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We investigate the physical implementation of Shor’s factorization algorithm on a Josephson charge qubit
register. While we pursue a universal method to factor a composite integer of any size, the scheme is demon-
strated for the number 21. We consider both the physical and algorithmic requirements for an optimal imple-
mentation when only a small number of qubits are available. These aspects of quantum computation are usually
the topics of separate research communities; we present a unifying discussion of both of these fundamental
features bridging Shor’s algorithm to its physical realization using Josephson junction qubits. In order to meet
the stringent requirements set by a short decoherence time, we accelerate the algorithm by decomposing the
quantum circuit into tailored two- and three-qubit gates and we find their physical realizations through nu-
merical optimization.
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I. INTRODUCTION

Quantum computers have potentially superior computing
power over their classical counterparts[1,2]. The novel com-
puting principles which are based on the quantum-
mechanical superposition of states and their entanglement
manifest themselves, for example, in Shor’s integer-
factorization algorithm[3] and in Grover’s database search
[4]. In this paper we focus on Shor’s algorithm which is
important owing to its potential applications in(de)cryptog-
raphy. Many widely applied methods of public-key cryptog-
raphy are currently based on the RSA algorithm[5] which
relies on the computational difficulty of factoring large inte-
gers.

Recently, remarkable progress toward the experimental
realization of a quantum computer has been accomplished,
for instance, using nuclear spins[6,7], trapped ions[8,9],
cavity quantum electrodynamics[10], electrons in quantum
dots [11], and superconducting circuits[12–17]. However,
the construction of a large multiqubit register remains ex-
tremely challenging. The very many degrees of freedom of
the environment tend to become entangled with those of the
qubit register which results in undesirable decoherence[18].
This imposes a limit on the coherent execution time available
for the quantum computation. The shortness of the decoher-
ence time may present fundamental difficulties in scaling the
quantum register up to large sizes, which is the basic require-
ment for the realization of nontrivial quantum algorithms
[19].

In this paper, we consider an inductively coupled charge-
qubit model[20]. Josephson-junction circuits provide two-
state pseudospin systems whose different spin components
correspond to distinct macroscopic variables: either the
charges on the superconducting islands or the phase differ-
ences over the Josephson junctions. Thus, depending on the

parameter values for the setup, one has flux[12,13], or
charge qubits[14–17,21]. Thus far the largest quantum reg-
ister, comprising seven qubits, has been demonstrated for
nuclear magnetic resonance(NMR) in a liquid solution[7].
However, the NMR technique is not believed to be scalable
to much larger registers. In contrast, superconducting
Josephson-junction circuits are supposed to provide scalable
registers and hence to be better applicable for large quantum
algorithms[22]. Furthermore, they allow integration of the
control and measurement electronics. On the other hand, the
coupling to the environment, e.g., through the electrical
leads,[23] causes short decoherence times.

In addition to the quantum register, one needs a quantum
gate “library,” i.e., a collection of control parameter se-
quences which implements the gate operations on the quan-
tum register. The quantum gate library must consist of at
least a set of universal elementary gates[24], which are typi-
cally chosen to be the one-qubit unitary rotations and the
CNOT gate. Some complicated gates may also be included in
the library.

The quantum circuit made of these gates resembles the
operational principle of a conventional digital computer. To
minimize the number of gates, the structure of the quantum
circuit can be optimized using methods similar to those in
digital computing[25]. Minimizing the number of gates is
important not only for fighting decoherence but also for de-
creasing accumulative errors of classical origin. If some tai-
lored two-, three- or arbitraryk-qubit gates are included in
the gate library, the quantum circuits may be made much
more compact. The implementation of gates acting on more
than two qubits calls for numerical optimization[26]. For
further discussion on the implementation of non-standard
gates as the building blocks for quantum circuits, see Refs.
[27–30].

We propose an implementation of Shor’s algorithm for
factoring moderately large integers—we deal with both algo-
rithmic and hardware issues in this paper. These are two key
aspects of quantum computation which, however, have tradi-
tionally been topics of disjoint research communities. Hence*Electronic address: juhav@focus.hut.fi
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we aim to provide a unifying discussion where an expert on
quantum algorithms can gain insight into the realizations us-
ing Josephson junctions and experimentalists working with
Josephson devices can choose to read about the quantum
algorithmic aspects. The background material on the con-
struction of a quantum circuit needed for the evaluation of
the modular exponential function[31,32] is presented in Ap-
pendix A and a derivation of the effective Hamiltonian for a
collection of inductively coupled Josephson qubits is given
in Appendix B.

This paper is organized as follows: The construction of a
quantum gate array for Shor’s algorithm is discussed in Sec.
II. In Sec. III, we consider the Josephson charge-qubit regis-
ter. Section IV presents the numerical methods we have em-
ployed to find the physical implementations of the gates.
Section V discusses in detail how one would realize Shor’s
algorithm using Josephson charge qubits to factor the num-
ber 21. Section VI is devoted to discussion.

II. SHOR’S FACTORIZATION ALGORITHM

With the help of a quantum computer, one could factor
large composite numbers in polynomial time using Shor’s
algorithm [3,33–35]. In contrast, no classical polynomial
time factorization algorithm is known to date, although the
potential existence of such an algorithm has not been ruled
out, either.

A. Quantum circuit

The strategy for the factoring of a numberN=pq, both p
and q being primes, using a quantum computer relies on
finding the periodr of the modular exponential function
fsxd=axsmod Nd, where 0,a,N is a random number
coprime toN. For an evenr and if ar/2Þ−1smod Nd at least
one prime factor ofN is given by gcdsar/2±1,Nd. It can be
shown [3] that this happens with a probability higher than
one half. Otherwise, a quantum algorithm must be executed
for different values fora until a properr is found.

The evaluation offsxd can be implemented using several
different techniques. To obtain the implementation which in-
volves the minimal number of qubits, one assumes that the
numbersa andN are hardwired in the quantum circuit. How-
ever, if a large number of qubits is available, the design can
be easily modified to take as an input the numerical values of
the numbersa andN residing in separate quantum registers.
The hardwired approach combined with as much classical
computing as possible is considerably more efficient from
the experimental point of view.

Figure 1 represents the quantum circuit1 needed for find-
ing the periodr. Shor’s algorithm has five stages:(1) Initial-
ization of the quantum registers. The numberN takes n
= dlog2sN+1de bits to store into memory, wheredve stands for
the nearest integer equal to or greater than the real numberv.
To extract the period offsxd, we need at least two registers:
2n qubits for the registeruxl2n to store numbersx and n

qubits for the registeruyln to store the values offsxd. The
registeruxl2n is initialized asu0l2n, whereasuyln= u1ln. (2) The
elegance of a quantum computer arises from the possibility
to utilize arbitrary superpositions. The superposition state of
all integers 0øxø22n−1 in the registeruxl2n is generated by
applying the Hadamard gateH on each qubit separately.(3)
The execution of the algorithm, the unitary operatorUf, en-
tangles each input valuex with the corresponding value of
fsxd:

Ufo
x

uxlu1l = o
x

uxluaxsmod Ndl. s1d

(4) The quantum Fourier transformationsQFTd is applied to
the registeruxl2n, which squeezes the probability amplitudes
into peaks due to the periodicityfsxd= fsx+rd. (5) A mea-
surement of the registeruxl2n finally yields an indication of
the periodr. A repetitive execution of the algorithm reveals
the probability distribution which is peaked at the value
22n/ r and its integer multiples of output values in the register
uxl2n.

Besides the quantum algorithm which is used to findr, a
considerable amount of classical precomputing and postpro-
cessing is required as well. However, all this computing can
be performed in polynomial time.

B. Implementing the modular exponential function

We are looking for a general scalable algorithm to imple-
ment the required modular exponential function. The imple-
mentation of this part of the algorithm sets limits for the
spatial and temporal requirements of computational re-
sources, hence it requires a detailed analysis. The remarkable
experimental results[7] to factor the number 15 involve an
elegant quantum circuit of seven qubits and only a few
simple quantum gates. The implementation definitely ex-
ploits the special properties of the number 15, and the fact
that the outcome of the functionaxsmod Nd can be calculated
classically in advance for all input valuesx whenN is small.
For arbitraryN, reversible arithmetic algorithms must be em-
ployed[36,37]. The classical arithmetic algorithms[38], can
be implemented reversibly by replacing the irreversible logic
gates by their reversible counterparts. The longhand multi-
plication algorithm, which we use below, should be optimal
up to very large numbers, see Sec. VI, requiring onlyOsnd
qubits andOsn3d steps.

The implementation of the modular exponential function
using a longhand multiplication algorithm and a QFT-based
adder[31] requires only a small scratch space, for a total of
4n+2 qubits. The details of the implementation are given in
Appendix A. The conventional approach to longhand multi-

1In the quantum circuit diagrams, we have indicated the size of a
registeruxlm with the subscriptm.

FIG. 1. Quantum circuit for Shor’s algorithm.
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plication without a QFT-based adder would require on the
order of 5n qubits. The price of the reduced space is the
increase in the execution time, which now isOsn4d, but
which can be reduced down toO(n3 log2sn/ed), allowing for
a certain error levele. According to Ref.[31] one would
achieve an algorithm requiring only 2n+3 qubits with inter-
mediate measurements. However, we do not utilize this
implementation since the measurements are likely to intro-
duce decoherence.

III. JOSEPHSON CHARGE-QUBIT REGISTER

The physical model studied in this paper is the so-called
inductively coupled Cooper pair box array. This model, as
well as other related realizations of quantum computing, has
been analyzed in Ref.[20]. The derivation of the Hamil-
tonian is outlined in Appendix B for completeness. Our ap-
proach to quantum gate construction is slightly different
from those found in the literature and it is therefore worth-
while to consider the physical model in some detail.

A schematic picture of a homogeneous array of qubits is
shown in Fig. 2. Each qubiti comprises a superconducting
island coupled capacitively to a gate voltage and a supercon-
ducting quantum interference devicesSQUIDd loop through
which Cooper pairs may tunnel. The gate voltage may be
used to tune the effective gate chargeng

i of the island
whereas the external magnetic flux through the SQUID can
be used to control the effective Josephson energy. Each qubit
is characterized by a charging energyEC and a tunable Jo-
sephson energyEJsFid, whereFi is the flux threading the
SQUID. The Hamiltonian for theith qubit can be written as

Hsingle
i = − 1

2Bz
i sz

i − 1
2Bx

i sx
i s2d

and the coupling between theith and j th qubits as

Hcoupling
i,j = − CBx

i Bx
j sy

i
^ sy

j . s3d

The qubit stateu0l (“spin up”) corresponds to zero extra
Cooper pairs residing on the island and the stateu1l (“spin
down”) corresponds to one extra pair on the island. Above
Bx

i =EJsFid, Bz
i =ECs1−2ng

i d, and C=p2L /F0
2sCqb/CJ

2d de-
notes the strength of the coupling between the qubits,
whereasCqb is the total capacitance of a qubit in the circuit,
CJ is the capacitance of the SQUID,L is the inductance
which may in practice be caused by a large Josephson junc-
tion operating in the linear regime and finallyF0=h/2e is
the flux quantum. The approach taken is to deal with the
parametersBz

i and Bx
i as dimensionless control parameters.

We assume that they can be set equal to zero which is in
principle possible if the SQUID junctions are identical. We
setC=1 and choose natural units such that"=1.

The Hamiltonian in Eqs.(2) and(3) is a convenient model
for studying the construction of quantum algorithms for a
number of reasons. First of all, the total Hamiltonian can be
set to zero thereby eliminating all temporal evolution. Sec-
ond, setting the effective Josephson coupling to zero elimi-
nates the coupling between any two qubits. This is achieved
by applying half a flux quantum through the SQUID loops. If
the Josephson energy of any two qubits is nonzero, there will
automatically emerge a coupling between them. This is
partly why numerical methods are necessary for finding the
control-parameter sequences. By properly tuning the gate
voltages and fluxes it is possible to compensate undesired
couplings and to perform any temporal evolution in this
model setup.

We note that the generatorsisx and isz are sufficient to
construct all the SUs2d matrices through the Baker-
Campbell-Hausdorff formula and thus single-qubit gates
need not be constructed numerically. It is even possible to do
this in a piecewise linear manner avoiding abrupt switching
since the only relevant parameter is the time integral of either
Bz

i or Bx
i if only one of them is nonzero at a time. That is, any

UPSUs2d acting on theith qubit can be written as

U = expSisz
iE

t2

t3

Bz
i stddt/2DexpSisx

iE
t1

t2

Bx
i stddt/2D

3expSisz
iE

t0

t1

Bz
i stddt/2D , s4d

where we assume that fromt0 to t1 only Bz
i is nonzero, from

t1 to t2 only Bx
i is nonzero and fromt2 to t3 only Bz

i is again
nonzero. For instance, the gateiH PSUs2d, equivalent to the
Hadamard gateHPUs2d up to a global phase, can be real-
ized as in Fig. 3 by properly choosing the time-integrals in
Eq. (4). We cannot achieve Us2nd for n qubits since the
Hamiltonian for the entire quantum register turns out to be
traceless, thus producing only SUs2nd matrices. However, the
global phase factor is not physical.

The above Hamiltonian is an idealization and does not
take any decoherence mechanisms into account. To justify

FIG. 2. (a) Schematic of a Josephson charge qubit with the
relevant parameters.(b) An array of Josephson charge qubits
coupled in parallel with an inductor.
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this omission, we have to ensure that a charge-qubit register
is decoherence-free for time scales long enough to execute a
practical quantum algorithm. In addition, we have neglected
the inhomogenity of the SQUIDs. It may be extremely chal-
lenging to fabricate sufficiently uniform junctions. A three-
junction design might alleviate this problem. Whereas for the
control of M two-junction SQUIDs one needs at leastM
independent sources of flux, the three-junction design would
call for 2M independent sources. The extra sources may be
used to compensate the structural nonuniformities. The noise
in the control parameters has also been neglected but it will
turn out that the error will grow linearly with the rms dis-
placement of uncorrelated Gaussian noise. Correlated noise
may only be tolerated if it is very weak. We have also ne-
glected the issue of quantum measurement altogether in the
above.

A crucial assumption is thatkBT ln Nqp!EJ!EC!DBCS,
whereNqp is the number of quasiparticle modes. Typical op-
eration frequencies would be in the GHz range and the op-
eration temperature could be tens of mK. For our two-state
Hamiltonian to apply, we should actually insist that, instead
of EJ!EC, the requirementEJsFid!EC holds. It may appear
at first thatBx

i cannot take on values exceedingBz
i . However,

this does not hold since the gate charge also plays a role;
values ofBz

i can be very small ifng
i is tuned close to one half.

Since we employ natural units we may freely rescale the
Hamiltonian while rescaling time. This justifies our choice
C=1 above. Furthermore, it is always possible to confine the
parameter values within an experimentally accessible range.
For more discussion, see Ref.[20].

IV. IMPLEMENTING A QUANTUM-GATE LIBRARY

The evaluation of the time-development operatorU is
straightforward once the externally controlled physical pa-
rameters for the quantum register are given. Here we use
numerical optimization to solve the inverse problem; namely,
we find the proper sequence for the control variables which
produce the given quantum gate.

A. Unitary time evolution

The temporal evolution of the Josephson charge-qubit
register is described by a unitary operator

Ugstd = T expS− iE
gstd

H„gstd…dtD , s5d

whereT stands for the time-ordering operator andH(gstd) is
the Hamiltonian for the qubit register. The integration is per-

formed along the pathgstd which describes the time evolu-
tion of the control parameters in the space spanned byhBx

j stdj
and hBz

jstdj.
Instead of considering pathsgstd with infinitely many de-

grees of freedom, we focus on paths parametrized by a finite
set of parametersXg. This is accomplished by restricting the
pathgstd to polygons in the parameter space. Since the pulse
sequence starts and ends at the origin, it becomes possible to
consistently arrange gates as a sequence. For ann-qubit reg-
ister, the control-parameter pathgstd is of the vector form

gstd = fBz
1std, . . . ,Bz

nstd;Bx
1std, . . . ,Bx

nstdgT, s6d

whereBz
i std andBz

i std are piecewise linear functions of time
for the chosen parametrization. Hence, in order to evaluate
Eq. (5), one only needs to specify the 2n coordinates for the
n vertices of the polygon, which we denote collectively as
Xg. We let the parameter loop start at the origin, i.e., at the
degeneracy point where no time development takes place.
We further set the time spent in traversing each edge of the
polygon to be unity.

In our scheme, the execution time for each quantum gate
depends linearly on the numbern of the vertices in the pa-
rameter path. This yields a nontrivial relation between the
execution time of the algorithm and the size of the gates.
First note that eachk-qubit gate represents a matrix in
SUs2kd. To implement the gate, one needs to have enough
vertices to parametrize the unitary group SUs2kd, which has
22k−1 generators. In our model, we have 2k parameters for
each vertex, which implies 2knù22k−1. We have usedn
=4 for the two-, andn=11 for the three-qubit gates.

To evaluate the unitary operatorUgstd we must find a nu-
merical method which is efficient, yet numerically stable. We
divide the pathgstd into tiny intervals that take a timeDt to
traverse. Ifgi collectively denotes the values of all the pa-
rameters in the midpoint of theith interval, andm is the
number of such intervals, we then find to a good approxima-
tion

UXg
< expf− iHsgmdDtg . . . expf− iHsg1dDtg. s7d

We employ the truncated Taylor series expansion

e−iHDt < o
k=0

l s− iHDtdk

k!
s8d

to evaluate each factor in Eq.(7). We could have used the
Cayley form

e−iHDt < s1 − iHDt/2ds1 + iHDt/2d−1, s9d

or an adaptive Runge-Kutta method to integrate the
Schrödinger equation as well. It turns out that the Taylor
expansion withl =3 is fast and yields enough precision for
our purposes. The precision of the approximation is verified
by comparing the results with those obtained with an exact
spectral decomposition ofH.

B. Minimization of the error function

Given an arbitrary unitary matrixÛ, our aim is to find a
parameter sequenceXg for the Josephson charge-qubit regis-

FIG. 3. Pulse sequence implementing an equivalent of the Had-
amard gate. Solid line indicatesBx

i while the dashed line showsBz
i .
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ter that yields a unitary matrixUXg
=Û. We convert the in-

verse problem into an optimization task; namely, that of find-
ing the zeroes of the error function

psXgd = iÛ − UXg
iF. s10d

Minimizing psXgd over all the possible values ofXg will

produce an approximationUXg
for the desired gateÛ. Above

i·Fi denotes the Frobenius trace norm, defined asiAiF
=ÎTrsA†Ad, which is numerically efficient to compute. Since
all the matrix norms are mathematically equivalent, a small
value ofiAiF implies a small value in all other norms as well,
see, e.g., Ref.[39].

For this minimization problem, the error-function land-
scape is rough consisting of many local minima. Conse-
quently, any gradient-based minimization algorithm will en-
counter serious problems. Thus, we have found the minimum
point Xmin for all the gates presented in Sec. V using repeated
application of a robust polytope algorithm[30,40,41]. In the
first search, the initial condition was chosen randomly. At the
next stage, the outcome of the previous search was utilized.
In order to accelerate the evaluation ofUgstd we varied the
time stepsDt; at an early stage of the optimization a coarse
step was employed while the final results were produced us-
ing very fine steps. Typical convergence of the search algo-
rithm is illustrated in Fig. 4.

The required accuracy for the gate operations is in the
range 10−4–10−5 for psXgd for two reasons:(i) in quantum
circuits with a small number of gates, the total error remains
small, and(ii ) for large circuits, quantum-error correction
can in principle be utilized to reduce the accumulated errors
[19]. Our minimization routine takes on the order of 106

function evaluations to reach the required accuracy.

V. EXAMPLE

To demonstrate the level of complexity for the quantum
circuit and the demands on the execution time, we explicitly
present the quantum circuit and some physical implementa-
tion for the gates needed for Shor’s algorithm to factor the
numberN=21. We choosea=11 and hardwire this into the
quantum circuit.

A. Quantum circuit

Figure 5 illustrates the structure of the quantum part of the
factorization algorithm for the number 21. Since it takes 5
bits to store the number 21, a 5-qubit registeruyl5 and a
10-qubit registeruxl10 are required.

For scratch space we need a six-qubit registeruzl6 and one
ancilla qubit ual. Each thirteen-qubit controlled-MMUL

(modular multiplier) gate in the algorithm can be further de-
composed as indicated in Fig. 5. The controlled-MADD

(modular adder) gates can also be decomposed. The ten-
qubit QFT breaks down to 42 two-qubit gates and one three-
qubit QFT. Similarly, the six-qubit QFT can be equivalently
implemented as a sequence of 18 two-qubit gates and one
three-qubit QFT. In this manner we can implement the entire
algorithm using only one-, two- and three-qubit gates. The

control parameter sequence realizing each of them can then
be found using the scheme outlined in Sec. IV. Two ex-
amples of the pulse sequences are also shown in Fig. 5(bot-
tom insets).

B. Physical implementation

The experimental feasibility of the algorithm depends on
how complicated it is compared to the present state of tech-
nology. Following the above construction of the quantum
circuit, the full Shor algorithm to factor 21 requires about
2300 three-qubit gates and some 5900 two-qubit gates, in
total. Also a few one-qubit gates are needed but alternatively
they can all be merged into the multi-qubit gates. If only
two-qubit gates are available, about 16 400 of them are re-
quired. If only a minimal set of elementary gates, say the
CNOT gate and one-qubit rotations are available, the total
number of gates is remarkably higher. In our scheme the
execution time of the algorithm is proportional to the total
length of the piecewise linear parameter path which governs
the physical implementation of the gate operations. Each of
the three-qubit gates requires at least a 12-edged polygonal
pathgstd whereas two-qubit gates can be implemented with 5
edges. Consequently, on the order of 57100 edges are re-
quired for the whole algorithm if arbitrary three-qubit gates
are available, whereas,82 000 edges would be required for
an implementation with only two-qubit gates.

The ability to find the physical implementation of the gate
library for Shor’s algorithm is demonstrated with some fur-
ther examples. Figure 6 shows how to physically implement
the controlled swap gate. We have taken advantage of tai-
lored three-qubit implementations: a one-qubit phase-shift
gate and a three-qubit controlled2 phase-shift gate are
merged into one three-qubit gate, see Fig. 7.

The control parameter sequences presented will yield uni-
tary operations which approximate the desired gate opera-
tions with an accuracy better than 10−4 in the error-function
values for the three-qubit gates. For two-qubit gates the error
is negligible. Since the whole factorization circuit consists of
some 103 three-qubit gates, we obtain a total error of,10−1.

FIG. 4. Convergence of the algorithm for the Fredkin gate. The
error function values are indicated by the solid line and the distance
of the parameter sequence from the numerical optimumXmin by the
dotted line.

IMPLEMENTING SHOR’S ALGORITHM ON JOSEPHSON… PHYSICAL REVIEW A 70, 012319(2004)

012319-5



This is sufficient for the deduction of the essential informa-
tion from the output. The robustness of the gates obtained
was studied numerically by adding Gaussian noise to the
vertices of the path. The error function was found to scale
linearly with the rms of the variance of the Gaussian noise:
error <63 knoiselrms, which is probably acceptable.

VI. DISCUSSION

In this paper we have discussed the implementation of
Shor’s factorization algorithm using a Josephson charge-
qubit register. This method is suitable for the first experimen-
tal demonstration of factoring a medium-scale integer
24−220. As an example of this method we have studied the
algorithm for factoring 21. The only integer smaller than 21
for which Shor’s algorithm is applicable is 15, but this is a
special case having only the periods 2 and 4. For the experi-
mental factoring of 15 one should consider more direct meth-
ods[7] to implement the modular exponential function. For a

FIG. 5. Quantum circuit for
Shor’s algorithm factoring the
number 21 with the parameter
value a=11. The full circuit is
shown topmost and the decompo-
sitions of the modular multiplier
and adder blocks are indicated
with dashed lines. The gates in the
circuit have their conventional
meanings, except that we denote a
phase-shift gate by a box with a
single numberf in it meaning
that the phase of the stateu1l is
shifted bye2pif/2n

with respect to
the stateu0l. Two examples of nu-
merically optimized parameter se-
quences are also shown.

FIG. 6. Control parameters for the Fredkin gate. Solid line in-
dicatesBz

i while the dashed line showsBx
i .
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larger integerN other approaches, e.g., the Schönhage-
Strassen[38] multiplication algorithm, will provide a more
efficient quantum circuit. Our approach of numerically deter-
mining the optimized gates can be generalized to other
physical realizations with tunable couplings as well. The
only requirement is that the system allows total control over
the control parameters.

We have found that the number of qubits and quantum
gates that are involved in carrying out the algorithm is rather
large from the point of view of current technology. Thus the
realization of a general factorization algorithm for a large
integerN will be challenging. Consequently, the scaling of
the chosen algorithm, both in time and space, will be of
prime importance.

The method we propose utilizes three-qubit gates, which
compress the required quantum-gate array, resulting in a
shorter execution time and smaller errors. One should also
consider other implementations of the quantum algorithms
that employ gates acting on a larger number of qubits to
further decrease the number of gates and execution time. For
example, four-qubit gates may be achievable, but this in-
volves harder numerical optimization.

Finally, let us consider the experimental feasibility of our
scheme. To factor the number 21, we need on the order of

104 edges along the control-parameter path. Assuming that
the coherence time is on the order of 10−6 s implies that the
upper limit for the duration of each edge is 10−10 s. Since our
dimensionless control parameters in the examples are on the
order of unity, the energy scale in angular frequencies must
be at least on the order of 1010 s−1. Typical charging energies
for, say, thin-film aluminum structures may be on the order
of 10−23 J which corresponds to 1011 s−1. The ultimate limit-
ing energy scale is the BCS gap, which for thin-film alumi-
num corresponds to an angular frequency of about
331011 s−1. Based on these rough estimates, we argue that
factoring the number 21 on Josephson charge qubits is, in
principle, experimentally accessible.

Constructing a quantum algorithm to decrypt RSA-155
coding which involves a 512-bit integerN with the scheme
that we have presented would require on the order of 2000
qubits. Since the execution time scales asn3 log n tens of
seconds of decoherence time is needed. This agrees with the
estimates in Ref.[42] and poses a huge experimental chal-
lenge. This can be compared to the 8000 MIPS(million in-
structions per second) years of classical computing power
which is needed to decrypt the code using the general nu-
meric field sieve technique[1]. Thus Shor’s algorithm does
appear impractical for decrypting RSA-155. However, it pro-
vides the only known potentially feasible method to factor
numbers having 1024 or more bits.

We conclude that it is possible to demonstrate the imple-
mentation of Shor’s algorithm on a Josephson charge-qubit
register. Nevertheless, for successful experimental imple-
mentation of large-scale algorithms significant improvements
in coherence times, fabrication, and ultrafast control of qu-
bits is mandatory.

FIG. 8. Quantum circuit required for performing the evaluation
of the modular exponential function utilizing theCMMULsbd gates.

FIG. 9. Decomposition of theCMMULsa2i
d gate usingC2MADDsbd and controlled swap gates. If the controlling qubituxil is active the

resulting state isy8;y+a2i
smod Nd, otherwisey8=y. Note that the gate utilizes an additional ancilla registeruzln+1 to perform the

calculation.

FIG. 7. Control parameters for a composite gate consisting of a
twice controlled phase shift and a one-qubit rotation, see the text.
Solid line indicatesBz

i while the dashed line showsBx
i .

IMPLEMENTING SHOR’S ALGORITHM ON JOSEPHSON… PHYSICAL REVIEW A 70, 012319(2004)

012319-7



Note added.Recently, it was brought to our attention that
a similar circuit implementing Shor’s algorithm has been
constructed for a linear nearest-neighborsLNNd qubit array
[43] independent of any specific physical realization.
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APPENDIX A: CONSTRUCTION OF A QUANTUM
CIRCUIT

Here we represent the construction of a quantum circuit
needed for an evaluation of the modular exponential function
axsmod Nd. We assume the values ofa andN to be constant
integers coprime to each other. This approach takes advan-
tage of the fast powers trick, see Eq.(A1) below, as well as
the construction of a multiplier suggested by Beauregard
[31], which in part employs the adder of Draper[32].

The modular exponential function can be expressed in
terms of modular products:

ax ; p
i=0

2n−1

„a2ixismod Nd…smod Nd, sA1d

where we have used the binary expansionx=20x0+21x1
+2n−1xn−1, xi P h0,1j. Note that the number of factors in Eq.
(A1) grows only linearly for increasingn. The longhand
multiplication is based on the relation

a2i
x ; o

k=0

2n−1

„a2i
2kxksmod Nd…smod Nd, sA2d

which again involves only a linear number of terms.
Equation(A1) yields a decomposition of the modular ex-

ponential function into controlled modular multiplication
gatesfCMMULsa2i

dg, see Fig. 8. According to Eq.(A2), each of

theMMUL sa2i
d gates can be implemented with the sequence of

the modular adders, see Fig. 9. Since this decomposition of
CMMULsa2i

d requires extra space for the intermediate results,
we are forced to introduce a scratch spaceuzln+1 into the
setup. Initially, we setuzln+1= u0ln+1. Moreover, we must reset
the extra scratch space after each multiplication. This is ac-
complished by multiplication with the inverse elementb−1

whereb=a2i
. Let us consider how the gateCMMULsbd works:

uxlu0l → uxlu0 + bxsmod Ndl sproductd

→ bxsmod Nduxl sswapd

→ ubxsmod Ndlux + s− b−1d„bxsmod Nd…l

= bxsmod Ndu0l sresultd.

Euler’s totient theorem guarantees that for everyb which is
coprime toN, a modular inverseb−1PN exists. Furthermore,
the extended Euclidean algorithm provides an efficient way
to find the numerical value forb−1.

Figure 10 presents the decomposition of theC2MADDsbd
gate sbPNd using adders in the Fourier space. The idea is
first to calculatez8=z+b−N. If z8,0 the ancillaa, which is
initially zero, is flipped andN is added toz8 yielding z8=z
+b. The rest of the circuit is needed to reseta to zero.

The circuit simplifies when multipleC2MADDsbd gates are
applied since the final QFT* will cancel against the initial
QFT of two consecutive gates. This is taken into account in
counting the total number of gates and in Fig. 5. An obvious

FIG. 10. Decomposition of theC2MADDsbd gate into elementary gates, QFT gates, and additions in the Fourier basis(C2ADD). The asterisk
stands for a Hermitian conjugate; it corresponds to a gate for subtraction. The gate takes an input valuez,Nø2n and yieldsuz8ln+1= uz
+bsmod Ndln+1 if the control qubitsxi =1 andyj =1. Otherwiseuz8ln+1= uzln+1. The ancilla qubitual is one if z+b.N and zero otherwise.

FIG. 11. Quantum circuit for ann-qubit Fourier transformation.
Here H stands for the Hadamard gate. The controlled phase-shift
gates are labeled with the numbersk which correspond to the phase
shifts ei2pk/2n

. Note the reversed order of the qubits on the right-
hand side.
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drawback of this implementation is the need for a number of
QFT gates. However, we need to introduce only one ancilla
qubit ual.

The decomposition of the gateC2MADDsbd consists of
twice controlled adders,sn+1d-qubit QFTs, one-qubitNOTS,
andCNOTS. The decomposition of a QFT-gate into one- and
two-qubit gates[2] is represented in Fig. 11. Since Fourier
space is utilized, theC2ADDsbd gates can be implemented[32]
using controlled2 phase shifts. The quantum gate sequence
for an adder working in the Fourier space is depicted in Fig.
12. The values of the phase shifts for the gateC2ADDsbd are

given bye2pif j/2
n
, wheref j =2jb.

Finally, we are in the position to perform the unitary
transformation which implements the modular exponential
function using only one-, two- and three-qubit gates. If the
three-qubit gates are not available, further decomposition
into one- and two-qubit gates is needed, see Ref.[24]. For
instance, each three-qubit twice controlledU gate decom-
poses into five two-qubit gates and each Fredkin gate takes
seven two-qubit gates to implement.

APPENDIX B: DERIVATION OF THE HAMILTONIAN

1. The Lagrangian

Consider a homogenous array of mesoscopic supercon-
ducting islands as an idealized model of a quantum register,
see Fig. 2. The basis states of the qubit correspond to either
zero or one extra Cooper pair residing on the superconduct-
ing island, denoted byu0l and u1l, respectively. Each of the
islands, or Cooper-pair boxes, is capacitively coupled to a
gate voltage,Vg

i . In addition, they are coupled to a supercon-
ducting lead through a mesoscopic SQUID with identical
junctions, each having the same Josephson energyEJ/2 and
capacitanceCJ/2. All these qubits are then coupled in paral-
lel with an inductor,L. The lowest relevant energy scale is
set by the thermal energykBT and the highest scale by the
BCS gapDBCS.

We assume that the gate voltageVg
i and the time-

dependent fluxFi through each SQUID can be controlled
externally. The fluxFi may be controlled with an adjustable
currentI i through an external coil, see the dotted line in Fig.
2(a). In this setup, the Cooper pairs can tunnel coherently to
a superconducting electrode. We denote the time-integral of
voltage, or difference in flux units, over the left junction of
the ith SQUID byfi and the flux through the inductor byw.
The phase difference in flux units over the rightmost junction

is fi −Fi. We take the positive direction for flux to be di-
rected outward normal to the page.

We adoptfi andw as the dynamical variables, whereasFi
and Vg

i are external adjustable parameters. With the help of
elementary circuit analysis[44], we obtain the Lagrangian
for the qubit register

L =
1

2o
i=1

M FCJ

2
ḟi

2 +
CJ

2
sḟi − Ḟid2 + Cgsḟi + ẇ − Vg

i d2 − G w2

2L

+
1

2o
i=1

M FEJ cosS2e

"
fiD + EJ cosS2e

"
sfi − FidDG . sB1d

We now perform the following changes of variables

fi → fi +
Fi

2
−

Cg

CJ + Cg
w, sB2d

which yields

L =
1

2o
i=1

M FsCJ + Cgdḟi
2 − 2CgSVg

i −
Ḟi

2
Dḟi

+ EJ cosSp
Fi

F0
DcosS2e

"
fi −

2pCqb

F0CJ
wDG +

1

2
MCqbẇ

2

− o
i=1

M

CqbSVg
i −

Ḟi

2
Dẇ −

w2

2L
+ const. sB3d

Above, F0=h/2e is the flux quantum andCqb=CJCg/ sCJ

+Cgd is the qubit capacitance in theLC circuit. Note that the
effective Josephson energy of each SQUID can now be
tuned. We denote this tunable energy parameter in Eq.(B3)
as

EJsFid = EJ cosSp
Fi

F0
D . sB4d

The canonical momenta are given byQ=]L /]ẇ and qi

=]L /]ḟi. We interpretQ as the charge on the collective
capacitor formed by the whole qubit register, whereasqi is
the charge on theith island. Note that the chargeqi is related
to the numberni of Cooper pairs on the island throughqi
=−2eni.

2. The Hamiltonian

We are now in the position to write down the Hamiltonian
for the quantum register. We will also immediately replace
the canonical variables by operators in order to quantize the
register. Moreover, we will employ the number of excess
Cooper pairsni on the island and the superconducting phase
difference instead of the usual quantum-mechanical conju-
gates. We will also change to the more common phase dif-
ferenceui related tofi throughui =s2e/"dfi. Hence the rel-
evant commutation relations arefui ,nig=−i and fw ,Qg= i".
All the other commutators vanish. Using the Legendre trans-
formation

FIG. 12. Quantum circuit for the twice controlled addition of a
classical numberb into the quantum registeruzln+1 in the Fourier
basis. The twice controlled phase-shift gates serve to yield the phase
shift e2pifk/2

n
provided that the control qubitsuxil anduyjl are active.
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H = Qẇ + o
i=1

M

qiḟi − L sB5d

we obtain

H = o
i=1

M F2e2sni − ng
i d2

CJ + Cg
− EJsFidcosSui −

2pCqb

F0CJ
wDG

+
sQ + Qgd2

2MCqb
+

w2

2L
. sB6d

We have denoted the effective gate charge by

ng
i =

Cg

2e
SVg

i −
Ḟi

2
D sB7d

and

Qg = o
i=1

M

CqpSVg
i −

Ḟi

2
D . sB8d

In addition to the usual voltage contribution, the time depen-
dence of the flux also plays a role. In practice, the rates of
change of the flux are negligible in comparison to the volt-
ages and this term may safely be dropped.

The Hamiltonian in Eq.(B6) describes the register of qu-
bits sni ,fid coupled to a quantum-mechanicalLC resonator,
i.e., a harmonic oscillatorsQ,wd. We will now assume that
the rms fluctuations ofw are small compared to the flux
quantumF0 and also that the harmonic oscillator has a suf-
ficiently high frequency, such that it stays in the ground state.
The first assumption implies that

cosSui −
2pCqb

F0CJ
wD < cosui +

2pCqb

F0CJ
w sin ui . sB9d

The second assumption will cause an effective coupling be-
tween the qubits. Namely, the Hamiltonian may now be re-
written in the more suggestive form

H < o
i=1

M F2e2sni − ng
i d2

CJ + Cg
− EJsFidcosuiG +

sQ + Qgd2

2MCqb

+
sw − ŵ2d

2L
−

ŵ2

2L
, sB10d

where the operatorŵ is given by

ŵ =
2pLCqb

F0CJ
o
i=1

M

EJsFidsin ui . sB11d

We now see from Eq.(B10) that in the high-frequency limit
the harmonic oscillator is effectively decoupled from the qu-
bit register. The effect of the qubit register is thus to redefine
the minimum of the potential energy for the oscillator. This
does not affect the spectrum of the oscillator, since it will
adiabatically follow its ground state in the low-temperature
limit. We may therefore trace over the degrees of freedom of
the harmonic oscillator and the harmonic-oscillator energy
will merely yield a zero-point energy contribution,"vLC/2.
The effective Hamiltonian describing the dynamics of the
coupled qubit register alone is thus

H < o
i=1

M F2e2sni − ng
i d2

CJ + Cg
− EJsFidcosuiG

−
2p2LCqb

2

F0
2CJ

2 So
i=1

M

EJsFidsin uiD2

. sB12d

This result is in agreement with the one presented in Ref.
[20]. We conclude that theLC-oscillator has created a virtual
coupling between the qubits.

For the purposes of quantum computing, it is convenient
to truncate the Hilbert space such that each Cooper-pair box
will have only two basis states. In the limit of a high charg-
ing energyEC=2e2/ sCg+CJd relative to the Josephson en-
ergy EJ, we may argue that in the region 0øng

i ø1 only the
states withni =0,1 can be occupied. We use the vector rep-
resentation for these states, in whichu0li =s1 0di

T and u1li

=s0 1di
T.

The basis states of the Hilbert space are orthogonal
kkue±iuull=dk,l71. Hence, in this two-state approximation,
cosui =

1
2sx

i and sinui =
1
2sy

i , where, e.g.,

Finally, omitting the constant terms, we obtain the Hamil-
tonian in the Pauli-matrix representation

Hqb = o
i=1

M F−
EC

2
s1 − 2ng

i dsz
i −

EJsFid
2

sx
i G

−
p2L

F0
2 SCqb

CJ
D2

o
i=1

M

o
j=i+1

M

EJsFidEJsF jdsy
i

^ sy
j ,

sB13d

which results in Eqs.(2) and (3) of the main text.
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