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Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions
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We develop a scheme for quantum computation with neutral atoms, based on the concept of “marker” atoms,
i.e., auxiliary atoms that can be efficiently transported in state-independent periodic external traps to operate
guantum gates between physically distant qubits. This allows for relaxing a number of experimental constraints
for quantum computation with neutral atoms in microscopic potential, including single-atom laser addressabil-
ity. We discuss the advantages of this approach in a concrete physical scenario involving molecular

interactions.
DOI: 10.1103/PhysRevA.70.012306 PACS nuniber0.3.67—a, 34.50-s
I. INTRODUCTION appropriate protocol we move the marker atoms from site to

Manipulation of cold atoms in microscopic traps is one of Site while leaving the qubit atoms frozen at their respective
the major highlights of the extraordinary progress experi{?0sitions. We note that to move a marker atom only the
enced by atomic, molecular, and opti€AMO) physics over global laser parameters generating the superlattice need to be
the past few years, and has lead to important successes in thganged. In the case of se_veral mal“kef a::)lms o_r|1| a lattice
implementation of quantum information processidg. By ~ (&ranged, e.g., in a certain spatial patethey will be
employing a quantum phase transition it is possible to loadnoved in parallel by these global lattice operations. The time
large numbers of neutral atoms in highly regular patternssca!e fpr thesg Ia§t|ce movements can be of th(_a order of }he
within an optical lattice[2]. This system is very promising oscillation period in the confining lattice potential. In addi-

both in terms of quantum simulation of condensed mattepon’ two distinctive properties of the scheme are as follows.

physics, and more in general of quantum-information pro_(i) The superlattice can be realized by a very far-off-resonant

ina. H the last f Limol toptical lattice. Thus there is no requirement for a qut-
cessing. Fence, over the 1ast Iew years, several Implementayin_jependeptoptical lattice as in the case of collisional

tions of neutral-atom quantum computing, exploiting variousyates which in case of alkali-metal atoms require tuning of
trapping methods and entangling interactions, have been prgne |attice laser between the excited atomic fine structure
posed[3-19. _ _ states. This allows us to strongly suppress decoherence due
In this paper we study quantum computing with neutralig spontaneous emission in the present sch¢ineThere is
atoms in optical lattices based on the concept of “marker’significant freedom in choosing the internal atomic states
and “messenger” atoms. We consider a situation where quepresenting the qubits: in particular, we can choose atomic
bits are represented by the internal longlived atomic statestates corresponding a “clock transition.” These clock states
and these qubit atoms are stored idaage) regular array of  are insensitive to théstray) magnetic fields, again improving
microtraps realized by an optical lattice. These qubit atomslecoherence properties of the atomic qubits. Also this is in
remain frozen at their positions during the quantum compue€ontrast to moving atoms in spin-dependent lattices for col-
tation. In addition to the atoms representing the qubits, wdisional gates, where the qubit states are typically very sen-
consider an auxiliary “marker aton(or a set of marker at- sitive to magnetic fields.
omg which can be moved between the different lattice sites A second key element is that we employ resonant molecu-
containing the qubits. The marker atoms can either be of &r interactions between marker and qubit atoms, as provided
different atomic species or of the same type as the qubiby magnetic or optical Feshbach resonances. This implies
atoms, but possibly employing different internal states. Theséwvo features of the present schentig.Due to the resonant
movable atoms serve two purposes. First, they allow adeharacter combined with the spatial confinement of atoms in
dressing of atomic qubits by “marking” a single lattice site the optical lattice, these interactions can be comparable to
due to the marker-atomic qubit interactions: this moleculaithe trap spacing in the optical lattice, and thus the time scale
complex can be manipulated with a laser without the requireef operations becomes of the same order of magnitude as the
ment of focusing on a particular site. Second, the movabl®ene for the transport in the latticgii) In addition, these
atoms play the role of “messenger” qubits which allow toresonant molecular interactions can be made internal state
transport quantum information between different sites in th&qubit) dependent which gives a mechanism for entangling
optical lattice, and thus to entangle distant atomic qubits. the marker and atomic qubits, and to perform swap opera-
The first key element in our scheme is the transport otions of the atomic qubit to the marker atom.
marker (or messengeér atoms in an off-resonant time- The article is organized as follows. In Sec. Il we introduce
dependent superlattice. By changing laser parameters with @ahe general concept of quantum computing via “marker” qu-
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FIG. 1. Basic operations with a marker atom on a quantum . . . .
register:(i) forward and backward transport stefig) local interac- (b) \R
t

tion with register qubits.

bits, and we specialize it to the case of atomic qubits in O'\/ Y Y~

optical lattices. In Sec. Ill we develop and simulate a proce- o o o ®

dure to effect selective atom transport in spin-independent  (¢) swap

lattices. Section IV describes the theory of resonant colli-

sions in confined geometries, suitable for the treatment of FIG. 2. Realizing an entangling operation between distant atoms
Feshbach resonance in tightly confining traps. Section V disbased on the elementary steps described in Figa)swapping the
cusses the dynamics of one- and two-qubit operations usinfiyst qubit onto the marker atonb) transporting the marker atom
the aforementioned ingredients. Conclusions are drawn innto the second qubit and local interactier),transport back to the

Sec. VI. first qubit and inverse swap.
Il. CONCEPTS OF QUANTUM COMPUTING location j, where a two-qubit gate is performed betweddn
WITH “MARKER” ATOMS andR;, and(c) the marker is transported back to location
and its state is swapped back orfta At the end of the
A. General concept process, the marker qubit recovers its initial state, while the

The scheme we are introducing is based on a quanturfiet effect is that a gate operation has been performed be-
register formed by separately stored qubits, that never intefWeen register qubits andR;. In addition to logical opera-
act directly with each other. To mediate entangling operafions, this allows for the creation of distant entangledy.,
tions between different registéR-type) qubits, we introduce EPR) pairs that can be subsequently used for teleportation
“marker” or “messenger{M-type) qubits, that can be trans- petvyeeq different quantum memory locations, for state puri-
ported through between different register locations. Direcfication in error correcting protocols and for scalable proba-
coupling can only take place between a register and a markéilistic gates[20].
qubit. In the simplest situation there is only oive qubit
present in a certain register locati® Different operations
are then possiblésee Fig. 1

(i) TheM qubit can be transported forward and backward
throughout the string of register qubits thus being able to In the following we want to briefly outline how the above
reach an arbitrary locatioR,. general concept can be implemented. A detailed description

(i) A local interaction between th# and theR qubit  can be found in Secs. llI-V. As described above the two key
may be activated to perform single and two qubit gates. ingredients of our scheme a(@ the transport of marker

The role of theM qubits in our scheme is twofold. On one atoms and(ii) the application of a strong local interaction.
hand, they will allow us to address single register atomd/Ne concentrate in this work on an implementation with neu-
without the need for addressing single lattice sites, i.e., theyral atoms stored in a two-component optical superlattice.
act as a “marker” for a certain register atom. On the otheHowever, our scheme may be transferred to other systems,
hand, they act as information carrier performing effectiveincluding atom chipg21]. We consider single atoms stored
entangling operations between physically distant register quin the ground state of separate wells which we model as a 1D
bits. In this case they act as a “messenger” transporting quaiperiodic potentialsee Sec. Il A, with a simple filling pat-
tum information. However, to simplify language, in the fol- tern of one register atorR, every second lattice site. The
lowing we will denote theM qubits always as marker qubits ground states of the remaining sites m@y may noj be
or marker atoms. occupied by marker atoms, which can be of the same species

The interaction we apply depends on the logical state o&s the register atoms, and the tunnel coupling between neigh-
both of the involved qubits, i.e., it enables us to performboring sites is assumed to be negligible, so that marker atoms
two-qubit gates similar to a controlled phase or a swap gatdo not interact with register atoms unless the potential is
between the marker and the register atom. This in turn, conmodified. The quantum information is stored in two appro-
bined with forward and backward transport operatighs  priate internal state$0),|1) of the atoms(which will be
allows us to construct sequences of operations that enaspecified in Sec. V.
two-qubit gates between arbitrary register qubits. This works As described in Sec. Ill, the transport of the marker atoms
as follows (see Fig. Z (a) the state of qubitR; is first (i) is realized by globally changing the external lattice con-
swapped onto the markét, (b) the marker is transported to trol parameters which allows for creating a periodic array of

B. Implementation of the concept with atoms in periodic
trapping potentials
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double-well structures with different well depths. In this way field which couples resonantly the state which is shifted by
the marker atom can be transferred from its initial site intothe molecular interaction and the staté4) and|10). The
the first excited state of one of the neighboring wells, whilelaser will again affect only the sites where two atoms are
the register atom located thefas well as any other register present thus again it does not have to be focused.
atom in the latticg remains in its trap ground state. From In addition to relaxing addressability constraints, our
here the marker can be transported further to the ground staseheme bears several other advantages: for instance, it does
of the next site(which is not occupied by an atgnor back  not require a state-dependent latti@S]. As described in
again to its initial position. By repeating these transport step$ec. | that method has a couple of disadvantages and, fur-
the marker atoms can be transported to an arbitary lattichermore, the realization and stabilization of such potentials
site. This scheme avoids there being two permanently inteposes a major experimental challenge. In our scheme the
acting atoms at any lattice site. gquantum register logical state never gets entangled with the
Due to the fact that the lattice parameters are changedtomic motion, eliminating a major source of decoherence.
globally, all marker atoms undergo the same, parallel moveEven collisional phases, acquired by the marker atom while
ment. Thus, when more ground-state marker atoms are intrdseing transported over occupied lattice sites, can be made
duced at different sites, a certain lattice transformation willstate insensitive by an appropriate choice of the atomic hy-
transport all of them in the same way. By suitably choosingperfine statega typical example being Rb, for which the
the pattern of marker atoms, multiqubit operations can beinglet and the triplet scattering lengths coincj@d]), thus
carried out in parallel or with predefined patterfa ex-  contributing only a global phase to the evolution of the
ample is encoding and syndrome extraction for error correcwhole register.
tion). Our two-qubit gate concept does not requper sea
When a marker and a register atom are at the same site Wattice-type potential, but it could be realized with the same
realize the couplingii) of Fig. 1 by making use of the strong success in any controllable double-well potential. An ex-
molecular interaction between the marker and the registeample is given by high-intensity dipole traps of the kind
atom, which can be controlled by an external magnetic fielddescribed in Ref[15]. The most important advantage pro-
giving rise to a Feshbach resonaii2g]. The physics behind vided by periodic trapping potentials, such as those available
this mechanism, as well as the gate operations, will be dein optical lattices or atom chips, is the possibility to scale the
tailed in Secs. IV and V, respectively. Of course, this sort ofsystem up to a high number of qubits, which is one of the
interaction can be employed in any neutral-atom quantunessential requirements for fault-tolerant quantum computa-
computation proposal. In this paper, we will outline its gen-tion [25]. Hence, in the following sections, we shall focus on
eral features, and we will focus on its specific use in theoptical lattices as a natural context for the implementation of
context of marker-atom quantum computing. our scheme.
The principle of the single qubit gate is the following. The
marker atom is transported to the register atom we want to
address. Then the molecular interaction is “switched on” via lll. ATOM TRANSPORT IN TIME
an external magnetic or optical field, i.e., we perform a DEPENDENT SUPERLATTICES

two atoms. With appropriately detuned external lasers W&yhich can be far off resonant from the relevant optical tran-

can then perform arbitrary single qubit rotations sition to avoid spontaneous emission and is not specialized to
|0) — coga)|1) =i sin(a)e?|0), specific atomic species. The atom transport is independent of
the considered internal states and allows for usingnikré
1) — —i sin(a)|1) + coda)€¢|0), (1) States of different hyperfine manifolds, i.e., states of a “clock

transition” which are not affected by external magnetic

where the angler is given by the interaction time with the fields.
lasers(and their intensitigsand the phase is determined by In the following we will describe the laser configuration
the dynamics of the Feshbach ramp. The lasers need not b¢hich is necessary to realize the superlattice and detail the
focused down to the lattice constant. The spatial width igransport of single atoms in the periodic potential by chang-
merely limited by the distance to the next marker at@x  ing the intensities and phases of the lasers. We will further-
cept if we want to perform the same rotation there more discuss optimization methods.

The principle of two qubit gates is already shown in Fig.
2, where in step(b) we either perform a swap operation
between register and marker atdeqe,) — |e,€;) or a phase
gate|e e —exfdio(l-€)(1-€)]|€1€6), wheree; ,€{0,1}. For the realization of the superlattice potential we propose
As we will describe in Sec. V, the phase gate as well as th@sing a configuration of four intersecting lasers as was used
swap gate are again based on the tunable molecular interaicr Ref. [26]. The setup is shown in Fig. 3. Two pairs of laser
tion between two atoms at one lattice site. In the first case theeams intersect with an anglg and 6, respectively. The
phase is acquired by a Feshbach ramp which affects only thasers of frequencw, (pair a) and w, (pair b) interact with
state|00) while in the case of the swap gate we need, similaratoms which are considered as two level systems with tran-
to the case of the single qubit rotation, an additional lasesition frequencyw,. In an interaction picture, the Hamil-

A. Realization of the superlattice
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ahA, cog 2kpx sin(6y/2) + ¢35 — ¢4)

(6)

Laser pair a

FIG. 3. Laser setup. The plane containing the wave vedipfs =Uq + U1042kx SIN(6:/2) + ¢y = ¢
of a laser paia intersects the plane containing the wave vecE@;{s + U,c09 2k x Sin(6y/2) + 3 — pal, (7)
of a laser paib at thex axis. The planes can have a finite angle
between them. The angle between the lasers in each of the pairs akhereUg is merely a constant. In Sec. 11l B we will choose
6, and 6,, respectively(see also Ref[26]). it according to Eq(10). If we set 1=, d= s~ s, 6,
=1 (counterpropagating lasgrsand
tonian for the internal degrees of freedom of an atom can

then be written as 6,=2 arcsir(ﬁ) ~2 arcsir<1> = Z, )
2k, 2/ 3

1 - - . , S the potential is of the type
H=Hy+AA 0,0 - E{md[Ea(F) +Ey(NEY] + o d*[EL(N)
U(x) = U + U;c092kX) + U,COL kX — ¢) (9

= f(P)aidt
+B(De™h @ with k=Kk,=k,. The potential9) leads to a particle confine-
ment along thes axis. We will assume in the following that
whereH,=p%/2mis the kinetic energy operator. Furthermore the confinement in the transverse directignsndz is much
we introducedA, ,=w—w, p,d=w,—wp, the atomic dipole Stronger than along the direction so that we have effec-

' ’ tively a one-dimensional system. This can be achieved via
two additional pairs of counterpropagating lasers with a
higher intensity than those used to produce the superlattice
potential alongx, and with a slight detuning from the latter
(and from each othgrto avoid interference effects that

momentd (whose dependence on diatomic internal degree
of freedom is understogdnd the electric fields

EN)= 2 &gk, (3 would spoil the overall three-dimensional lattice structure
1=1.2 [26].
R B. Single atom transport
= A= 2 (ki Fre) o :
Ey(1) j§4(€]8]e N ) The transport of an atom through the lattice is achieved by

varying the amplitudedJ;(t) and the relative phaseé(t) of

the two lattice components, which is done by changing the

wheres, are the normalized polarization vectogs the field ~ intensities and phases of the lasers—see(Eq.The poten-

amplitudes, and the wave vectors have the magnitqde tial (9) then becomes time dependebitx) — U(x,1).

= |ky| = ko] = wa/ ¢ Ky = K| = |Ks| = wp/ . For the description of the transport process it is useful to
The laser pairs are assumed to be far off detuned frori¥rite the potential9) depending on two parametens(t)

atomic resonance and from each other so we can adiabafi‘—nd Up(t):
cally eliminate the upper atomic level and obtain an effective

Hamiltonian in the position representation Ug(t) = \—/[2 —uy(t) + uy(t)] (10
4 )
2 (lé EO I&-ébmﬁ) v
Hef=— —V?- + : 5 =—[2- -
According to the geometry of the laser setup the second term U(t) = v W20 + un(D)2 12
of Eqg. (5) can be written as 2t 2\u1( )+ el (12
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FIG. 4. PotentialU(x,t) at two different times and/=100E,
(with recoil energyE, =#2x?/2m). At to=0 u;(0)=u,(0)=0 (dashed
line) while att;>0 we setu,(t;)=0.5u,(t,)=0.2, ando=1,1=0
(solid ling). In the latter case the difference between the minima is
approximately 2, and the height of every second barrier is re-
duced by approximately 50%.

of e
(b) . . 0
@+Rmk x (2+32)mx

100 T T
¢(t) = o arctafu,(t)/uy(t) + lr]. (13

At time t=0 we setU,(t)=0, i.e.,u;(0)=u,(0)=0 and thus
we simply have a cosine-potential of deptfand periodicity
ay=m/ k. However, in general, the periodicity of the lattice is ©)
a, =27/ k and the shape of the optical potential can be de- @12 x (2+32)mk
signed in the following way. 100

The parametelu;(t) approximately controls the height ' ' (il
V[1-u,(t)] of every second barrier depending on the param-
eterl €{0,1}: If =0 the height of every “odd” barrier is
changed while in case df=1 the height of every “even” \J
barrier is changed, i.e., in the first case barriers with maxima of i
atx=(2j+1)7/ k and in the latter case barriers with maxima — —
at x=2jm/ k are modified forU,=0 andj e Z. By changing GG
u,(t) we can thus create a specific periodic array of double 100 N T T
well potentials. The parameteg(t) controls additionally the .
difference of the minima/u,(t) of such a double well poten-
tial, while o € {+1} determines if the leftc=1) or right (o
=-1) well is raised. -]

An example is shown in Fig. 4 fofr=0,0=1 and two (g ! s
different values fou; andu,. The potentialU(x,t) is given @+2me x  (2+32)m
in units of the recoil energy,=#%x%/2m wherem is the

atomic mass appearing in the time-dependent Schrédinger ™™ _
described in the text. Also shown are the square of the absolute

U(x 1a)/E,

—_
o
~

(iv)

FIG. 5. lllustration of stepsi)—iv) of the transport process as

equation ) ) . o
value of the single particle wave functions of the atom which is
. d #? d? transportedi.e., the “marker atony, |#™(x)|? (solid lineg, and of
'ﬁd_tlﬂ(x,t) =- %&lﬂ(x't) +UXD#X) (14 the register atom which is supposed to remain at its lattice site,

|yR(x)|? (dashed lines The example shown requires=1 and|

which has to be solved for the study of single atom transport=0.
The elementary steps of the atom transport are done by tun-
nelling in the double well potentials. An example is shown inthe process described here is to transfer the left atom into the
Fig. 5 foro=1,1=0, andV=100E;: first excited state of the right well without affecting the other

At the initial time t=0, whereu;(0)=u,(0)=0, we con- one. This can be accomplished by changing the parameters
sider two neighboring wells, with one atom in the motional u; »(t) according to the following steps, which are illustrated
ground state of the left we[Fig. X@)]. The probability den- in Fig. 5.
sities|yM(x,1)|? of the atom are indicated by the solid lines (i) Between the times=0 andt=t, we raise very rapidly
in this figure. The superscripdl indicates the wave function the minimum of the left well, such that its ground state
of the atom to be transported, i.e., the wave function of thecrosses in energy the right well’s first excited state.
“marker atom” as introduced in Sec. Il. Also shown in this (ii) Inthe time interva[t,,t,] we lower the central barrier
figure by the dashed lines are the probability densities of thelown to a point where the atom can tunnel from left to right
“register atom” [¢R(x,1)|?, initially located in the ground while at the same time we start to lower the left well.
state of the right well in this example and which is supposed (iii) In the time interval[t,,ts] the barrier is raised up
to remain at its lattice site during the transport. Our goal inagain while we continue to lower back the left well.
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(iv) During the time intervalts,t,] we restore the initial 120 P —— ] P

potential shape. 100 fF———-——"" E———
By doing stepgii) and(iii ) adiabatically the atom stays in ool 1 - .

the second excited state of the double well potential which isi 60 E i

att; the ground state of the left well andtatthe first excited &

state of the right well. Thus the atom is transported from left 2 4or i i 1

to right. 20 | . = =
An effective transport procedure requires appropriate oF -

“pulse functions”u,(t) and u,(t) while the direction of the 20 . .

transport is governed by the parametet$. Let us assume mag 0 mag  -may 0 may

for simplicity that the marker atom is located initially at a @) k () k

site kx;=(2j+1/2)m,j € Z. Then the process shown in Fig. 5
requireso=1 and| =0 while for a further movement to the V=100 E,,o=1,I=0. (a) Initial values of the lattice parameters

motional ground state on the right we have toet-1 and .[u1(0)=u,(0)=0]. (b) Band structure during the transport process

|_=1 and to pe_rform the same pulse functions backward; “'(‘ul:o.gg U,=0.13. The two figures correspond to the situations
time. For moving an atom from the ground state to the firSsnown, in Figs. fa) and o).

excited state of the left neighboring well we have to set

=-1 andl=1 and to apply the forward pulse functions. In

this case a further movement to the left ground state requires G(q t) = Ug(t) 8y 0+ Ul_(t)(52 + 65 _0)

o=1 andl=0 and the backward pulse function. Note that the ' 4t g MTaea ek

abrupt changes of the phagetake place whileJ, is zero,

i.e., when the corresponding lasers are completely blocked

off from the atoms. Every transport of an atom across the

lattice can be divided into these four elementary processegyherea; with i=0,1 are the lattice constants, i.ey=/ x if

Since the pulse sequence is in all cases the sameept for  \y,=0 anda, =27/« if U,# 0. By assuming periodic bound-

time reversglwe can focus in the following on the example ary conditions the Bloch vectok gets quantized, i.ek

shown in Fig. 5. _ =2nm/May,n=-M/2,... M/2, whereM is the number of
The feasibility of our quantum-computing scheme de-|attice sites. Given the functions(x) we can furthermore

pends on the time scale on which quantum operations can k& nstruct Wannier functions which are localized at lattice
performed. Clearly the latter is directly connected to thesitesxi

speed of the transport process. In this respect digpnd L

(iv) can be performed over much shorter times than &tep n _ L ik(x-x;), ,(n

and(iii ), which are limited for example by the energy differ- w(x-x) = \ﬁzk: e )uk (o (18)

ence to the other motional states. In order to examine adia-

batic transport during steii) and(iii) it is thus necessary to These functions are needed, for example, as initial states for

study the instantaneous eigenenergies of an atom during ti§@lving the time-dependent Schrodinger equatioh. Since

transport process in dependence on the parameters we céhour considerations the lowest bands are always practically

control, i.e., the pulse functions ,(t). flat, i.e., the Bloch states for a given band are approximately
Since U(x,1) is periodic, we can calculate the instanta- degenerate, the Wannier functions are also in good approxi-

neous eigenenergies and eigenfunctions of the single particf@ation eigenstates of the Hamiltonian and thus dispersion of

Hamiltonian by introducing Bloch functionsw(k”)(x) the wave packe_t durmg the time evquuoq is neg!lglble.

:e‘kxuf(”)(x) with Bloch vectork and band index. In Fourier Equation(15) is a linear system of equations which can be

space the stationary Schrddinger equation takes the form solved nur_nencally after tru_ncatlrugat suff|C|en_tIy h|gh va_l-
ues. The instantaneous elgenenerg?ég(t) gained in this

#2 o) - ) o) way are very important to find an adiabatic passage for the
%(q— K2 (a.t) + > Ul - o' T (q.t) atom transport. An example for the band structure is shown
q in Fig. 6. As can be seen from this figuré,is sufficiently
- E<k")(t)l~1<k“)(q,t), (15) large to be in a tight binding regime, i.e., the lower bands are
flat and there is no tunneling between different wells.
where For an efficient adiabatic transport the pulse functions
have now to be chosen such that the corresponding energies
E(k”)(t) behave in an appropriate way during the transport
steps(ii) and(iii), i.e., one should, for example, avoid level
crossings of the initial energy with the energies of other
states. An example is shown in Figay.
Ux,t) = > €T (qt), q= zﬂT, ne 7, (16) As already mentioned the Bloch states in the lowest bands
i are almost degenerate so we can restrict ourselves to an ar-
bitrary value ofk, e.g.,k=0. The upper solid line in this
and figure corresponds to the “path” of the atom to be transported

FIG. 6. Band structures for two different values wf,u, and

Us(t) .
+ %(e' W5 +e08, ), (17)

1(a
(gt == f dx €™uP(x1),
aJo

q
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tion (14) by using the Crank-Nicholson scheri7] where
as initial statey/) and final statey4, we choose Wannier
functions(18) which are located in the corresponding wells.
The superscripf € {M, R} indicates again the wave function
of the atom to be transportgadnarker atom and the atom
which is supposed to stay located at its wedgister atom

In case of the example of Fig. 7 we get'=99.91% for
propagating the marker atom wave function af®
=99.98% for propagating the register atom wave function
from t; to t3 in a time T=t3—t;=20/w,. In the case of ru-
bidium (w, =27 X 3.8 kH2 this would correspond to a time
T=0.8 ms and for sodiurtw, =27 X 25 kHz we would have
T=130 us. For the optical superlattice described in R26]
a laser power oP=3 mW was sufficient to create a maximal
potential depth of B; < 60Ex for 8’'Rb. Keeping the ratio of
laser intensity and detuning constant we haye- \P. For a
potential depth of roughllJ; <50Eg which is required in the
above examplg¢see Fig. {c)] we can estimate the required
U] (i (i (iv) maximal laser power to be mereR~8-9 mw.

Eo"yE,

,\
Q
=

T Pulse functions

—

Energy/E,

—_—
(2)
~

o)

C. Pulse optimization

—— If we relax the constraint of adiabatic transport during

0 oty ot ot ot step(ii) and (iii) the process described in the previous sub-

(@) ot section can be significantly accelerated. In this case the pulse

sequences have to be engineered in a certain way which can

FIG. 7. Adiabatic atom transfer between lattice sit@ginstan-  pe done by using quantum optimal control techniques as de-

taneous eigenenergiﬁ'ﬁo(t). The upper solid line corresponds to tajled, e.g., in Refs[28-3(Q. Thereby the evolution of a

the motional energy of the atom to be transported and the |°We&uantum system governed by a set of control paraméiters

solid line porresponds to the re_agister atom initially in the right well our case these are the functiams,(t)] is tailored to reach a

(cf. see Fig. 5 (b) Corresponding control parametarg,. (c) Am- predetermined target staig, with optimized fidelity within

litudes of the lattice component&) Phase difference between L X . .
PiL P .@ : . . .a specific timel. For notational convenience we will denote
lattice components. The time axis is given in units of the recoil.

frequencyw, =E,/#. The time intervalt;,t3] is not of the same n t_lr_]ﬁ f%lloyvmg th? tltmet.:t.l ast:trC]) an?g:}i aslffr;r'
scale ag0,t,].[fo.t]. e basic idea is to minimize the infidelity of the process

with the constraint that the Schroédinger equation has to be
. , . . fulfilled. This amounts to find the stationary point of a func-
initially located in the left well while the lower solid line jon4| jeading to a set of equations for the wave function and
indicates the path of the atom located in the right well. Theauxiliary statesy® which are introduced as Lagrange multi-

initial depth of the potential wells i¥=100E, leading to &  jiers. In our case this functional takes the form
“trap frequency” in a single well of about 20, (o, =E,/# is

the recoil frequency Keeping the height of the barrier con- E(W,lﬁR,I-ﬁMyw,XM,XR,ULUz)

stant we raise the minimum of the left well such that the )
ground-state energy of the left well crosses the first excited _ _

state energy of the right we[lstep (i)]. Then we proceed _AE% R 1 dx Wf?“(x)w (x.T)

according to step@i) and(iii ). By reducing the height of the .
central barriers the trap frequency decreases and by adjusting 2R dt | dx x.0)
appropriately the pulse functions we avoid that the solid lines 0 '
cross the dashed lines. After tintg the original potential
shape is restorefstep(iv)]. The pulse functions; 5(t) used : i *
for this example and the corresponding time-dependent x| PxD* ﬁH[ul(t)’UZ(t)]w(x’t) .+ (20
physical relevant parametelh ,(t), ¢(t) are shown in Figs. _
7(b)=7(d), respectively. with
The fidelities of the processes, given by 52 @2

H(uy (), ux(t) = - omae F Ux,ug(t),ux(t), (2D
where the last term in Eq21) is the potential(9), which
depends on the control parameters. As can be seen from Eq.
are numerically calculated by solving the time-dependent20) we are looking for a minimum of the sum of the infi-
single particle Schrédinger equation in position representadelities of the process for the marker atom and the register

2
1

(19

FA= ‘f dx ;bA*(X,T)‘/@n(X)
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atom. Setting the derivatives with respect to the arguments o', 1| () E (i) 5 (iif) (iv)
L equal to zero leads to the following set of equations: Sos| /\‘/VW\\

i7gA(x,0) = H(uy (1), up(0) A1), Ae{RM}, (22

n

o

o
1

Pulse functi
o o
[SES
LI

—
QO

~—

o

i (%, 1) = H(uy (), u(0)xX (1), Ae{RM} (23

with conditions

23
o O O

YAX,0) = Yhi(X), (24)

Energy/E,
<N WA O
S S

o

—
o

=
o

XX T) = ¢ (%) f dx ¢ ()Y (X, T), (25)

N

and - 15 | | 3
s 1 7
0=-2Im X Kiu®.ut), j=12 (26 05 1
AciMR} . \’\Mr/\_/\_,—/
0 ]
with 0 wty wty wty wly
() ot

JU(X,uq(t),ux(t))
A _ 1 2
KJ (Uy(1), (1)) = f dx :,[ﬁ(x,t) f aui(t) YA( . FIG. 8. Nonadiabatic atom transfer between lattice sitap.
Control parameters, ,. (b) Corresponding amplitudes of the lattice
(27) components(c) Phase difference between lattice components. The
otrme axis is given in units of the recoil frequeney=E,/#. The

These equations are the basis of the optimal control al
q P g time interval[t;,t3] is not of the same scale &8,t,],[t3,ta]-

rithm which minimizes£ with respect tou;. Thereby we
solve EQ@s.(22) and (23) numerically by introducing a dis-
cretized time axis with time stefit and by using the Crank- Figures &b) and §c) show the corresponding physical pa-
Nicholson scheme. For the sake of completeness we brieflifameters. As starting valueé?)z(t) we took the pulses of the
describe the algorithm we use here. The following procedureadiabatic examplé¢see Fig. 7. The use of the optimized
called immediate feedback control, is guaranteed to give @ulses leads to a reduction of the transport time down to
fidelity improvement at each iteratid81]. T,=5//Eg, which corresponds to 200s for rubidium and
The Schrédinger equation@2) are integrated fromi=0  to 32 us for sodium with a fidelity ofF™M=FR=99.99%.
to t=T leading to:ﬂ*(x T) with an initial guess for the con-

trol parametersu (t) At this pOInt an iterative algorithm IV. COHERENT RESONANT COLLISIONS
starts during which the controug (t) are updated. IN A TRAP

Let us assume that we are in thth iteration. Taking the
controls u(”)(t) Egs. (23) have to be solved backwards in
time, i.e., fromt T to t=0, with “end values'(25) which can
be interpreted as the part @f\(x,T) that has reached the
objective. Given the solutiong®(x,0) the functionsy(x,t)
and ¢/(x,t) [with initial conditions (24)] are now again
evolved forward in time while the control parameters are

The coupling scheme we are proposing can be imple-
mented either in dipole-force potentials, such as optical lat-
tices[32], or in static electromagnetic traps, such as atom
chips [21]. Performing gate operations as described in Sec.
IV requires a strong molecular interaction between register
atom and marker atom. Atoms can be coupled to molecular
states either by means of Feshbach resonaif2gp or

updated during each time step according to through Raman photoassociation laser pulss. For the
(n+l) o A ) o eake qf concreteness, we focus here on Feshbach resonances
O =y (t)+m|m > KU O,u ). in optical lattices—however, all of our arguments can be
Ae{MR} adapted, e.g., to Raman photoassociation on atom chips. We

(28 consider®’Rb atoms trapped in a two-component optical lat-

During the forward evolutiony(x,t+At) is calculated using tice (see, e.g., Ref26)).

the controlsu (t) while ¢(x,t+At) is evolved according to
u(lngl)(t) The we|ght)\(t) is used to enforce fixed initial and
final conditions on the control pulses. Given these solutions A schematic picture of the Born-Oppenheimer potential
we go on with the next iteration. describing their interaction in the relative coordinatds
The results of such a calculation after 135 iterations areshown in Fig. 9. Negative values of the excitation numier

shown in Fig. 8 which corresponds to the situation of Fig. 5:label bound molecular eigenstates of the dimer system, while
Fig. 8@ shows the control parameters for transferring thepositive v values denote unbound trapped two-atom states.
marker atom to the first excited state of its right neighboringSuch a potential exists for each collision chanj| corre-

site while keeping the register atom at its initial location.sponding to the relative motion and hyperfine angular mo-

A. Feshbach resonances in confined geometry
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A 20 ~ T T T T T

AN —- Diabatic basis
15+ N — Adiabatic basis| —

Interatomic potential
S

Energy (trap units hv)

Ramp rate = 5 G/ms

_ . ! . 1 . ! . ! . ‘
105 2 4 6 8 10

Time (trap units (27TV)")

FIG. 9. Interaction of two atoms in an external trap. The two
curves schematically describe the Born-Oppenheimer potential for FIG. 10. Adiabatic(solid) and diabatiqdashed energies of a
two scattering channels around a Feshbach resonance. 6-level expansioiimolecular resonance level plus five trap levels of
an isotropic 100 kHz trapwith a linear ramp of magnetic field with
slope 5 G/ms. The adiabatic energy levels show a set of avoided
crossings. We use the Feshbach resonance level near 100 mT. The
coupling matrix elemenY, is 0.884hv for this trap.

mentum quantum numbers of the two colliding atoms.
Feshbach resonances occur when a bound Btgtev =-2

in the example showrcrosses the dissociation threshold for
a state having the same quantum numtj2g$ while chang- ] )
ing an external magnetic fiel. Close to resonance, the ©MS. Not only can the scattering length be varied over a

scattering length varies as significant range—the atoms can also be adiabatically
coupled into a molecular state. An example of this sort of
Ay(B) = Ag| 1 - Apg ) (29) process is shown in Fig. 10. Here, the eigenvalues of the

p bg B-Bg ' interacting Hamiltonian are shown for a six-level model in-

. _ cluding the five lowest unbound trap states plus the resonant
whereA, is a nonresonant background scattering IenBih,  gtate. The latter is ramped across threshold by applying an
is the resonant magnetic field, add; is the width of the  oyternal magnetic field having a linear dependence on time.
resonance. The resonance energy varies almost linearly withyih the so-called “diabatic” energi@ise., those obtained by
the field neglecting the couplings to the resonanard the adiabatic
£4(B) = S4(B-Bp), (30) ongs(i.e., the actual ei_genv_alues of the fuI_I coupled Hamil-
tonian) are plotted against time for a certain ramp rate. The
with a slopes;. We are interested in the dynamics of such aimportant point to notice is that the ground state of the rela-
system in a confined geometry. Following Re4], we shall  tive motion is adiabatically connected to the resonant state.

model it by the effective Hamiltonian Therefore, if the atoms are prepared in their relative-motion
B ) ground state and the resonance state is ramped across thresh-
Hp=e4(B)Ing)(ngl + 2 [ofinfo)v] + (Vilu)ingl + H.c)l, old from above, the atoms are transferred into the bound
1

state, whose energy depends on the magnetic field—and the
(31 process is actually reversible. This mechanism has been used

where thev)'s are the trapped relative-motion atomic eigen- o' the cr?atlon of thIGCUIeS in ultracold ?a$6§—4a,'afnd
states of an isotropic harmonic oscillator trap having freS Very relevant in the present context of quantum informa-

quency. The couplings to the resonance are tion processing d_ue to its mhg_rent state-depenc_ient nature.
Indeed, the coupling to a specific resonant sta,géz is only
V'f: 2\ V4v + 3 ayyS4l T (32) effective for a particular entrance chanf@}, while in gen-

. - . eral all other combinations of atomic hyperfine stathat is,
with a,g=Apg\mw/fi,65=Agss/ (fiv). In a different geom-  of |ogical qubit states in our capwill be unaffected by the
etry, for instance in an elongated trap characterized by a ratigesonance. Thus the resonance-induced energy shift will
y between the ground level spacings in the transverse and ause a two-particle phase to appear only for that particular
the longitudinal potential, the couplings can be calculated bywo-qubit computational basis state. We will see in the next

projection on the corresponding eigenstatese Appendix section how to use this effect in order to achieve a desired
A). Accurate values for the resonance parameigrandB, C-phase gate.

as well as forA,,, are now available from both theoretical
calculations and recent measuremdts.

The possibility of controlling the resonance energy via an
external magnetic field, as described by Ef), provides a We will identify our qubit logical states with the clock-
straightforward way to steer the interaction between the attransition states

B. Choosing qubit logical states
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mp=—2 =1 0 | +2 T T T T T T T T T
- M| — I1,0>+1,0> 1
— T } F=2 | — 1L1>+1,0> ]
w Wg &
<
R
|0) |z) EE:
FIG. 11. Internal level scheme for a single atom: qubit and aux- Sl , N : _
iliary states. I . ; |
0)=|F=1m=0), [H=[F=2m=0) (33 A R
. 0o / 1500 . 1000
and the auxiliary state as B {Gauss)
[X) = |F=1,mg=1). (34 400/\ T T T T ] /
The main advantage of this choice is that the qubit states ar 201 A-16 mG - 5 85 G
not sensitive to the magnetic field, and hence not subject t¢ o0
decoherence due to its fluctuations. 00l 1L
The level scheme for a single atom is shown in Fig. 11. ol 10
When we consider two atoms, the relevant level scheme is *°L__1 | U S \ \ \ \

[ L | | ! | !
described by Fig. 12 if they occupy their relative-motion wess dueks - d0ede seo216 386280 so28e

ground state. Appendix B shows that this is indeed the case FIG. 13. Dependence of the scattering length®@b on the
for two bosons stored in the ground and first axial excitedexternal magnetic field for collisions in channéd®) and |0x).
state of a cigar-shaped harmonic trap. In Fig. 12 the resonant _ _ o _
levels|n,) are also shown, which are used to induce energyur system. Preparing all atoms in an initial state by optical
shifts for the purpose of gate operation as described in theumping requires no single-qubit addressing and can be per-
next section. Indeed, in a confined geometry, the coupling téormed with standard techniques. To operate single- and two-
such molecular states can induce dressing of the trappetHbit gates we need to introduce marker atoms in the lattice.
eigenstates with a half splittinge®—controllable, by vary- These can be useful even if their absolute position is not
ing the external field, up to a maximum value equa| on resoaccurately known in the first pIace. Indeed, what matters in
nance to the interaction strengti—as shown in Fig. 12 for our scheme is their position relative to qubit atoms, which
the collisional channel§3)=|00), |0x). can be established by our togtsee below. As the next step,
Our calculation with a realistic molecular interaction po- according with the above discussion, performing a specific
tential yields, among others, two resonance®gt386 G  algorithm will require a certain pattern of marker atoms, to
and Bgy,=407 G, having widthsAy,=5.7 mG and Ao, D€ consistently prepared without addressing of single sites.
=16 mG, as shown in Fig. 13. These will be employed in theThe (conceptually simplest option to achieve this goal could

following to effect logical gate operations. be to directly transfer onto the qubit register an array of
marker atoms trapped in an initially separate lattice potential
V. QUANTUM OPERATIONS of matching wavelength. However, this would require sig-

nificantly high precision, stability, and uniformity in super-
Let us now examine in detail how to use the featureSmposing the two independent potentials. This is in practice

described above in order to perform quantum computation ictually a very similar requirement to that needed for state-

dependent lattices, which we aim at overcoming. In contrast,

our adiabatic transport scheme requires a single, state-

independent potential. Moreover, relying on the level struc-
Qo ture of the lattice bands, it is less sensitive to details of the
potential shape such as its uniformity over a large number of
sites. Based on these features, a viable option would be to
prepare the marker atoms either in a periodic fashion, by
means of a superlattice tuned to the appropriate transition, or

0} 10}

.f\ ER —_— I?i in anad hoclattice region, spatially separated from the one
Inos) |0x>‘: - 55 [noo) 100} 3 00 where computation has to take place, to be subsequently
o 2&6% 2A¢ loaded into the latter via the transport mechanism detailed

above. The separation between the two lattice portions could

FIG. 12. Internal level scheme for two coupled atoms: levelsbe adjusted in time in order to transfer a desired pattern of
involved in single-(left) and in two-qubit operationgright). The ~ marker atoms. Depending on the particular algorithm to be
Raman transition$); (),) used for single{two-)qubit operations executed, some of them could be prepared in the auxiliary
are shown. state|x) and then be used to “catalyze” single-qubit opera-
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tions on register atomgsee Sec. V A and some others in |ox) — - sin(QllzxfEt)|1x>+ cos{QJZvEt)e“PIOX). (40)
the logical statd0) or |1), to be used as “messengers” to ) ) ) o
mediate two-qubit operations between pairgraft necessar- In this expression we included a phagawhich is the(ad-
ily neighboring atoms(see Sec. V B justablg phase accumulated during the adiabatic ramping
process of the magnetic field.
A. Single-qubit gat
ngie-qubIt gates B. Two-qubit gates
In the single-qubit case, the relevant resonance field is

Bow While the lasers couplx) with the lower dressed state . .
: - : - state of the logical subspace spanned|®@yand |1). This
connected tq0x) with an effective Rabi frequencd, as in time, the field is ramped acro$,, and the Raman lasers

the left part of Fig. 12. The process is resonant only if the . . ;
marker atom in stat&) is present. In this way, specific sites couple for a timer—with Rabi frequency(},—the lower
where the single-qubit operation takes place can be selectéjlfessed state to the degenerate. two-atom Ie}Oé)sant_ﬂlO}
even if the addressing laser cannot resolve them spatiall Ight part_of Fig. 12. In a rotating frame the Hamiltonian
from neighboring sites. Moreover, the two-atoms state re- an be written as

mains always factorized, whence possible magnetic fieldy = 5(/01)(01] +|10)(10() + 28/11)(11| + £o0(B)|M)(M|
fluctuations, affecting the stat&) (unlike |0) and |1)) will

In the two-qubit case, we take the marker atom to be in a

yield only a global phase. In a rotating frame the Hamil- + VMO0 + |00MM +& 0001 +100)(10 + [11
tonian which describes this system takes the form o ([MX00 +[00}MI) 2 (10004 + 0010/ +[11)
H = S{10(1x] + e0x(B) MM + VE(0x)(M| + [ M)(0X) X4+ [1pad +He). “1
O The notations are the same as in E8p). We perform now
+ —(|0x)(1x| + |1x){0x]), (35  the same procedure as in the case of the single qubit rotation,
2

i.e., we tune adiabatically the magnetic field to the Feshbach
wheres is the Raman detuning of two copropagating Ramar/€S0nance, i.e.09(Bog) =0 while ,=0. The Hamiltonian
lasers,V%* is the coupling between the molecular stiwy, ~ With diagonalized molecular part reads

and the dissociated staféx) andeq,(B) is the energy of the H = 8(01)(01 + [10)(10]) + 28111)(11] +V80(|S.%<520|
molecular statgwe set the energy of thi@x) state to zerp

At the beginning of the operation the lasers are switched off — |20 + Q—2—[(|50(§ +[29)(01] + (IS +(S2%)

(i.e., Q,=0) and the external magnetic field is adiabatically 22
tuned to the Feshbach resonance, kg(B)— &qy(Bgy) =0.
This leads to a splitting of the two particle sta@a) in two X(10 +[11)(01] +|11)(10 + H.c], (42)
new eigenstates where
% _ L 1
8= 75100 £[Mm). (36) 85 =75 100 £ M)). (43)

These states are indicated in the lefthand side of Fig. 17hese states are shown on the right-hand side of Fig. 11
(here we haveAe™=V® since we are on resonancécor (oW we haveAe™=Vg?). Taking the Raman detuning to be

finite laser power, in this basis the Hamiltonian takes thed=-Vo° amounts to the fact thaif Q,/Vg°<1) the states
form |12y and|SY°) are effectively decoupled from the remaining

three states. Projecting out the uncoupled states the effective

Q Hamiltonian for the remaining three level system then takes
H = 8l 10)(1x] + VR (SPH(SY] - [0S + ;ﬁa[(ls% the form
+ S + | OS]+ ()] (7 H=- VRS + 0101 + [10(10) + %(ls‘iwml
\‘J
The Raman detuning is set &= -VX and if Q,/Vo*<1 we o o
can project out the statts). This yields the two level +(S20(10] + [01)(S2 + [10¢(S2Y). (44)
Hamiltonian If we introduce the vector notation

) | — (S| 4),(01| ),(10| )" and disregard global phases
H = = V(| 1x)(1x] + |S2N(S™)) + 2—%(|$9)(1x| +] (X)), the time evolution operator of this system can be written as
V

2c(t) —is(t) —is(t)

38
9 Ut)=—| —is(t) ct)+1 c(t)-1 (45)
i.e., if we finally tune the magnetic field out of the Feshbach —is(t) ct)-1 c(t)+1
resonance again we get the transformation
_ o with c(t)=cogQ,t/2) and s(t)=(v,)(Q,t/2). If we apply a
|1x) — cogQ4/2v2t)|1x) — i sin(2,/2v2t)€'?|0x), (399 Raman pulse of duration=2(2n+1)7/), and finally tune
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the magnetic field out of the Feshbach resonance again, we no 10
get the following truth table for the operation: g‘g 12
00y — - €¢|00), §§ 14
01) — - [10), 1
R \_\/:
110 — ~|0), 2 o -
/00 0 . . . I
112y — €Vo 7|11y, (46) 1
where we again included the phagenow accumulated by 5%05
state|00) during the ramping process due to the interaction A e
energy shift, whose value can be adjusted by controlling the o
magnetic field. Forp=27 and V5°7=(2m+ 1) m—which im- 0 02 04 06 08 1
poses a commensurability conditiéh,/V3°=2(2n+1)/(2m Time (in oscillation periods)

+1) between the Rabi frequency and the Feshbach energy
shift—a swap operation is performed. In addition to being an
essential ingredient for entangling gates between distant

oms as detailed in Sec. Il, such a swap operation can great
help in the task of nondestructive qubit readout. To this aim,

the quantum state of an atom to be read out at the end of a , . .
computation could be simply swapped onto a marker atom t§°ne to decoherence, as random fields typically affect dif-

be subsequently transported to a different lattice regioﬁere”tly the two logical states. The same is true for internal-

where measurement can take place without physically disstate entanglement, if the qubit states are chosen with differ-

turbing the register atoms, which can later be reused for logi€Nt Landé factors and, unless the latter vanishes for both

cal operations. states, they will be sensitive to magnetic-field fluctuations.

On the other hand, if no Raman lasers are presentand [N this paper, we introduced the concept of “marking”
=m, a C-phase gate between register and marker atom igubits via molecular interactions which allows for relaxing a
obtained. A two qubit gate between distant register atoms capmber of these constraints for neutral-atom quantum com-
be realized as described in Sec. II. Note that laser addressiyting- We have presented a scheme that enables quantum

of single qubits is never required throughout the proceduredates and information transport in a quantum register, even
The magnetic ramping process can even be performeﬂi‘ough requiring neither single-site addressing by externally

nonadiabatically, provided that the entire population is re-applied fields nor state-dependent external potential. More-

turned to the trapped atomic ground state. This can be a@Ver, qubit states with the sanieven vanishingLandé fac-

complished via a quantum optimal control technique in anal{0f €an be employed; and the overall speed can be of the
ogy with the above discussion for the transport process. Th@rder of the inverse atomic trapping frequency. We have
control parameter in this case is the resonance engjgy shown how th's schgme can be |mplementgd In_two-
which can be adjusted by varying the external magnetic field®©mPonent optical lattices, whereby the mechanism used to
Care has to be taken in optimizing not only the absoluténark atoms is the molec_ular interaction respon_5|ble fqr
value of the overlap of the final state onto the goal state, buf €Shbach resonances, which are currently a subject of in-

also its phase. Figure 14 shows the optimization results for tense experimen_tal rgsearch in the field of cold atoms, where
a 100 kHz trap with a ratio o, /»=10 between the trap molecule formation via control of Feshbach resonances has

frequencies, in they,z directions andv in the x direction. ~ Peen recently achieve@7-432. In other words, our proposal
The final infidelity is about X 1075 in this case. relies on techniques that are presently being developed, and
represents therefore a feasible candidate for the implementa-

tion of quantum information processing with neutral atoms
VI. CONCLUSIONS in optical lattices.

When it comes to using neutral atoms for the purpose of Finally, the analysis presented here is limited to one-

quantum-information processing, besides the well-knowrflimensional systems, basically with a single marker atom.
general criteria formulated by DiVincenZ@5, the fulfill- Further conceptual development is possible, for instance in

ment of various practical requirements, specific to atomicEXPIoring the interplay between several marker atoms on the

implementations, can make a difference on the road to ex3ame lattice, or the extended flexibility given for instance by

perimental realization. For example, laser addressing ofigher-dimensional geometries; this will be the subject of

single qubits, though being theoretically trivial, is limited by fUture investigations.
diffraction, imposing a lower bound on the actual spacing
between qubits. Furthermore performing gate operations in
state-dependent potentials creates entanglement between in-We gratefully acknowledge inspiring discussions with E.
ternal and external degrees of freedom, which in turn isTiesinga and S. Sklarz. This work was cofinanced by MIUR

FIG. 14. Two-qubit(C-phasé gate operation: resonance energy
oo (top; off-resonant before and after gate opergtiaverlap be-
ween evolved and initial statécentej, accumulated phase
Yottom.
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(A1)

where a=\mv/#, I'(n) is the Euler Gamma function,
4F1(a,b,2) is the Kummer confluent hypergeometric func-
tion, andY7*(6, ¢) are the spherical harmonics. The normal-
ized eigenfunctions in cylindrical coordinatéwe assume

The normalized eigenfunctions of a three-dimensionathe same frequency in the longitudinal direction, and a
(3D) harmonic oscillator in spherical coordinates are transverse frequency, a factory highen are

APPENDIX A: DYNAMICS IN A CIGAR-SHAPED TRAP

(ap) mlgmet "2 5 COCON(m+i+j+1
Bl (0. $2) =~ = Hy(a2) 1F (= €,/m | + 1, ya%p?) Al

V2ne (Nla)® ij= o' Fjt(mg + 1)i(me + 1), ymd+t?
(A2)

where H,(x) are the Hermite polynomials anth);=I'(a |yr,) for both particlesX andx are the center-of-mass and
+i)/T'(a) is the Pochhammer symbol. We are interested irrelative coordinate. Denoting thth particle’s state by --);,
s-wave scattering processes, so we restrict our analysis to tiiee symmetrized states can be written as

eigenstates witlf =m,=0 and obtain
‘ 12)1/0)2 = [0) 1| 1)2 [ b 1| 02 = | o1l ¥1)2

“Ij O> = —
%l-i-l 0, d(DSph 0 =0, (A3) Yo, V2 V2
1)1]0)2 —[0)4]1),
(@Y JOPD = (- 2)-w’y23-W(2v) Wi w11 Tp v (B1)
—H)M2i+2)+1)!!
33! aldda + o)l v
S @rDrE+)l ¥, 2[00, WAz g 1),
1 3. 3y-1
Fl(j+—,i+j+—,j+—,7—) (82)
2 2 2 y+1
—_ i1 —_iV1 i+j+3/2
=Dt w=Dt(y+1) W, )= |1)110)5 + [0)a] 1)z || ho)2 + [thoda] o)
(A4) | 1,o> = 5 \'E
The coupling matrix elements in a cigar-shaped trap with _|D4|0y, + |0>1|1>2 B3
anisotropy factory# 1 are computed as - \,2 |Yx o), (B3)
VI = 2 (@5 = D), (A5)
’ Y102 + |Yoda|Yn)
¥y = |1>1|1>2| valtoo 2| ol 2= (1)1 Dl )l o
where the spherical matrix elementg(y=1) are given by (B4)
Eq. (32).
When we apply a static external magnetic field correspond-
APPENDIX B: CONDITIONAL LEVEL SHIFT ing to the Feshbach resonance for @@ channel, the inter-

IN A QUASI-1D TRAP action only affects the sta{e; _,), dressing it with a split-
ting 2V9%(y) that can easily be of the order #i assuming a
Let us consider the three-dimensional s{dltg,) of two  ratio », /»=10 of the trap frequency, in they,z directions
spin-1/2 bosons in a harmonic trap. In thalirection, one andw in thex direction. This means that the stad,|0), can
particle is in the trap ground stateéy), and the other in the be discriminated spectroscopically, allowing for different
first excited statéy;). The transverse state is the ground statekinds of gate operation as described in the text.
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