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Entanglement induced by nonadiabatic chaos
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We investigate entanglement between electronic and nuclear degrees of freedom for a model nonadiabatic
system. We find that entanglemedimieasured by the von Neumann entropy of the subsystem for the eigen-
state$ becomes nearly maximum when the system shows “nonadiabatic chaos” behavior which was found in
our previous worfPhys. Rev. E63, 066221(2001)], but the reverse is not necessarily the case.
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I. INTRODUCTION tanglement production in the TMTS system is a challenging

. . . . problem and deserves further attention.
Quantum information processin@IP) is one of the hot

topics in many branches of sciend. One important point
is how to implement a quantum computer in real systems, Il. TMTS SYSTEM
and many possibilities have been theoretically suggested and
experimentally tested. One candidate can be molecular SYS:
tems because highly excited molecules have dense quantum

The TMTS system in the diabatic representation is de-
ribed by the following Hamiltonian:

states, which can be manipulated by laser fields. Some quan- Tiin + Va J

tum logic gates in such a system can be built by using opti- Hrmrs = 3 T +Va ) (1)

mal control theony2], and are actually realized in a molecu- kin = 7B

lar system[3]. where Ty, is the kinetic energyV;(i=A,B) is the potential
In highly excited molecules or laser-driven molecular sys-energy for staté defined by

tems, nonadiabatic transitiaiNT) is a rule rather than an 1, 2. 2

exception[4,5], i.e., we have to consider both electronic and Tiin = 2 (P 1), (2)

nuclear degrees of freedof®@OF) at the same time without

invoking the Born-Oppenheimer approximation. In such a Vi=5(wiE + win)) +e (i=AB) (3)

case, a fundamental issue related to QIP is how nigahn- )
tum) entanglement is produced between electronic andVith
nuclear DOF in molecular systems, because entanglement is Ex=X COS - (y—a)sin 6, (4)
a key ingredient in QIP.

Here we investigate a two-mode—two-statéVTS) sys-

tem which has two electronic DOF and two nucléaibra- 7= X Sin 6+ (y = a)cos o, 5)
tional) DOF with a nonadiabatic couplinfs,7]. This is a .

(minimum) model NT system which shows “quantum chaos” §g=Xxcos 6+ (y+a)sin 6, (6)
behavior, i.e., statistical properties of energy levels and

eigenstates are similar to those of a random matrix system 7g=—Xxsin 6+ (y+ajcos6. (7)

[8]. If many electronic DOF are involved, the similar system—rpo geometrical meaning of the parameters is shown in Fig.

has a naive classical limit, and its dynamlcal property Ofl. Note that we have just used a harmonic potential for each
entanglement has been already addressed in[®ein such electronic state

a case, a quantum chaological view is effective, and we can

say much about a quantum system by studying its classical

limit [9]: Furuyaet al. treated a nine-atom Jayes-Cummings b
model(where nine spin-1/2’s are coupled to one vibrational 0

mode because the model has a semiclassical regime. How- ! ’
ever, the situation is different and more difficult here, be-
cause the TMTS system does not have a naive classical limit 0
due to discreteness of the electronic DOF: the TMTS system

(where one spin-1/2 is coupled to two vibrational mgdes

not expected to have such a semiclassical regime as men-

tioned in Ref.[9]. Since we cannot adapt a naive quantum-
classical correspondence to analyze the redud}, the en-

(perspective)

(energy contours)

FIG. 1. A schematic representation of the TMTS system. The
distance between the minima of the potential & @nd the angle
between the relevant crossing seéotted ling and the primary
axis of each potentigdashed lingis 6. Inset, the perspective of the
TMTS system. The potential minima are different withe=eg
*Electronic address: fujisaki@bu.edu -e,=0.173.

1050-2947/2004/10)/0123134)/$22.50 70012313-1 ©2004 The American Physical Society



HIROSHI FUJISAKI PHYSICAL REVIEW A70, 012313(2004)

+—r

.

LAk PR S I

R % 3
ey 4 4y

; att + +
R & * ]
+

s

W
i -+ Wi
TSR
. + .
+ +
+ +
+

+
. P A
+ +

+

D T T TS A S S S

+
P + o+ + o+ o+ o+

~_
=2
\-E/?
+
| ] 1 ]
0 ‘ R T T i3 i Lok X S 0 W ; ’
¢ E r 2 C T ]
06l A N AR A S ey 0.6] atsstssss vy Wﬁﬁﬁﬁé?%ﬁﬁwm%
oL T e s ¥y &}* S AKE rnes PG A P e P e P P Y P A F L)
3 R ot wirho. ++«,;tﬁ::;‘x+#r F R A
0.4l PP >R N W P J 0.4+ T
PRI A AR T g e g D A
+ AR T + 4 ik e I R SR AL AR - 1
r *t**%*&mgt,“*»ﬁz*» w}#;}*: :*4&;4& + 8t .,ﬁ+++1’ L frrrre s O O N O S P N P . SR N A A AN A AN
02| SRR RS L A YV 02| -
g S T RS * Ty A = 4
0}:’ + ;‘"' * ) o ) ) O Kttt 2 o il i i i i sl i
e o el o i
0 200 400 600 800 1000 0 200 400 600 800 1000
Energy level number: k Energy level number: k

FIG. 2. J dependence of entanglement production measured by F|G. 3. 9 dependence of entanglement production measured by
the von Neumann entropy as a function of the energy level numbethe yon Neumann entropy as a function of the energy level number.
Top, J=7.5. Middle,J=1.5. Bottom,J=0.3. The Duschinsky angle Top, 9=7/3. Middle, #=/6. Bottom, #=0.0. The nonadiabatic
is fixed asf=m/6. coupling is fixed as)=1.5.

Here the Duschinsky anglé [11] and the nonadiabatic \ve took the electronic DOF because the 2 matrix is very

coupling constant) are two important parameters for easy to diagonalize, and to interpret the result as shown be-
the system; the latter induces entanglement betweegyy.

electronic and vibrational DOF. We solve this Hamiltonian
according to the procedure in Ref6], and obtain the
eigenenergies and eigenvectors. Kte eigenvector can be IIl. NUMERICAL RESULTS
written as
2 2 First we show thel dependence of the results fixing
Ky — ISV (K [ =7/6: As we can see in Fig. 2, the entropies for the case of

@) =22, Gyl §1|¢' . ® J=1.5 assemble around its maximuBp,=log 2, whereas
— — those of the other cas€3=0.3,7.5 are rather broadly dis-
where [1)=(|A)+[B)/2, [2)=(-|A+|B))/N2, |[A) [B)  tributed. This condition of entanglement is very similar to
are the electronic bases for diabatic surfacksand  that of quantum chaos behavior found in Réf: When both
B, respectively, [j) represents two-dimensional Jjand @ have “intermediate” valuegl=1 and = /4), the

i=1

harmonic eigenfunctions, arjg¥)= (i |‘1>(k)>:2jCi(jk)|j). system shows the quantum chaos behavior, i.e., the nearest
From this eigenvector, we can construct a reduced densityeighbor spacing distribution becomes the Wigner type,
operator for the electronic DOF as statistics become a log curve, and the amplitude distribution
® K of the eigenstates becomes Gaussian. To further confirm this,
p® = Tr{| RN DN} = (p(1k1> p(1k2)> we show thed dependence of the results fixidg 1.5 in Fig.
P21 P2 3. This result also nicely corresponds to the previous condi-
S oty S clicky Can condlude thauhen the TMITS sysiem shows the auanium
~ ~1itl, =~ ~Ljt2, ystem shows the quantum
= : , (9)  chaos behavior, the entanglement between the electronic and
>yt X chehy vibrational DOF becomes nearly maximum
j j

However, as noticed in Figs. 2 and 3, the amount of en-

tanglement strongly varies depending escheigenstate for
c}ﬁe cases 0§=0.3 and 7.5 od=1.5 with §=0. To consider
this problem, we rewrite the entrogyentanglem;))tusing
the vibrational bases for each electronic sta Y and

K — - K K K K A

== Trp™ In p®)==A1 InAf = n5 In g, |4%). These states are connected to the above saffs

(100 and|4Y¥) by

whereCi(E) are actually all real numbers.
The measure of entanglement we choose here is the v
Neumann entropy of the subsystem defined by

where)\i(k) (i=1,2) is an eigenvalue for the’22 matrix, Eq.
(9). A note is in order: the value of the entropy is the same if |¢(k)> - i_(|¢(k>> _ |¢(k)>) (11)
we use the reduced density operator for the vibrational DOF. A V2 ! 2/
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FIG. 4. S¥(+), |AP{(*), and|S|(x) as a function of energy (B)
level number.(a) J=0.3 (weakly nonadiabatic case(b) J=7.5 Pa(x.y)
(strongly nonadiabatic caséLines are just for guiding eyesThe

Duschinsky angle is fixed aé=/6.

1
) = Ew% — [3). (12)

Hence the density operator, E®), is represented as
FIG. 5. Aless entangled regular state: 805 eigenstates on diaba-

(k-1 (SIPC N k)
pii=2* (a |¢B )= 2t S'(AB’ (13 tic surfacesA (A) and B (B) for the weakly nonadiabatic casé:
=0.3. Pi(x,y)=|(x,y| #)|?> (i=A,B). Note that the scale foB) is
pX) = 2 — (| Py = z- Sk, (14)  smaller than that for(A). The Duschinsky angle is fixed a8
=/6.

P19 = 3B — (o o)) = APYRL, (1)

where we have introduced two new paramet@% is the
overlap between thkth eigenstates on surfacAsandB, and
AP&% is the half of the population difference between ke
eigenstates on surfac@sandB. Using these parameters, the
eigenvalues for the entropy are written as

means that even a regular state can strongly entangle. Note
that, albeit we desymmetrized the system with a firdite
=ep— €g, We have this entangled state for the regular case. If
we do not desymmetrize the system, i£g=0, we easily
have entangled states for both regular and chaotic cases be-

)\(l'f)zz 2+ |Sy2+ |APX)2. (16)  cause of the symmetry of_the system.

Thus we must be cautious to use the entanglement pro-

From this relation, for the entropy to be lardgmth [S2| and i i i i i
, py AB duction as a manifestation of quantum chaotic behavior

k . : .
|AP] should be small. We can numerically confirm this [9 12]: when the TMTS system shows the quantum chaos
property for the strongly “chaotic” cagd=1.5), which is a

natural consequence of thka;bﬂ‘g} are random vectors. For
less “chaotic” case$J=0.3,7.5, the situation is different:

As shown in Fig. 4, there is a strong correlation betwsfﬁh

Px,
and |AP(A'?3| for the weakly nonadiabatic cas&]=0.3), oo;xy)
whereas betweeﬁ'ﬂ and\S(AkQ for the strongly nonadiabatic oﬁog
case(J=7.5). On the other handS‘A'(Q =0 for the former and o9

|AP®[=0 for the latter. This is interpreted as follows: For
the former, the eigenstates “reside” on diabatic surfakes
and B which are tilted. Thus the overlapping between the
eigenstates{;Sﬂ‘Q becomes small because the nodal patterns
for the eigenstates are also tiltéske Fig. 5 in Ref[6]). For
the latter, the eigenstates “reside” on adiabatic surfaces, and
the amplitudes of them on diabatic surfacksand B are
similar (see Fig. 7 in Ref[6]), hence|AP2?3|:0.

Let us focus on the weakly nonadiabatic c43e0.3). In
the range ofk=800 to 820, the lowest entangled state is
805th (§39%=0.15, and the highest is 815tHS5”
=log 2) [Fig. 4@)]. In Figs. 5 and 6, we show the two eigen-
states on diabatic surfacésandB. As anticipated from the FIG. 6. A strongly entangled regular state: 815 eigenstates on
above argument, there is a large population difference omiabatic surfaces (A) andB (B) for the weakly nonadiabatic case:
surfacesA andB for the less entangled state, whereas there i9=0.3. P;(x,y)=|(x,y| ¢)|?(i=A,B). The Duschinsky angle is fixed
not for the strongly entangled state. The latter situatioras 6=/6.
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behavior, the entanglement becomes nearly maximum V. SUMMARY
(log 2), however, the reverse is not true: nearly maximum In thi . figated ‘ ) | )
entanglement can arise even in the regular cases as shown N this paper, we investigated guantum entangiement pro-

above. That is, the correspondence between the entang;;lemer?tCtlon between electronic and nucl¢aibrationa) degrees

X o of freedom for a two-mode—two-statd MTS) system. We
production and quantum chaos behavior in the TMTS Systemound that the entanglement in thte eiggns¥ates becomes
is not one-to-one. This result has an important implicatio

. . nnearly maximum when the TMTS system shows the quantum
for the dynamical behavior of entangleméff12,13. If we — oa45 pehavior, ie., its statistical properties are similar to

can prepare a nearly nonentangled wave packet consisting §{,se of a random matrix system. However, we also showed
entangled eigenstates for the “regular” ceae a simple ex-  {hat the regular regions of the TMTS system can cause nearly
ample of a two spin-1/2 system, consider the cfS®  maximum entanglement. It thus should be cautious to use
<(ITD+[LTN+(T1)=[1 1)), this state can produce entangle- entanglement production as a manifestation of the quantum
ment in time, and the temporal amount of entanglementhaos behavior. It will be interesting to analyze other nona-
might be comparative to that of the “chaotic” case. This issualiabatic systems like Jahn-Teller molecu[dd] in light of

will be pursued elsewhere. entanglement production.
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