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We show that the poor performance of approximate Kohn-S{€®) density functional theory for highly
charged atomic ions is improved dramatically by ensuring hadhe exchange functional recovers the correct
leading term in theZ expansion of the exchange ener@ is the nuclear chargeand (ii) the correlation
functional is bounded under uniform scaling of the density to the high-density Iimit—i.q\.HLLEﬁS[nA]>
—o, wheren, (r)=A3n(Ar). The performance of several density function@sYP, BP86, VS98, HCTH/407,

PBE, PKZB, and TPSSs compared for the 4-, 10-, and 18-electron atomic series spanning valiefsonf

4 to 28. Especially accurate results are obtained with the nonempirical metageneralized gradient approximation
of Tao, Perdew, Staroverov, and Scusé®&SS. High-Z limits of selected exchange and correlation func-
tionals are evaluated and compared with the exact values.
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[. INTRODUCTION Although a perfect model for the exchange-correlation en-
ergy is beyond reach, one can avoid at least some of the
Ground-state atomic isoelectronic series are fundamentdiailures of present-day DFT by using approximations con-
models for understanding correlation effects in many-structed to have a proper scaling behavior. Levy shojép
electron systems. As the nuclear chaiyef an N-electron  that, for a system whose Kohn-ShaiS) Hamiltonian is
ion increases, the correlation energy approaches a constambindegenerate, the exact DFT correlation energy is bounded
for certain values ol and diverges as Zfor others. This from below with respect to uniform scaling of the density
paradoxical resultl] follows from conventional perturbation n(r) to the high-density limit—that is,
theory using the noninteracting many-electron hydrogenic

atom as the zeroth-order approximation, the electron-electron lim E5[n,] >~ o, 1)
repulsion as the perturbation, andZlLas the perturbation Ao
parameteif2]. wheren, (r)=\%n(Ar). Because an atomic ion becomes more

Unlike most wave function techniques, approximate denyng more hydrogenic with increasigand because varying
sity functional theory(DFT) fails badly for these relatively 7 in hydrogenic ions has the same effect as uniform scaling
simple systems. For example, the local spin-density approxiof the density byr=Z, the exact correlation energy of a real
mation (LSDA) to the correlation energy diverges as Zn  jon will go to a constant at larg& if the corresponding
regardless oN, a concern that was first raised by Perdewn_electron hydrogenic system is nondegenerate. An approxi-
and co-workers[3]. Beyond-LSDA functionals also give mate correlation functional that satisfies Ed) for all
poor results for highly charged atomic ions, as demonstrateghoices of the unscaled densityr) will scale to a constant
numerically by Jarzeki and Davidson4]. They examined 557 . for all N.
several generalized gradient approximatioG&SAs) popu- In contrast to correlation, the DFT exchange energy is
lar in the late 1990s, including the correlation functionals Ofstrictly linear in\ for all N [12]:

Perdew(P86 [5], Perdew and WangPW?9)) [6], and Lee,

Yang, and Par(LYP) [7], combined with the Beck¢B88) EXS[n,] = AEXSn]. 2)
[8] and Hartree-FockHF) exchange, as well as the B3PW91

[9], B3LYP [10], and B3P86 hybrids. For most of these func- Although all common approximations &°[n] satisfy Eq.
tionals, the correlation energy diverges wihor all N. For  (2), they rarely yield the correct exchange energy for a given
LYP, it always approaches a constant. No existing functionahonuniform density. For hydrogenic systems like high-
can distinguish the two types of correlation energy behaviogtomic ions this means that the error&° will grow lin-

at largeZ. Even when the spurious divergence of the correearly with Z at a rate proportional to the deviation of
lation functional is absent, as in BLYP, errors of the total E)'fs[nzzl] from the exact value.

energy proportional t& arise from the exchange functional =~ Wilson and Levy were the first to explicitly impose the
approximation. The largest errors fdr< 28 were found4] high-density scaling constraint of E(l) on an approximate
for the widely used B3LYP hybrid. correlation functional13]. Some prior functionals, such as
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Becke’s 1988 correlatiofil4] and LYP, also respect Eql) hydrogenic orbitals or a linear combination of such determi-

for all densities, although they predate the formal proof of it.nants if¥© is degenerate.

The numerical real-space cutoff construct[@s] that under- The 1/Z expansion summarized by Eq&)—9) was

lies the PW91 and PBE GGA's respects this scaling limit,originally applied to the two-electron atomic problem by

although the PW91 analytic parametrization does not. Morédylleraas[20] and later extended to many-electron systems

recent nonempirical functionals, such as the GGA of Perdewhy others[2]. Unlike many other perturbation schemes used

Burke, and ErnzerhofPBE) [16] and the meta-GGAs of in quantum chemistry, the Z/series actually converges. The

Perdew, Kurth, Zupan, and Blali@KZB) [17] and Tao, Per- extensive literature on the radius of convergence and analytic

dew, Staroverov, and Scuser{d@PSS [18,19, are con- behavior of the 1Z expansion is reviewed by Baket al.

structed to satisfy Eq(l), among many other exact con- [21].

straints. The TPSS meta-GGA even gives the cofegin] The Hartree-Fock enerdg and wave functionbH* (the

for ground-state one-electron hydrogenic densities. best single determinanof an atomic ion can be represented
In this work, we demonstrate the progress achieved foby similar 1/Z expansiong22—-24

high-Z atomic ions with density functionals of this new gen-

eration. Our tests involve the 4-, 10-, and 18-electron series. EfF=272EQ + ZED + E2 + EE(HS%JF e (10)

For comparison with the work of Jar@dé and Davidsor{4] z

we have included BP86 and BLYP, the best performers in

that study. We also report here the highimits of selected HE _ —aN/2 (1) @

exchange and correlation functionals for hydrogenic densi- o=z ‘b FHo ‘I’ + zq’HF+"' . (11)

ties.

Because the unperturbed system is the same in both cases,

EY=E©. Thus, the conventional quantum-chemi¢gIC)

II. THEORETICAL BACKGROUND correlation energy

By applying the coordinate transformatiofi=Zr; to the
nonrelativistic Hamiltonian of aiN-electron atomic ion with
nuclear charge, one obtaingin atomic unit3

EQC = (W|H|W) — (DHFA|DHF) (12

can be written for atomic ions 44,25-27

N
~ 1 1 1 1 QC
— 52 _ w2 — - - C
H—Z[E( y ri,)+ziz<j r{,—]' @ ST

This form ofH suggests a Rayleigh-Schrodinger perturbatlon/vherecQC— EW- E(I For ions whereP© is nondegenerate,
treatment using the noninteracting many-electron hydrogenle(l)—E D too [1], so that the linear coeff|c|e|11,.~‘1?C vanishes
atom as the unperturbed system, the electron-electron repuind EQC asymptotically approache§ at largeZ. However,
sion as the perturbation, ang=1/Z as the perturbation pa- jf \[}(O) is degenerate, thel; (1) ) E® and the correlation en-
rameter: ergy can grow linearly W|trz In ground-state atomic ions
with N=<18 electrons, the nondegeneracydof’ (or degen-

HY =EY, (4) eracy unmixed witiH,) occurs only forN=2 (19), 3 (29), 7
. . . (“s%), 8 (3P), 9 (?P°), 10 (%), and 11(39).
H=Z%(Ho + aHy), (5 Kohn-Sham DFT relies on a different definition of the
correlation energy. In the constrained search formulg2&h
~ N 1 1 of KS DFT,
HO:.E(_EV‘,Z_F)’ © =y ST LY S
=1 i EXSIN] = (W|T + Ved W) — (DK T+ Ve d DSy, (14)
N 1 whereT and\A/ee are the kinetic energy and electron-electron
Hy = Vee= e (7) repulsion operators, respectively, Whﬂéfs is the noninter-

acting wave functionoften a single determinant of KS or-
The ground-state energy and unnormalized wave functiohitals that yields the same ground-state density) as ¥

W(rq,...,ry) of the perturbed system are given by and minimizeg(T).
1 Finally, correlation energy functionals intended to be used
E=7%EQ +zE®D + E@ + ZE(3) + o (8)  in combination with the nonlocal HF exchange approximate

yet another quantity defined by
v Ze,m(q,@ clyw, Lo, ) R EXTn] = (W[T+ Ved W) - (@FT + V0. (1)
z z Hered),ﬁ'F is the single determinant that minimizes the expec-

wherew©(r/, ... r{), the ground-state eigenfunction Iélf), tation value of the operatoﬁ+\A/ee and vyields the exact
is a Slater determinant of spin- and symmetry-constrainedround-state density.
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FIG. 1. Errors in the total energfE—Eey.o) as functions of FIG. 2. Same as in Fig. 1 for the 10-electidve] series.

nuclear charg& for the 4-electror{ Be] series computed with the
Hartree-FockHF) method and with approximate density function-

) times cancel each othgas in the Ne serigs The perfor-
als for exchange and correlation.

mance of these approximations can be contrasted with that of
recent semiempirical functionals that violate E@L)—

It is clear from the definitions that, for an atom with given Specifica"y’ a refitted GGA of Hamprecht, Cohen’ Tozer, and
N and Z, EQ°=E{"=E®. Thus, if EX° diverges to % as  Handy(HCTH/407) [33] and the meta-GGA of Van Voorhis
Z— 00, so necessarily d&;" andEf>. Moreover, whe?®  anq ScuserigvS98) [34], both of which tend to have large,
is nondegenerate, the largefimit of E¢® is finite and so  rapidly increasing, errors. Overall, the best performance in
necessarily are those Bf'"~ andEQ®. It should be also noted  Figs. 1-3 belongs to the nonempirical TPSS meta-GGA.
here that nonempirical approximations like PBE or TPSS For N=10 (Fig. 2), where the truchS tends to a constant
model E;°[n], because they are based upon exact propertiegs Z—, the TPSS error remains small for @k 28. For
of E5[n], such as a finite second-order gradient expansionN=18 (Fig. 3), where the true correlation energy diverges
The second-order gradient coefficient BE probably di-  linearly but slowly withZ, the TPSS error also remains small
verges[29]. for all Z<28. ForN=4 (Fig. 1), whereE.> diverges linearly
but rapidly with Z, the error of TPSS foZ<28 is much
more serious, but there seems to be a significant cancellation
of errors between TPSS exchange and TPSS correlation

To avoid ambiguities associated with various definitions?VNich can be seen by comparing Fig. 1 to Fig. 4 below.

of exchange and correlation, we consider the errors in total,_Figures 4-6 illustrate the performance of the P86, LYP,
DFT energies relative to the exact nonrelativistic values’BE, PKZB, and TPSS correlation functionals in combina-

taken from the work of Chakravortgt al. [30]. All atomic tion with nonlocal HF exchange. Implicit here is the assump-
energies were computed self-consistently with ¢h@ssIAN

Ill. Z DEPENDENCE OF EXCHANGE AND CORRELATION

program[31] using Partridge’s nearly saturated uncontracted 10

basis sets  [32]: Be (18s), B-Ne (18s,13p), i |
Na-Mg (20s,12p),  Al-Ar (20s,150), K (25s,16p), | HF ]
Ca(23s,16p), and Sc-Ni(23s,15p,11d). The d functions ok )

for Sc-Ni were dropped, since atomic orbitals with angular | PKzB
momentuml >1 do not contribute to the ground-state con- ¢ 44
figurations of spherical 4-, 10-, and 18-electron ions. Grids%
with more than 200 radial points were found necessary tos 5|
integrate the electron density in the vicinity of the nucleus. g
We used the 300-point radial and 974-point angular grids. 0.0 v Lo BYP

Figures 1-3 show the errors for pure DFT exchange-

| .—._—’_‘_.-.—‘_‘*0——. 4
correlation functionals. The most accurate results here are _go} WW i
predicted with the BLYP, BP86, and TPSS approximations. 5 \ ]

PBE 1

Errol
_|
vl
[
»

L

TPSS exchange and correlation perform much better togethe —o.4p vees
than PBE and PKZB exchange-correlation functionals. The
BP86 functional is comparatively accurate even though its
correlation component violates Ed.), because this violation

is only moderate and because the B88 and P86 errors some- FIG. 3. Same as in Fig. 1 for the 18-electtohr] series.
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FIG. 4. Errors in the total energfE—Egy,e as functions of FIG. 6. Same as in Fig. 4 for the 18-electroAr] series.

nuclear charg& for the 4-electrorfBe] series computed with ap-

proximate density functionals for correlation combined with close agreement found in Figs. 4—6 between PBE and TPSS

Hartree-Fock HF) exchange. correlation is not a general result; these two functionals pre-
dict significantly different correlation contributions to atomi-

tion that these functionals represéfit” of Eq. (15) when at zation energies of molecules, as can be seen from Table VI

least some of therPBE, PKZB, TPS$representr® of Eq.  Of Ref. [19].

(14). All of these approximations satisfy E¢l) except P86,

which produces a moderate violation. The plots for VS98 |v. HIGH- Z LIMITS OF EXCHANGE FUNCTIONALS

and HCTH/407 are not shown because these functionals _ i

were constructed semiempirically to approximate exchange 1he DFT exchange energy is defined as

and correlationtogether when a correlation component is o

formally separategd from them, it shows large errF())rs even at E)*fs[n] :<cD§5\Vech>,§S> —Jnl, (16)

N=Z (e.g., an HCTH/407 error of -0.44 hartree for the Aryhere ®KS is the KS noninteracting wave function that

atom). Such errors can be compensated by correspondingie|ds the ground-state densityr) and

errors in the exchange &= N, but not for allZ. The P86,

VS98, and HCTH/407 correlation energies diverge foall Il = 1 n(ryn(ryp) drd 17
like —=In A, as does LSDA, but with different constant pre- [n]= 2 o L 17
factors.

Note that the errors of LYP, PBE, PKZB, and TPSS, butiS the Coulomb repulsion energy. Following Jarzeand
not P86, approach a constant at higjfor the nondegenerate Davidson[35], we consider the expansion
10-electron[Ne] configuration and diverge for the degener- KS
ate 4- and 18-electrofiBe] and [Ar] configurations. The EXS = 57 + S+ &2

005k et For hydrogenic densities, the series terminates at the linear
) term, because E@18) must satisfy Eq(2) with A\=Z. There-
fore,

000 N T . . S -
eSS =ENnL ], (19)

HFTPSS

HFPKZB WherenE':l(r) is the density of a many-electron hydrogenic

[o)]
%'0'05' atom with Z=1. Note that for a nondegenerate hydrogenic
< system®S=w© and EXS[n]=E"n], in which case
g
5 ~0-10 ggxact KSz ghF = EHF i | (20)
o5k where EFF[nt., ] is the HF exchange energy of a many-
electron hydrogenic atom. This quantity can be evaluated
analytically as shown in the Appendix.
ool e Table | comparese® coefficients for the B88, PBE,
10 19 220 % 80 PKZB, and TPSS exchange functionals determined by Eq.
(19) to the exact HF values of E¢20). Only the nondegen-
FIG. 5. Same as in Fig. 4 for the 10-electridve] series. erate cases are considered. For the 8- and 9-electron ions, we
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TABLE |. Coefficients (in hartreey of the linear terms inZ TABLE Il. High-Z limits (in hartreey of quantum-chemical
expansions of the exchange energy of atomic ions. The exact valug®C) and DFT correlation energies of atomic ions. The QC limits
e’ are determined by Eq20) and the coefficients of approximate c3°=lim,_..EQ“(N,2) are from Refs[26] (N<10) and [27] (N

functionals by Eq(19) using MATHEMATICA . =11). DFT limits are determined by uniform scaling of hydrogenic
densitiesn™(r) to the X — o limit, ck>=lim,_.EXS[n"]. The rela-
N el 88 -efBE  _PKZB PSS tionship betweerts> andc3° is given by Eq.(22).
2 0.6250 0.6195 0.6119 0.6163 0.6250 | —cQ¢ —cLYpP —cPBE —cPKzB —cIPss
2 2 2 2 2
3 0.7221 0.7191 0.7120 0.7143 0.7246
7 1.2836 1.2796 1.2704 1.2623 1.2833 2 0.0467 0.0567 0.0479 0.0579 0.0510
g 1.4278 1.4249 1.4148 1.4032 14292 3 0.0537 0.0995 0.0584 0.0672 0.0595
o 1.5826 1.5784 1.5674 1.5530 15816 0.2373 0.3232 0.2272 0.2388 0.2374
10 1.7479 1.7404 1.7286 1.7123 1.7425 g 0.3064 0.3948 0.3031 0.3182 0.3122
a
1 1.8038 1.7997 1.7886 1.7691 1.8009 9 0.3694 0.4631 0.3798 0.3974 0.3890
m.a.e® 0.0044  0.0141 0.0232 0.0019 10 0.4278 0.5295 0.4577 0.4764 0.4674
11 0.4577 0.5890 0.4753 0.4935 0.4834

4Using real D-orbitals with integer occupation numbers.
PMean absolute error. ®Using nonspherical densities for density function@ise text

used nonspherical densities corresponding to the configur&elf-interaction correction of PBE, the corresponding expres-
tions |...2p,2p,2p,2p, and |...2p2p,2p,2p,2p,|, respec- Sions follow directly from that for PBE. A similar table for
tively. Because the three replorbitals are spatially equiva- LYP and PBE, but not for PKZB or TPSS, was given by
lent, other determinantal functions with the same number ofvanov and Levy[37] (whose LYP limits were later refined
unpairedp electrons and total spis would yield the same in Ref. [38]; see also Refg39,4(0). As with the exchange
eTS ande?F values(see also the Appendix functionals, we used nonspherical densities for the 8- and
As seen from Table I, the TPSS exchange has a far mor@-electron atomic ions. This accounts for small discrepancies
accurate linear term in the expansionmf° than the other between our LYP and PBE values and the corresponding
functionals. In the case of the He-like hydrogenic atn ~ Values of Ivanov and Levy[37,3§ who used spherical
=2) the coefficiente]PSS is truly exact becauseE,[n]  densities—i.e., occupation numbersf (2p,)=f (2py)
=EJ/n]+En ] and the TPSS meta-GGA was constructed=f|(2p,) =2/3 for N=9. o
to reproduce the exact exchange energy for ground-state one- Note that the PBE, PKZB, and TPSS approximations,
electron hydrogenic densitig48,19. The coefficientse®%®  which represeni;™ of Eq.(14), tend to satisfy the inequality
are also comparatively accurate. This explains why BLYPOf Eq. (21) for N#2, but do not quite show the expected

BP86, and TPSS functionals have the slowest-growing erropquality for N=2. Only PBE violates that inequality, and
in Figs. 1-3. then only forN=7 and 8.

V. HIGH- Z LIMITS OF CORRELATION FUNCTIONALS VI. DISCUSSION

While highZ limits of EQ€ are known for alN<11cases ~ The PBE GGA and the PKZB and TPSS meta-GGAs,
without degeneraciei6,27, the high-density scaling limits Were designed so that their correlation components would
of EXS andES cannot be easily determined except in specialScale to a constant under uniform density scaling to the high-
cases[36]. A link between these quantities was establishecdensity limit. The result is a qualitatively correct largebe-
by Ivanov and Lewyj37]. Using a perturbation expansion for havior of the correlation energy for the atomic ions where the
the DFT correlation energy38], they showed that, in the noninteracting KS Hamiltonian develops no degeneracy in

absence of higtZ degeneracies, the highZ limit. Even so, none of thg existi_ng fgnctionals
ke _ . has a correct largg-behavior for the ions with higiz- de-
}!Im EcIny] $Z|lm EQ“(N,2), (21)  generacies, because neither the paradigm densities nor the

other exact constraints imposed upon GGAs and meta-
wherenH(r) is the N-electron hydrogenic density, with the GGA's bring any information about near degeneracies of the

equality holding for onlyN=2, and KS noninteracting ground state. Since transition metal atoms
display such near degeneracies even at charge neutrality, the
lim EXT[nf{] = lim EZYN,2) (22)  accuracy of semilocal functionals must be somewhat limited
Ao o for systems containing such atorjl].
for all numbers of electrons. The difficulty of the Z— o limit can be understood in

Table 1l lists the highx limits of several correlation en- another way. The nonempirical correlation function&8E,
ergy functionals found by applying the appropriate high-PKZB, TPSS all start from and then correct the second-
density scaling expressions to thié-electron hydrogenic order gradient expansion. The small parameters of this ex-
densities(i.e., \=Z). For PBE, this expression is E{) of pansion are the dimensionless density gradismjsandt(r),

Ref. [16]. For PKZB and TPSS, which are constructed byas defined in Ref[16]. As Z goes to infinity,s(r) —s(Zr)
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remains bounded butr)— z2(zr) diverges. The second- ACKNOWLEDGMENTS
order gradient expansion Efés then diverges like Z While
the nonempirical GGA fixes much of the resulting error, it is
clear that neither functional can be reliable or> . On the
other hand, the only small parameter for the second-ord
gradient expansion d&, is s(r), so GGAs and meta-GGA's
can reliably handle th& — < limit for exchange.

The errors of the total energy for the isoelectroNis 4,
10, and 18 atomic series as functions Dfare especially APPENDIX
small for the nonempirical TPSS meta-GGA. This functional
appears to give accurate largelimits of the isoelectronic f
correlation energy in cases where the exact limit is finite, and
also accurate largg-limits for the isoelectronic exchange — (I —q_
energy. Like BP86, PBE, and PKZB and unlike the other Vee= (PVed®) ==K, (A1)
functionals tested here, TPSS is exact for an electron gas @fhere J is the Coulomb repulsion anuz—EyF is the ex-
uniform density. Like PKZB, it is exact even to second orderchange energy. The latter is obtained as
in V for a slowly varying density. Thus it has a good perfor-
mance not only for atoms and molecu[d2,43, but also for 1
solids and solid surfacd44,45. K= 52 Kij. (A2)

Density functionals for exchange and correlation that be- h=L
have properly under uniform density scaling also have a cofghereN is the number of spin-orbitalg(r)o; in ® and
rect adiabatic connection or coupling-constant integifdidl
and so, when they vyield the right answers, do so for the right . . 1
reasons. Satisfaction of EGL) may not be necessary for the Kij = 5oiojf &1 (r1) ¢, (rz)r—¢j(r1)¢i(r2)drldr2. (A3)
prediction of accurate atomization energies or first ionization 12
energiegsee Ref[42]), but functionals intended to be uni- If ¢(r) are hydrogenic orbitals, the integrals; can be
versally applicable to real systems should satisfy as mangvaluated by Slater’s formulgb0]
constraints on the exact universal functional as possible.

V.N.S. and G.E.S. acknowledge support from the National
Science FoundatiotNSF under Grant No. CHE-99-82156
and the Welch Foundation. J.P.P. and J.T. were supported by
sk Grant No. DMR-01-35678, and E.R.D. by NSF Grant
No. CHE-02-40426.

In the Hartree-Fock theory, the electron interaction energy
or a single Slater determinadt is given by

N

I+’
- K11 i 1 GRl il
VIl. CONCLUSION Kij 5frirr,~k:%|,| bl DD G, ), (A4)

The approximate density functionals considered here be\ivhere ni

long on various rungs of “Jacob’s laddg#6], according to quantum numbers of thi¢h orbital,,u} is the index referring

the list of their local |ng_red|ents_. _The first rung, the LSDA, to the (21! +1) degenerate orbitals within tHeset, b are the
uses only the local spin densities. The second rung, the

. K i i
GGA, uses also the gradients of the spin densities. The thirg® called angle factors, ar@ are integrals over the radial

rung, the meta-GGA, uses in addition the Laplacians of thé)artS of the orbitals, as defined in RES0]. In Eq. (Ad), the

spin densities or the Kohn-Sham orbital kinetic energy denlndexk varies in steps of 2.

sity, or both. The fourth rung further uses exact-exchang%a
information. There is also a fifth rung7], not tested here, K .
which uses all of the occupied and unoccupied Kohn-Sha f the an.gle fa_ct?rﬂ) are given bykSIste(SIO]. I;or real
orbitals and orbital energies. Al of these functionals are sup; ;ﬁjroggmc gb'tai used gl our-wor ; the rsoevh @re as
posed to yield accurate exchange-correlation enerBigs %OWS' (2’5)_1’ (s,pﬂ)—zl 3, (PP =1,
=E,+E, for atoms, molecules, and solids. Semilocal ap-° (P.,P,)=0,b%(p,,p,)=4/25, ando™(p,,p,)=3/25, where
proximations(GGA and meta-GGA based upon localized “=X.Y,zandu#v. , , ,

hole models should also provide accurate separate exchan%%-rhe |rltegrals over ri‘d'al hydrog]emc (zrbltals are
energieE, and correlation energids. for neutral atoms, but (1s,19)=5/8, G¥(2s,25)=77/512, G*(3s,3s) —017/256=
not for molecules where the separate exact exchange arf@ (1S 25)=16/729, G%1s,35)=189/32768, G2s,3s)
exact correlation holes are delocalized over more than ong 73008/9765625, G'(1s,2p)=112/2187, G'(2s,2p)
center[48]. For atomic ions withiZ> N (especially for those =45/512,G%(3s,2p)=92016/97656255%2p, 2p)=93/512,

N that show no hydrogenic degeneradyie best functionals andG?%(2p,2p)=45/512.

are the ones that satisfy the exact constraint of (Ey.par- In atoms with incompletely fillegh shells, a unitary trans-
ticularly the nonempirical TPSS meta-GGA. It remains anformation among the,, py, andp, functions may changé
unmet challengé3] to DFT, as it was in 1981, to achieve a andK but notVe, For example, in the case of the?2s?2p?
proper largeZ behavior of the correlation energy of atomic configuration, determinantal functiong; =|...2p,2p,| and
ions for allN on the first four rungs of the ladder, although ¢»=|...2p,2p,| have the sam&, but similar determinants of
this goal could be achieved on the fifth rung—for example,complex p orbitals, ¢;=|...2p;2p_4| and y5=|...2p;2p,|,

in a degenerate-case generalization of Gorling-Levy perturhave K values that differ by(3/50G?(2p,2p)=0.005273
bation theory{49]. hartree.

and |' are the principal and angular momentum

For hydrogenic orbitals whose angular parts are spherical
rmonics in complex fornjw=m=-1, ..., +l), the values
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