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We prove that the states secretly chosen from a mixed state set can be perfectly discriminated if and only if
they are orthogonal. The sufficient and necessary condition under which nonorthogonal mixed quantum states
can be unambiguously discriminated is also presented. Furthermore, we derive a series of lower bounds on the
inconclusive probability of unambiguous discrimination of states from a mixed state set witha priori
probabilities.
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Quantum state discrimination is an essential problem in
quantum information theory. Perfect discrimination among
nonorthogonal pure states is, however, forbidden by the laws
of quantum mechanics. Nonetheless, if a nonzero probability
of inconclusive answer is allowed, one can distinguish with
certainty linearly independent pure states. This strategy is
usually calledunambiguous discrimination. Unambiguous
discrimination among two equally probable nonorthogonal
quantum pure states was originally addressed by Ivanovic
[1], and then Dieks[2] and Peres[3]. Jaeger and Shimony
[4] extended their result to the case of two nonorthogonal
pure states with unequala priori probabilities. Chefles[5]
showed thatn quantum pure states can be unambiguously
discriminated if and only if they are linearly independent.
For the general case of unambiguous discrimination between
n pure states witha priori probabilities, it was shown in
Refs.[6] and[7] that the problem of optimal discrimination,
in the sense that the success probability is maximized, or
equivalently, the inconclusive probability is minimized, can
be reduced to a semidefinite programming(SDP) problem,
which has only numerical solution in mathematics. On the
other hand, Zhanget al. [8] and Fenget al. [9] derived two
lower bounds on the inconclusive probability of unambigu-
ous discrimination amongn pure states.

Somewhat surprisingly, it is only recently that the prob-
lem of unambiguous discrimination between mixed states is
considered. In Ref.[10], the optimal unambiguous discrimi-
nation between a pure state and a mixed state with rank 2
was examined. Then the result was generalized to the case of
a pure state and an arbitrary mixed states in Ref.[11]. Ru-
dolph et al. [12] derived a lower bound and an upper bound
on the maximal probability of successful discrimination of
two mixed states. Raynalet al. [13] presented two reduction
theorems to reduce the optimal unambiguous discrimination
of two mixed states to that of other two mixed states which
have the same rank. In the general case ofn mixed state
discrimination, Fiurasek and Jezek[14] and Eldar[15] gave
some sufficient and necessary conditions on the optimal un-

ambiguous discrimination and some numerical methods were
discussed.

In this paper, we consider first the distinguishability of
any mixed state set. We prove that any state chosen from a
mixed state set can be perfectly discriminated if and only if
the set is orthogonal, in the sense that any state in the set has
its support orthogonal to the supports of the others. For the
case of nonorthogonal mixed state, the sufficient and neces-
sary condition for them to be unambiguously distinguishable
is that any state among them has support not totally included
in the supports of the others. Furthermore, we consider the
problem of unambiguous discrimination betweenn mixed
states witha priori probabilities and present a series of lower
bounds on the inconclusive probability.

Suppose a quantum system is prepared in a state secretly
drawn from a known setr1, . . . ,rn, where eachri is a mixed
state in the Hilbert spaceH. The task of discrimination is to
obtain as much information about the identification of the
state as possible. In what follows, by perfect discrimination
we mean that one can always get the correct answer while by
unambiguous discrimination we mean that except a maybe
nonzero inconclusive probability, one can identify the state
without error. It is obvious that perfect discrimination is nec-
essarily an unambiguous one, but the reverse is not true in
general. To unambiguously discriminater1, . . . ,rn, one can
construct a most general positive-operator valued measure-
ment (POVM) comprising n+1 elementsP0,P1, . . . ,Pn
such that

Pi ù 0, i = 0,1, . . . ,n,
s1d

o
i=0

n

Pi = I ,

whereI denotes the identity matrix inH. Each POVM ele-
mentPi, i =1, . . . ,n corresponds to identification of the cor-
responding stateri, while P0 corresponds to the inconclusive
answer. For the sake of simplicity, we often specify only
P1, . . . ,Pn for a POVM since the left elementP0 is uniquely
determined byP0= I −oi=1

n Pi. It is then straightforward that
a POVM P1, . . . ,Pn, oi=1

n Pi ø I, can perfectly discriminate
r1, . . . ,rn if and only if
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TrsriP jd = di j ,

while it can unambiguously discriminater1, . . . ,rn if and
only if

TrsriP jd = pidi j

for somepi .0, wherei , j =1, . . . ,n.
Since the intersection of the kernels of allri is not useful

for the purpose of unambiguous discrimination, sometimes
we can assume without loss of generality that eachPi, i
=1, . . . ,n, is in suppsr1, . . . ,rnd. Here suppsr1, . . . ,rnd is de-
fined by the Hilbert space spanned by eigenvectors of the
matricesr1, . . . ,rn with nonzero corresponding eigenvalues.

The following lemma is a necessary condition for a
POVM to unambiguously discriminate a given mixed state
set.

Lemma 1. SupposeP1, . . . ,Pn are POVM elements and
oi Pi ø I. If for any i, Pi can unambiguously discriminateri,
thenP jri =0 for any i Þ j .

Proof. Suppose for anyi, Pi can unambiguously discrimi-
nateri. Then we have TrsP jrid=pidi j for somepi .0. Let

ri = o
k=1

ni

ai
kuci

klkci
ku s2d

for someai
k.0 be the spectrum decomposition ofri, then for

any i Þ j ,

0 = TrsP jrid = o
k=1

ni

ai
kkci

kuP juci
kl s3d

and kci
kuP juci

kl=0 for k=1, . . . ,ni from the factai
k.0. That

implies P juci
kl=0 and soP jri =0. j

It is well known that perfect pure state discrimination is
possible if and only if the states to be discriminated are or-
thogonal to each other. In the case of mixed state, we have a
similar result as the following theorem.

Theorem 1. The mixed quantum statesr1, . . . ,rn can be
perfectly discriminated if and only if they are orthogonal,
that is,rir j =di jri

2.
Proof. If rir j =di jri

2, then suppsrid'suppsr jd for any i
Þ j . We choosePi as the projector onto suppsrid. Obviously
oi Pi = Is and TrsPir jd=di j , whereIs is the identity matrix in
supp sr1, . . . ,rnd. That indicatesP1, . . . ,Pn can perfectly
discriminater1, . . . ,rn.

Conversely, ifr1, . . . ,rn can be discriminated perfectly,
then there exist POVM elementsP1, . . . ,Pn, ok Pk= I, such
that for anyi, Pi can perfectly(so unambiguously) discrimi-
nateri. From Lemma 1, we haveP jri =0 for any i Þ j . So
rir j =risok Pkdr j =di jri

2. j

The above theorem gives us a sufficient and necessary
condition under which mixed states can be discriminated per-
fectly. That is, they must be orthogonal to each other. In the
case when the states are nonorthogonal, a strategy is, as in
pure state situation, unambiguous discrimination. While a set
of pure states can be unambiguously discriminated if and
only if they are linearly independent[5], the unambiguous
discrimination between mixed states has a stronger require-
ment, as the following theorem indicates.

Theorem 2. The mixed quantum statesr1, . . . ,rn can be
unambiguously discriminated if and only if for anyi
=1, . . . ,n, suppsSdÞsuppsSid, where S=hr1, . . . ,rnj and Si

=S\ hrij.
Proof. Supposer1, . . . ,rn can be unambiguously discrimi-

nated, then there exist POVM elementsP1, . . . ,Pn such that
oi Pi ø I and TrsPir jd=pidi j for some pi .0. Let uci

kl ,k
=1, . . . ,ni, be the eigenvectors ofri with the corresponding
eigenvalues larger than 0. Then there exists 1øhi øni such
that kci

hiuPiuci
hil.0 and from Lemma 1, for any 1ø j øni,

kci
juPruci

jl=0 provided thati Þ r.
In what follows, we prove that for anyi, uci

hil cannot be
written as a linear combination of the statesucr

jl for r Þ i and
j =1, . . . ,nr, that will imply the result suppsSidÞsuppsSd.
Suppose

uci
hil = o

rÞi;k
ai,r

k ucr
kl

for someai,r
k , then

Piuci
hil = o

rÞi;k
ai,r

k Piucr
kl = 0, s4d

which contradicts withkci
hiuPiuci

hil.0.
Suppose suppsSdÞsuppsSid, then suppsrid�suppsSid. It

follows that there exists a stateufil such thatufil'” suppsrid
but ufil'suppsSid. That iskfiuriufil.0 but kfiurrufil=0 for
any r Þ i. Let Pi =qiufilkfiu, whereqi is positive but suffi-
ciently small such thatoi=1

n Pi ø I. It is easy to check that the
POVM elementsP1, . . . ,Pn can unambiguously discriminate
ri with a positive probabilitypi =qikfiuriufil.0 for any i
=1, . . . ,n. j

When r1, . . . ,rn are all pure states, the requirement for
them to be unambiguously distinguishable presented in the
above theorem is exactly that they should be linearly inde-
pendent, just as we all know. This is because ifri = ucilkciu
for some stateucil then suppsSdÞsuppsSid for any i if and
only if uc1l , . . . ,ucnl are linearly independent.

In general, however, the requirement ofr1, . . . ,rn to be
unambiguously distinguishable is more strict than just linear
independence. To see this, for anyi =1, . . . ,n, suppose
suppsSdÞsuppsSid, we show thatri cannot be written as a
linear combination of the other states. In fact, ifri
=o jÞi ai

jr j for some ai
j, let ufil be a state orthogonal to

suppsSid but not orthogonal to suppsrid, then

0 , kfiuriufil = o
jÞi

ai
jkfiur jufil = 0.

This contradiction indicates thatr1, . . . ,rn are linearly inde-
pendent. The converse, however, does not necessarily hold.
That is, the linear independence ofr1, . . . ,rn cannot guaran-
tee that suppsSdÞsuppsSid for any i. To see this, let us give a
simple example. Supposer1 andr2 are two different density
matrices with ranksm in an m-dimensional Hilbert space. It
is obvious thatr1 and r2 are linearly independent but
suppsr1d=suppsr2d=suppsr1,r2d. So in general the linear in-
dependence of certain mixed states cannot ensure the exis-
tence of a POVM to unambiguously discriminate them.
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We now turn to consider the problem of unambiguous
discrimination betweenn mixed quantum states witha priori
probabilities. The aim is to optimize the discrimination by
choosing appropriate measurements to maximize the success
probability, or equivalently, minimize the inconclusive prob-
ability. For the general case of unambiguous discrimination
betweenn pure states, the optimization problem can be re-
duced to a semidefinite programming problem[6], which has
no analytic solution. So the bound on the success(or incon-
clusive) probability for any unambiguous discrimination be-
comes very important. A lot of work, such as Refs.[8] and
[9] is dedicated to this field. In the following, we derive a
lower bound on the inconclusive probability of unambiguous
discrimination betweenn mixed states using a method simi-
lar to that in Ref.[9].

Theorem 3. Suppose a quantum system is prepared in one
of the n mixed statesr1, . . . ,rn with a priori probabilities
h1, . . . ,hn. Then a lower bound on the inconclusive probabil-
ity P0 of unambiguous discrimination between these states is

P0 ùÎ n

n − 1o
iÞ j

hih jFsri,r jd2,

whereFsri ,r jd is the fidelity ofri andr j.
Proof. For any POVM elementsP1, . . . ,Pn, oi Pi ø I,

which can unambiguously discriminater1, . . . ,rn, we have
TrsPir jd=pidi j for i , j =1, . . . ,n. Define P0= I −oi=1

n Pi ù0,
thenP0=oi hiTrsP0rid. So

P0
2 = o

i

hi
2sTrsP0ridd2 + o

iÞ j

hih jTrsP0ridTrsP0r jd. s5d

By the Cauchy inequality, we have

o
i

hi
2sTrsP0ridd2 ù

1

n − 1o
iÞ j

hih jTrsP0ridTrsP0r jd. s6d

Substituting Eq.(6) into Eq. (5) we have

P0
2 ù

n

n − 1o
iÞ j

hih jTrsP0ridTrsP0r jd. s7d

Furthermore, using the Cauchy inequality again, we have

TrsP0ridTrsP0r jd=TrsUÎri
ÎP0

ÎP0
ÎriU

†d

3TrsÎr j
ÎP0

ÎP0
Îr jd

ùsTrsUÎriP0
Îr jdd2

=sTrsUÎrisI − o
k=1

n

PkdÎr jdd2 s8d

for any unitary matrix U. From Lemma 1, we have
ÎriPk

Îr j =0 for any i Þ j andk=1, . . . ,n. Notice also that

Fsri,r jd = max
U

TrsUÎri
Îr jd,

where the maximum is taken over all unitary matrixU. It
follows that for anyi Þ j ,

TrsP0ridTrsP0r jd ù Fsri,r jd2. s9d

Taking Eq.(9) back into Eq.(7) we derive the lower bound
on P0 as

P0 ùÎ n

n − 1o
iÞ j

hih jFsri,r jd2. s10d

That completes the proof of the theorem. j
Whenn=2, the lower bound we presented above reduces

to P0ù2Îh1h2Fsr1,r2d, which partially coincides with the
bound given in Ref.[12]. On the other hand, whenr1, . . . ,rn
are all pure states, the lower bound reduces to the one de-
rived in Ref.[9].

What we would like to point out here is that from the
proof of the above theorem, we can actually derive a series
of lower bounds on the inconclusive probability. In fact, if
we let

Ak = o
i

hi
2ksTrsP0ridd2k

and

Bk = o
iÞ j

hi
kh j

ksTrsP0riddksTrsP0r jddk,

then by the Cauchy inequality, we haveAkùBk/ sn−1d. Us-
ing these notations, the key steps, Eqs.(5)–(7), in the proof
of the above theorem can be reexpressed as

P0
2 = B1 + A1 ù

n

n − 1
B1, s11d

which implies the lower bound

P0 ù P0
s0d=̇Î n

n − 1
C1 s12d

as in Eq.(10). HereCk is defined as

Ck = o
iÞ j

hi
kh j

kFsri,r jd2k.

Now, if we notice the fact thatA1
2=B2+A2, then we can

first consider the termA1 and derive thatA1=ÎB2+A2, so Eq.
(11) can be rewritten as

P0
2 = B1 + ÎB2 + A2 ù B1 +Î n

n − 1
B2,

which implies another lower bound

P0 ù P0
s1d=̇ÎC1 +Î n

n − 1
C2. s13d

Using the Cauchy inequality, we can easily prove thatP0
s1d

ù P0
s0d, which means that the boundP0

s1d is better thanP0
s0d in

general. These two lower bounds are equal if and only if

Îhih jFsri,r jd ; C, ∀ i Þ j s14d

for some constantC which is independent ofi and j . Notice
that in the special case ofn=2, the condition(14) holds
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automatically. It follows thatP0
s1d and P0

s0d coincide when
discriminating two mixed states.

Similarly, for anykù0, noticing thatAr
2=A2r +B2r for all

r, we have the following equalities:

P0
2 = B1 + A1=B1 + ÎB2 + A2=B1 + ÎB2 + ÎB4 + A4=¯

=B1 + ÎB2 + Î. . . +ÎB2k + A2k. s15d

Then applying the fact thatAr ùBr / sn−1d and Br ùCr for
anyr, we derive a series of lower bounds on the inconclusive
probability of unambiguous discrimination betweenn mixed
states as follows:

P0 ù P0
skd=̇ÎC1 +Î¯ +Î n

n − 1
C2k. s16d

We can also prove thatP0
s0dø P0

s1dø¯ using the Cauchy
inequality, which means in general whenk increases, the
lower bounds become better and better in the sense that they
are closer and closer to the real optimal inconclusive prob-
ability. Again, when the condition(14) holds, all these lower
bounds coincide. On the other hand, since the increasing

sequencehP0
skd ,k=0,1, . . .j has an upper bound 1, they defi-

nitely converge at a limit denoted by

P0
s`d 8 ÎC1 + ÎC2 + ÎC4 + ¯, s17d

which is the best lower bound we can derive using this
method.

To summarize, we prove that any state chosen from a
mixed state set can be perfectly discriminated if and only if
the set is orthogonal. For the case of nonorthogonal mixed
states, the sufficient and necessary condition for them to be
unambiguously distinguishable is that any state has support
not totally included in the supports of the others. We consider
also the problem of unambiguous discrimination ofn mixed
states witha priori probabilities and present a series of lower
bounds on the inconclusive probability.
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