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Vivek V. Shendée:* Stephen S. Bullock," and Igor L. Markov*
1Department of Mathematics, The University of Michigan, Ann Arbor, Michigan 48109-1109, USA
2Mathematical and Computational Sciences Division, National Institute of Standards and Technology,
Gaithersburg, Maryland 20899, USA
3Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109-2122, USA
(Received 8 August 2003; revised manuscript received 5 January 2004; published 19 Jyly 2004

This work proposes numerical tests which determine whether a two-qubit operator has an atypically simple
quantum circuit. Specifically, we describe formulas, written in terms of matrix coefficients, characterizing
operators implementable with exactly zero, one, or two controlled{cNnoOT) gates and all other gates being
one-qubit gates. We give an algorithm for synthesizing two-qubit circuits with an optimal numiseoof
gates and illustrate it on operators appearing in quantum algorithms by Deutsch-Josza, Shor, and Grover. In
another application, our explicit numerical tests allow timing a given Hamiltonian to compmNeamodulo
one-qubit gate, when this is possible.
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I. INTRODUCTION NAND, andAol gates, which require very few CMOS transis-
tors). Work in the direction of quantum technology mapping
fncludes techniques for expressingrOT gate in terms of a

and find applications in quantum computing, communlca-given entangling two-qubit gate and arbitary one-qubit gates

tion, and cryptographyl]. Such a representation can oiten [8]. The simulation ofcNOT gates with implementation-

be interpreted as a progra(e.g., a sequence of puls_es for specific resources is the basis of a major physical implemen-
NMR) whose execution on a quantum system of choice per;,

f ted unit lution. Simple st in th tation technology{9].
orms a requested unitary evolution. Simpie Steps in the pro-- ¢, analogy with classical logic synthesis provides the
gram correspond to gates in the circuit, and smaller circui

t?ollowing additional intuition: operators useful in practice

lead ttot_fasterfpirograrrkl)_st. In th'S{ wortl; we (_j|scushs exactt|mple\-Ni“ not be the worst-case operators studied in the aforemen-
mentations of two-qubit operators beca@esuch operators tioned works. This belief is confirmed by published quantum

s?fﬁcr?t:o”wrg)gl)letr\r:vent atr;l?tnrar); onp:er\?vtc[r@ rand(r:lt? arnumrl:edr algorithms and communication protocols. It is therefore im-
of controfiable two-qubit Systems were recently reported. portant for quantum logic synthesis techniques to detect

The simulation O.f generic two-qubit operators B80T \when a given operator can be implemented using fewer gates
gates and OUe"?“b't operators has been tho_rqughly '”Ves%an are necessary in the worst case. For some classes of
ﬁ?‘eg' resultt;]n% ;2 several thtr@euCT (_jecomposnmnf?,—?. operators, this is easy; e.g., the algorithniif] implements

IS known that the swap gate requires threor ga es{4] tensor-product operators withotioT gates. The matrix of a
alnd also that an arbltrany—qub-lt operator requires at least controlledy operator can be recognized by its pattern of
[Z(4n_3n_1)]' The proof of th'_s Iatte_r resu_I|t5] holds for_ zeros and onegeither directly or after pre- and post-
any controlledd_gatg, whereu is a given fixed one—qu_blt multiplication by wire swaps Song and Klappeneckét1]
operator. Forn=2, it has been shown that an arbitary gy,qy optimal implementations of two-qubit controlled-
controlledu gate is generically worse than tleioT [6]. unitary operators, known to require up to tesIOT gates.

The above-mentioned results motivate the focus on thehey contribute a catalog of numerical tests that detect when
basic-gatelibrary [7], which consists of the€NoT gate and 10, one or twaNOT gates are required, and similar criteria
all one-qubit gates: it is powerful and well understood. Yetsy, the number of basic one-qubit gates.
given the diversity of implement_ation tech_nologi_es, it _is not  \we address a related question for arbitrary two-qubit op-
clear that thecNoT gate will be directly available in a given grators and contribute simple numerical tests to determine
implementation. Nonetheless, we believe results expressed {Re minimal achievable number aiNOT gates, including a
the basic-gate library will be relevant. An analogous situation,gye| oneenoT test. We also generalize a tvanOT test
occurs m_the design qi:l_assma) integrated c!rf:mts. In this  from [3] and make it easier to compute. Such explicit nu-
context, firsttechnology-independent synthesisperformed  yericq) tests facilitate a new application. A given two-qubit
in terms of abstract gat€sND, OR, NOT). Later, duringtech- HamiltonianH, if timed precisely, may allow one to imple-

nology mappingcircu_its are convgrted to use gates that areynent acnoT using & and one-qubit gates. We show how to
specific to a given implementation technolo¢g.g., NOR, compute correct durations.

. . . II. BACKGROUND AND NOTATION
Electronic address: vshende@umich.edu
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*Electronic address: imarkov@umich.edu written as u:e"I’RZ(a)Ry(qs)Rz(z//) [1]. Furthermore, the
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Bloch sphere isomorphism suggests that the choicg fs  using two CNOT gates and arbitrary one-qubit gates from
arbitrary in the sense that any pair of orthogonal vectors willSU(2) iff y[y(u)] has all real coefficients, which occurs
do: in particular, we may write iff tr[y(u)] is real. Moreover, if fry(u)] is not real, theru
i - cannot be simulated with fewer than thregoT gates.
u=e"RAOR(AR(Y) = €"R(2)R(IR(A). Proof. SinceC3=C}, it is clear thatu can bg simulated

These decompositions are more convenient when workingsing twoCNOT gates iﬁuzCi(a@ b)Cf. We decomposa
with cNOT gates becaus®, gates commute through the con- =R ()RR (B) and b=R,(OR(H)R,(¢y), and passR,
trol of the cNOT whereasR, gates commute through the tar- gates andr, gates outward through the target and control of
get. We will denote b)Cj-‘ a CNoT with control on thejth  the cNOT gates. Thus we are left WithJECf(RZ(ﬁ)
wire and target on thkth. For convenience, we consider the ® Ri(¢))C2. Explicit computation yields x[ y(C{(R/)
CNOT gate to be normalized to have determinant 1. ®RX(¢))C%)]:(X+ei(‘9*¢))(x+e‘i(5*"’))(x+ei(5‘¢))(x+e‘i(5‘¢))_

Additional conventions are as follows. Fgiany complex  On the other hand, if[(u)] has all real coefficients, then
matrix, g" denotes the transpose agiddenotes the adjoint—  the eigenvalues come in conjugate pairs; it follows from this
i.e., the complex-conjugate transpose. Additionalyg]  and Proposition 1 that[y(u)] is as above for somé, .
=defxi-g] denotes the characteristic polynomial @fFi-  Finally, we note that fry(1)]=4 and tfy(C?)]=tr[¥(C?)]=0,
nally, we fix the global phase of two-qubit unitary operatorsthys if u can be simulated with fewer than tvanoT gates,
up to £1, 4 by requiring them to be in S4). tr[y(u)] is real. It follows that a two-qubit operatarrequires

We now consider when two-qubit operaters differ by threecnoT gates iff tf y(u)] is not real.
pre- or post-composing with one-qubit operators and possi- Finally, we note that fou € SU(N), and y(u)=II1(x-\,),
bly by an irrelevant global phgse. In this case, we wate o havellx=1. ThusX(u)=(HE)H(X-M)=H(EX- 1). It
=v and say thf”m andv are equwa]ent up to On?'qu't 9ates. ¢4110ws that the coefficient ofX is the complex conjugate of
The following invariant characterizes when this occurs. e coefficient of“*. In particular, forN=4, the coefficient

Proposition 1.Let y:U(4) —U(4) be given by the for- ¢ 2 s vaq) and the coefficients of,x are tfu] and its

®2, T, _©®2 —
mula u—>uoy uoy” Then foru,v e SU4), u=v if and ;i gate. Since the constant term andtheoefficient are
only if X{rwl=xlxy@)]. 1, we seeu] has all real coefficients iff fu] is real. W
We have discussed this invariant at length elsewhere, but \ne can use Proposition 4 to recover some previously

include a proof m_the Append|_x for comple_te_ne[§$ How- " 1nown facts(originally proven in[4] using different meth-
ever, note that this proof provides an explicit procedure forods Foru e SO(4), it is clear thaty(u) is real, sincer®2 is

N ) . . ., - ) y ) i
computing the one-qubit operatoesb,c,de SU(2) such real. Thus try(u)] is real, andu can be simulated by a circuit

—idy,
t_hat (agbju(ced)=e? in the event that {¥WI] it o cnoT gates. On the other hand, explicit computa-
=x[+/(v)]. Related invariants are discussed[i2,13 and  {jo of 1] for the wire swap gives a nonreal value—note

generalizations ifi14]. that we must first normalize the swap gate to determinant
1—hence it cannot be implemented with fewer than three
[l. OPTIMIZING CNOT COUNT CNOT gates, and the usual implementation is optimal.

In earlier versions of our work, we state tb®OT count-

We now characterize which two-qubit operators admit &g formulae without invoking the characteristic polynomial:
quantum circuit using onlyn CNOT gates. Since any tWo- ,n' gneratoru can be implemented using nouOT gates

qubit operator is implemented by some thFENDT circuits, i ¥(U)=£1, one cNOT iff y(u) is nonscalar and/(u)?=-I,

the relevant cases ame=0,1,2. Webegin with casen=0. 5 oot gates iff tf(u)], and threecnoT gates otherwise.
.Proposmon 2.An operatoru = SU(4) can b.e simulated We note that this formulation avoids any computation of ei-

using no CNOT gates and arbitrary one-qubit gates from genvalues, and so may be easier to use in practice. On the

; — 4 _1\4
SU(2) iff X[V(u)]_(xfl) or (x 1_) ' ) other hand, to actually determine the one-qubit gates, one
Proof. u can be simulated using noNoOT gates iffu=1. must compute eigenvalues.
|

Thus x[ v(w]=x[xy(D]=x[£1]=(x£ 1)*.

The casean=1 is similar. Note that the following tese-
quires normalizing the global phase so that @et1, as
mentioned in Sec. II. The results of Sec. Il can be combined with the tech-

Proposition 3.An operatorue SU(4) can be simulated niques of Propositions 111.3 and 11.1 and the published litera-
using onecNOT gate and arbitrary one-qubit gates from ture to yield an explicit circuit synthesis algorithm:

IV. SYNTHESIS ALGORITHM AND ITS VALIDATION

SU(2) iff x[y(u)]=(x+i)2(x—i)2. (i) Given the matrix of a unitary operatare U(4), di-
Proof. Thezoperatoru can be simulated using or@&OT  vide it by Q‘/det(u) to ensureu e SU(4).

gate iffu=C} or u=C;. Now y(Cp=-ic?@c’ also, (i) Compute x[y(u)] to determine whethet requires

WC)=-ic*® o2 In both cases, the characteristic polyno- zero, one, two, or threenoT gates.

mial is (x+i)3(x=i)2. u (iii) If u requires zero or onenoT gates, use the tech-

In particular, we see thal=Cj. This can also be seen niques of the proof of Proposition V1.1 to determine which
from the well-known identity(H@H)Cf(H@H)=C%. We  one-qubit operators are required.
will use this fact for the final casm=2. (iv) If u requires twocNOT gates, find the roots of
Proposition 4.An operatoru e SU(4) can be simulated x[v(u)] and determine thé, ¢ of Proposition I.3. Then use
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N

the methods of Proposition VI.1 to determine what one-qubit m Tr p—r?
gates are required at the ends of the circuit. : : ==

(v) Finally, if u requires threecNOT gates, apply the
methods of the literaturgb].

By construction, the algorithm producesnoT-optimal
circuits in all cases. It also outperforms thosd345,1Q in
important special cases, as shown below.

Example 1.Many quantum algorithms, notably Grover’s
quantum searchl5] and Shor’s number factoringl6], use
the operatou=H®H to create superpositions. Computing
y(u) allows our synthesis algorithm to recognize thiaad-
mits a quantum circuit containing r@NoT gates. |

This example is less trivial than it seems: while writing
u=H ®H makes it obvious thatl requires noCNOT gates, a
synthesis procedure will not receive an inputwfH®H,
but rather of the & 4 matrix corresponding ta. It is nota
priori clear that any worst-cassnoT-optimal circuit decom- " .
position will implementu without CNOT gates. However, Proppsmons 2 a_nd 4 to check that Fh|s IS not .the_ case.
several previously published algorithms do. For the next ex- It is common in the literature to give a circuit diagram for

ample, previous two-qubit synthesis techniques produce ch{-ﬂgi gﬁgﬂné?ag g:#’s txzctgﬁa%a}ﬁ]s.|i\é\i{[ewri)fem;v\(/):t E'Statthe
cuits with morecNoOTs than necessary. 9 P P

Example 2.The operatomu that swaps00)—|01) while end. One could determireepriori that F could be simulated

fixing |10y and |11) plays a prominent role in the Deutsch- by a circuit of this form by applying Proposition 4 to
Josza algorithm1,17. Note thatCi(I®0,) simulatesu. 7 Xswap.
Computingy(€ ™u) reveals thau requires only oneNoT.
However, depending on certain algorithmic choices, any- V. TIMING A HAMILTONIAN TO COMPUTE CNOT
where from one to four one-qubit gates could appear. In any
event, this compares favorably to previous w@sk which
synthesizes a circuit with twa@NoTs and five one-qubit
gates.

For further optimization, we may fine tune the algorithmic
choices mentioned above. First, as the tonoT gatesC?

and Cé differ only by one-qubit gates, they are equivalent

from the perspective of our methods. However, the numbe}’Sing _special_ty numerical softwarg or in certain cases direct
of one-qubit gates present in the resulting circuit depends Oﬂnalytlc solutions to trace _the equwalemce cl_ass W't.h'n acer-
which of these is chosen. This is a finite problem: at mostan Weyl chamber of exfitH) ast varies. It is possible to

three cNOT gates appear and thus there are at most eigttSSociate such a Weyl chamber point with the roots of the
possibilities, so we simply run through them all. Additional characteristic polynomial computed above. This will not be

degrees of freedom arise in finding a circuit that computes §°n€ explicitly here. Rather, we note that by computing the
givenu using a giveru and one-qubit operators, when this is characteristic polynomial, one may use standard mgtrlx soft-
possible. The proof of Proposition 1 describes an algorithn{Vare (€-9.,MATLAB) to determine which time for a giveH
for this and requires picking a basis of eigenvectors for groduces somg with Xeyor=(a® bjexplit:H)(c®d), if any.
certain matrix. If the eigenvalues are distinct, the only degreéndeed, the algorithm is simply to numerically compute a
of freedom is the ordering of the basis of eigenvectdrs ~ 1arge sequence of(t)=explitH) for small time steps and
=24 possibilities. However, repeated eigenvalues allow then test each against Proposition 3. _
more flexibility in choosing basis vectors and potentially ~Since earlier work[12] contains several physical ex-
nontrivial circuit optimizations. amples, we illustrate our method with a simple example. For
Example 3At the heart of Shor’s factoring algorithpae]  the following HamiltonianH,,, note that the second term is
is the quantum Fourier transforfid]. On two qubits, it is Well known to admit a timge.g., w/4) for which it com-

FanY
ey

Above, T,=€77""8 and =& ™. Note that this circuit
requires only three one-qubit gates, although two of these
have been broken up for clarity. In fact, we can show that the
number of one-qubit gates is optimal as well. For suppose
two or fewer one-qubit gates sufficed. Any placement of two
one-qubit gates in a threenoT circuit will either leave one
exposedcNOT at an end, or threeNoOT gates together in the
middle. In the second case, either two of theoT gates
would cancel, or the threenOT gates would reduce to a
swap. Thus ifF could be implemented using thremoT
gates and two or fewer one-qubit gates, then either one of
JFC2, FC3, C3F, CLF could be implemented using twanoT
gates, orF - Xgwap Could be implemented using none. We use

In this section, we note that an important application
Zhanget al. ([12], Sec. \j may be realized without specialty
software. Their work discusses timing Hamiltonians of given
physical systems—e.gXY and Josephson Hamiltonians—to
compute target computations modulo local operators. Typical
targets includecNoT and Jswap. This is accomplished by

given by the matrix PUteSCNOT.
11 1 1 H4,=(0.421 ® 0%+ o* ® &*.
_11 i -1 i Yet if the first one-qubit term of the Hamiltonian may not be
F= 20l1-11 =1/ switched off, this presents a problem. For the terms do not
10 -1 i commute; one may not simply factor out éXp® o9)t]. Ex-

cluding Zhanget al,, existing techniques resort to Trotteriza-
Explicit computation ofy[ v(F)] reveals that tw@NoOT gates  tion, which implements exp\+B) by separately turning on
do not suffice to simulater. Thus the following circuit to A andB for short periods of time. Below we find a simpler,
computeF is CNOT optimal: direct implementation oENOT from H,,. It is especially in-

012310-3



SHENDE, BULLOCK, AND MARKOV PHYSICAL REVIEW A 70, 012310(2004

teresting in light of concerns about the scalability of Trotter-qubit HamiltonianH that one can time to realize tleNoOT,

ization[18]. we can find the required duration. In other wordseiif' is
We computey(eH4?) for uniformly spaced trial values of the cNOT up to local unitaries, we can finid

t and seek out those values at which the characteristic poly-

nomial nearp(x) = (x2+1)°=x*+2x?+ 1. Out implementation

in c++ findstcyor=0.80587 in 20 s on a common worksta-

tion. Hence, we produce anoT from H,, and one-qubit This work is supported by the DARPA QuIST program

gates without Trotterization. Specifically, sin@'42cNnoT  and an NSF grant.

impIementsC% up to one-qubit operators, we use the tech-

nique of Proposition 5 to compute the relevant one-qubit
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operators. We find that the matrices APPENDIX
1/1=i —-1+] 1 1 Proposition 5.Let y: SU(4) — SU(4) be given by the for-
a,= —( _ . ) c,= 0_7071(){ ) mula u—u(c¥)®2u’(¢¥)®2. Then for upeSU@4), u
2\ 1+i 1+i 1 - =v = x[¥W]=x[£1v)].

Proof. By definition, u=v = u=(a®b)\v(a’ ®b’) for

_ (— 0.21503 - 0.976607 0) some one-qubit operatogsb,a’,b’ and some scalax. Re-
27\0 -0.21503+0.976607 quiring u,p € SU(4) implies\=+1, Hi. We show below that
u=(a®bjv(@ ®b’) = x[u]l=x{y()]; the proposition

<0.152049 +0.690566 — 0.690566 — 0.152043 then follows from the fact thag/(iu) =-(u).

_ _ We recall that there existEeSU4) such that
0.690566 - 0.152049 0.152049 - 0.690566 E SO4)E"=SU(2)*2={a®b:a,be SU2)}. Such matrices

satisfy C3=(a, ® b,)gH42cNoT(c, ® d,) with a numerical pre- are characterized by the property tHeE'=-0Y® o¥. This

cision of 10°. and related issues have been exhaustively dealt with in sev-
Further numerical experiments suggest that building aeral paperg§19-22.

CNOT is possible whenever 0.42 is replaced by a weight The propertyx] ¥(u)]=x{ ¥(v)] is not changed by replac-

O0=ws=1. However, we have no analytical proof of this. Nu- ing y with ETyE. Using the facte¥ ® o¥=EE"=(EE")', we

merical experiments also suggest thgpossibilityof timing  computeEy(u)E=ETUEETU'ETETE=(ETUE)(ETUE)T

the HamiltonianHyy =0 *® *+c’® 0¥+0*® 0 * so as to By making the substitutiom— EUE'; it suffices to prove

compute acNoOT. In other words, trying values dfin the  that for u,y e SU(4), there existsx,y e SO(4) such thatxuy

range —16<t<10 as above produced no candidate dura=y iff y[uu']=x[vv"]. Here SQ@4) are the real matrices

b=

tions. within SU(4). _
Note that for P symmetric unitary, P*=P; hence,
VI. CONCLUSIONS AND FUTURE WORK [P+P,P-P]=0. It follows that the real and imaginary parts

Our work addresses small-circuit structure in two-qubitOf P share an orthonomal basis of eigenvectors. As they are
unitary operators. In particular, we contribute tests for sucHnoreover real symmetric matrices, we know from the spec-
structure, and our techniques can be viewed as algorithms féfal theorem that their eigenvectors can be taken to be real.
finding small circuits when they exist. We detail such anThus there existg e SO(4) such thaquu'q' is diagonal. By
algorithm that produces the minimal possible number offeordering(and negatingthe columns ofg, we can reorder
CNOT gates(zero, one, two, or threefor each input It is  the diagonal elements ofuu’'q" as desired. Thus, if[uu']
illustrated on circuit examples derived from well-known ap-=x[vv'], we can find qreSQ4) such that quu'q’
plications. =rvv'r T by diagonalizing both; ther(pr Tqu)(v'r tqu)T=1.

The oneeNoT test has an additional use. Given a two- Let s=v'r Tque SO(4). We haveq'rvs=u, as desired. W
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