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We investigate entanglement between electronic and nuclear degrees of freedom for a model nonadiabatic
system. We find that entanglement(measured by the von Neumann entropy of the subsystem for the eigen-
states) becomes nearly maximum when the system shows “nonadiabatic chaos” behavior which was found in
our previous work[Phys. Rev. E63, 066221(2001)], but the reverse is not necessarily the case.
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I. INTRODUCTION

Quantum information processing(QIP) is one of the hot
topics in many branches of science[1]. One important point
is how to implement a quantum computer in real systems,
and many possibilities have been theoretically suggested and
experimentally tested. One candidate can be molecular sys-
tems because highly excited molecules have dense quantum
states, which can be manipulated by laser fields. Some quan-
tum logic gates in such a system can be built by using opti-
mal control theory[2], and are actually realized in a molecu-
lar system[3].

In highly excited molecules or laser-driven molecular sys-
tems, nonadiabatic transition(NT) is a rule rather than an
exception[4,5], i.e., we have to consider both electronic and
nuclear degrees of freedom(DOF) at the same time without
invoking the Born-Oppenheimer approximation. In such a
case, a fundamental issue related to QIP is how much(quan-
tum) entanglement is produced between electronic and
nuclear DOF in molecular systems, because entanglement is
a key ingredient in QIP.

Here we investigate a two-mode–two-state(TMTS) sys-
tem which has two electronic DOF and two nuclear(vibra-
tional) DOF with a nonadiabatic coupling[6,7]. This is a
(minimum) model NT system which shows “quantum chaos”
behavior, i.e., statistical properties of energy levels and
eigenstates are similar to those of a random matrix system
[8]. If many electronic DOF are involved, the similar system
has a naive classical limit, and its dynamical property of
entanglement has been already addressed in Ref.[9]. In such
a case, a quantum chaological view is effective, and we can
say much about a quantum system by studying its classical
limit [9]: Furuyaet al. treated a nine-atom Jayes-Cummings
model(where nine spin-1/2’s are coupled to one vibrational
mode) because the model has a semiclassical regime. How-
ever, the situation is different and more difficult here, be-
cause the TMTS system does not have a naive classical limit
due to discreteness of the electronic DOF: the TMTS system
(where one spin-1/2 is coupled to two vibrational modes) is
not expected to have such a semiclassical regime as men-
tioned in Ref.[9]. Since we cannot adapt a naive quantum-
classical correspondence to analyze the result[10], the en-

tanglement production in the TMTS system is a challenging
problem and deserves further attention.

II. TMTS SYSTEM

The TMTS system in the diabatic representation is de-
scribed by the following Hamiltonian:

HTMTS = STkin + VA J

J Tkin + VB
D , s1d

whereTkin is the kinetic energy,Visi =A,Bd is the potential
energy for statei defined by

Tkin = 1
2spx

2 + py
2d, s2d

Vi = 1
2svx

2ji
2 + vy

2hi
2d + ei si = A,Bd s3d

with

jA = x cosu − sy − adsin u, s4d

hA = x sin u + sy − adcosu, s5d

jB = x cosu + sy + adsin u, s6d

hB = − x sin u + sy + adcosu. s7d

The geometrical meaning of the parameters is shown in Fig.
1. Note that we have just used a harmonic potential for each
electronic state.
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FIG. 1. A schematic representation of the TMTS system. The
distance between the minima of the potential is 2a, and the angle
between the relevant crossing seam(dotted line) and the primary
axis of each potential(dashed line) is u. Inset, the perspective of the
TMTS system. The potential minima are different withDe=eB

−eA=0.173.
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Here the Duschinsky angleu [11] and the nonadiabatic
coupling constantJ are two important parameters for
the system; the latter induces entanglement between
electronic and vibrational DOF. We solve this Hamiltonian
according to the procedure in Ref.[6], and obtain the
eigenenergies and eigenvectors. Thekth eigenvector can be
written as

uFskdl = o
i=1

2

o
j

Cij
skduillu jl = o

i=1

2

ufi
skdluill, s8d

where u1ll=suAl+ uBld /Î2, u2ll=s−uAl+ uBld /Î2, uAl, uBl
are the electronic bases for diabatic surfacesA and
B, respectively, u jl represents two-dimensional
harmonic eigenfunctions, andufi

skdl;kki uFskdl=o jCij
skdu jl.

From this eigenvector, we can construct a reduced density
operator for the electronic DOF as

rskd = TrvibhuFskdlkFskduj = Sr11
skd r12

skd

r21
skd r22

skd D
=1o

j

C1,j
skdsC1,j

skdd* o
j

C1,j
skdsC2,j

skdd*

o
j

C2,j
skdsC1,j

skdd* o
j

C2,j
skdsC2,j

skdd* 2 , s9d

whereCi,j
skd are actually all real numbers.

The measure of entanglement we choose here is the von
Neumann entropy of the subsystem defined by

SvN
skd = − Trhrskd ln rskdj = − l1

skd ln l1
skd − l2

skd ln l2
skd,

s10d

whereli
skd si =1,2d is an eigenvalue for the 232 matrix, Eq.

(9). A note is in order: the value of the entropy is the same if
we use the reduced density operator for the vibrational DOF.

We took the electronic DOF because the 232 matrix is very
easy to diagonalize, and to interpret the result as shown be-
low.

III. NUMERICAL RESULTS

First we show theJ dependence of the results fixingu
=p /6: As we can see in Fig. 2, the entropies for the case of
J=1.5 assemble around its maximumSvN. log 2, whereas
those of the other casessJ=0.3,7.5d are rather broadly dis-
tributed. This condition of entanglement is very similar to
that of quantum chaos behavior found in Ref.[6]: When both
J andu have “intermediate” values(J.1 andu.p /4), the
system shows the quantum chaos behavior, i.e., the nearest
neighbor spacing distribution becomes the Wigner type,D3
statistics become a log curve, and the amplitude distribution
of the eigenstates becomes Gaussian. To further confirm this,
we show theu dependence of the results fixingJ=1.5 in Fig.
3. This result also nicely corresponds to the previous condi-
tion for the quantum chaos behavior. From these results, we
can conclude thatwhen the TMTS system shows the quantum
chaos behavior, the entanglement between the electronic and
vibrational DOF becomes nearly maximum.

However, as noticed in Figs. 2 and 3, the amount of en-
tanglement strongly varies depending oneacheigenstate for
the cases ofJ=0.3 and 7.5 orJ=1.5 with u=0. To consider
this problem, we rewrite the entropy(entanglement) using
the vibrational bases for each electronic state,ufA

skdl and
ufB

skdl. These states are connected to the above statesuf1
skdl

and uf2
skdl by

ufA
skdl =

1
Î2

suf1
skdl − uf2

skdld, s11d

FIG. 2. J dependence of entanglement production measured by
the von Neumann entropy as a function of the energy level number.
Top, J=7.5. Middle,J=1.5. Bottom,J=0.3. The Duschinsky angle
is fixed asu=p /6.

FIG. 3. u dependence of entanglement production measured by
the von Neumann entropy as a function of the energy level number.
Top, u=p /3. Middle, u=p /6. Bottom, u=0.0. The nonadiabatic
coupling is fixed asJ=1.5.
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ufB
skdl =

1
Î2

suf1
skdl − uf2

skdld. s12d

Hence the density operator, Eq.(9), is represented as

r11
skd = 1

2 + kfA
skdufB

skdl ; 1
2 + SAB

skd , s13d

r22
skd = 1

2 − kfA
skdufB

skdl ; 1
2 − SAB

skd , s14d

r12
skd = 1

2skfA
skdufA

skdl − kfB
skdufB

skdld ; DPAB
skd , s15d

where we have introduced two new parameters:SAB
skd is the

overlap between thekth eigenstates on surfacesA andB, and
DPAB

skd is the half of the population difference between thekth
eigenstates on surfacesA andB. Using these parameters, the
eigenvalues for the entropy are written as

l1,2
skd = 1

2 ± ÎuSAB
skd u2 + uDPAB

skd u2. s16d

From this relation, for the entropy to be large,both uSAB
skd u and

uDPAB
skd u should be small. We can numerically confirm this

property for the strongly “chaotic” casesJ=1.5d, which is a
natural consequence of thatufA,B

skd l are random vectors. For
less “chaotic” casessJ=0.3,7.5d, the situation is different:
As shown in Fig. 4, there is a strong correlation betweenSvN

skd

and uDPAB
skd u for the weakly nonadiabatic casesJ=0.3d,

whereas betweenSvN
skd and uSAB

skd u for the strongly nonadiabatic
casesJ=7.5d. On the other hand,uSAB

skd u.0 for the former and
uDPAB

skd u.0 for the latter. This is interpreted as follows: For
the former, the eigenstates “reside” on diabatic surfacesA
and B which are tilted. Thus the overlapping between the
eigenstatesuSAB

skd u becomes small because the nodal patterns
for the eigenstates are also tilted(see Fig. 5 in Ref.[6]). For
the latter, the eigenstates “reside” on adiabatic surfaces, and
the amplitudes of them on diabatic surfacesA and B are
similar (see Fig. 7 in Ref.[6]), henceuDPAB

skd u.0.
Let us focus on the weakly nonadiabatic casesJ=0.3d. In

the range ofk=800 to 820, the lowest entangled state is
805th sSvN

s805d.0.15d, and the highest is 815thsSvN
s815d

. log 2d [Fig. 4(a)]. In Figs. 5 and 6, we show the two eigen-
states on diabatic surfacesA andB. As anticipated from the
above argument, there is a large population difference on
surfacesA andB for the less entangled state, whereas there is
not for the strongly entangled state. The latter situation

means that even a regular state can strongly entangle. Note
that, albeit we desymmetrized the system with a finiteDe
=eA−eB, we have this entangled state for the regular case. If
we do not desymmetrize the system, i.e.,De=0, we easily
have entangled states for both regular and chaotic cases be-
cause of the symmetry of the system.

Thus we must be cautious to use the entanglement pro-
duction as a manifestation of quantum chaotic behavior
[9,12]: when the TMTS system shows the quantum chaos

FIG. 4. SvN
skds+d, uDPAB

skd us* d, anduSAB
skd us3d as a function of energy

level number.(a) J=0.3 (weakly nonadiabatic case). (b) J=7.5
(strongly nonadiabatic case). (Lines are just for guiding eyes.) The
Duschinsky angle is fixed asu=p /6.

FIG. 5. A less entangled regular state: 805 eigenstates on diaba-
tic surfacesA (A) and B (B) for the weakly nonadiabatic case:J
=0.3. Pisx,yd= ukx,y ufilu2 si =A,Bd. Note that the scale for(B) is
smaller than that for(A). The Duschinsky angle is fixed asu
=p /6.

FIG. 6. A strongly entangled regular state: 815 eigenstates on
diabatic surfacesA (A) andB (B) for the weakly nonadiabatic case:
J=0.3.Pisx,yd= ukx,y ufilu2si =A,Bd. The Duschinsky angle is fixed
asu=p /6.
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behavior, the entanglement becomes nearly maximum
slog 2d, however, the reverse is not true: nearly maximum
entanglement can arise even in the regular cases as shown
above. That is, the correspondence between the entanglement
production and quantum chaos behavior in the TMTS system
is not one-to-one. This result has an important implication
for the dynamical behavior of entanglement[9,12,13]. If we
can prepare a nearly nonentangled wave packet consisting of
entangled eigenstates for the “regular” case(as a simple ex-
ample of a two spin-1/2 system, consider the caseu↑↓l
~ su↑↓l+ u↓↑ld+su↑↓l− u↓↑ld), this state can produce entangle-
ment in time, and the temporal amount of entanglement
might be comparative to that of the “chaotic” case. This issue
will be pursued elsewhere.

IV. SUMMARY

In this paper, we investigated quantum entanglement pro-
duction between electronic and nuclear(vibrational) degrees
of freedom for a two-mode–two-state(TMTS) system. We
found that the entanglement in the eigenstates becomes
nearly maximum when the TMTS system shows the quantum
chaos behavior, i.e., its statistical properties are similar to
those of a random matrix system. However, we also showed
that the regular regions of the TMTS system can cause nearly
maximum entanglement. It thus should be cautious to use
entanglement production as a manifestation of the quantum
chaos behavior. It will be interesting to analyze other nona-
diabatic systems like Jahn-Teller molecules[14] in light of
entanglement production.
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