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This work proposes numerical tests which determine whether a two-qubit operator has an atypically simple
quantum circuit. Specifically, we describe formulas, written in terms of matrix coefficients, characterizing
operators implementable with exactly zero, one, or two controlled-NOT (CNOT) gates and all other gates being
one-qubit gates. We give an algorithm for synthesizing two-qubit circuits with an optimal number ofCNOT

gates and illustrate it on operators appearing in quantum algorithms by Deutsch-Josza, Shor, and Grover. In
another application, our explicit numerical tests allow timing a given Hamiltonian to compute aCNOT modulo
one-qubit gate, when this is possible.
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I. INTRODUCTION

Quantum circuits compactly represent unitary operators
and find applications in quantum computing, communica-
tion, and cryptography[1]. Such a representation can often
be interpreted as a program(e.g., a sequence of pulses for
NMR) whose execution on a quantum system of choice per-
forms a requested unitary evolution. Simple steps in the pro-
gram correspond to gates in the circuit, and smaller circuits
lead to faster programs. In this work we discuss exact imple-
mentations of two-qubit operators because(i) such operators
suffice to implement arbitrary operators[2] and(ii ) a number
of controllable two-qubit systems were recently reported.

The simulation of generic two-qubit operators viaCNOT

gates and one-qubit operators has been thoroughly investi-
gated, resulting in several three-CNOT decompositions[3–5].
It is known that the swap gate requires threeCNOT gates[4]
and also that an arbitraryn-qubit operator requires at least
d 1
4s4n−3n−1de. The proof of this latter result[5] holds for

any controlled-u gate, whereu is a given fixed one-qubit
operator. Forn=2, it has been shown that an arbitary
controlled-u gate is generically worse than theCNOT [6].

The above-mentioned results motivate the focus on the
basic-gatelibrary [7], which consists of theCNOT gate and
all one-qubit gates: it is powerful and well understood. Yet
given the diversity of implementation technologies, it is not
clear that theCNOT gate will be directly available in a given
implementation. Nonetheless, we believe results expressed in
the basic-gate library will be relevant. An analogous situation
occurs in the design of(classical) integrated circuits. In this
context, firsttechnology-independent synthesisis performed
in terms of abstract gates(AND, OR, NOT). Later, duringtech-
nology mapping, circuits are converted to use gates that are
specific to a given implementation technology(e.g., NOR,

NAND, andAOI gates, which require very few CMOS transis-
tors). Work in the direction of quantum technology mapping
includes techniques for expressing aCNOT gate in terms of a
given entangling two-qubit gate and arbitary one-qubit gates
[8]. The simulation ofCNOT gates with implementation-
specific resources is the basis of a major physical implemen-
tation technology[9].

The analogy with classical logic synthesis provides the
following additional intuition: operators useful in practice
will not be the worst-case operators studied in the aforemen-
tioned works. This belief is confirmed by published quantum
algorithms and communication protocols. It is therefore im-
portant for quantum logic synthesis techniques to detect
when a given operator can be implemented using fewer gates
than are necessary in the worst case. For some classes of
operators, this is easy; e.g., the algorithm in[10] implements
tensor-product operators withoutCNOT gates. The matrix of a
controlled-U operator can be recognized by its pattern of
zeros and ones(either directly or after pre- and post-
multiplication by wire swaps). Song and Klappenecker[11]
study optimal implementations of two-qubit controlled-
unitary operators, known to require up to twoCNOT gates.
They contribute a catalog of numerical tests that detect when
zero, one or twoCNOT gates are required, and similar criteria
for the number of basic one-qubit gates.

We address a related question for arbitrary two-qubit op-
erators and contribute simple numerical tests to determine
the minimal achievable number ofCNOT gates, including a
novel one-CNOT test. We also generalize a two-CNOT test
from [3] and make it easier to compute. Such explicit nu-
merical tests facilitate a new application. A given two-qubit
HamiltonianH, if timed precisely, may allow one to imple-
ment aCNOT using eiHt and one-qubit gates. We show how to
compute correct durations.

II. BACKGROUND AND NOTATION

It is well known that an arbitrary one-qubit gateu can be
written as u=eiFRzsudRysfdRzscd [1]. Furthermore, the
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Bloch sphere isomorphism suggests that the choice ofy,z is
arbitrary in the sense that any pair of orthogonal vectors will
do: in particular, we may write

u = eiFRzsudRxsfdRzscd = eiFRxsadRzsddRxsbd.

These decompositions are more convenient when working
with CNOT gates becauseRz gates commute through the con-
trol of the CNOT whereasRx gates commute through the tar-
get. We will denote byCj

k a CNOT with control on thej th
wire and target on thekth. For convenience, we consider the
CNOT gate to be normalized to have determinant 1.

Additional conventions are as follows. Forg any complex
matrix,gT denotes the transpose andg† denotes the adjoint—
i.e., the complex-conjugate transpose. Additionally,xfgg
=detfxI−gg denotes the characteristic polynomial ofg. Fi-
nally, we fix the global phase of two-qubit unitary operators
up to ±1, ±i by requiring them to be in SUs4d.

We now consider when two-qubit operatorsu,v differ by
pre- or post-composing with one-qubit operators and possi-
bly by an irrelevant global phase. In this case, we writeu
;v and say thatu andv are equivalent up to one-qubit gates.
The following invariant characterizes when this occurs.

Proposition 1.Let g :Us4d→Us4d be given by the for-
mula u°usy

^2uTsy
^2. Then for u,vPSUs4d , u;v if and

only if xfgsudg=xf±gsvdg.
We have discussed this invariant at length elsewhere, but

include a proof in the Appendix for completeness[5]. How-
ever, note that this proof provides an explicit procedure for
computing the one-qubit operatorsa,b,c,dPSUs2d such
that sa^ bdusc^ dd=eifv in the event that xfgsudg
=xf±gsvdg. Related invariants are discussed in[12,13] and
generalizations in[14].

III. OPTIMIZING CNOT COUNT

We now characterize which two-qubit operators admit a
quantum circuit using onlym CNOT gates. Since any two-
qubit operator is implemented by some threeCNOT circuits,
the relevant cases arem=0,1,2. Webegin with casem=0.

Proposition 2.An operatoruPSUs4d can be simulated
using no CNOT gates and arbitrary one-qubit gates from
SUs2d iff xfgsudg=sx+1d4 or sx−1d4.

Proof. u can be simulated using noCNOT gates iff u; I.
Thusxfgsudg=xf±gsIdg=xf±Ig=sx±1d4. j

The casem=1 is similar. Note that the following testre-
quires normalizing the global phase so that detsud=1, as
mentioned in Sec. II.

Proposition 3.An operatoruPSUs4d can be simulated
using oneCNOT gate and arbitrary one-qubit gates from
SUs2d iff xfgsudg=sx+ id2sx− id2.

Proof. The operatoru can be simulated using oneCNOT

gate iff u;C1
2 or u;C2

1. Now gsC2
1d=−is z^ s x; also,

gsC1
2d=−is x ^ s z. In both cases, the characteristic polyno-

mial is sx+ id2sx− id2. j

In particular, we see thatC1
2;C2

1. This can also be seen
from the well-known identitysH ^ HdC1

2sH ^ Hd=C2
1. We

will use this fact for the final casem=2.
Proposition 4.An operatoruPSUs4d can be simulated

using two CNOT gates and arbitrary one-qubit gates from
SUs2d iff xfgsudg has all real coefficients, which occurs
iff tr fgsudg is real. Moreover, if trfgsudg is not real, thenu
cannot be simulated with fewer than threeCNOT gates.

Proof. SinceC1
2;C2

1, it is clear thatu can be simulated
using twoCNOT gates iffu;C1

2sa^ bdC1
2. We decomposea

=RxsadRzsddRxsbd and b=RzsudRxsfdRzscd, and passRx

gates andRz gates outward through the target and control of
the CNOT gates. Thus we are left withu;C1

2(Rzsdd
^ Rxsfd)C1

2. Explicit computation yields xfgsC1
2(Rzsdd

^ Rxsfd)C1
2dg=sx+eisd+fddsx+e−isd+fddsx+eisd−fddsx+e−isd−fdd.

On the other hand, ifxfgsudg has all real coefficients, then
the eigenvalues come in conjugate pairs; it follows from this
and Proposition 1 thatxfgsudg is as above for somed ,f.
Finally, we note that trfgsIdg=4 and trfgsC1

2dg=trfgsC1
2dg=0,

thus if u can be simulated with fewer than twoCNOT gates,
trfgsudg is real. It follows that a two-qubit operatoru requires
threeCNOT gates iff trfgsudg is not real.

Finally, we note that foruPSUsNd, andxsud=Psx−lid,
we havePli =1. Thus xsud=sPlidPsx−lid=Pslix−1d. It
follows that the coefficient ofxk is the complex conjugate of
the coefficient ofxN−k. In particular, forN=4, the coefficient
of x2 is real and the coefficients ofx3,x are trfug and its
conjugate. Since the constant term and thex4 coefficient are
1, we seexfug has all real coefficients iff trfug is real. j

We can use Proposition 4 to recover some previously
known facts(originally proven in[4] using different meth-
ods). For uPSOs4d, it is clear thatgsud is real, sincesy

^2 is
real. Thus trfgsudg is real, andu can be simulated by a circuit
with two CNOT gates. On the other hand, explicit computa-
tion of trfgg for the wire swap gives a nonreal value—note
that we must first normalize the swap gate to determinant
1—hence it cannot be implemented with fewer than three
CNOT gates, and the usual implementation is optimal.

In earlier versions of our work, we state theCNOT count-
ing formulae without invoking the characteristic polynomial:
an operatoru can be implemented using noCNOT gates
iff gsud= ± I, one CNOT iff gsud is nonscalar andgsud2=−I,
two CNOT gates iff trfgsudg, and threeCNOT gates otherwise.
We note that this formulation avoids any computation of ei-
genvalues, and so may be easier to use in practice. On the
other hand, to actually determine the one-qubit gates, one
must compute eigenvalues.

IV. SYNTHESIS ALGORITHM AND ITS VALIDATION

The results of Sec. III can be combined with the tech-
niques of Propositions III.3 and II.1 and the published litera-
ture to yield an explicit circuit synthesis algorithm:

(i) Given the matrix of a unitary operatoruPUs4d, di-
vide it by Î4detsud to ensureuPSUs4d.

(ii ) Compute xfgsudg to determine whetheru requires
zero, one, two, or threeCNOT gates.

(iii ) If u requires zero or oneCNOT gates, use the tech-
niques of the proof of Proposition VI.1 to determine which
one-qubit operators are required.

(iv) If u requires two CNOT gates, find the roots of
xfgsudg and determine thed ,f of Proposition III.3. Then use
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the methods of Proposition VI.1 to determine what one-qubit
gates are required at the ends of the circuit.

(v) Finally, if u requires threeCNOT gates, apply the
methods of the literature[5].

By construction, the algorithm producesCNOT-optimal
circuits in all cases. It also outperforms those in[3–5,10] in
important special cases, as shown below.

Example 1.Many quantum algorithms, notably Grover’s
quantum search[15] and Shor’s number factoring[16], use
the operatoru=H ^ H to create superpositions. Computing
gsud allows our synthesis algorithm to recognize thatu ad-
mits a quantum circuit containing noCNOT gates. j

This example is less trivial than it seems: while writing
u=H ^ H makes it obvious thatu requires noCNOT gates, a
synthesis procedure will not receive an input ofu=H ^ H,
but rather of the 434 matrix corresponding tou. It is not a
priori clear that any worst-caseCNOT-optimal circuit decom-
position will implementu without CNOT gates. However,
several previously published algorithms do. For the next ex-
ample, previous two-qubit synthesis techniques produce cir-
cuits with moreCNOTs than necessary.

Example 2.The operatoru that swapsu00l↔ u01l while
fixing u10l and u11l plays a prominent role in the Deutsch-
Josza algorithm[1,17]. Note that C2

1sI ^ sxd simulatesu.
Computinggseip/4ud reveals thatu requires only oneCNOT.
However, depending on certain algorithmic choices, any-
where from one to four one-qubit gates could appear. In any
event, this compares favorably to previous work[5] which
synthesizes a circuit with twoCNOTs and five one-qubit
gates. j

For further optimization, we may fine tune the algorithmic
choices mentioned above. First, as the twoCNOT gatesC1

2

and C2
1 differ only by one-qubit gates, they are equivalent

from the perspective of our methods. However, the number
of one-qubit gates present in the resulting circuit depends on
which of these is chosen. This is a finite problem: at most
three CNOT gates appear and thus there are at most eight
possibilities, so we simply run through them all. Additional
degrees of freedom arise in finding a circuit that computes a
givenv using a givenu and one-qubit operators, when this is
possible. The proof of Proposition 1 describes an algorithm
for this and requires picking a basis of eigenvectors for a
certain matrix. If the eigenvalues are distinct, the only degree
of freedom is the ordering of the basis of eigenvectors(4!
=24 possibilities). However, repeated eigenvalues allow
more flexibility in choosing basis vectors and potentially
nontrivial circuit optimizations.

Example 3.At the heart of Shor’s factoring algorithm[16]
is the quantum Fourier transform[1]. On two qubits, it is
given by the matrix

F =
1

21
1

1

1

1

1

i

− 1

i

1

− 1

1

− 1

1

− i

− 1

i
2 .

Explicit computation ofxfgsFdg reveals that twoCNOT gates
do not suffice to simulateF. Thus the following circuit to
computeF is CNOT optimal:

Above, Tz=e−iszp/8 andSy=e−isyp/4. Note that this circuit
requires only three one-qubit gates, although two of these
have been broken up for clarity. In fact, we can show that the
number of one-qubit gates is optimal as well. For suppose
two or fewer one-qubit gates sufficed. Any placement of two
one-qubit gates in a threeCNOT circuit will either leave one
exposedCNOT at an end, or threeCNOT gates together in the
middle. In the second case, either two of theCNOT gates
would cancel, or the threeCNOT gates would reduce to a
swap. Thus ifF could be implemented using threeCNOT

gates and two or fewer one-qubit gates, then either one of
FC1

2, FC2
1, C1

2F, C2
1F could be implemented using twoCNOT

gates, orF ·XSWAP could be implemented using none. We use
Propositions 2 and 4 to check that this is not the case.

It is common in the literature to give a circuit diagram for
the F containing only twoCNOT gates. We point out that
these circuit diagrams contain an implicit wire swap at the
end. One could determinea priori thatF could be simulated
by a circuit of this form by applying Proposition 4 to
F ·XSWAP.

V. TIMING A HAMILTONIAN TO COMPUTE CNOT

In this section, we note that an important application
Zhanget al. ([12], Sec. V) may be realized without specialty
software. Their work discusses timing Hamiltonians of given
physical systems—e.g.,XY and Josephson Hamiltonians—to
compute target computations modulo local operators. Typical
targets includeCNOT and ÎSWAP. This is accomplished by
using specialty numerical software or in certain cases direct
analytic solutions to trace the equivalence class within a cer-
tain Weyl chamber of expsitHd as t varies. It is possible to
associate such a Weyl chamber point with the roots of the
characteristic polynomial computed above. This will not be
done explicitly here. Rather, we note that by computing the
characteristic polynomial, one may use standard matrix soft-
ware (e.g.,MATLAB ) to determine which time for a givenH
produces sometc with XCNOT=sa^ bdexpsitcHdsc^ dd, if any.
Indeed, the algorithm is simply to numerically compute a
large sequence ofvstd=expsitHd for small time steps and
then test each against Proposition 3.

Since earlier work[12] contains several physical ex-
amples, we illustrate our method with a simple example. For
the following HamiltonianH42, note that the second term is
well known to admit a time(e.g., p /4) for which it com-
putesCNOT:

H42 = s0.42dI ^ sz + sx
^ sx.

Yet if the first one-qubit term of the Hamiltonian may not be
switched off, this presents a problem. For the terms do not
commute; one may not simply factor out expfisI ^ szdtg. Ex-
cluding Zhanget al., existing techniques resort to Trotteriza-
tion, which implements expsA+Bd by separately turning on
A andB for short periods of time. Below we find a simpler,
direct implementation ofCNOT from H42. It is especially in-
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teresting in light of concerns about the scalability of Trotter-
ization [18].

We computegseiH42td for uniformly spaced trial values of
t and seek out those values at which the characteristic poly-
nomial nearspsxd=sx2+1d2=x4+2x2+1. Out implementation
in C++ finds tCNOT=0.80587 in 20 s on a common worksta-
tion. Hence, we produce aCNOT from H42 and one-qubit
gates without Trotterization. Specifically, sinceeiH42tCNOT

implementsC2
1 up to one-qubit operators, we use the tech-

nique of Proposition 5 to compute the relevant one-qubit
operators. We find that the matrices

a2 =
1

2
S1 − i − 1 + i

1 + i 1 + i
D, c2 = 0.707107S− 1 − 1

1 − 1
D ,

b2 = S− 0.21503 − 0.976607i 0

0 − 0.21503 + 0.976607i
D ,

d2 = S0.152049 + 0.690566i − 0.690566 − 0.152049i

0.690566 − 0.152049i 0.152049 − 0.690566i
D

satisfyC2
1=sa2 ^ b2deiH42tCNOTsc2 ^ d2d with a numerical pre-

cision of 10−6.
Further numerical experiments suggest that building a

CNOT is possible whenever 0.42 is replaced by a weightw,
0øwø1. However, we have no analytical proof of this. Nu-
merical experiments also suggest theimpossibilityof timing
the HamiltonianHXYZ=s x ^ sx+sy ^ sy+s z^ s z so as to
compute aCNOT. In other words, trying values oft in the
range −10ø tø10 as above produced no candidate dura-
tions.

VI. CONCLUSIONS AND FUTURE WORK

Our work addresses small-circuit structure in two-qubit
unitary operators. In particular, we contribute tests for such
structure, and our techniques can be viewed as algorithms for
finding small circuits when they exist. We detail such an
algorithm that produces the minimal possible number of
CNOT gates(zero, one, two, or three) for each input. It is
illustrated on circuit examples derived from well-known ap-
plications.

The one-CNOT test has an additional use. Given a two-

qubit HamiltonianH that one can time to realize theCNOT,
we can find the required duration. In other words, ifeitH is
the CNOT up to local unitaries, we can findt.
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APPENDIX

Proposition 5.Let g :SUs4d→SUs4d be given by the for-
mula u°ussyd^2uTssyd^2. Then for u,vPSUs4d, u
;v⇔xfgsudg=xf±gsvdg.

Proof. By definition, u;v⇔u=sa^ bdlvsa8 ^ b8d for
some one-qubit operatorsa,b,a8,b8 and some scalarl. Re-
quiring u,vPSUs4d implies l= ±1, ±i. We show below that
u=sa^ bdvsa8 ^ b8d⇔xfgsudg=xfgsvdg; the proposition
then follows from the fact thatgsiud=−gsud.

We recall that there existEPSUs4d such that
E SOs4dE†=SUs2d^2=ha^ b:a,bPSUs2dj. Such matrices
are characterized by the property thatEET=−sy ^ sy. This
and related issues have been exhaustively dealt with in sev-
eral papers[19–22].

The propertyxfgsudg=xfgsvdg is not changed by replac-
ing g with E†gE. Using the factsy ^ sy=EET=sEETd†, we
computeE†gsudE=E†uEETuTET†E†E=sE†uEdsE†uEdT

By making the substitutionu°EuE†; it suffices to prove
that for u,vPSUs4d, there existsx,yPSOs4d such thatxuy
=v iff xfuuTg=xfvvTg. Here SOs4d are the real matrices
within SUs4d.

Note that for P symmetric unitary, P−1= P̄; hence,

fP+ P̄,P− P̄g=0. It follows that the real and imaginary parts
of P share an orthonomal basis of eigenvectors. As they are
moreover real symmetric matrices, we know from the spec-
tral theorem that their eigenvectors can be taken to be real.
Thus there existsqPSOs4d such thatquuTq† is diagonal. By
reordering(and negating) the columns ofq, we can reorder
the diagonal elements ofquuTq† as desired. Thus, ifxfuuTg
=xfvvTg, we can find q,r PSOs4d such that quuTqT

=rvvTr T by diagonalizing both; then,sv†r Tqudsv†r tqudT= I.
Let s=v†r TquPSOs4d. We haveqTrvs=u, as desired. j
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