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We show that the poor performance of approximate Kohn-Sham(KS) density functional theory for highly
charged atomic ions is improved dramatically by ensuring that(i) the exchange functional recovers the correct
leading term in theZ expansion of the exchange energy(Z is the nuclear charge) and (ii ) the correlation
functional is bounded under uniform scaling of the density to the high-density limit—i.e., liml→`Ec

KSfnlg.

−`, wherenlsr d=l3nslr d. The performance of several density functionals(BLYP, BP86, VS98, HCTH/407,
PBE, PKZB, and TPSS) is compared for the 4-, 10-, and 18-electron atomic series spanning values ofZ from
4 to 28. Especially accurate results are obtained with the nonempirical metageneralized gradient approximation
of Tao, Perdew, Staroverov, and Scuseria(TPSS). High-Z limits of selected exchange and correlation func-
tionals are evaluated and compared with the exact values.
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I. INTRODUCTION

Ground-state atomic isoelectronic series are fundamental
models for understanding correlation effects in many-
electron systems. As the nuclear chargeZ of an N-electron
ion increases, the correlation energy approaches a constant
for certain values ofN and diverges as −Z for others. This
paradoxical result[1] follows from conventional perturbation
theory using the noninteracting many-electron hydrogenic
atom as the zeroth-order approximation, the electron-electron
repulsion as the perturbation, and 1/Z as the perturbation
parameter[2].

Unlike most wave function techniques, approximate den-
sity functional theory(DFT) fails badly for these relatively
simple systems. For example, the local spin-density approxi-
mation (LSDA) to the correlation energy diverges as −lnZ
regardless ofN, a concern that was first raised by Perdew
and co-workers[3]. Beyond-LSDA functionals also give
poor results for highly charged atomic ions, as demonstrated
numerically by Jarze¸cki and Davidson[4]. They examined
several generalized gradient approximations(GGA’s) popu-
lar in the late 1990s, including the correlation functionals of
Perdew(P86) [5], Perdew and Wang(PW91) [6], and Lee,
Yang, and Parr(LYP) [7], combined with the Becke(B88)
[8] and Hartree-Fock(HF) exchange, as well as the B3PW91
[9], B3LYP [10], and B3P86 hybrids. For most of these func-
tionals, the correlation energy diverges withZ for all N. For
LYP, it always approaches a constant. No existing functional
can distinguish the two types of correlation energy behavior
at largeZ. Even when the spurious divergence of the corre-
lation functional is absent, as in BLYP, errors of the total
energy proportional toZ arise from the exchange functional
approximation. The largest errors forZø28 were found[4]
for the widely used B3LYP hybrid.

Although a perfect model for the exchange-correlation en-
ergy is beyond reach, one can avoid at least some of the
failures of present-day DFT by using approximations con-
structed to have a proper scaling behavior. Levy showed[11]
that, for a system whose Kohn-Sham(KS) Hamiltonian is
nondegenerate, the exact DFT correlation energy is bounded
from below with respect to uniform scaling of the density
nsr d to the high-density limit—that is,

lim
l→`

Ec
KSfnlg . − `, s1d

wherenlsr d=l3nslr d. Because an atomic ion becomes more
and more hydrogenic with increasingZ and because varying
Z in hydrogenic ions has the same effect as uniform scaling
of the density byl=Z, the exact correlation energy of a real
ion will go to a constant at largeZ if the corresponding
N-electron hydrogenic system is nondegenerate. An approxi-
mate correlation functional that satisfies Eq.(1) for all
choices of the unscaled densitynsr d will scale to a constant
asZ→` for all N.

In contrast to correlation, the DFT exchange energy is
strictly linear inl for all N [12]:

Ex
KSfnlg = lEx

KSfng. s2d

Although all common approximations toEx
KSfng satisfy Eq.

(2), they rarely yield the correct exchange energy for a given
nonuniform density. For hydrogenic systems like high-Z
atomic ions this means that the error inEx

KS will grow lin-
early with Z at a rate proportional to the deviation of
Ex

KSfnZ=1g from the exact value.
Wilson and Levy were the first to explicitly impose the

high-density scaling constraint of Eq.(1) on an approximate
correlation functional[13]. Some prior functionals, such as
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Becke’s 1988 correlation[14] and LYP, also respect Eq.(1)
for all densities, although they predate the formal proof of it.
The numerical real-space cutoff construction[15] that under-
lies the PW91 and PBE GGA’s respects this scaling limit,
although the PW91 analytic parametrization does not. More
recent nonempirical functionals, such as the GGA of Perdew,
Burke, and Ernzerhof(PBE) [16] and the meta-GGA’s of
Perdew, Kurth, Zupan, and Blaha(PKZB) [17] and Tao, Per-
dew, Staroverov, and Scuseria(TPSS) [18,19], are con-
structed to satisfy Eq.(1), among many other exact con-
straints. The TPSS meta-GGA even gives the correctEx

KSfng
for ground-state one-electron hydrogenic densities.

In this work, we demonstrate the progress achieved for
high-Z atomic ions with density functionals of this new gen-
eration. Our tests involve the 4-, 10-, and 18-electron series.
For comparison with the work of Jarze¸cki and Davidson[4]
we have included BP86 and BLYP, the best performers in
that study. We also report here the high-Z limits of selected
exchange and correlation functionals for hydrogenic densi-
ties.

II. THEORETICAL BACKGROUND

By applying the coordinate transformationr i8=Zr i to the
nonrelativistic Hamiltonian of anN-electron atomic ion with
nuclear chargeZ, one obtains(in atomic units)

Ĥ = Z2Fo
i=1

N S−
1

2
¹i8

2 −
1

r i8
D +

1

Z
o
i, j

1

r ij8
G . s3d

This form ofĤ suggests a Rayleigh-Schrödinger perturbation
treatment using the noninteracting many-electron hydrogenic
atom as the unperturbed system, the electron-electron repul-
sion as the perturbation, anda=1/Z as the perturbation pa-
rameter:

ĤC = EC, s4d

Ĥ = Z2sĤ0 + aĤ1d, s5d

Ĥ0 = o
i=1

N S−
1

2
¹i8

2 −
1

r i8
D , s6d

Ĥ1 = V̂ee= o
i, j

1

r ij8
. s7d

The ground-state energy and unnormalized wave function
Csr 1, . . . ,r Nd of the perturbed system are given by

E = Z2Es0d + ZEs1d + Es2d +
1

Z
Es3d + ¯ , s8d

C = Z3N/2SCs0d +
1

Z
Cs1d +

1

Z2Cs2d + ¯D , s9d

whereCs0dsr 18 , . . . ,r N8 d, the ground-state eigenfunction ofĤ0,
is a Slater determinant of spin- and symmetry-constrained

hydrogenic orbitals or a linear combination of such determi-
nants ifCs0d is degenerate.

The 1/Z expansion summarized by Eqs.(4)–(9) was
originally applied to the two-electron atomic problem by
Hylleraas[20] and later extended to many-electron systems
by others[2]. Unlike many other perturbation schemes used
in quantum chemistry, the 1/Z series actually converges. The
extensive literature on the radius of convergence and analytic
behavior of the 1/Z expansion is reviewed by Bakeret al.
[21].

The Hartree-Fock energyEHF and wave functionFHF (the
best single determinant) of an atomic ion can be represented
by similar 1/Z expansions[22–24]

EHF = Z2EHF
s0d + ZEHF

s1d + EHF
s2d +

1

Z
EHF

s3d + ¯ , s10d

FHF = Z3N/2SFHF
s0d +

1

Z
FHF

s1d +
1

Z2FHF
s2d + ¯D . s11d

Because the unperturbed system is the same in both cases,
EHF

s0d =Es0d. Thus, the conventional quantum-chemical(QC)
correlation energy

Ec
QC = kCuĤuCl − kFHFuĤuFHFl s12d

can be written for atomic ions as[1,25–27]

Ec
QCsN,Zd = c1

QCZ + c2
QC +

c3
QC

Z
+ ¯ , s13d

whereci
QC=Esid−EHF

sid . For ions whereCs0d is nondegenerate,
EHF

s1d =Es1d too [1], so that the linear coefficientc1
QC vanishes

andEc
QC asymptotically approachesc2

QC at largeZ. However,
if Cs0d is degenerate, thenEHF

s1d ÞEs1d and the correlation en-
ergy can grow linearly withZ. In ground-state atomic ions
with Nø18 electrons, the nondegeneracy ofCs0d (or degen-

eracy unmixed withĤ1) occurs only forN=2 s1Sd, 3 s2Sd, 7
s4Sod, 8 s3Pd, 9 s2Pod, 10 s1Sd, and 11s2Sd.

Kohn-Sham DFT relies on a different definition of the
correlation energy. In the constrained search formulation[28]
of KS DFT,

Ec
KSfng = kCuT̂ + V̂eeuCl − kFn

KSuT̂ + V̂eeuFn
KSl, s14d

whereT̂ andV̂ee are the kinetic energy and electron-electron
repulsion operators, respectively, whileFn

KS is the noninter-
acting wave function(often a single determinant of KS or-
bitals) that yields the same ground-state densitynsr d as C

and minimizeskT̂l.
Finally, correlation energy functionals intended to be used

in combination with the nonlocal HF exchange approximate
yet another quantity defined by

Ec
HFfng = kCuT̂ + V̂eeuCl − kFn

HFuT̂ + V̂eeuFn
HFl. s15d

HereFn
HF is the single determinant that minimizes the expec-

tation value of the operatorT̂+V̂ee and yields the exact
ground-state density.
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It is clear from the definitions that, for an atom with given
N and Z, Ec

QCùEc
HFùEc

KS. Thus, if Ec
QC diverges to −̀ as

Z→`, so necessarily doEc
HF andEc

KS. Moreover, whenCs0d

is nondegenerate, the large-Z limit of Ec
KS is finite and so

necessarily are those ofEc
HF andEc

QC. It should be also noted
here that nonempirical approximations like PBE or TPSS
modelEc

KSfng, because they are based upon exact properties
of Ec

KSfng, such as a finite second-order gradient expansion.
The second-order gradient coefficient ofEc

QC probably di-
verges[29].

III. Z DEPENDENCE OF EXCHANGE AND CORRELATION

To avoid ambiguities associated with various definitions
of exchange and correlation, we consider the errors in total
DFT energies relative to the exact nonrelativistic values
taken from the work of Chakravortyet al. [30]. All atomic
energies were computed self-consistently with theGAUSSIAN

program[31] using Partridge’s nearly saturated uncontracted
basis sets [32]: Be s18sd, B-Ne s18s,13pd,
Na-Mg s20s,12pd, Al-Ar s20s,15pd, K s25s,16pd,
Ca s23s,16pd, and Sc-Nis23s,15p,11dd. The d functions
for Sc-Ni were dropped, since atomic orbitals with angular
momentuml .1 do not contribute to the ground-state con-
figurations of spherical 4-, 10-, and 18-electron ions. Grids
with more than 200 radial points were found necessary to
integrate the electron density in the vicinity of the nucleus.
We used the 300-point radial and 974-point angular grids.

Figures 1–3 show the errors for pure DFT exchange-
correlation functionals. The most accurate results here are
predicted with the BLYP, BP86, and TPSS approximations.
TPSS exchange and correlation perform much better together
than PBE and PKZB exchange-correlation functionals. The
BP86 functional is comparatively accurate even though its
correlation component violates Eq.(1), because this violation
is only moderate and because the B88 and P86 errors some-

times cancel each other(as in the Ne series). The perfor-
mance of these approximations can be contrasted with that of
recent semiempirical functionals that violate Eq.(1)—
specifically, a refitted GGA of Hamprecht, Cohen, Tozer, and
Handy (HCTH/407) [33] and the meta-GGA of Van Voorhis
and Scuseria(VS98) [34], both of which tend to have large,
rapidly increasing, errors. Overall, the best performance in
Figs. 1–3 belongs to the nonempirical TPSS meta-GGA.

For N=10 (Fig. 2), where the trueEc
KS tends to a constant

as Z→`, the TPSS error remains small for allZø28. For
N=18 (Fig. 3), where the true correlation energy diverges
linearly but slowly withZ, the TPSS error also remains small
for all Zø28. ForN=4 (Fig. 1), whereEc

KS diverges linearly
but rapidly with Z, the error of TPSS forZø28 is much
more serious, but there seems to be a significant cancellation
of errors between TPSS exchange and TPSS correlation
which can be seen by comparing Fig. 1 to Fig. 4 below.

Figures 4–6 illustrate the performance of the P86, LYP,
PBE, PKZB, and TPSS correlation functionals in combina-
tion with nonlocal HF exchange. Implicit here is the assump-

FIG. 1. Errors in the total energysE−Eexactd as functions of
nuclear chargeZ for the 4-electronfBeg series computed with the
Hartree-Fock(HF) method and with approximate density function-
als for exchange and correlation.

FIG. 2. Same as in Fig. 1 for the 10-electronfNeg series.

FIG. 3. Same as in Fig. 1 for the 18-electronfArg series.
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tion that these functionals representEc
HF of Eq. (15) when at

least some of them(PBE, PKZB, TPSS) representEc
KS of Eq.

(14). All of these approximations satisfy Eq.(1) except P86,
which produces a moderate violation. The plots for VS98
and HCTH/407 are not shown because these functionals
were constructed semiempirically to approximate exchange
and correlationtogether; when a correlation component is
formally separated from them, it shows large errors even at
N=Z (e.g., an HCTH/407 error of −0.44 hartree for the Ar
atom). Such errors can be compensated by corresponding
errors in the exchange atZ<N, but not for allZ. The P86,
VS98, and HCTH/407 correlation energies diverge for allN
like −ln l, as does LSDA, but with different constant pre-
factors.

Note that the errors of LYP, PBE, PKZB, and TPSS, but
not P86, approach a constant at highZ for the nondegenerate
10-electronfNeg configuration and diverge for the degener-
ate 4- and 18-electronfBeg and fArg configurations. The

close agreement found in Figs. 4–6 between PBE and TPSS
correlation is not a general result; these two functionals pre-
dict significantly different correlation contributions to atomi-
zation energies of molecules, as can be seen from Table VII
of Ref. [19].

IV. HIGH- Z LIMITS OF EXCHANGE FUNCTIONALS

The DFT exchange energy is defined as

Ex
KSfng = kFn

KSuV̂eeuFn
KSl − Jfng, s16d

where Fn
KS is the KS noninteracting wave function that

yields the ground-state densitynsr d and

Jfng =
1

2
E nsr 1dnsr 2d

r12
dr 1dr 2 s17d

is the Coulomb repulsion energy. Following Jarze¸cki and
Davidson[35], we consider the expansion

Ex
KS = e1

KSZ + e2
KS +

e3
KS

Z
+ ¯ . s18d

For hydrogenic densities, the series terminates at the linear
term, because Eq.(18) must satisfy Eq.(2) with l=Z. There-
fore,

e1
KS = Ex

KSfnZ=1
H g, s19d

wherenZ=1
H sr d is the density of a many-electron hydrogenic

atom with Z=1. Note that for a nondegenerate hydrogenic
systemFn

KS=Cs0d andEx
KSfng=Ex

HFfng, in which case

e1
exact KS= e1

HF = Ex
HFfnZ=1

H g, s20d

where Ex
HFfnZ=1

H g is the HF exchange energy of a many-
electron hydrogenic atom. This quantity can be evaluated
analytically as shown in the Appendix.

Table I comparese1
KS coefficients for the B88, PBE,

PKZB, and TPSS exchange functionals determined by Eq.
(19) to the exact HF values of Eq.(20). Only the nondegen-
erate cases are considered. For the 8- and 9-electron ions, we

FIG. 4. Errors in the total energysE−Eexactd as functions of
nuclear chargeZ for the 4-electronfBeg series computed with ap-
proximate density functionals for correlation combined with
Hartree-Fock(HF) exchange.

FIG. 5. Same as in Fig. 4 for the 10-electronfNeg series.

FIG. 6. Same as in Fig. 4 for the 18-electronfArg series.

STAROVEROVet al. PHYSICAL REVIEW A 70, 012502(2004)

012502-4



used nonspherical densities corresponding to the configura-
tions u. . .2px2py2pz2pzu and u. . .2px2px2py2py2pzu, respec-
tively. Because the three realp orbitals are spatially equiva-
lent, other determinantal functions with the same number of
unpairedp electrons and total spinS would yield the same
e1

KS ande1
HF values(see also the Appendix).

As seen from Table I, the TPSS exchange has a far more
accurate linear term in the expansion ofEx

KS than the other
functionals. In the case of the He-like hydrogenic atomsN
=2d the coefficient e1

TPSS is truly exact becauseExfng
=Exfn↑g+Exfn↓g and the TPSS meta-GGA was constructed
to reproduce the exact exchange energy for ground-state one-
electron hydrogenic densities[18,19]. The coefficientse1

B88

are also comparatively accurate. This explains why BLYP,
BP86, and TPSS functionals have the slowest-growing error
in Figs. 1–3.

V. HIGH- Z LIMITS OF CORRELATION FUNCTIONALS

While high-Z limits of Ec
QC are known for allNø11 cases

without degeneracies[26,27], the high-density scaling limits
of Ec

KS andEc
HF cannot be easily determined except in special

cases[36]. A link between these quantities was established
by Ivanov and Levy[37]. Using a perturbation expansion for
the DFT correlation energy[38], they showed that, in the
absence of high-Z degeneracies,

lim
l→`

Ec
KSfnl

Hg ø lim
Z→`

Ec
QCsN,Zd, s21d

wherenHsr d is the N-electron hydrogenic density, with the
equality holding for onlyN=2, and

lim
l→`

Ec
HFfnl

Hg = lim
Z→`

Ec
QCsN,Zd s22d

for all numbers of electrons.
Table II lists the high-l limits of several correlation en-

ergy functionals found by applying the appropriate high-
density scaling expressions to theN-electron hydrogenic
densities(i.e., l=Z). For PBE, this expression is Eq.(9) of
Ref. [16]. For PKZB and TPSS, which are constructed by

self-interaction correction of PBE, the corresponding expres-
sions follow directly from that for PBE. A similar table for
LYP and PBE, but not for PKZB or TPSS, was given by
Ivanov and Levy[37] (whose LYP limits were later refined
in Ref. [38]; see also Refs.[39,40]). As with the exchange
functionals, we used nonspherical densities for the 8- and
9-electron atomic ions. This accounts for small discrepancies
between our LYP and PBE values and the corresponding
values of Ivanov and Levy[37,38] who used spherical
densities—i.e., occupation numbersf↓s2pxd= f↓s2pyd
= f↓s2pzd=2/3 for N=9.

Note that the PBE, PKZB, and TPSS approximations,
which representEc

KS of Eq. (14), tend to satisfy the inequality
of Eq. (21) for NÞ2, but do not quite show the expected
equality for N=2. Only PBE violates that inequality, and
then only forN=7 and 8.

VI. DISCUSSION

The PBE GGA and the PKZB and TPSS meta-GGA’s,
were designed so that their correlation components would
scale to a constant under uniform density scaling to the high-
density limit. The result is a qualitatively correct large-Z be-
havior of the correlation energy for the atomic ions where the
noninteracting KS Hamiltonian develops no degeneracy in
the high-Z limit. Even so, none of the existing functionals
has a correct large-Z behavior for the ions with high-Z de-
generacies, because neither the paradigm densities nor the
other exact constraints imposed upon GGA’s and meta-
GGA’s bring any information about near degeneracies of the
KS noninteracting ground state. Since transition metal atoms
display such near degeneracies even at charge neutrality, the
accuracy of semilocal functionals must be somewhat limited
for systems containing such atoms[41].

The difficulty of the Z→` limit can be understood in
another way. The nonempirical correlation functionals(PBE,
PKZB, TPSS) all start from and then correct the second-
order gradient expansion. The small parameters of this ex-
pansion are the dimensionless density gradientsssr d andtsr d,
as defined in Ref.[16]. As Z goes to infinity,ssr d→ssZr d

TABLE I. Coefficients (in hartrees) of the linear terms inZ
expansions of the exchange energy of atomic ions. The exact values
e1

HF are determined by Eq.(20) and the coefficients of approximate
functionals by Eq.(19) usingMATHEMATICA .

N −e1
HF −e1

B88 −e1
PBE −e1

PKZB −e1
TPSS

2 0.6250 0.6195 0.6119 0.6163 0.6250

3 0.7221 0.7191 0.7120 0.7143 0.7246

7 1.2836 1.2796 1.2704 1.2623 1.2833

8a 1.4278 1.4249 1.4148 1.4032 1.4292

9a 1.5826 1.5784 1.5674 1.5530 1.5816

10 1.7479 1.7404 1.7286 1.7123 1.7425

11 1.8038 1.7997 1.7886 1.7691 1.8009

m.a.e.b 0.0044 0.0141 0.0232 0.0019

aUsing real 2p-orbitals with integer occupation numbers.
bMean absolute error.

TABLE II. High-Z limits (in hartrees) of quantum-chemical
(QC) and DFT correlation energies of atomic ions. The QC limits
c2

QC=limZ→`Ec
QCsN,Zd are from Refs.[26] sNø10d and [27] sN

=11d. DFT limits are determined by uniform scaling of hydrogenic
densitiesnHsr d to the l→` limit, c2

KS=liml→`Ec
KSfnl

Hg. The rela-
tionship betweenc2

KS andc2
QC is given by Eq.(21).

N −c2
QC −c2

LYP −c2
PBE −c2

PKZB −c2
TPSS

2 0.0467 0.0567 0.0479 0.0579 0.0510

3 0.0537 0.0995 0.0584 0.0672 0.0595

7 0.2373 0.3232 0.2272 0.2388 0.2374

8a 0.3064 0.3948 0.3031 0.3182 0.3122

9a 0.3694 0.4631 0.3798 0.3974 0.3890

10 0.4278 0.5295 0.4577 0.4764 0.4674

11 0.4577 0.5890 0.4753 0.4935 0.4834

aUsing nonspherical densities for density functionals(see text).
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remains bounded buttsr d→Z1/2tsZr d diverges. The second-
order gradient expansion ofEc

KS then diverges like +Z. While
the nonempirical GGA fixes much of the resulting error, it is
clear that neither functional can be reliable forZ→`. On the
other hand, the only small parameter for the second-order
gradient expansion ofEx is ssr d, so GGA’s and meta-GGA’s
can reliably handle theZ→` limit for exchange.

The errors of the total energy for the isoelectronicN=4,
10, and 18 atomic series as functions ofZ are especially
small for the nonempirical TPSS meta-GGA. This functional
appears to give accurate large-Z limits of the isoelectronic
correlation energy in cases where the exact limit is finite, and
also accurate large-Z limits for the isoelectronic exchange
energy. Like BP86, PBE, and PKZB and unlike the other
functionals tested here, TPSS is exact for an electron gas of
uniform density. Like PKZB, it is exact even to second order
in ¹ for a slowly varying density. Thus it has a good perfor-
mance not only for atoms and molecules[42,43], but also for
solids and solid surfaces[44,45].

Density functionals for exchange and correlation that be-
have properly under uniform density scaling also have a cor-
rect adiabatic connection or coupling-constant integrand[11]
and so, when they yield the right answers, do so for the right
reasons. Satisfaction of Eq.(1) may not be necessary for the
prediction of accurate atomization energies or first ionization
energies(see Ref.[42]), but functionals intended to be uni-
versally applicable to real systems should satisfy as many
constraints on the exact universal functional as possible.

VII. CONCLUSION

The approximate density functionals considered here be-
long on various rungs of “Jacob’s ladder”[46], according to
the list of their local ingredients. The first rung, the LSDA,
uses only the local spin densities. The second rung, the
GGA, uses also the gradients of the spin densities. The third
rung, the meta-GGA, uses in addition the Laplacians of the
spin densities or the Kohn-Sham orbital kinetic energy den-
sity, or both. The fourth rung further uses exact-exchange
information. There is also a fifth rung[47], not tested here,
which uses all of the occupied and unoccupied Kohn-Sham
orbitals and orbital energies. All of these functionals are sup-
posed to yield accurate exchange-correlation energiesExc
=Ex+Ec for atoms, molecules, and solids. Semilocal ap-
proximations(GGA and meta-GGA) based upon localized
hole models should also provide accurate separate exchange
energiesEx and correlation energiesEc for neutral atoms, but
not for molecules where the separate exact exchange and
exact correlation holes are delocalized over more than one
center[48]. For atomic ions withZ@N (especially for those
N that show no hydrogenic degeneracy), the best functionals
are the ones that satisfy the exact constraint of Eq.(1), par-
ticularly the nonempirical TPSS meta-GGA. It remains an
unmet challenge[3] to DFT, as it was in 1981, to achieve a
proper large-Z behavior of the correlation energy of atomic
ions for all N on the first four rungs of the ladder, although
this goal could be achieved on the fifth rung—for example,
in a degenerate-case generalization of Görling-Levy pertur-
bation theory[49].
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APPENDIX

In the Hartree-Fock theory, the electron interaction energy
for a single Slater determinantF is given by

Vee= kFuV̂eeuFl = J − K, sA1d

whereJ is the Coulomb repulsion andK=−Ex
HF is the ex-

change energy. The latter is obtained as

K =
1

2 o
i,j=1

N

Kij , sA2d

whereN is the number of spin-orbitalsfisr dsi in F and

Kij = dsis j E fi
*sr 1df j

*sr 2d
1

r12
f jsr 1dfisr 2ddr 1dr 2. sA3d

If fisr d are hydrogenic orbitals, the integralsKij can be
evaluated by Slater’s formula[50]

Kij = dsis j o
k=ul−l8u

l+l8

bksl iml
i,l jml

jdGksnil i,njl jd, sA4d

where ni and l i are the principal and angular momentum
quantum numbers of theith orbital,ml

i is the index referring
to thes2l i +1d degenerate orbitals within thel i set,bk are the
so-called angle factors, andGk are integrals over the radial
parts of the orbitals, as defined in Ref.[50]. In Eq. (A4), the
index k varies in steps of 2.

For hydrogenic orbitals whose angular parts are spherical
harmonics in complex formsml =ml =−l , . . . , +ld, the values
of the angle factorsbk are given by Slater[50]. For real
hydrogenic orbitals used in our work, the relevantbk are as
follows: b0ss,sd=1, b1ss,pmd=1/3, b0spm ,pmd=1,
b0spm ,pnd=0, b2spm ,pmd=4/25, andb2spm ,pnd=3/25, where
m=x,y,z andmÞn.

The integrals over radial hydrogenic orbitals are
G0s1s,1sd=5/8, G0s2s,2sd=77/512, G0s3s,3sd=17/256,
G0s1s,2sd=16/729, G0s1s,3sd=189/32768, G0s2s,3sd
=73008/9765625, G1s1s,2pd=112/2187, G1s2s,2pd
=45/512,G1s3s,2pd=92016/9765625,G0s2p,2pd=93/512,
andG2s2p,2pd=45/512.

In atoms with incompletely filledp shells, a unitary trans-
formation among thepx, py, andpz functions may changeJ
andK but notVee. For example, in the case of the 1s22s22p2

configuration, determinantal functionsc1= u. . .2px2pyu and
c2= u. . .2px2pzu have the sameK, but similar determinants of
complex p orbitals, c18= u . . .2p12p−1u and c28= u. . .2p12p0u,
have K values that differ bys3/50dG2s2p,2pd=0.005273
hartree.
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