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The mean excitation energy(the Bethe logarithm) is calculated for the lowest rotational(up to L=4) and
vibrational(up to v=4) states of the hydrogen molecular ion HD+. The calculations are based on a method of
the direct integration over photon momenta. The estimated accuracy of obtained values is about six significant
digits.
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In the last few years an interest to precisely study the
positive molecular ions of hydrogen isotopes is revived. Pri-
marily it is due to the recent progress in variational calcula-
tions of this system, which improves the accuracy of nonrel-
ativistic energies of the rovibrational states up to 18
significant digits[1–4]. These modern calculations are sen-
sitive to proton/electron mass ratio, what as expected can
lead to metrological application[1,5]. However for this pur-
pose higher order relativistic and quantum electrodynamics
(QED) corrections are required. In this work we will con-
sider the contribution to the leadinga3 order radiative cor-
rection which is the most complicated quantity for numerical
computation to this order. We will calculate the Bethe loga-
rithm [6] for the HD+ molecular ion.

The Bethe logarithm is a contribution, which comes
mainly from the nonrelativistic energy region for the ex-
change photons and is defined in terms of the nonrelativistic
quantum mechanics[6]. The complete spin independent con-
tributions of ordera3 and a3sm/Md in the case of a one
electron molecular system can be derived from the nonrela-
tivistic QED [7] in a way similar to what has been done for
the helium case in Refs.[8] and[9] and can be expressed as
follows:
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where
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is the Bethe logarithm,H0 is the three-body nonrelativistic
Hamiltonian, J=oa zapa/ma is the electric current density
operator of the system, andQsrd is theQ term introduced by
Araki and Sucher[10]:

Qsrd = lim
r→0
KQsr − rd

4pr3 + sln r + gEddsr dL .

We use smallzi and mi to denote charges and masses of a
general few-body Coulomb system, and capitalZi andMi to
denote charges and masses of nuclei in the hydrogenic mo-
lecular ion. Atomic units are adopted throughout this paper.

The numerical computation of the Bethe logarithm is one
of the challenging problems in atomic and molecular physics
[11,12]. There is spectacular progress in the last few years
[13–16]. However, noab initio calculations have been car-
ried out for the positive hydrogen molecular ions so far. In
Ref. [12] the “mean excitation energy” of an electron has
been calculated for a range of bond lengths up to 6a0. The
present work is an attempt to go beyond the “adiabatic”
Born-Oppenheimer approximation and to include recoil ef-
fects into the calculation ofbsL ,vd for this system.

I. THE LOW ENERGY PHOTON CONTRIBUTION
AND THE BETHE LOGARITHM

The one transverse photon contribution to the energy of a
bound system in the nonrelativistic QED is described by the
diagrams shown on Fig. 1. The leading order effect enters
into the Breit-Pauli Hamiltonian and the remaining part can
be expressed as follows(in atomic units):
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where j a=zapa/ma. The term 1/k in parentheses of Eq.(3)
correspond to the subtracted leadinga2 order contribution to
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FIG. 1. Transverse self-energy and exchange photon diagrams in

the nonrelativistic QED.
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the Breit-Pauli interaction in case of the transverse photon
exchange diagram[8] and to the “mass renormalization”
counterterm in case of the self-energy diagram[6,7].

At low photon energies one can neglect the retardation,
i.e., the exponential factors in Eq.(3) can be replaced by
unity. In this “dipole” approximation expression(3) converts
to a form
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Averaging over angular variables one gets
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this integral is ultraviolet divergent. Using identity
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wherebsL ,vd is the Bethe logarithm as defined in Eq.(2). It
now can be rewritten in terms of integrals overk (see also
Ref. [11]):
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The final expressions in Eqs.(6) and(7) do not depend on a
choice of K0sma2!K0!mad, which is taken to split the
ultrasoft and soft photon contributions.

The cutoff parameterL in Eq. (6) is introduced to define
an upper limit of the integration over the photon momentum
k and may be choosen as the rest mass of an electron, the
typical mass scale of the problem. The cutoff parameter is
eliminated when contribution from higher energy photons is
taken into account[8].

Denominator in Eq.(7) can be expanded
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i. j

zizjS zi
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and in a limit of largeme/Mi for molecular type systems is
approximately expressed

kfJfH0,Jggl < 4pHsZ1kdsr 1dl + Z2kdsr 2dld
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Substituting this expression into Eq.(6) we reproduce ex-
actly a part of Eq.(1), which containsbsL ,vd.

II. NUMERICAL EVALUATION OF THE INTEGRALS

In order to evaluate the value ofbsL ,vd we shall use Eq.
(7). To this end, let us introduce following Schwartz[11] the
two functions, which enters as integrands into the ultrasoft
and soft photons contributions of Eq.(7), respectively,

J̃skd = − kc0uJsE0 − H0 − kd−1Juc0l,

w̃skd = kc0ufH0,JgsE0 − H0 − kd−1fH0,Jguc0l. s8d

These functions are connected by the relation

J̃skd =
1

k
kJ2l −

1

k2k†J,fH0,Jg‡/2l +
1

k2w̃skd. s9d

TABLE I. The Bethe logarithm for the lowest rotational,L, and vibrational,v, states of the hydrogen
molecular ion HD+.

v=0 v=1 v=2 v=3 v=4

L=0 3.012349(1) 3.012645(1) 3.012803(1) 3.012818(2) 3.012692(2)

L=1 3.012328(1) 3.012621(1) 3.012776(1) 3.012789(2) 3.012663(2)

L=2 3.012285(1) 3.012572(1) 3.012721(1) 3.012729(2) 3.012597(2)

L=3 3.012222(1) 3.012500(1) 3.012640(2) 3.012640(2) 3.012500(3)

L=4 3.012139(1) 3.012406(1) 3.012534(2) 3.012524(2) 3.012377(4)
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J̃skd can be obtained by solving an equation

sE0 − H0 − kdcs1d = Jc0, s10d

for a set ofk from zero to infinity. We solve this equation
using the variational procedure. The solutioncs1d is used to

get J̃skd=−kc0uJucs1dl, which should obey the variational

property, namely, the computed value ofJ̃skd provides a
lower bound for this quantity. That allows one to find opti-
mal variational parameters for the numerical solution ofcs1d.
The functionw̃skd can be obtained in a similar way. How-
ever, the operatorfH0,Jg, which appears in the equation, is
singular that requires to introduce negative powers ofr i in
the variational expansion for the first order perturbation
wave function. In what follows we make use of the relation
(9) in order to evaluatew̃skd.

To provide with accurate numerical results, the variational
wave functioncs1d from Eq. (10) for largek should contain
terms which behave ase−mri, wherem=Î2k.

On the other hand, for the low energy part, when the
Bethe logarithm for the excited vibrational states of the hy-
drogen molecular ion is evaluated, the integral contains poles
which should be integrated in a sense of the Cauchy princi-
pal value. So, it is convenient for small values ofk to use the
following form:

J̃skd = − o
n

ukc0uJucnlu2

E0 − H0 − k
, s11d

where the summation proceeds along pseudostatescn ob-
tained by the diagonalization of the Hamiltonian for the finite
variational basis set. That allows one to integrate this part
analytically.

Finally, the functionw̃skd at k→` can be approximated
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To estimate the contribution to the Bethe logarithm from the
asymptotic regionfkmax,`g (kmax is a maximal value for
which the numerical calculation of the integrand is per-
formed) we choose parametersCm for m=0, . . . ,M to get a
best fit for tabulated values ofw̃skd in a range fromkmin

<30 to kmax<1000.
For numerical calculations presented in the next section

we hold to the following rules:

(a) For k=f0,10g, an analytical integration forJ̃skd
from Eq. (11) is used

E
0

K0

k dkJ̃

= o
n

ukc0uJucnlu2FK0 − sE0 − EndlnU E0 − En

E0 − En − K0
UG .

(b) For k=f10,1000g, we perform a numerical integra-
tion of thew̃skd function.

(c) For k=f1000,̀ g, the best fit for an asymptotic ex-
pansion(12) is integrated analytically.

III. VARIATIONAL APPROXIMATION
AND NUMERICAL RESULTS

For the variational calculations presented here, the wave
functions both for initial states and for intermediate ones are
taken in the form(see Ref.[2] for details):

FIG. 2. (Color online) The logarithm of the mean excitation energy versus vibrational quantum number.
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CLsl1,l2d = o
i=1

`

hUi Refe−air1−bir2−girg

+ Wi Imfe−air1−bir2−girgjY LM
l1l2sr 1,r 2d, s13d

whereY LM
l1l2sr 1,r 2d are the solid bipolar harmonics as defined

in Refs.[17,18], L is a total orbital angular momentum of a
state. Complex parametersai, bi, andgi are generated in a
quasirandom manner

ai = fb 1
2isi + 1dÎpacsA2 − A1d + A1g

+ ifb 1
2isi + 1dÎqacsA28 − A18d + A18g ,

bxc designates the fractional part ofx, pa, and qa are some
prime numbers,fA1,A2g and fA18 ,A28g are real variational in-
tervals which need to be optimized. Parametersbi andgi are
obtained in a similar way.

Intermediate states, for the case of nonzero angular mo-
mentumL of the initial state, span overL8=L ,L±1 with the
spatial parityp=−s−1dL. For eachL8 we take a number of
basis functions up to 5000 to achieve required accuracy. Es-
pecially it is important for large vibrational states.

Results of numerical calculations are shown in Table I.
We estimate that the numerical precision for the Bethe loga-
rithm for these states is about 10−6 and the number in paren-

theses indicates an uncertainty in the last digit. This accuracy
is sufficient to provide the final precision for vibrational tran-
sition energies to be about 10−11–10−12 on the assumption of
higher order corrections to be included.

In Fig. 2, the logarithm of the mean excitation energy as a
function of the vibrational quantum number is shown. For
high values ofv the Bethe logarithm should tend to the hy-
drogenic limit lnfk0s1Sd /R`g<2.984, since the essential con-
tribution to the wave function comes from configurations,
when nuclei are located at large distances, and the electronic
wave function can be approximated to a good extent by a
superposition of the 1s state hydrogen functions. As is seen
from this figure, the calculated vibrational states are not suf-
ficient to make a reliable extrapolation to higher vibrational
states. On the other hand, the numerical uncertainty in
bsL ,vd grows very rapidly with increase ofv, that makes
difficult the numerical study of the highv states.
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