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We analyze the role of nonlinear Hamiltonians in bosonic channels. We show that the information capacity
as a function of the channel energy is increased with respect to the corresponding linear case, although only
when the energy used for driving the nonlinearity is not considered as part of the energetic cost and when
dispersive effects are negligible.

DOI: 10.1103/PhysRevA.70.012307 PACS number(s): 03.67.2a, 42.50.2p, 42.65.2k, 89.70.1c

INTRODUCTION

Noninteracting massless bosonic systems have been the
object of extensive analysis. Their maximum capacity in
transmitting information was derived for the noiseless case
both in the narrowband regime(where only a few frequency
modes are employed) and in the broadband regime[1,2].
However, it is still an open question whether nonlinearities in
the system may increase these bounds: linearity appears to be
the most important assumption in all previous derivations
[2]. Up to now nonlinear effects have been used in fiber
optics communications to overcome practical limitations,
such as using solitons to beat dispersion or traveling wave
amplifiers to beat loss[3].

The approach adopted in this paper is fundamentally dif-
ferent from these and from others where nonlinearities and
squeezing are employed at the coding stage when using lin-
ear channels[4]. We follow the cue of a recent proposal[5]
where interactions were exploited in increasing the capacity
of a qubit-chain communication line. In the case of linear
bosonic systems, the information storage capacity of a signal
divided by the time it takes for it to propagate through the
medium gives the transmission capacity of the channel. In
the presence of nonlinearities, dispersion can affect the
propagation of the signal complicating the analysis, but an
increase in the capacity can be shown, at least when the
dispersive effects are negligible. A complete analysis of dis-
persion in nonlinear materials is impossible at this stage,
since the quantization of these systems has been solved only
perturbatively. The basic idea behind the enhancement we
find is that the modification of the system spectrum due to
nonlinear Hamiltonians may allow one to better employ the
available energy in storing the information: we will present
some examples that exhibit this effect. Excluding the down-
conversion channel(a model sufficiently accurate to include

the propagation issue; see Sec. II C), all these examples are
highly idealized systems but are still indicative of the pos-
sible nonlinearity-induced enhancements in the communica-
tion rates. An important caveat is in order. In the physical
implementations that we have analyzed, there is no capacity
enhancement if we include in the energy balance also the
energy required to create the nonlinear Hamiltonians. This is
a general characteristic of any system: if one considers the
possibility of employing all the available degrees of freedom
to encode information, then one cannot do better than the
bound obtained in the noninteracting case[6,7]. However,
the enhancement discussed here is not to be underestimated
since in most situations many degrees of freedom are not
usable to encode information, but can still be employed to
augment the capacity of other degrees of freedom. A typical
example is when the sender is not able to modulate the sig-
nals sufficiently fast to employ the full bandwidth supported
by the channel: an external pumping(such as the one in-
volved in the parametric down-conversion case) may allow
an increase in the energy devoted to the transmission modes.
The distinction between the signal energy and the communi-
cation energy is a subtle but practically relevant issue. As the
above example shows, the signal energy accounts only for
the energy needed by the information-carrying degrees of
freedom in order to propagate. Since the information trans-
mission is an intrinsically dynamical process, this contribu-
tion cannot be null(even though it is well known that no
energy needs to be dissipated in the communication[8]). On
the other hand, the communication energy accounts for all
the employed energy(including that needed to drive the non-
linearity), which, can boost the information propagation.

We start by describing a general procedure to evaluate the
capacity of a system and we apply it to a linear bosonic
system to reobtain some known results(see Sec. I). Such a
procedure is instructive since it emphasizes the role of the
system spectrum in the capacity calculation. We then analyze
a collection of examples of nonlinear bosonic systems in the
narrowband and wideband regimes(see Sec. II): for each
case we describe the capacity enhancements over the corre-
sponding linear systems. General considerations of the en-
ergy balance in information storage and on information
propagation conclude the paper(see Sec. III).
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I. INFORMATION CAPACITY

The information capacity of a noiseless channel is defined
as the maximum number of bits that can be reliably sent per
channel use. From the Holevo bound(see[9] and [1] for its
infinite-dimensional extension), we know that it is given by
the maximum of the von Neumann entropySs%d
=−Trf%log2%g over all the possible input states% of the
channel. In our case, since% is the state of a massless
bosonic field, the associated Hilbert space is infinite dimen-
sional and the maximum entropy is infinite. However, for all
realistic scenarios a cutoff must be introduced by constrain-
ing the energy required in the storage or in the transmission,
e.g., requiring the entropySs%d to be maximized only over
those states that have an average energyE, i.e.,

E = Trf%Hg, s1d

whereH is the system Hamiltonian. The constrained maxi-
mization ofSs%d can be solved by standard variational meth-
ods (see[11,12] for examples), which entail the solution of

dHSs%d −
l

ln 2
TrfH%g −

l8

ln 2
Trf%gJ = 0, s2d

wherel and l8 are Lagrange multipliers that take into ac-
count the energy constraint(1) and the normalization con-
straint Trf%g=1, and where the ln 2 factor is introduced so
that all subsequent calculations can be performed using natu-
ral logarithms. Equation(2) is solved by the density matrix
%=expf−lHg /Zsld, where

Zsld ; Trfe−lHg s3d

is the partition function of the system andl is determined
from the constraint(1) by solving the equation

E = −
]

] l
ln Zsld. s4d

The corresponding capacity is thus given by

C = Sfexps− lHd/Zsldg = flE + ln Zsldg/ln 2, s5d

which means that we can evaluate the system capacity only
from its partition functionZsld.

In general an explicit expression forZsld is difficult to
derive, but it proves quite simple for noninteracting bosonic
systems, such as the free modes of the electromagnetic field.
In fact, in this case the Hamiltonian is given by

H = o
k

"vk ak
†ak, s6d

where vk is the frequency of thekth mode and the mode
operators ak satisfy the usual commutation relations
fak,ak8

† g=dkk8. Hence, the partition function is

Zsld = p
k

o
nk=0

`

e−l"vknk = p
k

1

1 − e−l"vk
. s7d

From Eqs.(5) and (7) it is clear that the capacityC will be
ultimately determined by the spectrumvk of the system. In
particular, in the narrowband case(where only a mode of

frequencyv is employed) Eq. (5) gives [2,4,11]

Cnb = gS E

"v
D , s8d

where gsxd;s1+xdlog2s1+xd−x log2x for xÞ0 and gs0d
=0. On the other hand, in the homogeneous wideband case
(where an infinite collection of equispaced frequenciesvk
=kdv is employed forkPN) Eq. (5) gives

Cwb .
p

ln 2
Î 2E

3"dv
, s9d

which is valid in the limit"dv!E. When applied to com-
munication channels, this last equation is usually expressed
in terms of the rateR (bits transmitted per unit time) and
powerP (energy transmitted per unit time) as [1,2,10–12]

R=
1

ln 2
ÎpP

3"
, s10d

by identifying the transmission time with 2p /dv. In the next
section we analyze how the capacitiesCnb andCwb are modi-
fied by introducing nonlinear terms in the system Hamil-
tonian.

II. NONLINEAR HAMILTONIANS

Nonlinear terms in the Hamiltonian of the electromag-
netic field derive from the interactions between the photons
and the medium in which they propagate. In this section we
will employ the techniques described above to derive the
narrowband and wideband capacities when quadratic nonlin-
earities are present. In Secs. II A–II C we discuss parametric
down-conversion type Hamiltonians in the narrowband and
broadband regimes. In Secs. II D and II E we discuss a mode
swapping interaction. All these nonlinearities arise in real-
world systems fromxs2d type couplings, when one of the
three fields involved in these types of interactions is a strong
pump field that can be considered classical[13]. For all the
cases analyzed we present the capacity enhancement over the
corresponding noninteracting Hamiltonian.

A. Squeezing Hamiltonian

Consider the single mode described by the Hamiltonian

H = "va†a + "jfsa†d2 + a2g/2 + "Vsjd, s11d

where j is the squeezing parameter. We employuju,v to
avoid Hamiltonians that are unbounded from below. In
Eq. (11) the frequencyVsjd; 1

2sv−Îv2−j2d has been intro-
duced so that the ground state of the system is null: with this
choice, the average energyE is the energy associated with
the modea in the nonlinear medium. By applying the ca-
nonical transformation

a = A coshu − A† sinh u, u ;
1

4
lnFv + j

v − j
G , s12d

the HamiltonianH is transformed to the free field form
"Îv2−j2A†A, so that the derivation of the previous section
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can be employed to calculate the capacity. It is thus imme-
diate [see Eq.(8)] to find the capacity of this system as

C = gS E

"Îv2 − j2D . s13d

This quantity measures the amount of information that can
be encoded whenE is the total energy associated with the
modea, and a nonlinear squeezing-generating term is present
in the Hamiltonian: this result is quite different from the one
obtained by using squeezed states as inputs to a linear system
(see for example[4]). The capacityC of Eq. (13) is higher
than the capacityCnb of the linear casej=0 sincegsxd is an
increasing function(see Fig. 1). The reason behind this en-
hancement is that the nonlinearity reduces the effective fre-
quencies of the modes(from v to Îv2−j2), so that more
energy levels can now be populated with the same energy.

B. Two-mode parametric down-conversion

Consider the two interacting modesa and b evolved by
the Hamiltonian

H = "vsa†a + b†bd + "jsa†b† + abd + "Vsjd, s14d

where uju,v is the coupling constant andVsjd;v
−Îv2−j2 has again been introduced to ensure that the energy
ground state is null.[This Hamiltonian, like the previous
one, possesses the structure of the algebra of the SU(1,1)
group, in the Holstein-Primakoff realization.] We can again
morph the Hamiltonian to the free field form using the two-
field canonical transformation

HA = a coshu + b† sinh u

B = a† sinh u + b coshu
, u ;

1

4
lnFv + j

v − j
G , s15d

which transforms the Hamiltonian(14) to the form
"Îv2−j2sA†A+B†Bd. The capacity in this case is

C = 2 gS E

2"Îv2 − j2D , s16d

which is higher than the capacity of two independent single-
mode bosonic systems, given by Eq.(16) for j=0. [The fac-
tors 2 in Eq.(16) derive from the presence of the two modes
A and B.] The enhancement is again a consequence of the
fact that the nonlinearity reduces the effective frequency of
the two modes:v→Îv2−j2.

C. Broadband parametric down-conversion

Here we apply the above results to the case of two wide-
band modes(signal and idler) coupled by a parametric down-
conversion interaction. The interaction is mediated by a non-
linear crystal with second-order susceptibilityxs2d pumped
with an intense coherent field of amplitudeEp at frequency
vp. Assuming undepleted pumping and perfect phase match-
ing, the Hamiltonian up to the first order in the interaction is
given by

H = o
k

f"vkak
†ak + "svp − vkdbk

†bk + "jksak
†bk

† + akbkd

+ "Vkg, s17d

where ak and bk are the mode operators of the down-
converted modes of frequencyvk and vp−vk, respectively.
Their interaction is described by the coupling parameter

jk =
xs2dp"vkEp

ce0 nasvkdnbsvp − vkd
Fsvkd, s18d

with na andnb the refractive indices of the signal and idler,
and Fsvkd the phase matching function that takes into ac-
count the spatial matching of the modes in the crystal[13].
As usual, the frequencyVk=fvp−Îvp

2−4jk
2g /2 has been in-

troduced in the Hamiltonian to appropriately rescale the
ground state energy. Notice that, in contrast to the case de-
scribed in Sec. II B, the Hamiltonian(17) couples nondegen-
erate modes whose frequencies sum up to the pump fre-
quencyvp. Canonical transformations analogous to Eq.(15)
allow us to rewrite the Hamiltonian in the free field form

H = o
k

f"svk − VkdAk
†Ak + "svp − vk − VkdBk

†Bkg. s19d

With this Hamiltonian, the partition function is given by

ln Zsld = o
k

lnF 1

1 − e−l"svk−VkdG
+ o

k

lnF 1

1 − e−l"svp−vk−VkdG , s20d

where the two contributions are due to the signal and idler
modes, respectively, and the sum overk is performed on all
the frequencies up tovp. For ease of calculation, we will
assume that the couplingjk is acting only over a frequency
bandzvp sz,1d centered aroundvp/2, where it assumes the
constant valuej. This choice gives a rough approximation of
the crystal phase matching functionFsvkd that prevents the

FIG. 1. Capacity increase of the squeezing Hamiltonian of
Eq. (11) in bits per channel use as a function of the energy param-
eterE/"v and of the squeezing ratioj /v. The increase is evident
from the positivity ofC−Cnb, whereC is given in Eq.(13) andCnb

is the free space narrowband capacity of Eq.(8). Notice that, for
high energy, the increase tends asymptotically to −log2f1
−j2/v2g /2.
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coupling of signal and idler photons when their frequencies
are too mismatched[13]. In the high-energy regimeE
@"dv, the sums in Eq.(20) can be replaced by frequency
integrals, obtaining

ln Zsld =
2

dv
E

0

vps1−zd/2

dv lnF 1

1 − e−l"vG
+

2

dv
E

vps1−zd/2

vps1+zd/2

dv lnF 1

1 − e−l"sv−VdG
+

2

dv
E

vps1+zd/2

vp

dv lnF 1

1 − e−l"vG , s21d

whereV;fvp−Îvp
2−4j2g /2. The integrals in Eq.(21) have

no simple analytical solution, but we can give a perturbative
expansion in the low-interaction regime, i.e.,e;4j2/vp

2!1.
In this limit, the result is derived in the Appendix and is
given by

C =
2vp

dv
Fc0SEdv

"vp
2 D + e c1SEdv

"vp
2 ,zD + Ose2dG , s22d

where the functionsc0 and c1 are plotted in Fig. 2. The
zeroth-order termc0 in Eq. (22) gives the capacity of two
broadband noninteracting modes with cutoff frequencyvp:
in the limit of infinite bandwidthsvp→`d, this function
reaches the asymptotic behavior C→Casym

;s2p / ln 2dÎE/ s3"dvd that corresponds toCwb of Eq. (9)
for two noninteracting wideband bosonic systems. To first
order ine, the increase in capacity due to the interactionj is
given by the value ofc1, which is a positive quantity(see the
Appendix). It can be shown thatc1→0 in the limit vp→`,
so that in the infinite-bandwidth regime no improvement is
obtained from the interaction. In fact, an infinite continuous
spectrum is invariant under the transformationvk

→Îvk
2−jk

2. As in the noninteracting broadband case of
Eqs.(9) and(10), the transmission timet of the signal can be
estimated as 2p /dv. The validity of this assumption(which

implies negligible dispersion) rests on the fact that the
Hamiltonian(17) is valid to first order in the interaction term
jk, and the small dispersion which derives from this term
does not play any role in the capacity[10,11].

In this calculationE is the energy devoted to the signal
and idler modes: it does not include the energy stored in the
nonlinear medium and the energy spent to pump the crystal.
This last quantity is proportional touEpu2 (apart from correc-
tions of ordere which derive from the coupling). In the limit
of undepleted pumping we have considered, this is a very
large contribution which overshadowsE and is not directly
used to encode information. In this respect, the system is
very inefficient in using the total available energy. However,
this is not the correct attitude in evaluating such a system:
our process is analogous to the amplification of signals
where, if one considers the total energy employed in the
process(amplification plus input energy), no gain is ob-
tained. The correct attitude is, of course, to consider the sig-
nals alone.

D. Swapping Hamiltonian

ConsiderN modes that are pairwise coupled through the
Hamiltonian

H = o
j=1

N

"vaj
†aj + o

jÞ j8

L j j 8aj
†aj8 = "aW † · sv1 + Ld ·aW ,

s23d

whereaW is the column vector containing the annihilation op-
eratorsaj of the N modes andL is anN3N symmetric real
matrix with null diagonal. This Hamiltonian describesN
modesaj whose photons have a probability amplitudeL j j 8 to
be swapped into the modeaj8. By performing a canonical
transformation on all the mode operators, it is possible to
rewrite Eq.(23) in the free field form

H = o
j=1

N

"sv + l jdAj
†Aj , s24d

where thel j’s are theN eigenvalues ofL. Two conditions
must be satisfied: the positivity ofH requires that −l j øv for
all j , and, since the diagonalization ofL must preserve its
trace,o j l j =0. The capacity of this system can now be eas-
ily computed as[1,2,11]

C = max
e1,e2,. . .,eN

Fo
j=1

N

gS ej

"sv + l jd
DG , s25d

where the maximum must be evaluated under the require-
ment thato j ej =E. In the simple case ofN=2 (where l1
=−l2;j), the maximization(25) can be easily performed
numerically: the increase in capacity over the two-mode non-
interacting case is presented in Fig. 3. In this case, in the
strong coupling regimesuju→vd the capacity diverges as
log2hE/ f"sv− ujudgj: this corresponds to employing for the
information storage only the lowest-frequency mode among
A1 andA2.

FIG. 2. (a) Capacity functionc0sgd (continuous line) and its
correctionc1sg ,zd (dashed line) of Eq. (22) with fractional coupling
bandwidthz=.5 and g;Edv / s2"vp

2d. The capacity increase ac-
complished by the nonlinearity is evident from the positivity of the
term c1. (b) Comparison between the capacityC of Eq. (22) with
e;4j2/vp

2=0.1(continuous line) and the asymptotic two-mode rate
Casym;s2p / ln 2dsvp/dvdÎ2g /3, obtained using an infinite-
frequency band(dotted line).
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E. Broadband swapping Hamiltonian

A generalization of the Hamiltonian(23) given in the pre-
vious subsection can be obtained by consideringN parallel
broadband modes in which the coupling joins all the modes
with the same frequency, namely,

H = o
k

o
j=1

N

"vkajk
† ajk + o

k
o
jÞ j8

L j j 8
skdajk

† aj8k, s26d

whereajk is the annihilation operator of thej th system with
frequencyvk. This Hamiltonian can be taken to a free field
form using the procedure of the previous subsection, so that

H = o
k

o
j=1

N

"svk + l jkdAjk
† Ajk, s27d

wherel jk is the j th eigenvalue of the matrixLskd. Expressed
in terms of the normal modesAjk, the Hamiltonian(27) de-
scribesN independent wideband modes. Since in this case
the maximization of the form(25) is complicated, we show
an increase in capacity by considering the following choice
of the coupling constants(which may well not be the optimal
one):

l jk = − vk r for j = 1, . . . ,N − 1, s28d

lNk = vksN − 1dr , s29d

where 0ø r ø1. The choices(28) and (29) automatically
guarantee both the positivity condition on the Hamiltonian
and the trace preservation condition on theLskd matrices.
With this choice, the Hamiltonian(27) becomes

H = s1 − rdo
k

o
j=1

N−1

"vkAjk
† Ajk + f1 + sN − 1drgo

k

"vkANk
† ANk.

s30d

Essentially we have chosen a coupling that contracts by a
factor 1−r the frequencies of the firstN−1 normal modes

and stretches by a factorf1+sN−1drg the frequency of the
Nth one. Choosingr →1, we can increase the capacityad
libitum over the case ofN noninteracting systems. In fact, in
this limit a straightforward application of the wideband cal-
culation of Eq.(9) givesC,ÎsN−1d / s1−rdCwb. This result
must be compared with the case in which theN wideband
modes are independent where the capacity scales asÎNCwb.
Clearly, an arbitrary increase in capacity is gained asr →1.

III. GENERAL CONSIDERATIONS

In the previous sections we derived the capacity of vari-
ous types of nonlinear bosonic systems. The common feature
of all these results is that the nonlinearities were used to
reshape the spectrum by compressing it to lower frequencies,
where it is energetically cheaper to encode information. A
couple of remarks are in order. First of all, in our calculations
the mean energyE represents the energy of the modesin the
system used to transmit information, whereas customarily
one considers the input energy. Our choice is motivated by
the fact that nonlinear systems dispense energy to the
information-bearing modes, so that the input energy does not
necessarily coincide with the amount of energy that the me-
dium needs to sustain. This last quantity is a practically rel-
evant one for the cases in which the degrees of freedom used
to encode information cannot handle high energies(such as,
for example, optical fibers[14]). Notice that, in some of the
cases we have studied(the example of Sec. II C in particu-
lar), the nonlinearity is achieved by supplying the system
with an external energy source in the form of an intense
coherent beam. If one were to take into account also this
contribution in the energy balance, then no capacity enhance-
ment would be evident, since the pumping energy is used
only indirectly to store the information. However, it is not
unwarranted to exclude the pump from the energy balance,
since it is used only to set up the required Hamiltonian and
not directly employed in the information processing. Finally,
our analysis is limited to the noiseless case. In the presence
of noise, in place of the von Neumann entropy in Eq.(2), one
would have to consider the Holevo information[15]. This is
a highly demanding problem because of the yet unknown
additivity properties of this quantity. At least in the case of
linear bosonic systems, the capacity in the presence of noise
was studied in[4,16].
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APPENDIX

In this appendix we derive formula(22) for the broadband
parametric down-conversion Hamiltonian. In the low-
interaction regimee!1, Eq. (21) becomes

ln Zsld =
2vp

dv
ff0sbd + ef1sb,zd + Ose2dg, sA1d

whereb;l"vp and

FIG. 3. Capacity increase of the swapping Hamiltonian(in bits
per channel use) as a function of the energy parameterE/"v and of
the coupling ratioj /v, given by plottingDC;C−2gfE/ s2"vdg
[the first term being the capacityC of Eq. (25) and the second the
capacity of two noninteracting modes that share an energyE].
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f0sbd ;
1

b
E

0

b

dx lnF 1

1 − e−xG , sA2d

f1sb,zd ;
1

4
lnF1 − e−bs1+zd/2

1 − e−bs1−zd/2G . sA3d

Notice that the zeroth-order termf0 in the expansion(A1)
corresponds to the partition function of two broadband
modes(signal and idler) with cutoff frequencyvp. Replacing
Eq. (A1) into the energy constraint(4), we can find the value
of the Lagrange multiplierl, contained in the parameterb,
by solving the equation

] f0sbd
] b

+ e
] f1sb,zd

] b
= − g, sA4d

whereg;Edv / s2"vp
2d is a dimensionless quantity. By ex-

panding the solutionb for small e asb=b0+eb1, it follows
that

] f0sb0d
] b

= − g, sA5d

b1 = −
] f1sb0,zd

] b
Y ]2f0sb0d

] b2 . sA6d

These two equations can be numerically solved for any value
of g. Replacing the solution in Eq.(A1) and using the capac-
ity formula (5) we can evaluate the parametric down-
conversion capacity as reported in Eq.(22), where

c0sgd ; fb0g + f0sb0dg/ln 2, sA7d

c1sg,zd ; f1sb0,zd/ln 2. sA8d

Both these functions depend on the system energy only
through the quantityg.
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