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Unambiguous discrimination between mixed quantum states
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We prove that the states secretly chosen from a mixed state set can be perfectly discriminated if and only if
they are orthogonal. The sufficient and necessary condition under which nonorthogonal mixed quantum states
can be unambiguously discriminated is also presented. Furthermore, we derive a series of lower bounds on the
inconclusive probability of unambiguous discrimination of states from a mixed state setawthori
probabilities.
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Quantum state discrimination is an essential problem irambiguous discrimination and some numerical methods were
guantum information theory. Perfect discrimination amongdiscussed.
nonorthogonal pure states is, however, forbidden by the laws In this paper, we consider first the distinguishability of
of quantum mechanics. Nonetheless, if a nonzero probabilityny mixed state set. We prove that any state chosen from a
of inconclusive answer is allowed, one can distinguish withmixed state set can be perfectly discriminated if and only if
certainty linearly independent pure states. This strategy ithe set is orthogonal, in the sense that any state in the set has
usually calledunambiguous discriminationUnambiguous  its support orthogonal to the supports of the others. For the
discrimination among two equally probable nonorthogonakase of nonorthogonal mixed state, the sufficient and neces-
quantum pure states was originally addressed by Ivanovigary condition for them to be unambiguously distinguishable
[1], and then Diekg2] and Pereg3]. Jaeger and Shimony s that any state among them has support not totally included
[4] extended their result to the case of two nonorthogonain the supports of the others. Furthermore, we consider the
pure states with unequal priori probabilities. Chefle§5]  problem of unambiguous discrimination betweermixed
showed thatn quantum pure states can be unambiguouslystates witha priori probabilities and present a series of lower
discriminated if and only if they are linearly independent. bounds on the inconclusive probability.
For the general case of unambiguous discrimination between Suppose a quantum system is prepared in a state secretly
n pure states witha priori probabilities, it was shown in  drawn from a known seg, ... ,p,, Where eachp, is a mixed
Refs.[6] and[7] that the problem of optimal discrimination, state in the Hilbert spack. The task of discrimination is to
in the sense that the success probability is maximized, osbtain as much information about the identification of the
equivalently, the inconclusive probability is minimized, can state as possible. In what follows, by perfect discrimination
be reduced to a semidefinite programmi@®PP) problem,  we mean that one can always get the correct answer while by
which has only numerical solution in mathematics. On theunambiguous discrimination we mean that except a maybe
other hand, Zhangt al. [8] and Fenget al. [9] derived two  nonzero inconclusive probability, one can identify the state
lower bounds on the inconclusive probability of unambigu-without error. It is obvious that perfect discrimination is nec-
ous discrimination among pure states. essarily an unambiguous one, but the reverse is not true in

Somewhat surprisingly, it is only recently that the prob-general. To unambiguously discriminage, ... o, one can
lem of unambiguous discrimination between mixed states igonstruct a most general positive-operator valued measure-
considered. In Ref.10], the optimal unambiguous discrimi- ment (POVM) comprising n+1 elementsIly,I1,, ... I1,
nation between a pure state and a mixed state with rank gych that
was examined. Then the result was generalized to the case of

a pure state and an arbitrary mixed states in REf]. Ru- I,=0, i=0,1,...n,

dolphet al.[12] derived a lower bound and an upper bound 1)
on the maximal probability of successful discrimination of n

two mixed states. Rayneatl al. [13] presented two reduction > I =1,

theorems to reduce the optimal unambiguous discrimination i=0

of two mixed states to that of other two mixed states which

have the same rank. In the general casenchixed state wherel denotes the identity matrix ifif. Each POVM ele-

discrimination, Fiurasek and Jezgld] and Eldar[15] gave  mentIl;, i=1, ... n corresponds to identification of the cor-

some sufficient and necessary conditions on the optimal unresponding statg;, while I, corresponds to the inconclusive
answer. For the sake of simplicity, we often specify only
14, ... 11, for a POVM since the left elemeit, is uniquely

*Electronic address: fengy99g@mails.tsinghua.edu.cn determined bylI,=1-=, II;. It is then straightforward that
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Tr(pll)) = &;, Theorem 2 The mixed quantum statgs, ...,p, can be

I ) . ) unambiguously discriminated if and only if for any
while it can unambiguously discriminatey, ...,p, if and  —1 g SupfS) # supfS), where S={p,,...,pn} and §

only if :S\{Pi}-
Tr(plIl) = p;3; Proof. Suppose, ... ,p, can be unambiguously discrimi-
o nated, then there exist POVM elemeihls, ... I1, such that
for somep;>0, wherei,j=1, ... n. S I <1 and T(ILp;)=p;8; for some p;>0. Let |,k
Since the intersection of the kernels of allis not useful -7 n;, be the eigenvectors gf with the corresponding
for the purpose of unambiguous discrimination, sometimegjgenyvalues larger than 0. Then there existshi<n; such
we can assume without loss of generality that ebghi that (y/i|TT;|¢/") >0 and from Lemma 1, for any < j=<n,

=1,...n,isin supfpy, ... ,pn). Here supfpy, ... ,p,) is de- ([T, | #)y=0 -

. . : - 1»=0 provided thai #r.

fined by the Hilbert space spanned by eigenvectors of the Iln rvvr;at follows, we prove that for aniy /%) cannot be
! I

matricespy, ... ,pn With nonzero corresponding eigenvalues. ... <5 linear combination of the state® for r #i and
The following lemma is a necessary condition for a._

POVM to unambiguously discriminate a given mixed statej_l’ -y, that will imply the result sup(&) # supis).

set Suppose

Lemma 1 Supposdly, ... II, are POVM elements and =S ak [y
3 II;<|1. If for any i, IT; can unambiguously discriminagg ' r#ka” '
thenII;p;=0 for anyi #]. .

Proof. Suppose for anj; II; can unambiguously discrimi- for somea;,, then
natep;. Then we have Tilp,)=p;5; for somep;>0. Let _

i iPi i Oij i Hi|¢ihl>: Ek alkrl'[l|¢llf) =0, (4)
r#i;

= i ISV
P gla“"ﬂ'x‘m @ which contradicts with(¢%|IT;| /") > 0.

Suppose suf® # supgS), then supfp;) & sups). It
follows that there exists a staté;) such that ¢;) 1 supfp;)
but|¢;) L supfS). That is(¢i|pi|#) >0 but{¢|p,|¢;)=0 for

N anyr#i. Let IT;=q;|¢){ |, whereq; is positive but suffi-
0= Tr(ILp) = 2 alyf{IL; |yl (3)  ciently small such that, IT;<I. It is easy to check that the
k=1 POVM elementdly, ... II, can unambiguously discriminate
and (11| ¢/9=0 for k=1, ... n; from the factal>0. That with & positive probabilityp;=ci(¢i|pil¢i) >0 for any i

L =1,...n |
implies IT;|¢/)=0 and soll;p;=0. [ | A .

It is well known that perfect pure state discrimination is h Whené)l, 'p”b"_’lre all lpudr? _state.sh tg? requwemt—(zjnt. foL
possible if and only if the states to be discriminated are orinem to be unambiguously distinguishable presented in the
thogonal to each other. In the case of mixed state, we have ove theprem is exactly that th?y .ShOU|d be I_mearly inde-
similar result as the following theorem. pendent, just as we all know. This is because; #|){u|

Theorem 1 The mixed quantum states, ...,p, can be [Of SOome statdys) then supfS) # supdS) for any i if and

for somea}‘> 0 be the spectrum decompositiongfthen for
anyi#j,

perfectly discriminated if and only if they are orthogonal, @Y if |41, ... |y are linearly independent.
that iS,pipj=c‘5ijPiz- In ggneral, hoyvgver,_the req_uwementpt_if, ~spn 10 b(_e
Proof. if Pin=5|jPi2, then supfp,) L supfip;) for any i unambiguously distinguishable is more strict than just linear

independence. To see this, for amy1l,...n, suppose
SupfS) # supS), we show thatp; cannot be written as a
linear combination of the other states. In fact, gf
=3 alp; for someal, let |¢;) be a state orthogonal to
supdS) but not orthogonal to sugp;), then

0 <(ilpildy =2 a§<¢i|Pj|¢i>: 0.

j#i

# j. We choosd]; as the projector onto sufyp). Obviously
2 ITj=Is and T(IIip;) = §;, wherel is the identity matrix in
supp (pq,...,pn). That indicateslly, ... II,, can perfectly
discriminatepy, ... ,pp.

Conversely, ifpq,...,p, can be discriminated perfectly,
then there exist POVM elements,, ... I1,, =, II,=I, such
that for anyi, II; can perfectlyso unambiguousbydiscrimi-
natep;. From Lemma 1, we havéljp;=0 for anyi#j. So
pipj=pi(Zx Hk)pJ-:cSijpiz. B  This contradiction indicates that, ... ,p, are linearly inde-

The above theorem gives us a sufficient and necessafgendent. The converse, however, does not necessarily hold.
condition under which mixed states can be discriminated perThat is, the linear independence g, ... ,p, cannot guaran-
fectly. That is, they must be orthogonal to each other. In thdee that supf®) # supdS) for anyi. To see this, let us give a
case when the states are nonorthogonal, a strategy is, assimple example. Suppogg andp, are two different density
pure state situation, unambiguous discrimination. While a sematrices with ranksn in an m-dimensional Hilbert space. It
of pure states can be unambiguously discriminated if ands obvious thatp; and p, are linearly independent but
only if they are linearly independerii], the unambiguous SUpPfp1) =SUpPfp,) =SUpp;,p,). SO in general the linear in-
discrimination between mixed states has a stronger requirglependence of certain mixed states cannot ensure the exis-
ment, as the following theorem indicates. tence of a POVM to unambiguously discriminate them.
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UNAMBIGUOUS DISCRIMINATION BETWEEN MIXED...

We now turn to consider the problem of unambiguous

discrimination between mixed quantum states wit priori

PHYSICAL REVIEW A 70, 012308(2004)

Tr(Ilop) Tr(Ilgp;) = F(pi,pj)?. 9

probabilities. The aim is to optimize the discrimination by 1@king Eq.(9) back into Eq.(7) we derive the lower bound
choosing appropriate measurements to maximize the succe®8 Po as

probability, or equivalently, minimize the inconclusive prob-
ability. For the general case of unambiguous discrimination
betweenn pure states, the optimization problem can be re-

duced to a semidefinite programming problgsh which has
no analytic solution. So the bound on the sucaessncon-

clusive) probability for any unambiguous discrimination be-

comes very important. A lot of work, such as R€f8] and

[9] is dedicated to this field. In the following, we derive a
lower bound on the inconclusive probability of unambiguous
discrimination between mixed states using a method simi-

lar to that in Ref[9].

Theorem 3Suppose a quantum system is prepared in on

of the n mixed statesp, ...
My e--

,Pn With a priori probabilities

Po= \/%2 miF(pip)?,
n-1i
whereF(p;, p;) is the fidelity of p; and p;.

Proof. For any POVM elementdl,, ... II,, Z; II;<I,
which can unambiguously discriminags, ...,p, we have
Tr(ILip)=p;&; for i,j=1,... n. DefineIl,=1-Z{, I1;=0,
thenPy=2; % Tr(Ilyp;). So

P3= 2 7(Tr(Top))?+ 2 7 Tr(Top) Tr(Tgp)).  (5)
i i#]

By the Cauchy inequality, we have
1
> A(Tr(pp))? = nTlE i Tr(Mop) Tr(Igp;). (6)
i 1#]
Substituting Eq(6) into Eq. (5) we have

n
P§=——2> nuTr(op) Tr(Igp;).
n-1i7]

)

Furthermore, using the Cauchy inequality again, we have

— ==
Tr(Top) Tr(Iopy) =Tr(U\piVIg\ g\ pUT)
’/_ ”_ ’/_ ’/_
XTr(Vpj\Io\IIgvpy)

. .
=(Tr(U\piIlgVp))?
n

=(Tr(UVpi(1 - S TVpp)2  (8)
k=1

for any unitary matrixU. From Lemma 1, we have
Vpill/p;=0 for anyi #j andk=1, ... n. Notice also that

— [
F(pi.pj) = mUaXTr(U VpiNpy),

where the maximum is taken over all unitary mattix It
follows that for anyi #j,

.7 Then a lower bound on the inconclusive probabil-
ity Py of unambiguous discrimination between these states is

n
Po= /=2 mnF(pip)> (10)

n-1i%
That completes the proof of the theorem. |

Whenn=2, the lower bound we presented above reduces
to Po=2\7,7,F(p1,p,), which partially coincides with the
bound given in Ref[12]. On the other hand, whem, ... ,p,
are all pure states, the lower bound reduces to the one de-
rived in Ref.[9].

What we would like to point out here is that from the

groof of the above theorem, we can actually derive a series

of lower bounds on the inconclusive probability. In fact, if
we let

A= E P(Tr(Mgpy)) ™
I
and

Bi= 2 7 (Tr(Ilop)) (Tr(Tlopy)",
i#]
then by the Cauchy inequality, we hate=B,/(n-1). Us-
ing these notations, the key steps, E¢g—(7), in the proof
of the above theorem can be reexpressed as

n
P2=B,+A, = —B,, 11
0=P1T M= B (13)
which implies the lower bound
Po= POz / ¢, (12)
n-1

as in Eq.(10). HereC, is defined as

Cv=2 7 F(pi.pp .
i#]
Now, if we notice the fact thad3=B,+A,, then we can
first consider the term, and derive thaf\;=\B,+A,, so Eq.
(112) can be rewritten as

!— n
P3=B1+\By+ A, =B+ \| By,

which implies another lower bound

n

Py = Pz
0 0 n-1

C,+ C,. (13)
Using the Cauchy inequality, we can easily prove tﬁgﬁ
=P, which means that the bourR}" is better tharP\” in
general. These two lower bounds are equal if and only if
VnmFpup) =C. i #| (14

for some constant which is independent dfandj. Notice
that in the special case aof=2, the condition(14) holds
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automatically. It follows thatPgl) and Pgo) coincide when sequence{P(k),k:O,l, ..+ has an upper bound 1, they defi-

discrim_inating two mixed states. , nitely converge at a limit denoted by
. we have the following equaities: T P = \Cy+ VCpr \Cyr a7
PZ:Bl+A1:Bl+\e"m:Bl+\rm:--- vn\:réltchr;dls the best lower bound we can derive using this
=B, + \/Bz’fJ sz+A2k (15) To summarize, we prove that any state chosen from a

mixed state set can be perfectly discriminated if and only if
Then applying the fact thad, =B,/(n—1) and B,=C, for the set is orthogonal. For the case of nonorthogonal mixed
r= Pr r= ~r

anyr, we derive a series of lower bounds on the inconcluslveStatesb the sulfflcgertlt and rr]weglessa?r/] ctondmo? tforhthem to bet
probability of unambiguous discrimination betweemixed unambiguously distinguishable is that any state has suppor
states as follows: not totally included in the supports of the others. We consider

also the problem of unambiguous discriminationnafixed
states witha priori probabilities and present a series of lower
Po=PYP=4/Cy+ —c
0= 1 2k.

(16) bounds on the inconclusive probability.
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