coupled-channel calculation,
by fitting to the scattering phase for two different energy
values, for several values of the magnetic field. Although the

field-dependent effective range model agrees reasonably well
with the coupled-channel binding energy for magnetic fields
close toB0, it breaks down for fields larger thanB<164 G
and cannot be applied further away from threshold.

Summarizing, the contact model, single-resonance Fesh-
bach model, and effective range model are low-energy ap-
proximations of the exact scattering matrix. These ap-
proaches give reasonable agreement with the coupled-
channel molecular binding energy close to the resonant
magnetic fieldB0, but for energies further away from thresh-
old these descriptions give poor agreement.

Our model has several important advantages compared to
the models discussed here. First of all, our model is directly
based on the underlying physics of the interplay between
potential and Feshbach resonances. The contact potential
model is based on the assumption that the scattering phase
can be replaced by its low-energy limit,dskd=
−arctanfkasBdg. As we have seen, the potential resonance and
Feshbach resonance introduce additional energy dependence
of the scattering phase shift. The single-resonance Feshbach
model would give an adequate description for the situation
whereabg is on the order of the range of the potential. How-
ever, whenabg is large compared to this range, this model
breaks down as well. The effective range approach gives a
better description of the binding energy compared to the two
previous models. However, it still breaks down at some
point, and moreover, it does not give much physical insight
into the mechanism behind the additional energy dependence
of various cold-collision properties. Another clear disadvan-
tage of the effective range approach is that we have to cal-
culater0sBd numerically as a function of the magnetic field
using a coupled-channel method. In our model the binding
energy is given by a simple analytical formula, which gives
an excellent description even for magnetic fields far fromB0
and energies of the order of millikelvin. Our model is fully
characterized by only a few parameters, which can be ex-
tracted from coupled-channel calculations or directly from
measurements.

Two resonances inQ space

Another approach that has been proposed in Ref.[55] is
to use a double-resonance parametrization of the scattering
matrix within the Feshbach projection formalism. The sec-
ond resonance introduced should account for the influence of
the potential resonance on the properties of the Feshbach
resonance.

The Feshbach projection formalism can be used to de-
scribe potential resonances, albeit in a rather indirect manner.
In a paper by Domcke[33], the Feshbach projection-operator
approach is used to describe potential resonances in scatter-
ing systems. The projector onto the resonance states is de-
fined asQ=on=1

N ufnlkfnu, where the set of functionshkr ufnlj
is an arbitrary orthonormal set of square-integrable func-
tions. The formal requirement on the projection operatorQ is
given as

kr uQucl →
r→`

0 for anyucl. s40d

The formalism leads to a decomposition of the scattering
matrix into a resonant and a nonresonant part, where the

FIG. 12. (Color online) Comparison of coupled-channel calcu-
lations of the binding energy(black dots) with the contact model
(dotted line), the single-resonance Feshbach model(dash-dotted
line), the effective range model(dashed line), and our virtualstate
model (solid line). Although for the magnetic fields shown the ef-
fective range model and our model give comparable results, our
model gives an analytical expression for the binding energy. This is
not the case for the effective range model, where afield-dependent
parameterr0sBd has to be taken into account that has to be calcu-
lated numerically.
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resonances are all contained inQ space ifN is chosen large
enough. The choice of the statesufnl to be used is arbitrary,
however, and the correspondence between these states and
the real resonance states(such as the Gamow states) is not
clear. More specifically, the Gamow states in general do not
satisfy relation(40) and cannot be used to construct an op-
erator onto the real resonance states within this formalism.

However, as Domcke argues, increasing the number of
states used in the projectorQ by 1 seems to remove exactly
one resonance pole from the background part of the scatter-
ing matrix. One could therefore hope that adding an appro-
priate bound stateufil, the virtual-state resonance due to the
Gamow resonance stateuVvirtuall can be indirectly included in
the Q subspace. This is the approach followed in Ref.[55],
in order to account for the interplay between a Feshbach
resonance and a potential resonance in6Li collisions. We
will refer to this as the double-resonance approach.

Although the bound state introduced to account for the
second resonance is not clearly linked to theP-channel vir-
tual state that gives rise to the potential resonance, the
double-resonance approach is mathematically equivalent to
our model under some constraints. We will show this in the
following.

Introducing twoQ-channel bound statesufil, one to ac-
count for the Feshbach resonancesi =bd and one to account
for the virtual-state resonancesi =vd, the direct part of the
scattering matrix does not contain a resonant feature any-
more and takes the formSbg

P =expf−2ikabg
P g, whereabg

P is on
the order of the range of the interaction potential. TheQ
subspace contains the two resonances introduced above, and
the total scattering matrix takes the form[55]

Sskd = Sbg
P S1 −

2iksCbLv + CvLbd
LbLv + iksCbLv + CvLbdD . s41d

HereLi =E−ei
Q−Di is the detuning of the dressed statei with

energyei
Q+Di. The decay width of the dressed statei is given

by Gi =2Cik. Note that the energy shift of both resonance
states is approximately constant, and the decay width scales
with k according to the Wigner threshold law. This is a direct
consequence of the removal of the low-energy resonance
from the direct channel by including the stateufvl into theQ
subspace.

The poles of the scattering matrix determine the(com-
plex) energy of the dressed resonance states. In the double-
resonance approach these poles are determined by the con-
dition

LbLv + iksCbLv + CvLbd = 0. s42d

In our model the poles are determined by the condition

sk + ikvsdsE − eb
Q − AsEdd = 0, s43d

if we only take theP-channel virtual state and theQ-channel
bound state into account. In other words, we neglect the
avoided crossing with the highestP-channel bound state.
Under the constraint that the dressed bound state that re-
moves the potential resonance from the direct channel be
located far away from the collision threshold—i.e.,Lv.

−ev−Dv—the two approaches are equivalent if the following
relations are satisfied:

Lv

Cv
= − kvs, s44d

Cb = −
Db

kvs
. s45d

These relations show how the double-resonance parameters
are related to the position of the virtual state(described by
kvs) and the zero-energy shift of the dressed Feshbach reso-
nance state,Db=DressE=0d. Note that the energyE always
has to be negligible compared toev+Dv; otherwise, the
double-resonanceS matrix will introduce a nonphysical en-
ergy dependence in the scattering phase shift.

The double-resonance model does give an equivalent de-
scription of the scattering process and can be used to param-
etrize the scattering matrix and/or scattering length. The link
between the properties of the open-channel resonance and
the second resonance introduced in the double-resonance
model is not really clear. Our model has the important ad-
vantage that it is directly related to the underlying physics
giving rise to theP-channel resonance.

VIII. CONCLUSIONS

In this paper, we have derived an analytical model that
describes the cold-collision properties of two interacting par-
ticles near a Feshbach resonance with large background scat-
tering length. The large background scattering length results
from an open-channel resonance near threshold, and this
resonance has to be treated explicitly. The open-channel scat-
tering is included in the Feshbach theory of resonances via a
contribution from its poles of theS matrix and its nonreso-
nant open-channel background scattering length. Here the
latter corresponds to the true range of the potential. As an
example, we study theB0=155 G Feshbach resonance of
85Rb, and we show that our model compares excellently with
numerical coupled-channel calculations in a large range of
energies around threshold.

Our model offers a simple physical picture for the under-
standing of threshold effects around resonance. It explains
how the energy shift between the dressed(quasi)bound
Feshbach state and the bare molecular state can be found. In
the literature, several other models have been proposed to
describe the formation of(quasibound) molecules(see, for
instance,[11,12,56,57]). We discuss in the following how
our model compares to some other models.

Several ideas have been proposed to describe the forma-
tion of (quasibound) molecules. In some descriptions(cf.
[11,12,56]) the threshold and(bare) molecular states are re-
garded as a two-level system, with an effective coupling that
accounts for the coupling between the open and closed chan-
nels. This results in a Landau-Zener crossing between the
threshold state and the molecular state. As can be seen from
Fig. 5, a Landau-Zener crossing does not correctly describe
the dressed molecular state in case the open channel has a
virtual state near threshold. The difference is striking, since
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the quasibound state in the continuum starts from threshold
at B0 (wherea is infinity) and then curves towards the bare
Feshbach state. In the Landau-Zener model the quasibound
state curves towards threshold at the other side of the bare
Feshbach state. In case there is a real bound state in the open
channel, the behavior of the dressed quasibound state ap-
pears to be qualitatively in agreement with the Landau-Zener
crossing(cf. Fig. 4). However, this is only the case since
there is a real avoided crossing below threshold between the
Feshbach state and the open-channel bound state. Threshold
effects (visible in the inset) are not accounted for in the
Landau-Zener crossing.

In other descriptions(cf. [57]) the energy levels of an
interacting pair of atoms in a harmonic trap are calculated.
Here the lowest state behaves as the Feshbach bound state in
the free-particle case fora small and positive and connects to
the lowest harmonic oscillator state fora small and negative.
All other trap states start on one side of the resonancesa.0d
in a particular trap staten and are connected on the other side
of the resonancesa,0d to a trap staten+1. There is a strong
field dependence of the eigenenergies for field values close
to resonance, and the bare trap levels can be regarded as
having avoided crossings with the quasibound state. This can
be understood from analytical models of two trapped atoms
[6,58,59], which calculate the energy shift of the trapped
atoms due to interactions, using the scattering phase as a
boundary condition for the trap wave function of the par-
ticles. In this way, it can be seen that the level energy is
strongly field dependent when it coincides with the quasi-

bound Feshbach state in the free-atom case. In the situation
of a virtual state in the open channel(cf. Fig. 5), the
quasibound-state energy changes its slope in a region close
to threshold. The avoided crossings between bare trap levels
and quasibound Feshbach state should therefore follow this
behavior.

The interplay between an open-channel resonance and a
Feshbach resonance is usually not taken into account in the
description of resonance many-body systems[60–65]. The
open channel will have an important effect in a regime where
the energies of the system are of the order of or larger than
the energy of the open-channel virtual state. A clear example
where this effect is visible is the Ramsey-fringe experiment
with 85Rb [13,14], where the range of binding energies is so
large that the bound state cannot be properly described by a
single-resonance model.
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