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Estimation of a generalized amplitude-damping channel

Akio Fujiward"
Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan
(Received 22 March 2004; published 29 July 2p04

The problem of finding the optimal strategy for estimating a generalized amplitude damping cﬁ‘ﬁhbgl
means of the extension dmr(;’) is addressed. We first evaluate the quantum Fisher information of output states
based on the symmetric logarithmic derivative and specify all pure-state inputs that maximize the quantum
Fisher information. We next investigate tR€ autoparallelity of output state manifolds and characterize the
condition for the existence of an efficient estimator. A comparison of these results concludes that, while there
is no uniformly optimal input for allp and », a maximally entangled input is an admissible one under a
nonasymptotic setting.
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I. INTRODUCTION lowing affine map on the Stokes parameter space:
Let H be a Hilbert space that represents the physical sys- X' \7] X 0
tem of interest and lef(7{) be the set of density operators y | = - yl+| o
on H. It is well known that a dynamical chandé& S(H) , V7
— S(H) of the physical system, calledguantum channels z 7 [LZ 1-7

represented by a trace-preserving completely positive lineaks ,,_, 0, the channel transforms every point in the unit ball
map[1-3]. Nevertheless, it is a different matter how one canyowards a fixed point at the north pole, the ground state. Thus

identify the quantum channel that one has in a laboratoryne environment is regarded as if it were at zero temperature
Since almost every quantum protocol assun@esriori  in this model.

knowledge of the behavior of the quantum channel under A generalized amplitude dampinghannel F<p):S(C2)
ponsideration, the.re is no dogbt that iden_tifying the channel_}S(Cz) describes the effect of dissipation to an environment
|s.of fundamental importance in quantum information th(_aory.at finite temperatur¢[13], p. 382. It is defined by

It is, however, not very long since the quantum channel iden-

tification problem was directed proper attention, and the 4 .

theory of finding an optimal estimation scheme has not been F(f)(ff) =2 Eo =

developed so far, with only a few exceptiofé—9]. The =1

purpose of this paper is to investigate the optimality of anyhere

estimation scheme for &eneralizegl amplitude damping JE—

channel of a two-level quantum system, based on noncom- E =p 10 _ =0 V1-9

mutative parameter estimation thedr0,1] and quantum 1= VP 0 \77  F2TNP 0 0 '

information geometry12].

An ar_nplitude dampinghannell“,y:S(Cz)—>$(Cz), having V7 0 ’ 0 o0
a one-dimensional parametere [0,1], is defined by([13], Es=v1l-p , Es=V1-p| —— ,
Vi-7 O
p. 380
9 andp e[0,1] is a parameter that represents the temperature
I ()= EoE of the environment. This channel induces the following af-
K = fine map on the Stokes parameter space:
where X’ V7 X 0
’ —
[ y = \"77 y + 0 1
10 0 Vi-9¢
E,= ~ 1, = . z z] [(2p-1(1-7)
: lo J } lo 0 1 7

and the stationary state is
The channel describes the physical process of approach to [ 0
p }
T = .

equilibrium due to coupling with its environment, and the
damping parameter; respresents the rate of dissipation—
that is, =€V wheret is time andT a constant characteriz-

ing the speed of the process. This channel induces the fo}[\/hen_p:O or 1, the (cp)hannel is rgdu.ced to an amplityde
damping channel, anﬂn for a generiq is regarded as their

mixture:

0 1-p

— o1 0
*Electronic address: fujiwara@math.wani.osaka-u.ac.jp TP =pr® + (1 -p)r.
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Sincep is an indicator of the temperatute of the environ- ost . _ __ — _ _ B
ment, it is likely that one can evaluate the true valuepof |
beforehand, independent of the channel. Therefore, the esti- 0.4

mation problem of the single parametgy givenp [0, 1],

would be physically feasible. In this paper, we study the i 03
optimality of an estimation scheme for the damping param- o g2 \
eter » of a generalized amplitude damping chanhel by
means of the extension @l : S(C2® (2) — S(C(2® C?). 0.1
Once an input state € S(C2® (C?) is fixed, we have a one 0 \
dimensional family of output states,: =id® F(yf)(o), and the 0 0.2 0.4 0.6 0.8 I

parameter estimation for the quantum channel i is re- 7

duced to that for the quantum staig As a consequence, the 1. 1. The function(#;r) that characterizes the optimal de-

proE)I)em amounts to finding an optimal input state for id greeq of entanglenent. Here the parameteis taken to ber=0.9

®I'*? and an optimal estimator for the corresponding outputsolid line), r=0.6 (dashed ling and the limitr —0.5 (chained

state. Note that as long as we are concerned only with “localfine).

(or asymptotig optimality of an estimation scheme, the prob-

lem is further reduced to finding an input state that maxi- _ o o)

mizes the symmetric logarithmic derivatiy8LD) Fisher in- Py= Pyl @) =id e Iy (e D)Xl B)),

formation of the output familylp,},, as shown in[4]. If,  and letJP(a,¢) be the SLD Fisher information about the

however, we switch the subject to “global” optimality under parameter;. The main results are stated in a series of theo-

a nonasymptotic setting, such an approach might fail becausems as follows.

the locally optimal estimation scheme would, in general, de- Theorem 1 (amplitude damping chann&yhenp=1, the

pend on the true value of the parametgrin this case, we SLD Fisher information takes the maximum if and only if

are forced to consider an alternative criterion in discussingither («, ¢)=(0,7/2) or (1,0). When p=0, it takes the

the optimality of an estimation scheme. We will show thatmaximum if and only if eithefa, #)=(0,0) or (1,7/2). In

this is the case with a generalized amplitude damping chansach optimal case, the output family admits an efficient esti-

nel; that is, there is no uniformly optimal input that maxi- mator for the parametey.

mizes the SLD Fisher information for aji unlessp=0, 1, or Theorem 1 has an interesting physical interpretation: the

1/2. This is in good contrast to the estimation of an(8U  eyistence of quantum entanglemeine., a# 0, 1) strictly de-

channel[6] or a generalized Pauli channfg], in which a  teriorates the accuracy of estimation for an amplitude damp-

maximally entangled input is uniformly optimal in that it jng channel. This is in remarkable contrast to the estimation

simultaneously maximizes the SLD Fisher information forproblem of a unitary channdb] or a Pauli channel8] in

all values of the parameters. _ which quantum entanglement actually enhances the accuracy
The paper is organized as follows. The main results argf estimation.

stated in Sec. Il and are proved in Sec. lll. The admissibility ~Theorem 2 (submodel of the Pauli channélyhen p

of an estimation scheme under a nonasymptotic setting is1/2 the SLDFisher information takes the maximum if and

discussed in Sec. IV. For the reader’s convenience, we give gnly if «=1/2. Thecorresponding output family admits an
brief account of quantum information geometry in efficient estimator for the parametéy,.

Appendix A. Theorem 2 is a direct consequence of the fact that, when
p=1/2, thechannel forms &¢autoparallel submodel of a
IIl. MAIN RESULTS Pauli channe([8].

_ o For other values op, the optimal input depends on the
According to the general prescription presente@i let  true value of the parametey. Let us introduce the function
us specify the input state for the channekii'® that maxi-

mizes the SLD Fisher information of the oufput states. Due r(l-m)-1+r(L-r)(1+n
, ) : . O<»m=m,

to the convexity of the SLD Fisher informatidd], we can B(ny;r) = (2r-1(1-7) '
take the input to be a pure state:|){{. Further, due to the 0 <=1
’ r - 3

covariancy of the channel in the rotation around zfais of
the Stokes parameter space, we can assume, without losswhere 1/2<r <1 and»:=(1-r)/r; see Fig. 1. Then we

generality, that the optimal input takes the form have the following.
I ] cos ¢ Theorem 3 (generalized amplitude damping channel)
J=a,d):=V1-a { } [ ) } When 1/2<p<1, the SLD Fisher information takes the
0 sin ¢ maximum if and only if (a,¢)=(B(%;p),m/2) or (1

1 (D) only if (a,$)=(B(7;1-p),0) or (1-B(5;1-p),7/2).

Theorem 3 implies that, as long as one wishes to achieve
where O<a<1 and O<¢ <. Let us denote the corre- the lower bound of the optimal quantum Cramér-Rao in-
sponding output state by equality [4]

. ’_[0] . [—sin d)} -B(7;p),0). When 0<p<1/2, it takes the maximum if and
Va 1

CoS ¢

012317-2



ESTIMATION OF A GENERALIZED AMPLITUDE-... PHYSICAL REVIEW A 70, 012317(2004)

V,[T]= [maxdP(a, ¢)]* (1,0,0,0)
ad

for the variancev,[T]: =E,[(T-#l)?] of a locally unbiased
estimatorT, the estimation scheme for the parameters
inevitably an adaptive one: one needs to modify successively
the degreex of entanglement of the input state according to
the temporary estimate of.
In summary, there is no uniformly optimal input that
maximizes the SLD Fisher information for a#} unlessp
=0, 1, or 1/2. In this regard, the next theorem, characterizing
the condition for the output family to admit an efficient es- (0,1,0,0)
timator for all p, would be meaningful in discussing the ad-
missibility of an estimation scheme under a nonasymptotic
setting. . . (0,0,1,0)
Theorem 4 (autoparallelity)The family {p,(c, $)}o< <1
of output states i¥® autoparallel for alp [0, 1] if and only FIG. 2. The output family forg=0 and 5=0 embedded in the
if either a=1/2 or(a,¢)=(0,0),(0,7/2),(1,0),(1,7/2). probability simplexP® of Pauli channels. It is th&€ geodesic con-
Note that the output familyp,(«,#) degenerates to a necting the vertex1,0,0,0 and the centef1/4,1/4,1/4,1/4 of
point when (a,$)=(0,0),(1,7/2) and p=1 or when P3, and has an efficient estimator for the expectation parameter

(a,)=(0,7/2),(1,0) and p=0.

(0,0,0,1)

1
J,=
lIl. PROOF OF THE THEOREMS 7(l-mn)

In this section, we change th_e variablé}s,a,@ into i and only if (8,¢)=(-1,-1) or (1,1). The corresponding
(q,8,c,9):=(2p—1,2a—1,cos 2b,sin 2¢). The variables output states
appears only in Sec. Il D. Details of the tedious computation
are relegated to Appendix B. Whég| <1 and|s| <1, the

SLD of the output familyp,, is unique, and the SLD Fisher 1- 000
information is given by | 0 00
@ Pri-0=1 g o9 0 of
JV(6,c
7 (20 0 000
_ h(é,c; 7,9)
T Ap(l-p[l-pR+(L+2cqs+ (R+PR-1)P) 7]
7(1-n[1-g°"+(1+2cqs+(c°+q°-1)&) 7] 00 o0 o
(2)
00 0 0
where Py = 00 1- ” 0
h(8,¢;7,q) =2 -cX(1-g) &~ (1 +q?) 5 +2 cqd(1 - &) 00 0 g

+[2+6cq6+ (- 3+ 209 8%+ 2c%q s + &°
[2 a 2( ) 5 d ) are both isomorphic to the classical coin flipping in which
+c&F(5+ 207 - P)n-(1-c)8(q+cd*7*.  heads occur with probability. As a consequence, there is an

When [q|=1 or |8/ =1, on the other hand, the SLD is not efficient estimator for the expectation parametgr This

unique; however, the SLD Fisher information is well definedProves Theorem 1.
and is identical to the continuous extension of E2).to the
boundary. Note that the SLD Fisher information satisfies the B. Proof of Theorem 2

relations
When =0, the channel is reduced to a submodel of the

ID(8,0)=370(=5,0=3095-0)=IP(=8-c). (3  Pauli channel which has been studied in detaildh To be
specific, the optimal input is an arbitrary maximally en-
tangled statéi.e., 5=0), and the corresponding output family

A. Proof of Theorem 1 is canonically embedded in the three-dimensional probability

; ; . :
In view of the symmetry3), we need only prove the case SIMPIex>* of Pauli channels as followsee Fig. 2

g=1. It is easy to show that the SLD Fisher information
2(1+68c)-2(1-cdy

4n(1-n)
takes the maximum Moreover, this turns out to be an exponential family:

[ R
:(u+\m21—n1—n(l—\m1
" 4 4 a4 )

(&) -
J5 (6,c)=
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[-1,1]%[-1,1] for a givenq#0 and +1. Let us consider

Pt = (gt 4 e—g/z)z(egllvl’e_g)’ the extremal conditions:
having a natura{Ve-affine) parametert: =2 arctank/z. We dIV(s,0) 0 93 (s,0) 0 @
regard the vectoX:=(1,0,0,-2, which is obtained by col- 98 Jgc

lecting the coefficients of in the exponents ofe¢, 1,1 ,e7%),
as a random variable that takes valogs) with probability The next key lemma asserts that the SLD Fisher information

p,(i) (i= ,4. According to the theory of the exponential J '(8,c) takes the maximum either a0 or on the bound-
family ([12] ‘Sec. 3, 5 the random variabl& gives the effi- ary 8| =1 or fc|=1
cient estimator for the expectation parameter Lemma 5if 50, Egs.(4) do not simultaneously hold for
_ any interior point(é,c) € (-1,1) X (-1,1).
E,[X]=V7. Proof. Consider the quantity

This proves Theorem 2. We will give an alternative argument 9] q)(5 <) 9398, c)
in Sec. IV. K(s,¢;7,9) -c( ) 5( ) (5)

C. Proof of Theorem 3 If Egs. (4) simultaneously hold, theK(s,c; 7,q)=0. It is

We present the proof in a series of lemmas. The goal is ttherefore sufficient to show thak(s,c;»,q)>0 for all
find the maximum oﬂf)(é,c) on the compact square region (8,c) e (-1,1) X(-1,1) unlessé=0. By a direct evaluation

s1(8.¢; 9,9
27(1 = P[1-g?8* + (1 + 2cqd+ (¢ + g* = 1) &) 7]’
wheref is a polynomial that has the following decomposition:

f(8,c;mQ) =7[1-+(q+cd)nP+(1-I(L-g)n+ (1 -8 n+(1-)?9+(1-n)(1+cqd+cqdn+c?sn)?

K(é,c;7,q) =

+(q+cd)’n(1 + 7).
[
Since 0< <1 and|qg| <1, it is clear from the above de- - 939(-1,) 939(5,0)
composition thaff(8,c; ,q) is strictly positive for all inte- K(c;7,0):=c PP + 76 . ()
rior points (8,¢) e (-1,1) X (-1,1). This proves the asser- o=-1
tion. [ |

) ) Here the second term is understood as the one-sided deriva-
Lemma 6.If 6=0, Egs.(4) have a unique solution=0.  tjye at the boundary=-1. Then

The point(8,¢)=(0,0) is a saddle point oﬂ(;‘)(é,c).
Proof. By a direct computation, we have - f(-1,c;7,0)
K(c;7,0) =K(-1,c;7,0) = :
( 7/q ( 7/]q) 277(1_7])[1_q2+(c_q)27]]2

[aJ@(&c)} . cq [&J(q(ﬁc)} —o _ . . »
75 o 291-7) Jc o As the function f(_—l,cA,n,q) is strictly positive for all
ce(-1,), so is K(c;#n,q). Suppose now that
(a) ;
Sinceq+ 0, the only critical point ors=0 isc=0. The Hes- 9J,'(-1,c)/9c=0 at a certain c=coe(-1,1). Then

sian matrix at the origiis,c)=(0,0) is [&J(q)(é c)/aé]& . is strictly positive atc=c,. In other
words Jq( 1 c0)<J(q)( 1+e,c,) for sufficiently small
1 2(1 - e>0. |
H(O,O):—[Q( 7 q], We deduce from lemmas 5-7 tha@(a c) takes the
2n(1-n) q 0

maximum on the boundary|=1. It is now straightforward
to obtain the maximum. Due to the symmetB), we need
and detH(0,0=-0?/474(1-79)?<0 B only consider the case=-1, in which

Lemma 7Jq 4,C) does not take the maximum on the

boundary|s| = 7 unIesch| 1-8+(1-2q96+ )y

J9(6,-1) =

Proof. According to Eq. (3) J(q( 1,0= J(q (1,-¢), so ma 2791-p[l+qdé+(1-qdn]
that it suffices to treat the casi:.c 1. For —1<c<1 con-
sider the quantity The optimal§ that maximizes](:)(é,—l) is given by
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(V1-g*-1)(1+7) 0=p=1., (L,)2s=4(- L+0)\V1 - 41 —-qo+[1- & +cdlg- Oy
arg mad;l(5,-1)= al=») +(1+c)8(q+cd) 7}
-1, ng<n=<1, are polynomials ofy that cannot be simultaneously zero. As

a consequenceél ,)s;; and at least one of the latter two are

linearly independent, antl, cannot be of the forng8). If
6=0, on the other hand, the transformed SLD of the model
p, becomes

where 74: =(1-g)/(1+q). This completes the proof.

D. Proof of Theorem 4

A quantum statistical model,, is V¢ autoparallel if and .
only if there is a constant operatdrand smooth functions L,=8(1+nT,
A(n) and u(7) such that the SLDL, satisfies

where
L,=Nn)T-u(nl. (7 0 s 0 1+c
In this case, the operatdr is the efficient estimator for an 1l s 0 -1+c O
alternative parametef: =u(#)/\(7) of the model. It is im- T= 2l 0 -1+¢c 0 -s | (10
portant to notice that the conditiqi@) is invariant under the 1+c 0 s 0

transformation
. This is of the form(8), and the model turns out to bBeé*
L,— L, =f(nL,-a(nl, autoparallel for allg e (-1,1). We now invoke a continuity
. . . argument to conclude that, whe#+0, the modelp,, is V°
where f(#7) and g(») are arbitrary smooth functions with autoparallel for alkg e [~1, 1]

f()#0. In fact, L,=\(n)T-a(z)! holds for \(7): We next treat the casé=-1, in which the modep,, is
=f(m\(7) and u(7): =f(nu(n)+9(n). Specifically, if we  factorized as

let g(7): =f(n)(L,)11, then the(1, Dth entry ofIA_ﬂ vanishes, 10
and we havei(7)=\(7)Ty; and py= {0 0] ® o, (11
L,=\(pT, (8  where
where T: =T-Ty4l is a constant operator. Namel&,,] be- 1{1 +q+(c-q)n 5\5'77 }
-~ i o.== = )
comes a constant operator [nultlplled by a smooth function of 77 9 s\7 1-q-(c-q)7

7; in particular, the entries df, are linearly dependent func- o o
tions of 5. Conversely, when Eq8) holds for specific func- The problem amounts to finding the condition i@ to be
tions f(7) andg(7), a triad of the originak (), u(7), andT ~ V° autoparallel for allg e [-1,1]. Since
that satisfies Eq(7) can be retrieved as follows: 1
2o o) deto, =, (1-n[1-¢"+(c-a)? 7],
7 9(7 2
M) = f(p)' wlo) = f(7)’ T=T © e modela, is strictly positive unlesgj=c=+1, and the

SLD is uniquely determined ds,=[¢; /8\» deto,], where
Thus Eq.(8) gives a necessary and sufficient condition for Rt 4s,=[¢;/8n deto,]

the modelp,, to be V® autoparallel. €11= \5'77[(1 -q)(2c-2q-5%) - (c—q)(2c-2q+ ) 7],
Let us proceed to the proof of Theorem 4. We present the
proof for|8| <1 and|s| =1 separately. We first treat the case (=91 -2+ (c- )27,

|8] <1. Assume for now thag| < 1: in this case, the model
p,, Is strictly positive and the SLD is uniquely determined in
the formL,=[¢;;/2V» D] as seen in Appendix B. Let us set

f(m):=2V7D, g(n): =0y
If 5+ 0 (in addition to|8| <1), the (3,3th entry

== \n[(1+g)(2c - 29+ ) + (c - g)(2c - 29 - ) 77].
Letting
f(n): =8y deta, o(n): =t
the transformed SLD becomes

(Lﬂ)33: 85\“”7][1 +C2 + 20q5+ (1 —C2 - 52 + C252) 7]] (I:n)12: S[l _q2+ (C— q)2 772],

of the transformed SLI]Aln is a nonzero irrational function of R _
7, and the(1,4)th and(2,3)th entries (L,)20=—2Vn[2c—2q+sq - s*(c- Q) 7].

SN [y _ These elements are linearly dependent forgad (-1, 1) if
(Ly1a= 41 +O)N1 Fll+ao+[1-5+cig+ o]y and only ifs=0. Now by a continuity argument, we conclude
+(-1+c)8(q+cod) 72, that the modebr,, is V© autoparallel for allg e [-1, 1] if and
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only if s=0, that is|c|=1. Note that the modet,, degener- {7, 0 ]
ates to a point 0 1-9)
10
00 andT is the efficient estimator for the parametgras was
seen in theorem 1. Whep=1, however, the modef, de-
wheng=c=1 and to a point generates to a point

[O 1:| |: ]
0 0]
Whenq—c——l.

Finally, we treat the casé=1, in which the modep,,is  gnd has no information about the paramegein short, the

factorized as input (e, $)=(0,0) is the best forp=0, whereas it is the
0 0 worst forp=1. Such a biased nature is convinced also by the
p,= [ } fact that the SLD Fisher information
710 1
where 1-p
J(p) 0,0) =
_ OO pa -l
ll‘*q (C+Q)7l -s\y ]
g
77
2 -s\y 1-g+(c+a)y approaches zero monotonically @s: 1. Similar observation

also applies to the other disentangled inputs, )
=(0,7/2),(1,0,(1,7/2).
Whena=1/2, on theother hand, the SLD of the mode),

A similar argument as above concludes thatis V¢ auto-
parallel for allge[-1,1] if and only if s=0. Note that the
model o, degenerates to a point

satisfies
o]
1 1
10 0] L":(l )’FT_l— I
wheng=-c=1 and to a point N K
[0 0] whereT is given by Eq.(10). Therefore,T is the efficient
01 estimator for the parametér \ 7 irrespective of. This uni-

formity is also seen in the SLD Fisher information
whenqg=-c=-1. This completes the proof.

( -1
IV. DISCUSSION ARG = o

In this paper, we have studied the problem of estimating a
generalized amplitude dampmg chanrﬁé’l’ for a givenp  which is independent op (and ¢). Such a robustness is in
through the extension il I’ P 1t was shown that there is no good contrast to the above-mentioned biased nature of dis-
uniformly optimal input that simultaneously maximizes the entangled inputs and would be preferable in practical appli-
SLD Fisher information for ally unlessp=0, 1, or 1/2. cations, although the SLD Fisher information does not take
Nevertheless, it was also shown that the output family admit¢he maximum aiw=1/2 unlessp=1/2.
an efficient estimator for app if and only if the input is either The advantage of the use of maximally entangled inputs
a maximally entangled stafer=1/2) or a disentangled state can be viewed also from a different angle. The SLD Fisher
of the type (a,¢)=(0,0,(0,7/2),(1,0,(1,7/2). In this information J(np)(O 0 for the disentangled inpufa,¢)
section, we discuss the relative merits of these inputs. =(0,0) is averaged ovep as

When(a, $)=(0,0), the SLD of the factorized modet,,
in Eq. (11) satisfies

log -1

1 —
3= | 3P0,0dp= 1712
1 1 10 K f 7 1-7)°
L. = T- | :|: :| 0 ( 77)
00

T @A-nlp+pl-n] 1-7n°

Therefore, the model has an efficient estimafofor the ~ The average valugl, is the same for the other disen-
parameter=+p(1-7) unlessp=1. For example, whep ~ tangled inputs (a,$)=(0,7/2),(1,0),(1,7/2). Since
=0, the modelr,, is reduced to the classical coin flipping Jf)(1/2,¢)>\],,for all < (0,1), we may assert that, among
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those which admit efficient estimators for @l maximally APPENDIX B: DERIVATION OF THE SLD FISHER
entangled inputs are optimal on average. INFORMATION

In this appendix, we outline the derivation of the SLD
APPENDIX A: QUANTUM INFORMATION GEOMETRY Fisher information(2). In what follows, we work with an
alternative parametrizatiofl: =\» in order to simplify the

This appendix provides a brief account of quantum mfor'computation. The entries of the output state

mation geometry based on the SLD. L®be the totality of
faithful quantum states on@-dimensional Hilbert spack. 3.=7 =

) . . . po=pola,P):=[p,(a, )], -
The setS is naturally regarded as(®?-1)-dimensional dif- o [ K ]” *
ferentiable manifold, and its dualistic geometrical structure isare
introduced as follows. We first define a Riemannian metric

by (oua= (1~ (201~ )+ (1 + cos 2]

1
a(X,Y): = ETV p(LxLy + LyLy) = Tr(Xp)Ly,

1 .
(Po)12= 5(1 —a)6 sin 2¢,
whereX,Y e T,S, andLy,Ly are the corresponding SLD's;

i.e., the Hermitian operators satisfying

1 TRy
1 (Po)13= T\ a(1 - )0 sin 2¢,
Xp= E(PLX"' Lxp).

The metricg is called theSLD Fishermetric. We next intro- = 1 [a(1 = a)6(1 + cos
duce a pair of affine connections. One is defined by (Po14= 5 vall ~ )i %),

(VXY)p: = X(Yp),

and is called thenixtureconnection. The other is defined by

()z2= (1~ 2= 2001~ ) = (P(1+ c05 D),

— -_ 1 . <
(V Y)P {p[XLY Tr p(XLY)] + [XLY Tr P(XLY)]P}, (75‘9)23: _ 5\“Ja/(l _ a) 0(1 - cos 2[5),
and is called theexponentialconnection. These connections

are mutually dual with respect to the SLD Fisher metric, in R
that (Po)2a=~ \a(l @) 6 sin 2¢,

Xg(Y,2) =g(VYY,Z) +g(Y,V52).

A coordinate systeng=(¢),-;—p2_; of S is calledaffine (Po)az= %a[Zp(l - /) + 6°(1 - cos )],
with respect to a connectioW of S if Vaa 0 for alli,j,
whered,=d/ d¢'. For example, the components of density ma-
trices p(eS), with one diagonal entry removeadince Trp (Po)aa=— l\,ma sin 2,
=1), form aV™-affine coordinate system &. On the other 2
hand,S does not have &°-affine coordinate system, since
Ve torsion does not vanish because of the noncommutativity 1
of operators. (Po)as= Ea[z - 2p(1 - 6%) - 6%(1 - cos 2)].
A submanifold M of S is calledautoparallelwith respect
to a connectionV of S if VxYe T M for all pe M and  The SLD of the modep, is a selfadjoint operatok, that
X,Y eT,M. In particular, a one-dimension&l autoparallel  satisfies the equation
submanifold is called & geodesicWhen M is V autopar-
allel in S, M has a vanishing embedding curvature with o
respect toV, and one can regard as a connection of\1, 9 9
just by restrictingvV onto M. For example, a maximal com-
mutative subseP of S is autoparallel with respect to both Since
VMandVe, so that one can naturally induce a dualistic struc- 20 N2 201 _ N204 _ p2\4
ture onP from that of S. In fact, the geometrical structure defy=p*(1-p)*a’(1 - )*(1 - )",
thus induced on”? is isomorphic to that of the the SLD is uniquely determined if and only jif# 0,1 and
(D-1)-dimensional classical probability simplgx°~%. For  «+0,1. In this case,
more information, segl2]. A generalization to manifolds of
non-faithful (i.e., degenerajequantum states is discussed in T l[@.] ' 0= ¢
[14]' ijllsi,j<4

(/30L0 + LoPa)

jir
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where
D=21-A) (-8~ a+p(-1+22)][1-a+p(-1+2a)]+ ¢33 -8p(1-2a)%+8p%l-2a)°+4-1+a)a
+(=1+2a)[(-4+8p) cos 2p+ (- 1+2a) cos 4p]}),
and(;=¢;(6,p,a, ) are given by
011(0,p,, ) = €44(0,1 —p,1 —a,p) =461 —a+ p(= 1+ 20)|[3 - 8p+ 2(— 7 + 8p)ar + (4 — Baw)cOS 2p + (1 — 2ar)cOs 4p]
+ P27+ 1%(1 - 20)2 - 16p%(1 - 20)?+ 8(- 2 +a)(- 1 +a)a] + (- 1+ 2a)[17 - 3D+ 4(- 1
+a)a]cos 2p— 2(— 1+ 2a)[- 1 — 2a + 4a? + p(— 2 + 4a)|cos 4p— (- 1 + 2a)3cos G},

00,p,a, ) =€35(0,1—p, 1 —a,p) = 46— a+ p(—= 1+ 2a) ][5 - 8p — 2a + 16par + (4 — 8a)cos 2 + (— 1 + 2a)coS 4P|
+6P{2[- 5+ 14p(1 — 20)% - 16p%(1 — 2a)? + 8(— 1 + @)?a] - (- 1 + 2a)[32p + (= 5 + 2)(3 + 2a) cOS 2
- 2(-1+2a)[- 3+p(2 - 4a) + 2a + 4a®]cos 4p + (- 1 + 2a)° cos G},

01(0,p,a,) == €340,1 —p,1 —a,p) = 1§ a—p(— L + 20)[[1 —a + p(- 1 + 2a)] sin 2+ 166°(—- L +a)a[- 1 — (- 1 + 2p)
X (= 1+ 2a)cos 2p]sin 2¢ + 6*([5 + 16— 1 +p)p](1 - 2)* Sin 2+ 4(-= 1+ 2p){~ 1 + 20[2 + (- 3
+2a)]}sin 4¢ + (1 - 2a)? sin 6¢),

013(0,p,a, ) = €24(0,p,, ) = 8V a(1l - a)(2a— 1) 6(1 - A)[(2p — 1)(2a — 1) + cos 2p]sin 24,

€14(0,p,a,¢)=—€23<0,p,1—a,g—¢) =8Va(l-a) cod ¢p{d—4a+4p(-1+2a)+ P[-8(-1+a)a+4(-1+p+a)(-1

+2a)cos 2p] — 4604(— 1 + 2a)[- 1 + 20+ (- 1 + 2a)cos 2psir? ¢}.
The SLDL, of p, is related to the SL., of p, by

P
7 2\57 W
and the SLD Fisher information for the parametgis given by

9 1_ [Py~
IP(a,d)=Tr {ﬂ'Lﬂ} - —Tr{ﬂLg} .
K an 4n L0 "leiy

This leads to formula?2).

Whenp=0,1 ora=0,1, on theother hand, the SLD is not unique; however, the SLD Fisher information is well defined and
is identical to the continuous extension of K#) to the boundary, since the rank pj is invariant for each values of the
parameterp and « [14].
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