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Bethe logarithm for the hydrogen molecular ion HD*
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The mean excitation energyhe Bethe logarithmis calculated for the lowest rotationalp to L=4) and
vibrational (up tov =4) states of the hydrogen molecular ion HThe calculations are based on a method of
the direct integration over photon momenta. The estimated accuracy of obtained values is about six significant
digits.
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In the last few years an interest to precisely study the _
positive molecular ions of hydrogen isotopes is revived. Pri- Q(r) = I|m<
marily it is due to the recent progress in variational calcula- p0
tions of this system, which improves the accuracy of nonrel\We use smallz and m, to denote charges and masses of a
ativistic energies of the rovibrational states up to 18general few-body Coulomb system, and capfiaand M; to
significant digits[1-4]. These modern calculations are sen-denote charges and masses of nuclei in the hydrogenic mo-
sitive to proton/electron mass ratio, what as expected calecular ion. Atomic units are adopted throughout this paper.
lead to metrological applicatiofi,5]. However for this pur- The numerical computation of the Bethe logarithm is one
pose higher order relativistic and quantum electrodynamicsf the challenging problems in atomic and molecular physics
(QED) corrections are required. In this work we will con- [11,12. There is spectacular progress in the last few years
sider the contribution to the leading® order radiative cor- [13—-16. However, noab initio calculations have been car-
rection which is the most complicated quantity for numericalried out for the positive hydrogen molecular ions so far. In
computation to this order. We will calculate the Bethe loga-Ref. [12] the “mean excitation energy” of an electron has
rithm [6] for the HD" molecular ion. been calculated for a range of bond lengths up dg @he

The Bethe logarithm is a contribution, which comespresent work is an attempt to go beyond the “adiabatic”
mainly from the nonrelativistic energy region for the ex- Born-Oppenheimer approximation and to include recoil ef-
change photons and is defined in terms of the nonrelativistitects into the calculation o8(L,v) for this system.
quantum mechanid®]. The complete spin independent con-
tributions of ordera® and 3(m/M) in the case of a one
electron molecular system can be derived from the nonrela- |. THE LOW ENERGY PHOTON CONTRIBUTION
tivistic QED [7] in a way similar to what has been done for AND THE BETHE LOGARITHM
the helium case in Ref$8] and[9] and can be expressed as
follows:

@ —
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The one transverse photon contribution to the energy of a

bound system in the nonrelativistic QED is described by the

47; 5 1 diagrams shown on Fig. 1. The leading order effect enters

SVE= a32 S| In o= B(L,v) + P (8(ri) into the Breit-Pauli Hamiltonian and the remaining part can
|

be expressed as follow@ atomic units:
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wherej,=z,p,/m,. The term 1k in parentheses of Eq3)
(J(Ho - Eg)In[(Ho - Eg)/R..]3) correspond to the subtracted leadimgorder contribution to

2
PN

is the Bethe logarithmi, is the three-body nonrelativistic —
operator of the system, ar@r) is theQ term introduced by i E

2

where

B(L,v) =

Hamiltonian, J=X, z,p,/m, is the electric current density
Araki and Suchef10]:

FIG. 1. Transverse self-energy and exchange photon diagrams in
*Electronic address: korobov@thsunZl.jinr.ru the nonrelativistic QED.
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TABLE I. The Bethe logarithm for the lowest rotational, and vibrationalp, states of the hydrogen

molecular ion HD.

v=0 v=1 v=2 v=3 v=4
L=0 3.0123491) 3.012645%1) 3.0128081) 3.0128182) 3.0126922)
L=1 3.0123281) 3.0126211) 3.0127761) 3.01278%92) 3.0126682)
L=2 3.0122881) 3.0125721) 3.0127211) 3.0127292) 3.0125972)
L=3 3.01222¢71) 3.0125001) 3.0126402) 3.0126402) 3.0125003)
L=4 3.0121301) 3.0124061) 3.0125342) 3.0125242) 3.0123774)

the Breit-Pauli interaction in case of the transverse photon
exchange diagrani8] and to the “mass renormalization”

counterterm in case of the self-energy diagr@y].

At low photon energies one can neglect the retardation,
i.e., the exponential factors in E@3) can be replaced by

unity. In this “dipole” approximation expressi@B) converts

to a form
dk [ ;. KK
E("k—)<¢

E - a® J 1
TL_(27T)3

Ji
(EO_HO_k

1) ..
+—>JJ ¢o>- (4)
k
Averaging over angular variables one gets
E _2_a3f kd & J(;J)J o ):
- 377 0 0 EO_HO_k k o/
(5
this integral is ultraviolet divergent. Using identity
(Eog—Ho-K ™+ 1k
1 1 .
=- E(Eo —Ho) + E(Eo_ Ho)(Eo = Ho =K ™ (Eg —Ho)

one can separate the logarithmically divergent term and then

get
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whereB(L,v) is the Bethe logarithm as defined in Eg). It

now can be rewritten in terms of integrals oue(see also

Ref. [11]):

Ko
f k dk(J(Eg— Ho— k) 1J)
0

B(L,v) = ([J,[HO,J]]IZ)—{_

+In(Ky/R..) - Sk

Ko K
(J(Eg = Ho)(Eg = Hg = K™ (Eg = Hp)J)
([3,[Ho,I11/2)

The final expressions in Eq&) and(7) do not depend on a
choice of Ko(ma?<Ky<ma), which is taken to split the
ultrasoft and soft photon contributions.

The cutoff parameteA in Eq. (6) is introduced to define
an upper limit of the integration over the photon momentum
k and may be choosen as the rest mass of an electron, the
typical mass scale of the problem. The cutoff parameter is
eliminated when contribution from higher energy photons is
taken into accoun{8].

Denominator in Eq(7) can be expanded

- Ko<J2>]

)

_ z_z)\?
([[Ho, I = - 42, 7z, g RLU
]

i>j

and in a limit of largem./M; for molecular type systems is
approximately expressed

([I[Ho,J]]) = 477{ (Z4(8(r 1)) + Zx8(r )

Z Z,
+ 2] —(&(rq)) + —(4(r .

[M1< (r1) M2< ( z)>H
Substituting this expression into E() we reproduce ex-
actly a part of Eq(1), which containsg(L,v).

Il. NUMERICAL EVALUATION OF THE INTEGRALS

In order to evaluate the value gL ,v) we shall use Eq.
(7). To this end, let us introduce following Schwafiz] the
two functions, which enters as integrands into the ultrasoft
and soft photons contributions of E(Y), respectively,

J(K) == (ol I(Eq — Ho— K)oy,

W(k) = (Yol[Ho, I1(Eg — Ho = K) [Ho, I~ (8)
These functions are connected by the relation
~ 1 1 1_
3k =130 = G Ho IV + 50K (9)
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FIG. 2. (Color onling The logarithm of the mean excitation energy versus vibrational quantum number.

~ . . . 4 A . 2
J(k) can be obtained by solving an equation W(K) ~ 77'r2 fzf(ﬁ B r_ij_) [(2k)1’2+zizj In KI(8(r )
i>] i i
(Eo=Ho—K)¢tY =Jup, (10 1 M
+ EE C k™2, (12)

for a set ofk from zero to infinity. We solve this equation =0

using the variational procedure. The solutigf? is used to

get f](k):_<¢0|3|¢<1)>, which should obey the variational To estimate the contribution to the Bethe logarithm from the
asymptotic region Kmax ] (Kmax IS @ maximal value for
which the numerical calculation of the integrand is per-
formed we choose paramete@, for m=0,... M to get a
best fit for tabulated values af(k) in a range fromk,

property, namely, the computed value ~flﬁk) provides a
lower bound for this quantity. That allows one to find opti-
mal variational parameters for the numerical solution/df.
The functionW(k) can be obtained in a similar way. How-
X . - =30 to Ky~ 1000.

ever, the operatdH,,J], which appears in the equation, is . . . .

. . . . . For numerical calculations presented in the next section
singular that requires to introduce negative powers;adh ; .

L ) ) . we hold to the following rules:
the variational expansion for the first order perturbation _ ) ) ) ~
wave function. In what follows we make use of the relation (8 For k=[0,10], an analytical integration fod(k)
(9) in order to evaluat@v(k). from Eq.(11) is used
To provide with accurate numerical results, the variational
wave functiony/¥ from Eq. (10) for largek should contain Ko B
terms which behave as*'i, whereu=2k. f k dkJ
On the other hand, for the low energy part, when the’o

Bethe logarithm for the excited vibrational states of the hy-
drogen molecular ion is evaluated, the integral contains poles =, |<¢O|J|zpn>|2{Ko— (Eg- EpIn }
which should be integrated in a sense of the Cauchy princi- n
pal value. So, it is convenient for small valueskdb use the (b) Fork=[10,1000, we perform a numerical integra-

following form: tion of theWw(k) function.
(c) Fork=[1000 ¢*], the best fit for an asymptotic ex-

ol )| 1) pansion(12) is integrated analytically.

EO_En
Eo-En—-Ko

J(k) =~ ,
( ) En EO_ HO_ k
Il. VARIATIONAL APPROXIMATION

where the summation proceeds along pseudosiaiesb- AND NUMERICAL RESULTS

tained by the diagonalization of the Hamiltonian for the finite

variational basis set. That allows one to integrate this part For the variational calculations presented here, the wave

analytically. functions both for initial states and for intermediate ones are
Finally, the functionw(k) at k— o can be approximated taken in the formsee Ref[2] for detail9:
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* theses indicates an uncertainty in the last digit. This accuracy
W, (I,1,) = >, {U; R e @mhirzmnr] is sufficient to provide the final precision for vibrational tran-
i=1 sition energies to be about 61072 on the assumption of
, —air =Bt~y 112 higher order corrections to be included.

W Imler ARV ), (13) gIn Fig. 2, the logarithm of the mean excitation energy as a
where) Hﬁ(rlarz) are the solid bipolar harmonics as defined function of the vibrational quantum number is shown. For
in Refs.[17,18, L is a total orbital angular momentum of a high values ofv the Bethe logarithm should tend to the hy-
state. Complex parametess, 3;, and y are generated in a drogenic limit Irfky(1S)/R.]~2.984, since the essential con-

quasirandom manner tribution to the wave function comes from configurations,
- when nuclei are located at large distances, and the electronic
= [[%i(i + 1)\"paJ(A2—A1) +A1] wave function can be approximated to a good extent by a
1. e T , superposition of the dstate hydrogen functions. As is seen
+ '[lé'(' + Vg Jas-Ap + Al]’ from this figure, the calculated vibrational states are not suf-

ficient to make a reliable extrapolation to higher vibrational
states. On the other hand, the numerical uncertainty in
B(L,v) grows very rapidly with increase af, that makes
difficult the numerical study of the high states.

|x| designates the fractional part &f p,, andg, are some
prime numbers[A;,A,] and[A;,A;] are real variational in-
tervals which need to be optimized. Paramejgrand vy, are
obtained in a similar way.

Intermediate states, for the case of nonzero angular mo-
mentumL of the initial state, span ovér' =L,L+1 with the
spatial paritym=—(-1)-. For eachL’ we take a number of The author would like to express his gratitude to G. W. F.
basis functions up to 5000 to achieve required accuracy. EPrake for helpful discussions and warm hospitality during
pecially it is important for large vibrational states. author’s stay at the University of Windsor. The support of

Results of numerical calculations are shown in Table .SHARCNet and of the Russian Foundation for Basic Re-
We estimate that the numerical precision for the Bethe logasearch under Grant No. 03-02-16119 is gratefully acknowl-
rithm for these states is about Gnd the number in paren- edged.
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