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The problem of finding the optimal strategy for estimating a generalized amplitude damping channelGh
spd by

means of the extension id̂Gh
spd is addressed. We first evaluate the quantum Fisher information of output states

based on the symmetric logarithmic derivative and specify all pure-state inputs that maximize the quantum
Fisher information. We next investigate the¹e autoparallelity of output state manifolds and characterize the
condition for the existence of an efficient estimator. A comparison of these results concludes that, while there
is no uniformly optimal input for allp and h, a maximally entangled input is an admissible one under a
nonasymptotic setting.
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I. INTRODUCTION

Let H be a Hilbert space that represents the physical sys-
tem of interest and letSsHd be the set of density operators
on H. It is well known that a dynamical changeG :SsHd
→SsHd of the physical system, called aquantum channel, is
represented by a trace-preserving completely positive linear
map[1–3]. Nevertheless, it is a different matter how one can
identify the quantum channel that one has in a laboratory.
Since almost every quantum protocol assumesa priori
knowledge of the behavior of the quantum channel under
consideration, there is no doubt that identifying the channel
is of fundamental importance in quantum information theory.
It is, however, not very long since the quantum channel iden-
tification problem was directed proper attention, and the
theory of finding an optimal estimation scheme has not been
developed so far, with only a few exceptions[4–9]. The
purpose of this paper is to investigate the optimality of an
estimation scheme for a(generalized) amplitude damping
channel of a two-level quantum system, based on noncom-
mutative parameter estimation theory[10,11] and quantum
information geometry[12].

An amplitude dampingchannelGh :SsC2d→SsC2d, having
a one-dimensional parameterhP f0,1g, is defined by([13],
p. 380)

Ghssd = o
i=1

2

EisEi
* ,

where

E1 = F1 0

0 Îh
G, E2 = F0 Î1 − h

0 0
G .

The channel describes the physical process of approach to
equilibrium due to coupling with its environment, and the
damping parameterh respresents the rate of dissipation—
that is,h=e−t/T wheret is time andT a constant characteriz-
ing the speed of the process. This channel induces the fol-

lowing affine map on the Stokes parameter space:
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z8
4 = 3

Îh

Îh

h
43x

y

z
4 + 3 0

0

1 − h
4 .

As h→0, the channel transforms every point in the unit ball
towards a fixed point at the north pole, the ground state. Thus
the environment is regarded as if it were at zero temperature
in this model.

A generalized amplitude dampingchannel Gh
spd :SsC2d

→SsC2d describes the effect of dissipation to an environment
at finite temperature([13], p. 382). It is defined by

Gh
spdssd = o

i=1

4

Eis Ei
* ,

where

E1 = ÎpF1 0

0 Îh
G, E2 = ÎpF0 Î1 − h

0 0
G ,

E3 = Î1 − pFÎh 0

0 1
G, E4 = Î1 − pF 0 0

Î1 − h 0
G ,

andpP f0,1g is a parameter that represents the temperature
of the environment. This channel induces the following af-
fine map on the Stokes parameter space:

3x8

y8

z8
4 = 3

Îh

Îh

h
4 3x

y

z
4 + 3 0

0

s2p − 1ds1 − hd
4 ,

and the stationary state is

s` = Fp 0

0 1 − p
G .

When p=0 or 1, the channel is reduced to an amplitude
damping channel, andGh

spd for a genericp is regarded as their
mixture:

Gh
spd = pGh

s1d + s1 − pdGh
s0d.*Electronic address: fujiwara@math.wani.osaka-u.ac.jp
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Sincep is an indicator of the temperatute of the environ-
ment, it is likely that one can evaluate the true value ofp
beforehand, independent of the channel. Therefore, the esti-
mation problem of the single parameterh, given pP f0,1g,
would be physically feasible. In this paper, we study the
optimality of an estimation scheme for the damping param-
eter h of a generalized amplitude damping channelGh

spd by
means of the extension id̂Gh

spd :SsC2 ^ C2d→SsC2 ^ C2d.
Once an input statesPSsC2 ^ C2d is fixed, we have a one

dimensional family of output statesrh : = id ^ Gh
spdssd, and the

parameter estimation for the quantum channel id^ Gh
spd is re-

duced to that for the quantum staterh. As a consequence, the
problem amounts to finding an optimal input state for id
^ Gh

spd and an optimal estimator for the corresponding output
state. Note that as long as we are concerned only with “local”
(or asymptotic) optimality of an estimation scheme, the prob-
lem is further reduced to finding an input state that maxi-
mizes the symmetric logarithmic derivative(SLD) Fisher in-
formation of the output familyhrhjh as shown in[4]. If,
however, we switch the subject to “global” optimality under
a nonasymptotic setting, such an approach might fail because
the locally optimal estimation scheme would, in general, de-
pend on the true value of the parameterh. In this case, we
are forced to consider an alternative criterion in discussing
the optimality of an estimation scheme. We will show that
this is the case with a generalized amplitude damping chan-
nel; that is, there is no uniformly optimal input that maxi-
mizes the SLD Fisher information for allh unlessp=0,1, or
1/2. This is in good contrast to the estimation of an SUs2d
channel[6] or a generalized Pauli channel[8], in which a
maximally entangled input is uniformly optimal in that it
simultaneously maximizes the SLD Fisher information for
all values of the parameters.

The paper is organized as follows. The main results are
stated in Sec. II and are proved in Sec. III. The admissibility
of an estimation scheme under a nonasymptotic setting is
discussed in Sec. IV. For the reader’s convenience, we give a
brief account of quantum information geometry in
Appendix A.

II. MAIN RESULTS

According to the general prescription presented in[4], let
us specify the input state for the channel id^ Gh

spd that maxi-
mizes the SLD Fisher information of the output states. Due
to the convexity of the SLD Fisher information[4], we can
take the input to be a pure states= uclkcu. Further, due to the
covariancy of the channel in the rotation around thez axis of
the Stokes parameter space, we can assume, without loss of
generality, that the optimal input takes the form

c = csa,fd: = Î1 − a F1

0
G ^ Fcosf

sin f
G

+ ÎaF0

1
G ^ F− sin f

cosf
G , s1d

where 0øaø1 and 0øf,p. Let us denote the corre-
sponding output state by

rh = rhsa,fd: = id ^ Gh
spdsucsa,fdlkcsa,fdud,

and letJh
spdsa ,fd be the SLD Fisher information about the

parameterh. The main results are stated in a series of theo-
rems as follows.

Theorem 1 (amplitude damping channel). Whenp=1, the
SLD Fisher information takes the maximum if and only if
either sa ,fd=s0,p /2d or s1,0d. When p=0, it takes the
maximum if and only if eithersa ,fd=s0,0d or s1,p /2d. In
each optimal case, the output family admits an efficient esti-
mator for the parameterh.

Theorem 1 has an interesting physical interpretation: the
existence of quantum entanglement(i.e.,aÞ0,1) strictly de-
teriorates the accuracy of estimation for an amplitude damp-
ing channel. This is in remarkable contrast to the estimation
problem of a unitary channel[6] or a Pauli channel[8] in
which quantum entanglement actually enhances the accuracy
of estimation.

Theorem 2 (submodel of the Pauli channel). When p
=1/2, the SLDFisher information takes the maximum if and
only if a=1/2. Thecorresponding output family admits an
efficient estimator for the parameterÎh.

Theorem 2 is a direct consequence of the fact that, when
p=1/2, thechannel forms a¹e-autoparallel submodel of a
Pauli channel[8].

For other values ofp, the optimal input depends on the
true value of the parameterh. Let us introduce the function

bsh;rd = 5 rs1 − hd − 1 +Îrs1 − rds1 + hd
s2r − 1ds1 − hd

, 0 ø h ø hr ,

0, hr , h ø 1,

where 1/2, r ,1 andhr : =Îs1−rd / r; see Fig. 1. Then we
have the following.

Theorem 3 (generalized amplitude damping channel).
When 1/2,p,1, the SLD Fisher information takes the
maximum if and only if sa ,fd=sbsh ;pd ,p /2d or s1
−bsh ;pd ,0d. When 0,p,1/2, it takes the maximum if and
only if sa ,fd=sbsh ;1−pd ,0d or s1−bsh ;1−pd ,p /2d.

Theorem 3 implies that, as long as one wishes to achieve
the lower bound of the optimal quantum Cramér-Rao in-
equality [4]

FIG. 1. The functionbsh ; rd that characterizes the optimal de-
greea of entanglenent. Here the parameterr is taken to ber =0.9
(solid line), r =0.6 (dashed line), and the limit r →0.5 (chained
line).
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VhfTg ù fmax
a,f

Jh
spdsa,fdg−1

for the varianceVhfTg : =EhfsT−hId2g of a locally unbiased
estimatorT, the estimation scheme for the parameterh is
inevitably an adaptive one: one needs to modify successively
the degreea of entanglement of the input state according to
the temporary estimate ofh.

In summary, there is no uniformly optimal input that
maximizes the SLD Fisher information for allh unlessp
=0, 1, or 1/2. In this regard, the next theorem, characterizing
the condition for the output family to admit an efficient es-
timator for all p, would be meaningful in discussing the ad-
missibility of an estimation scheme under a nonasymptotic
setting.

Theorem 4 (autoparallelity). The family hrhsa ,fdj0,h,1

of output states is¹e autoparallel for allpP f0,1g if and only
if either a=1/2 or sa ,fd=s0,0d ,s0,p /2d ,s1,0d ,s1,p /2d.

Note that the output familyrhsa ,fd degenerates to a
point when sa ,fd=s0,0d ,s1,p /2d and p=1 or when
sa ,fd=s0,p /2d ,s1,0d andp=0.

III. PROOF OF THE THEOREMS

In this section, we change the variablessp,a ,fd into
sq,d ,c,sd : =s2p−1,2a−1,cos 2f ,sin 2fd. The variables
appears only in Sec. III D. Details of the tedious computation
are relegated to Appendix B. Whenuqu ,1 and ud u ,1, the
SLD of the output familyrh is unique, and the SLD Fisher
information is given by

Jh
sqdsd,cd

=
hsd,c;h,qd

4hs1 − hdf1 − q2d2 + s1 + 2 cqd + sc2 + q2 − 1dd2dhg
,

s2d

where

hsd,c;h,qd = 2 −c2s1 − q2dd2 − s1 + q2dd2 + 2 cqds1 − d2d

+ f2 + 6cqd + s− 3 + 2q2dd2 + 2c3qd3 + d4

+ c2d2s5 + 2q2 − d2dgh − s1 − c2dd2sq + cdd2h2.

When uqu =1 or ud u =1, on the other hand, the SLD is not
unique; however, the SLD Fisher information is well defined
and is identical to the continuous extension of Eq.(2) to the
boundary. Note that the SLD Fisher information satisfies the
relations

Jh
sqdsd,cd = Jh

s−qds− d,cd = Jh
s−qdsd,− cd = Jh

sqds− d,− cd. s3d

A. Proof of Theorem 1

In view of the symmetry(3), we need only prove the case
q=1. It is easy to show that the SLD Fisher information

Jh
s1dsd,cd =

2s1 + dcd − d2s1 − c2dh
4hs1 − hd

takes the maximum

Jh =
1

hs1 − hd

if and only if sd ,cd=s−1,−1d or s1,1d. The corresponding
output states

rhs−1,−1d = 3
1 − h 0 0 0

0 h 0 0

0 0 0 0

0 0 0 0
4 ,

rhs1,1d = 3
0 0 0 0

0 0 0 0

0 0 1 − h 0

0 0 0 h
4

are both isomorphic to the classical coin flipping in which
heads occur with probabilityh. As a consequence, there is an
efficient estimator for the expectation parameterh. This
proves Theorem 1.

B. Proof of Theorem 2

Whenq=0, the channel is reduced to a submodel of the
Pauli channel which has been studied in detail in[8]. To be
specific, the optimal input is an arbitrary maximally en-
tangled state(i.e.,d=0), and the corresponding output family
is canonically embedded in the three-dimensional probability
simplexP3 of Pauli channels as follows(see Fig. 2):

ph = S s1 +Îhd2

4
,
1 − h

4
,
1 − h

4
,
s1 −Îhd2

4
D .

Moreover, this turns out to be an exponential family:

FIG. 2. The output family forq=0 andd=0 embedded in the
probability simplexP3 of Pauli channels. It is the¹e geodesic con-
necting the vertexs1,0,0,0d and the centers1/4,1/4,1/4,1/4d of
P3, and has an efficient estimator for the expectation parameterÎh.

ESTIMATION OF A GENERALIZED AMPLITUDE-… PHYSICAL REVIEW A 70, 012317(2004)

012317-3



phsjd =
1

sej/2 + e−j/2d2sej,1,1,e−jd,

having a natural(¹e-affine) parameterj : =2 arctanhÎh. We
regard the vectorX : =s1,0,0,−1d, which is obtained by col-
lecting the coefficients ofj in the exponents ofsej ,1 ,1 ,e−jd,
as a random variable that takes valuesXsid with probability
phsid si =1, . . . ,4d. According to the theory of the exponential
family ([12], Sec. 3.5) the random variableX gives the effi-
cient estimator for the expectation parameter

EhfXg = Îh.

This proves Theorem 2. We will give an alternative argument
in Sec. IV.

C. Proof of Theorem 3

We present the proof in a series of lemmas. The goal is to
find the maximum ofJh

sqdsd ,cd on the compact square region

f−1,1g3 f−1,1g for a givenqÞ0 and ±1. Let us consider
the extremal conditions:

] Jh
sqdsd,cd
] d

= 0,
] Jh

sqdsd,cd
] c

= 0. s4d

The next key lemma asserts that the SLD Fisher information
Jh

sqdsd ,cd takes the maximum either ond=0 or on the bound-
ary ud u =1 or ucu =1.

Lemma 5.If dÞ0, Eqs.(4) do not simultaneously hold for
any interior pointsd ,cdP s−1,1d3 s−1,1d.

Proof. Consider the quantity

Ksd,c;h,qd: = cS ] Jh
sqdsd,cd
] c

D − dS ] Jh
sqdsd,cd
] d

D . s5d

If Eqs. (4) simultaneously hold, thenKsd ,c;h ,qd=0. It is
therefore sufficient to show thatKsd ,c;h ,qd.0 for all
sd ,cdP s−1,1d3 s−1,1d unlessd=0. By a direct evaluation

Ksd,c;h,qd =
d2fsd,c;h,qd

2hs1 − hdf1 − q2d2 + s1 + 2cqd + sc2 + q2 − 1dd2dhg2 ,

where f is a polynomial that has the following decomposition:

fsd,c;h,qd = hf1 − d2 + sq + cdd2hg2 + s1 − q2dfs1 − q2dh + s1 − d4dh + s1 − d2d2h2 + s1 − hds1 + cqd + cqdh + c2d2hd2

+ sq + cdd2hs1 + h2dg.

Since 0,h,1 and uqu ,1, it is clear from the above de-
composition thatfsd ,c;h ,qd is strictly positive for all inte-
rior points sd ,cdP s−1,1d3 s−1,1d. This proves the asser-
tion. j

Lemma 6.If d=0, Eqs.(4) have a unique solutionc=0.
The pointsd ,cd=s0,0d is a saddle point ofJh

sqdsd ,cd.
Proof. By a direct computation, we have

F ] Jh
sqdsd,cd
] d

G
d=0

=
cq

2hs1 − hd
, F ] Jh

sqdsd,cd
] c

G
d=0

= 0.

SinceqÞ0, the only critical point ond=0 is c=0. The Hes-
sian matrix at the originsd ,cd=s0,0d is

Hs0,0d =
1

2hs1 − hdFq2s1 − hd q

q 0
G ,

and detHs0,0d=−q2/4h2s1−hd2,0 j

Lemma 7. Jh
sqdsd ,cd does not take the maximum on the

boundaryud u =1 unlessucu =1.
Proof. According to Eq. (3), Jh

sqds−1,cd=Jh
sqds1,−cd, so

that it suffices to treat the cased=−1. For −1,c,1, con-
sider the quantity

K̂sc;h,qd: = cS ] Jh
sqds− 1,cd

] c
D + F ] Jh

sqdsd,cd
] d

G
d=−1

. s6d

Here the second term is understood as the one-sided deriva-
tive at the boundaryd=−1. Then

K̂sc;h,qd = Ks− 1,c;h,qd =
fs− 1,c;h,qd

2hs1 − hdf1 − q2 + sc − qd2hg2 .

As the function fs−1,c;h ,qd is strictly positive for all

cP s−1,1d, so is K̂sc;h ,qd. Suppose now that
]Jh

sqds−1,cd /]c=0 at a certain c=c0P s−1,1d. Then
f]Jh

sqdsd ,cd /]dgd=−1 is strictly positive at c=c0. In other
words, Jh

sqds−1,c0d,Jh
sqds−1+« ,c0d for sufficiently small

«.0. j

We deduce from lemmas 5–7 thatJh
sqdsd ,cd takes the

maximum on the boundaryucu =1. It is now straightforward
to obtain the maximum. Due to the symmetry(3), we need
only consider the casec=−1, in which

Jh
sqdsd,− 1d =

1 − d2 + s1 − 2q d + d2dh
2 hs1 − hdf1 + q d + s1 − q ddhg

.

The optimald that maximizesJh
sqdsd ,−1d is given by
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arg max
−1ødø1

Jh
sqdsd,− 1d = 5 sÎ1 − q2 − 1ds1 + hd

qs1 − hd
, 0 ø h ø hq,

− 1, hq , h ø 1,

wherehq: =Îs1−qd / s1+qd. This completes the proof.

D. Proof of Theorem 4

A quantum statistical modelrh is ¹e autoparallel if and
only if there is a constant operatorT and smooth functions
lshd andmshd such that the SLDLh satisfies

Lh = lshdT − mshdI . s7d

In this case, the operatorT is the efficient estimator for an
alternative parameterz : =mshd /lshd of the model. It is im-
portant to notice that the condition(7) is invariant under the
transformation

Lh ° L̂h: = fshdLh − gshdI ,

where fshd and gshd are arbitrary smooth functions with

fshdÞ0. In fact, L̂h= l̂shdT−m̂shdI holds for l̂shd :
= fshdlshd and m̂shd : = fshdmshd+gshd. Specifically, if we

let gshd : = fshdsLhd11, then thes1,1dth entry of L̂h vanishes,

and we havem̂shd= l̂shdT11 and

L̂h = l̂shdT̂, s8d

where T̂: =T−T11I is a constant operator. Namely,L̂h be-
comes a constant operator multiplied by a smooth function of

h; in particular, the entries ofL̂h are linearly dependent func-
tions of h. Conversely, when Eq.(8) holds for specific func-
tions fshd andgshd, a triad of the originallshd ,mshd, andT
that satisfies Eq.(7) can be retrieved as follows:

lshd =
l̂shd
fshd

, mshd = −
gshd
fshd

, T = T̂. s9d

Thus Eq.(8) gives a necessary and sufficient condition for
the modelrh to be¹e autoparallel.

Let us proceed to the proof of Theorem 4. We present the
proof for ud u ,1 andud u =1 separately. We first treat the case
ud u ,1. Assume for now thatuqu ,1: in this case, the model
rh is strictly positive and the SLD is uniquely determined in
the formLh=f,i j /2Îh Dg as seen in Appendix B. Let us set

fshd: = 2ÎhD, gshd: = ,11.

If dÞ0 (in addition toud u ,1), the s3,3dth entry

sL̂hd33 = 8dÎhf1 + c2 + 2cqd + s1 − c2 − d2 + c2d2dhg

of the transformed SLDL̂h is a nonzero irrational function of
h, and thes1,4dth ands2,3dth entries

sL̂hd14 = 4s1 + cdÎ1 − d2h1 + qd + f1 − d2 + cdsq + ddgh

+ s− 1 +cddsq + cddh2j,

sL̂hd23 = 4s− 1 +cdÎ1 − d2h1 − qd + f1 − d2 + cdsq − ddgh

+ s1 + cddsq + cddh2j

are polynomials ofh that cannot be simultaneously zero. As

a consequence,sL̂hd33 and at least one of the latter two are

linearly independent, andL̂h cannot be of the form(8). If
d=0, on the other hand, the transformed SLD of the model
rh becomes

L̂h = 8s1 + hdT,

where

T =
1

23
0 s 0 1 +c

s 0 − 1 +c 0

0 − 1 +c 0 − s

1 + c 0 − s 0
4 . s10d

This is of the form(8), and the model turns out to be¹e

autoparallel for allqP s−1,1d. We now invoke a continuity
argument to conclude that, whend=0, the modelrh is ¹e

autoparallel for allqP f−1,1g.
We next treat the cased=−1, in which the modelrh is

factorized as

rh = F1 0

0 0
G ^ sh, s11d

where

sh =
1

2
F1 + q + sc − qdh sÎh

sÎh 1 − q − sc − qdh
G .

The problem amounts to finding the condition forsh to be
¹e autoparallel for allqP f−1,1g. Since

det sh =
1

4
s1 − hdf1 − q2 + sc − qd2 hg,

the modelsh is strictly positive unlessq=c= ±1, and the
SLD is uniquely determined asLh=f,i j /8Îh det shg, where

,11 = Îhfs1 − qds2c − 2q − s2d − sc − qds2c − 2q + s2dhg,

,12 = sf1 − q2 + sc − qd2h2g,

,22 = − Îhfs1 + qds2c − 2q + s2d + sc − qds2c − 2q − s2dhg.

Letting

fshd: = 8Îh det sh, gshd: = ,11,

the transformed SLD becomes

sL̂hd12 = sf1 − q2 + sc − qd2 h2g,

sL̂hd22 = − 2Îhf2c − 2q + s2q − s2sc − qdhg.

These elements are linearly dependent for allqP s−1,1d if
and only ifs=0. Now by a continuity argument, we conclude
that the modelsh is ¹e autoparallel for allqP f−1,1g if and
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only if s=0, that isucu =1. Note that the modelsh degener-
ates to a point

F1 0

0 0
G

whenq=c=1 and to a point

F0 0

0 1
G

whenq=c=−1.
Finally, we treat the cased=1, in which the modelrh is

factorized as

rh = F0 0

0 1
G ^ sh,

where

sh =
1

2
F1 + q − sc + qdh − sÎh

− sÎh 1 − q + sc + qdh
G .

A similar argument as above concludes thatsh is ¹e auto-
parallel for all qP f−1,1g if and only if s=0. Note that the
modelsh degenerates to a point

F1 0

0 0
G

whenq=−c=1 and to a point

F0 0

0 1
G

whenq=−c=−1. This completes the proof.

IV. DISCUSSION

In this paper, we have studied the problem of estimating a
generalized amplitude damping channelGh

spd for a given p
through the extension id̂Gh

spd. It was shown that there is no
uniformly optimal input that simultaneously maximizes the
SLD Fisher information for allh unlessp=0, 1, or 1/2.
Nevertheless, it was also shown that the output family admits
an efficient estimator for allp if and only if the input is either
a maximally entangled statesa=1/2d or a disentangled state
of the type sa ,fd=s0,0d ,s0,p /2d ,s1,0d ,s1,p /2d. In this
section, we discuss the relative merits of these inputs.

When sa ,fd=s0,0d, the SLD of the factorized modelsh

in Eq. (11) satisfies

Lh =
1

s1 − hdfh + ps1 − hdg
T −

1

1 − h
I, T = F1 0

0 0
G .

Therefore, the model has an efficient estimatorT for the
parameterz=h+ps1−hd unlessp=1. For example, whenp
=0, the modelsh is reduced to the classical coin flipping

Fh 0

0 1 − h
G ,

and T is the efficient estimator for the parameterh, as was
seen in theorem 1. Whenp=1, however, the modelsh de-
generates to a point

F1 0

0 0
G ,

and has no information about the parameterh. In short, the
input sa ,fd=s0,0d is the best forp=0, whereas it is the
worst forp=1. Such a biased nature is convinced also by the
fact that the SLD Fisher information

Jh
spds0,0d =

1 − p

s1 − hdfh + ps1 − hdg

approaches zero monotonically asp→1. Similar observation
also applies to the other disentangled inputssa ,fd
=s0,p /2d ,s1,0d ,s1,p /2d.

Whena=1/2, on theother hand, the SLD of the modelrh

satisfies

Lh =
1

s1 − hdÎh
T −

1

1 − h
I ,

whereT is given by Eq.(10). Therefore,T is the efficient
estimator for the parameterz=Îh irrespective ofp. This uni-
formity is also seen in the SLD Fisher information

Jh
spds1/2,fd =

1

2hs1 − hd
,

which is independent ofp (and f). Such a robustness is in
good contrast to the above-mentioned biased nature of dis-
entangled inputs and would be preferable in practical appli-
cations, although the SLD Fisher information does not take
the maximum ata=1/2 unlessp=1/2.

The advantage of the use of maximally entangled inputs
can be viewed also from a different angle. The SLD Fisher
information Jh

spds0,0d for the disentangled inputsa ,fd
=s0,0d is averaged overp as

J̄h: =E
0

1

Jh
spds0,0ddp=

h − log h − 1

s1 − hd3 .

The average valueJ̄h is the same for the other disen-
tangled inputs sa ,fd=s0,p /2d ,s1,0d ,s1,p /2d. Since

Jh
spds1/2,fd. J̄h for all hP s0,1d, we may assert that, among
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those which admit efficient estimators for allp, maximally
entangled inputs are optimal on average.

APPENDIX A: QUANTUM INFORMATION GEOMETRY

This appendix provides a brief account of quantum infor-
mation geometry based on the SLD. LetS be the totality of
faithful quantum states on aD-dimensional Hilbert spaceH.
The setS is naturally regarded as asD2−1d-dimensional dif-
ferentiable manifold, and its dualistic geometrical structure is
introduced as follows. We first define a Riemannian metric
by

gsX,Yd: =
1

2
Tr rsLXLY + LYLXd = TrsXrdLY,

whereX,YPTrS, andLX,LY are the corresponding SLD’s;
i.e., the Hermitian operators satisfying

Xr =
1

2
srLX + LXrd.

The metricg is called theSLD Fishermetric. We next intro-
duce a pair of affine connections. One is defined by

s¹X
mYdr: = XsYrd,

and is called themixtureconnection. The other is defined by

s¹X
eYdr: =

1

2
hrfXLY − Tr rsXLYdg + fXLY − Tr rsXLYdgrj,

and is called theexponentialconnection. These connections
are mutually dual with respect to the SLD Fisher metric, in
that

XgsY,Zd = gs¹X
mY,Zd + gsY,¹X

eZd.

A coordinate systemj=sjid1øiøD2−1 of S is calledaffine
with respect to a connection¹ of S if ¹]i

] j =0 for all i , j ,
where]i =] /]ji. For example, the components of density ma-
trices rsPSd, with one diagonal entry removed(since Trr
=1), form a ¹m-affine coordinate system ofS. On the other
hand,S does not have a¹e-affine coordinate system, since
¹e torsion does not vanish because of the noncommutativity
of operators.

A submanifoldM of S is calledautoparallelwith respect
to a connection¹ of S if ¹XYPTrM for all rPM and
X,YPTrM. In particular, a one-dimensional¹ autoparallel
submanifold is called a¹ geodesic. WhenM is ¹ autopar-
allel in S, M has a vanishing embedding curvature with
respect to¹, and one can regard¹ as a connection ofM,
just by restricting¹ ontoM. For example, a maximal com-
mutative subsetP of S is autoparallel with respect to both
¹m and¹e, so that one can naturally induce a dualistic struc-
ture onP from that of S. In fact, the geometrical structure
thus induced on P is isomorphic to that of the
sD−1d-dimensional classical probability simplexPD−1. For
more information, see[12]. A generalization to manifolds of
non-faithful (i.e., degenerate) quantum states is discussed in
[14].

APPENDIX B: DERIVATION OF THE SLD FISHER
INFORMATION

In this appendix, we outline the derivation of the SLD
Fisher information(2). In what follows, we work with an
alternative parametrizationu : =Îh in order to simplify the
computation. The entries of the output state

r̃u = r̃usa,fd: = frhsa,fdgh=u2

are

sr̃ud11 =
1

2
s1 − adf2ps1 − u2d + u2s1 + cos 2fdg,

sr̃ud12 =
1

2
s1 − adu sin 2f,

sr̃ud13 = −
1

2
Îas1 − adu sin 2f,

sr̃ud14 =
1

2
Îas1 − adus1 + cos 2fd,

sr̃ud22 =
1

2
s1 − adf2 − 2ps1 − u2d − u2s1 + cos 2fdg,

sr̃ud23 = −
1

2
Îas1 − adus1 − cos 2fd,

sr̃ud24 =
1

2
Îas1 − adu sin 2f,

sr̃ud33 =
1

2
af2ps1 − u2d + u2s1 − cos 2fdg,

sr̃ud34 = −
1

2
Îas1 − adu sin 2f,

sr̃ud44 =
1

2
af2 − 2ps1 − u2d − u2s1 − cos 2fdg.

The SLD of the modelr̃u is a selfadjoint operatorL̃u that
satisfies the equation

]

] u
r̃u =

1

2
sr̃uL̃u + L̃ur̃ud.

Since

detr̃u = p2s1 − pd2a2s1 − ad2s1 − u2d4,

the SLD is uniquely determined if and only ifpÞ0,1 and
aÞ0,1. In this case,

L̃u =
1

D
f,i jg1øi,jø4, ,i j = , ji ,
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where

D = 2s1 − u2ds− 8f− a + ps− 1 + 2adgf1 − a + ps− 1 + 2adg + u2h3 − 8ps1 − 2ad2 + 8p2s1 − 2ad2 + 4s− 1 +ada

+ s− 1 + 2adfs− 4 + 8pd cos 2f + s− 1 + 2 ad cos 4fgjd,

and,i j =,i jsu ,p,a ,fd are given by

,11su,p,a,fd = ,44su,1 −p,1 −a,fd = 4uf1 − a + ps− 1 + 2adgf3 − 8p + 2s− 7 + 8pda + s4 − 8adcos 2f + s1 − 2adcos 4fg

+ u3h2f− 7 + 18ps1 − 2ad2 − 16p2s1 − 2ad2 + 8s− 2 +ads− 1 +adag + s− 1 + 2adf17 − 32p + 4s− 1

+ adagcos 2f − 2s− 1 + 2adf− 1 − 2a + 4a2 + ps− 2 + 4adgcos 4f − s− 1 + 2ad3cos 6fj,

,22su,p,a,fd = ,33su,1 −p,1 −a,fd = 4uf− a + ps− 1 + 2adgf5 − 8p − 2a + 16pa + s4 − 8adcos 2f + s− 1 + 2adcos 4fg

+ u3h2f− 5 + 14ps1 − 2ad2 − 16p2s1 − 2ad2 + 8s− 1 +ad2ag − s− 1 + 2adf32p + s− 5 + 2ads3 + 2adgcos 2f

− 2s− 1 + 2adf− 3 + ps2 − 4ad + 2a + 4a2gcos 4f + s− 1 + 2ad3 cos 6fj,

,12su,p,a,fd = − ,34su,1 −p,1 −a,fd = 16fa − ps− 1 + 2adgf1 − a + ps− 1 + 2adg sin 2f + 16u2s− 1 +adaf− 1 − s− 1 + 2pd

3s− 1 + 2adcos 2fgsin 2f + u4sf5 + 16s− 1 + pdpgs1 − 2ad2 sin 2f + 4s− 1 + 2pdh− 1 + 2af2 + as− 3

+ 2adgjsin 4f + s1 − 2ad2 sin 6fd,

,13su,p,a,fd = ,24su,p,a,fd = 8Îas1 − ads2a − 1dus1 − u2dfs2p − 1ds2a − 1d + cos 2fgsin 2f,

,14su,p,a,fd = − ,23Su,p,1 −a,
p

2
− fD = 8Îas1 − ad cos2 fh4 − 4a + 4ps− 1 + 2ad + u2f− 8s− 1 +ada + 4s− 1 + p + ads− 1

+ 2adcos 2fg − 4u4s− 1 + 2adf− 1 + 2p + s− 1 + 2adcos 2fgsin2 fj.

The SLD L̃u of r̃u is related to the SLDLh of rh by

Lh =
1

2Îh
L̃Îh,

and the SLD Fisher information for the parameterh is given by

Jh
spdsa,fd = Tr F ] rh

] h
LhG =

1

4h
TrF ] r̃u

] u
L̃uG

u=Îh

.

This leads to formula(2).
Whenp=0,1 ora=0,1, on theother hand, the SLD is not unique; however, the SLD Fisher information is well defined and

is identical to the continuous extension of Eq.(2) to the boundary, since the rank ofru is invariant for each values of the
parametersp anda [14].
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