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Capacity of nonlinear bosonic systems
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We analyze the role of nonlinear Hamiltonians in bosonic channels. We show that the information capacity
as a function of the channel energy is increased with respect to the corresponding linear case, although only
when the energy used for driving the nonlinearity is not considered as part of the energetic cost and when
dispersive effects are negligible.
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INTRODUCTION the propagation issue; see Sec. J| @ll these examples are

highly idealized systems but are still indicative of the pos-

b_Notnm]Eeratt:tlng_ massleiss_ bo_?zn|_c systems have be_ten_ﬂé?ole nonlinearity-induced enhancements in the communica-
Object of extensive analysiS. [Their maximum capacity Mo, rates. An important caveat is in order. In the physical

transmitting information was derived for the noiseless Cas?mplementations that we have analyzed, there is no capacity
botg in the narrO}/vbaS;j r(‘jeglrr(na/hetr)e ozlg/ a;ew fr_eq;ency enhancement if we include in the energy balance also the
modes are employgcand in the broadband reginid.,2). energy required to create the nonlinear Hamiltonians. This is

However, it is still an open question whether nonlinearities in general characteristic of any system: if one considers the
the system may increase thes_e bqunds: "”e?“ty appears to SSsibiIity of employing all the available degrees of freedom
the most impartant assumption in all previous der|.vat|.on o encode information, then one cannot do better than the
[2]'. Up to now.norjllnear effects have bee_n us(.Ed.m.f'berbound obtained in the noninteracting cd€e7]. However,
optics com.munlca.ltlons to overcome practlcal Ilm.|tat|ons,the enhancement discussed here is not to be underestimated
such as using solitons to beat dispersion or traveling Wavgjnce in most situations many degrees of freedom are not
amplifiers to beat losg]. usable to encode information, but can still be employed to

f Thefapprorz]ach ado(;at;ad in thri]s paper:]r IS fundlglmen_tz_illy dif; ugment the capacity of other degrees of freedom. A typical
erent from these and from others where nonlinearities and, - \hje is when the sender is not able to modulate the sig-

squeezing are employed at the coding stage when using Iirh- | fficiently fast t lov the full idth "
ear channel$4]. We follow the cue of a recent propog&i| als sufficiently fast to employ the full bandwidth supported

. d S . by the channel: an external pumpigguch as the one in-
where interactions were exploited in increasing the Capac'%olved in the parametric down-conversion casey allow

of a q_ublt—cham communication line. In the case of Ilngar n increase in the energy devoted to the transmission modes.
bosonic systems, the information storage capacity of a signgl gistinction between the signal energy and the communi-
d'V'd.ed by' the time it takgs fpr It to propagate through thecation energy is a subtle but practically relevant issue. As the
medium gives the transmlss!on ca.pac|ty. of the channel. | bove example shows, the signal energy accounts only for
the presence of no_nlmearltles,_ dls_persmn can _affect thehe energy needed by the information-carrying degrees of
propagation of the signal complicating the analysis, but afeqqom in order to propagate. Since the information trans-

inpreasg in the capacity can be shown, at least yvhen .thr?lission is an intrinsically dynamical process, this contribu-
d|sp¢r3|ye effec_ts are negl|g|ble..A_compIe.te analys_|s of dIS'tion cannot be nul(even though it is well known that no
persion in nonlinear materials is impossible at this stage

We start by describing a general procedure to evaluate the
capacity of a system and we apply it to a linear bosonic
'system to reobtain some known resulge Sec.)l Such a
procedure is instructive since it emphasizes the role of the
system spectrum in the capacity calculation. We then analyze
a collection of examples of nonlinear bosonic systems in the

*Present address: NEST-INFM and Scuola Normal Superiore, pinarrowband and wideband regimésee Sec. )t for each
azza dei Cavalieri 7, 1-56126 Pisa, Italy. case we describe the capacity enhancements over the corre-

TPresent address: QUIT, Quantum Information Theory Group, Di-sponding linear systems. General considerations of the en-
partimento di Fisica “A.\Volta,” Universita di Pavia, via A. Bassi 6, ergy balance in information storage and on information
I-27100, Pavia Italy. propagation conclude the papesee Sec. I\

available energy in storing the information: we will present
some examples that exhibit this effect. Excluding the down
conversion channgbh model sufficiently accurate to include
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I. INFORMATION CAPACITY frequencyw is employed Eqg. (5) gives[2,4,1]

The information capacity of a noiseless channel is defined E
as the maximum number of bits that can be reliably sent per Cnp= g(%) (8)
channel use. From the Holevo bou¢mke[9] and[1] for its
infinite-dimensional extensignwe know that it is given by  where g(x) = (1+x)log,(1+x)—x log,x for x#0 and g(0)
the maximum of the von Neumann entrop$(o) =0. On the other hand, in the homogeneous wideband case
=-Ti{plog,e] over all the possible input states of the (where an infinite collection of equispaced frequendcigs
channel. In our case, since is the state of a massless =kdw is employed fork € N) Eq. (5) gives

bosonic field, the associated Hilbert space is infinite dimen-
sional and the maximum entropy is infinite. However, for all Cup = B [_2E (9)
realistic scenarios a cutoff must be introduced by constrain- In2 V 3hdw

ing the energy required in the storage or in the transmissio
e.g., requiring the entrop$(p) to be maximized only over
those states that have an average eng&rgye.,

Which is valid in the limit#so<E. When applied to com-
munication channels, this last equation is usually expressed
in terms of the rateR (bits transmitted per unit timeand

E=TreH], (1) power P (energy transmitted per unit timas[1,2,10-12
whereH is the system Hamiltonian. The constrained maxi- 1 7P
mization ofS(g) can be solved by standard variational meth- R= AR (10

ods(see[11,12 for exampleg which entail the solution of
by identifying the transmission time withi w. In the next

A A section we analyze how the capacitig andC,,, are modi-
1) -—TrHo]-—=T =0 2 ' . . . : wb .
{S(Q) In2 Hel In 2 r[g]} ' @ fied by introducing nonlinear terms in the system Hamil-

. . tonian.
where\ and )\’ are Lagrange multipliers that take into ac-

count the energy constraiiit) and the normalization con-

straint Tfe]=1, and where the In 2 factor is introduced so Il. NONLINEAR HAMILTONIANS

that all subsequent calculations can be performed using natu- Nonlinear terms in the Hamiltonian of the electromag-

ral logarithms. Equation2) is solved by the density matrix pqtic field derive from the interactions between the photons

e=exd-\H]/Z(\), where and the medium in which they propagate. In this section we
Z(\) = Tr[e ™M) (3)  will employ the techniques described above to derive the

. - . _ . narrowband and wideband capacities when quadratic nonlin-
is the partition function of the system andis determined earities are present. In Secs. Il A-ll C we discuss parametric

from the constraint1) by solving the equation down-conversion type Hamiltonians in the narrowband and
J broadband regimes. In Secs. Il D and Il E we discuss a mode
E=-—1In Z(\). (4)  swapping interaction. All these nonlinearities arise in real-
I\ world systems fromy® type couplings, when one of the
The corresponding capacity is thus given by three fields involved in these types of interactions is a strong

pump field that can be considered classidd]. For all the
C=9exp-AH)/IZ(N]=[AE+InZ(M)JIn 2, (5  cases analyzed we present the capacity enhancement over the

which means that we can evaluate the system capacity onfP/T€SPonding noninteracting Hamiltonian.

from its partition functionZ(\).
In general an explicit expression fa(\) is difficult to A. Squeezing Hamiltonian

derive, but it proves quite simple for noninteracting bo;onic Consider the single mode described by the Hamiltonian
systems, such as the free modes of the electromagnetic field.

In fact, in this case the Hamiltonian is given by H=rhwa'a+ g (a")?+a2)/2 +hQ(&), (11)
H=> fiwy aay, (6) Where{ is the squeezing parameter. We empléy< o to
K avoid Hamiltonians that are unbounded from below. In

Eq. (12) the frequency)(¢) = 3(w—w?- &) has been intro-
duced so that the ground state of the system is null: with this
choice, the average enerd@yis the energy associated with
the modea in the nonlinear medium. By applying the ca-
1 nonical transformation

z=11 2 eMan=11 = " . {‘“ ¢

k me=0 k a=A coshd—-A' sinh 6, 0EZIn my:
From Egs.(5) and(7) it is clear that the capacit€ will be
ultimately determined by the spectruamy of the system. In  the HamiltonianH is transformed to the free field form
particular, in the narrowband cagehere only a mode of #\w?—&ATA, so that the derivation of the previous section

where o, is the frequency of th&tth mode and the mode
operators g, satisfy the usual commutation relations
[ak,al,]:d(k,. Hence, the partition function is

} , (12
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‘ “““\‘\\\““‘\“\\\\}R‘“ W . . . . . )
L b “3“““‘\:\\“\“\“\“\“\:““:‘{\‘3‘3&;““‘““ which is higher than the capacity of two independent single-
A N \““&8 H H —
C s Co® 55 “:“:‘:33“‘::‘3‘{{{"‘&%%\«»:‘ mode bosonic systems, given by Ef6) for £=0.[The fac-
0 s X

SOCT . .
:::““::““:3’:‘“ " tors 2 in Eq.(16) derive from the presence of the two modes

OO,
SR

A and B.] The enhancement is again a consequence of the
fact that the nonlinearity reduces the effective frequency of
the two modesw — \w?— &.

C. Broadband parametric down-conversion

Here we apply the above results to the case of two wide-
band modessignal and idlercoupled by a parametric down-

FIG. 1. Capacity increase of the squeezing Hamiltonian ofconversion interaction. The interaction is mediated by a non-
Eq. (11) in bits per channel use as a function of the energy paramtinear crystal with second-order susceptibiligf’’ pumped
eterE/#w and of the Squeezing ratiﬁw. The increase is evident Wlth an |ntense Coherent f|e|d Of amp“tud’s at frequency
from the positivity ofC—-C,,,, whereC is given in Eq.(13) andC,, wp. Assuming undepleted pumping and perfect phase match-

is the free space narrowband capacity of B). Notice that, for g the Hamiltonian up to the first order in the interaction is
high energy, the increase tends asymptotically to slbg

— 214212, given by
- + _ + Tt
H =2 [fho@ay+filw, ~ o)bib+ hié(albl +ady)
can be employed to calculate the capacity. It is thus imme- k
diate[see Eq(8)] to find the capacity of this system as + O], (17)
C= (13 where a, and b, are the mode operators of the down-
-9 ﬁ\,wT_é:z : converted modes of frequeney, and w,— wy, respectively.
Their interaction is described by the coupling parameter

This quantity measures the amount of information that can @ o
be encoded whek is the total energy associated with the &= X “kCp D(wy), (18)
modea, and a nonlinear squeezing-generating term is present Cegp Na( @) Np(wp — wy)

in the Hamiltonian: this result is quite different from the one . L . .
. . . . with n, andn, the refractive indices of the signal and idler,
obtained by using squeezed states as inputs to a linear system

(see for examplé4]). The capacityC of Eq. (13) is higher and ®(w,) the _phase mgtching function that takes into ac-
than the capacitZ,, of the linear cas€=0 sinceg(x) is an Zount th? shpatflal matchmg of the’;goiezs /'2 :]he cbry[sla]_.
increasing functiorisee Fig. 1 The reason behind this en- AS usual, the frequenc=[w,~w;—4]/2 has been in-

hancement is that the nonlinearity reduces the effective frefoduced in the Hamiltonian to appropriately rescale the
quencies of the mode§rom  to V’T—gz) so that more ground state energy. Notice that, in contrast to the case de-

energy levels can now be populated with the same energy.scr'bed in Sec. II B, the Hamlltc_)ma(rl?) couples nondegen-
erate modes whose frequencies sum up to the pump fre-
guencyw,. Canonical transformations analogous to Ep)

B. Two-mode parametric down-conversion allow us to rewrite the Hamiltonian in the free field form

Consider the two interacting modesand b evolved by

the Hamiltonian H= Ek: [~ QIAA+Fi(wp = o= QBB (19)
H=%w(a'a+b'b) +#&@’’+ab) +7Q(&), (14 With this Hamiltonian, the partition function is given by

where |§<w is the coupling constant andl(é)=w _ 1

- w?- & has again been introduced to ensure that the energy In Z(\) = % Il - oM ()

ground state is null[This Hamiltonian, like the previous

one, possesses the structure of the algebra of th@,HuU + 3 1 20

group, in the Holstein-Primakoff realizatignie can again - n 1 — e Mgy | (20

morph the Hamiltonian to the free field form using the two-
field canonical transformation where the two contributions are due to the signal and idler
modes, respectively, and the sum okes performed on all

15 the frequencies up ta,. For ease of calculation, we will
w-¢&| (15) assume that the couplin is acting only over a frequency
band{wy, ({<1) centered arouna,/2, where it assumes the
which transforms the Hamiltonian(14) to the form constant valu€. This choice gives a rough approximation of
hivw?- &(ATA+B'B). The capacity in this case is the crystal phase matching functidiw,) that prevents the

f==

A=acoshd+b' sinh g 1 |w+é
ot , In| =
B=a' sinh 8+b coshé 4
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implies negligible dispersignrests on the fact that the
Hamiltonian(17) is valid to first order in the interaction term
&, and the small dispersion which derives from this term
does not play any role in the capac(t0,11.

In this calculationE is the energy devoted to the signal
and idler modes: it does not include the energy stored in the
nonlinear medium and the energy spent to pump the crystal.
This last quantity is proportional tﬁp|2 (apart from correc-
tions of ordere which derive from the coupling In the limit
of undepleted pumping we have considered, this is a very
large contribution which overshadoviisand is not directly

used to encode information. In this respect, the system is
FIG. 2. (a) Capacity functioncy(y) (continuous ling and its  very inefficient in using the total available energy. However,
correctionc(y,¢) (dashed lingof Eq. (22) with fractional coupling  this is not the correct attitude in evaluating such a system:
bandwidth {=.5 and y=Esw/(2hw}). The capacity increase ac- qur process is analogous to the amplification of signals
complished by the nonlinearity is evident from the positivity of the \yhere, if one considers the total energy employed in the
term c;. (b) Comparison between the capaclyof Eq. (22) with process(amplification plus input energy no gain is ob-

a2y 20 . . . ] . | h h .
€=4¢£"/ w;=0.1(continuous lingand the asymptotic two-mode rate ained. The correct attitude is, of course, to consider the sig-
Casyn= (27/In 2)(wp/ Sw)\2y/3, obtained using an infinite- nals alone

frequency banddotted ling.

coupling of signal and idler photons when their frequencies D. Swapping Hamiltonian

are too mismatched13]. In the high-energy regimee ConsiderN modes that are pairwise coupled through the
>fdw, the sums in Eq(20) can be replaced by frequency Hamiltonian

integrals, obtaining N

wp(1-0)12 B T - )
nz=2 [ don| H=2 fioafay + X Ajafay =ha’ (0l +A) &
Sw 0 1 _e—)\ﬁo) =1 i%j’
2 [opl1tN2 1 (23
* Sw 1-012 de In 1 - g M=) whered is the column vector containing the annihilation op-
wp i

eratorsa; of the N modes and\ is anN X N symmetric real
2 [“r 1 matrix with null diagonal. This Hamiltonian describé$
+ So o102 do |”[ 1- e—)\ﬁw:| ' (21) modesa; whose photons have a probability amplituig: to
P be swapped into the modg,. By performing a canonical
whereQE[wp—\e"wp—4§2]/2. The integrals in Eqi21) have  transformation on all the mode operators, it is possible to
no simple analytical solution, but we can give a perturbativgewrite Eq.(23) in the free field form
expansion in the low-interaction regime, i.e=4&%/ w?<1.
In this limit, the result is derived in the Appendix and is
given by

N

H=2> fi(w+NAA;, (24)
j=1

2 ES E&
C= —wﬂ{co(—(g) +e€ cl<ﬁ—(g,§> +O(ez)}, (22 where the\;'s are theN eigenvalues ofA. Two conditions
w
p

o hay must be satisfied: the positivity &f requires that ;< w for

where the functions, and ¢, are plotted in Fig. 2. The all j, and, since the diagonalization &f must preserve its
zeroth-order ternt, in Eq. (22) gives the capacity of two {race,2j A;=0. The capacity of this system can now be eas-
broadband noninteracting modes with cutoff frequeagy ily computed ag1,2,11

in the limit of infinite bandwidth(w,— ), this function N
reaches the asymptotic behavior C— Cygym — ( € ) 2
=(27/In 2)\E/(3%dw) that corresponds t&,,, of Eq. (9) ¢ elyeT?)feN E{g w+N)/ |’ 29

for two noninteracting wideband bosonic systems. To first

order ine, the increase in capacity due to the interactida ~ where the maximum must be evaluated under the require-
given by the value o, which is a positive quantitgsee the ment thatX; e, =E. In the simple case oN=2 (where\;
Appendi¥. It can be shown that; — 0 in the limit w,— =, =-\,=¢), the maximization(25) can be easily performed
so that in the infinite-bandwidth regime no improvement isnumerically: the increase in capacity over the two-mode non-
obtained from the interaction. In fact, an infinite continuousinteracting case is presented in Fig. 3. In this case, in the
spectrum is invariant under the transformatiom,  strong coupling regime|¢— w) the capacity diverges as
—\w2-£&. As in the noninteracting broadband case oflog,;{E/[#%(w—|£)]}: this corresponds to employing for the
Egs.(9) and(10), the transmission time of the signal can be information storage only the lowest-frequency mode among
estimated as &/ Sw. The validity of this assumptiofwhich ~ A; andA,.
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and stretches by a factdt +(N-1)r] the frequency of the
Nth one. Choosing — 1, we can increase the capaciy

\\\“\“\\“\\\\“\\“\“\\“\\\“\m\“\\l..i. - libitum over the case ol noninteracting systems. In fact, in

\\\“ “\\ \\ \\\\\\\\\\\\\ A this limit a straightforward application of the wideband cal-
“‘“\\\\‘\\“‘” \ \\“m““\\‘:\“\“““\\‘\\“\““ culation of Eq.(9) givesC~ (N-1)/(1-r)C,. This result
““ ‘"‘“' must be compared with the case in which tevideband
modes are independent where the capacity scaleﬁJ%b

Clearly, an arbitrary increase in capacity is gained asl.

\

a

IIl. GENERAL CONSIDERATIONS

In the previous sections we derived the capacity of vari-
ous types of nonlinear bosonic systems. The common feature
of all these results is that the nonlinearities were used to
reshape the spectrum by compressing it to lower frequencies,

FIG. 3. Capacity increase of the swapping Hamiltonjanbits ~ where it is energetically cheaper to encode information. A
per channel ugeas a function of the energy paramelfiw and of  couple of remarks are in order. First of all, in our calculations
the coupling ratioé/w, given by plottingAC=C-29[E/(2fiw)]  the mean energi represents the energy of the modeshe
[the first term being the capacity of Eq. (25 and the second the system used to transmit information, whereas customarily

capacity of two noninteracting modes that share an engfgy one considers the input energy. Our choice is motivated by
the fact that nonlinear systems dispense energy to the
E. Broadband swapping Hamiltonian information-bearing modes, so that the input energy does not

A generalization of the Hamiltoniag23) given in the pre- necessarily coincide with the amount of energy that the me-
vious subsection can be obtained by considefihgarallel dium needs to sustain. This last quantity is a practically rel-

broadband modes in which the coupling joins all the modeg&Vvant one for the cases in which the degrees of freedom used
with the same frequency, namely. to encode information cannot handle high energsesh as,

for example, optical fiberfl4]). Notice that, in some of the
cases we have studig¢the example of Sec. Il C in particu-
(N . L . .
H= Ezﬁwk kaJk+2 2 Ajjraydyr, (26) lar), the nonlinearity is achieved by supplying the system
ko= i’ with an external energy source in the form of an intense
whereay, is the annihilation operator of thigh system with coherent beam. If one were to take into account also this

form using the procedure of the previous subsection, so thdp€nt would be evident, since the pumping energy is used
only indirectly to store the information. However, it is not

unwarranted to exclude the pump from the energy balance,
H= Ek glﬁ(“’k+ )‘jk)AkaAik’ (27) since it is used only to set up the required Hamiltonian and

not directly employed in the information processing. Finally,
where\ is the jth eigenvalue of the matriA®¥. Expressed our analysis is limited to the noiseless case. In the presence
in terms of the normal mode&;,, the Hamiltonian27) de-  of noise, in place of the von Neumann entropy in &], one
scribesN independent wideband modes. Since in this casevould have to consider the Holevo informatifith]. This is
the maximization of the forng25) is complicated, we show a highly demanding problem because of the yet unknown
an increase in capacity by considering the following choiceadditivity properties of this quantity. At least in the case of
of the coupling constan{svhich may well not be the optimal linear bosonic systems, the capacity in the presence of noise

one: was studied if4,16].
)\jk:—wkr forj:1,...,N—1, (28)
ACKNOWLEDGMENTS
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guarantee both the positivity condition on the Hamiltonian

and the trace preservation condition on th& matrices. APPENDIX
With this choice, the Hamiltoniat27) becomes

- In this appendix we derive formul@?2) for the broadband

parametric down-conversion Hamiltonian. In the low-

H=(1-1N2 2 hoAlA+[1+(N- 1)f]2 RoAPNK interaction regimee< 1, Eq.(21) becomes
k j=1

2
(30 In Z0) = S2[fo(B) + ef1(B.O+ OS], (A1)
. . Sw
Essentially we have chosen a coupling that contracts by a
factor 1 the frequencies of the firdi—1 normal modes where3=M\%w, and
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_1f* 1 Ito(Bo) _
fo(B) = BL dx '“L _e—x:|’ (A2) YRR (A5)
1 [1-eBason
f1(8,0) = Z'”{m]- (A3) B=- &flr(;lgf;’o / ﬁz;ol(glgo)_ (A6)

Notice that the zeroth-order terfiy in the expansior{Al) . .
corresponds to the partition function of two broadbandThese two equations can be numerically solved for any value

modes(signal and idlerwith cutoff frequencyw,. Replacing of v. Replacing the solution in E¢A1) and using the capac-
Eq. (A1) into the energy constraiii#), we can find the value ity formula (5) we can evaluate the parametric down-
of the Lagrange multipliek, contained in the parametg; conversion capacity as reported in E82), where

by solving the equation (=1 ( (BTN 2 A7)
Coly) = + nZ2,
IfoB) , I1BY _ o) = Loy + Tl o
J J
Pk | (7.0 = f1(fo.lIn 2. (A8)
where y= Eéw/(Zhwp) is a dimensionless quantity. By ex-
panding the solutiorB for small e as 8=8,+¢€pB,, it follows ~ Both these functions depend on the system energy only

=, (A4)

that through the quantityy.
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