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We develop a scheme for quantum computation with neutral atoms, based on the concept of “marker” atoms,
i.e., auxiliary atoms that can be efficiently transported in state-independent periodic external traps to operate
quantum gates between physically distant qubits. This allows for relaxing a number of experimental constraints
for quantum computation with neutral atoms in microscopic potential, including single-atom laser addressabil-
ity. We discuss the advantages of this approach in a concrete physical scenario involving molecular
interactions.
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I. INTRODUCTION

Manipulation of cold atoms in microscopic traps is one of
the major highlights of the extraordinary progress experi-
enced by atomic, molecular, and optical(AMO) physics over
the past few years, and has lead to important successes in the
implementation of quantum information processing[1]. By
employing a quantum phase transition it is possible to load
large numbers of neutral atoms in highly regular patterns
within an optical lattice[2]. This system is very promising
both in terms of quantum simulation of condensed matter
physics, and more in general of quantum-information pro-
cessing. Hence, over the last few years, several implementa-
tions of neutral-atom quantum computing, exploiting various
trapping methods and entangling interactions, have been pro-
posed[3–19].

In this paper we study quantum computing with neutral
atoms in optical lattices based on the concept of “marker”
and “messenger” atoms. We consider a situation where qu-
bits are represented by the internal longlived atomic states,
and these qubit atoms are stored in a(large) regular array of
microtraps realized by an optical lattice. These qubit atoms
remain frozen at their positions during the quantum compu-
tation. In addition to the atoms representing the qubits, we
consider an auxiliary “marker atom”(or a set of marker at-
oms) which can be moved between the different lattice sites
containing the qubits. The marker atoms can either be of a
different atomic species or of the same type as the qubit
atoms, but possibly employing different internal states. These
movable atoms serve two purposes. First, they allow ad-
dressing of atomic qubits by “marking” a single lattice site
due to the marker-atomic qubit interactions: this molecular
complex can be manipulated with a laser without the require-
ment of focusing on a particular site. Second, the movable
atoms play the role of “messenger” qubits which allow to
transport quantum information between different sites in the
optical lattice, and thus to entangle distant atomic qubits.

The first key element in our scheme is the transport of
marker (or messenger) atoms in an off-resonant time-
dependent superlattice. By changing laser parameters with an

appropriate protocol we move the marker atoms from site to
site while leaving the qubit atoms frozen at their respective
positions. We note that to move a marker atom only the
global laser parameters generating the superlattice need to be
changed. In the case of several marker atoms on a lattice
(arranged, e.g., in a certain spatial pattern) they will be
moved in parallel by these global lattice operations. The time
scale for these lattice movements can be of the order of the
oscillation period in the confining lattice potential. In addi-
tion, two distinctive properties of the scheme are as follows.
(i) The superlattice can be realized by a very far-off-resonant
optical lattice. Thus there is no requirement for a qubit-(or
spin-dependent) optical lattice as in the case of collisional
gates which in case of alkali-metal atoms require tuning of
the lattice laser between the excited atomic fine structure
states. This allows us to strongly suppress decoherence due
to spontaneous emission in the present scheme.(ii ) There is
significant freedom in choosing the internal atomic states
representing the qubits: in particular, we can choose atomic
states corresponding a “clock transition.” These clock states
are insensitive to the(stray) magnetic fields, again improving
decoherence properties of the atomic qubits. Also this is in
contrast to moving atoms in spin-dependent lattices for col-
lisional gates, where the qubit states are typically very sen-
sitive to magnetic fields.

A second key element is that we employ resonant molecu-
lar interactions between marker and qubit atoms, as provided
by magnetic or optical Feshbach resonances. This implies
two features of the present scheme.(i) Due to the resonant
character combined with the spatial confinement of atoms in
the optical lattice, these interactions can be comparable to
the trap spacing in the optical lattice, and thus the time scale
of operations becomes of the same order of magnitude as the
one for the transport in the lattice.(ii ) In addition, these
resonant molecular interactions can be made internal state
(qubit) dependent which gives a mechanism for entangling
the marker and atomic qubits, and to perform swap opera-
tions of the atomic qubit to the marker atom.

The article is organized as follows. In Sec. II we introduce
the general concept of quantum computing via “marker” qu-
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bits, and we specialize it to the case of atomic qubits in
optical lattices. In Sec. III we develop and simulate a proce-
dure to effect selective atom transport in spin-independent
lattices. Section IV describes the theory of resonant colli-
sions in confined geometries, suitable for the treatment of
Feshbach resonance in tightly confining traps. Section V dis-
cusses the dynamics of one- and two-qubit operations using
the aforementioned ingredients. Conclusions are drawn in
Sec. VI.

II. CONCEPTS OF QUANTUM COMPUTING
WITH “MARKER” ATOMS

A. General concept

The scheme we are introducing is based on a quantum
register formed by separately stored qubits, that never inter-
act directly with each other. To mediate entangling opera-
tions between different register(R-type) qubits, we introduce
“marker” or “messenger”(M-type) qubits, that can be trans-
ported through between different register locations. Direct
coupling can only take place between a register and a marker
qubit. In the simplest situation there is only oneM qubit
present in a certain register locationRi. Different operations
are then possible(see Fig. 1).

(i) TheM qubit can be transported forward and backward
throughout the string of register qubits thus being able to
reach an arbitrary locationRi.

(ii ) A local interaction between theM and theR qubit
may be activated to perform single and two qubit gates.

The role of theM qubits in our scheme is twofold. On one
hand, they will allow us to address single register atoms
without the need for addressing single lattice sites, i.e., they
act as a “marker” for a certain register atom. On the other
hand, they act as information carrier performing effective
entangling operations between physically distant register qu-
bits. In this case they act as a “messenger” transporting quan-
tum information. However, to simplify language, in the fol-
lowing we will denote theM qubits always as marker qubits
or marker atoms.

The interaction we apply depends on the logical state of
both of the involved qubits, i.e., it enables us to perform
two-qubit gates similar to a controlled phase or a swap gate
between the marker and the register atom. This in turn, com-
bined with forward and backward transport operations(i),
allows us to construct sequences of operations that enact
two-qubit gates between arbitrary register qubits. This works
as follows (see Fig. 2): (a) the state of qubitRi is first
swapped onto the markerM, (b) the marker is transported to

location j , where a two-qubit gate is performed betweenM
and Rj, and (c) the marker is transported back to locationi
and its state is swapped back ontoRi. At the end of the
process, the marker qubit recovers its initial state, while the
net effect is that a gate operation has been performed be-
tween register qubitsRi andRj. In addition to logical opera-
tions, this allows for the creation of distant entangled(e.g.,
EPR) pairs that can be subsequently used for teleportation
between different quantum memory locations, for state puri-
fication in error correcting protocols and for scalable proba-
bilistic gates[20].

B. Implementation of the concept with atoms in periodic
trapping potentials

In the following we want to briefly outline how the above
general concept can be implemented. A detailed description
can be found in Secs. III–V. As described above the two key
ingredients of our scheme are(i) the transport of marker
atoms and(ii ) the application of a strong local interaction.
We concentrate in this work on an implementation with neu-
tral atoms stored in a two-component optical superlattice.
However, our scheme may be transferred to other systems,
including atom chips[21]. We consider single atoms stored
in the ground state of separate wells which we model as a 1D
periodic potential(see Sec. III A), with a simple filling pat-
tern of one register atomRi every second lattice site. The
ground states of the remaining sites may(or may not) be
occupied by marker atoms, which can be of the same species
as the register atoms, and the tunnel coupling between neigh-
boring sites is assumed to be negligible, so that marker atoms
do not interact with register atoms unless the potential is
modified. The quantum information is stored in two appro-
priate internal statesu0l , u1l of the atoms(which will be
specified in Sec. IV).

As described in Sec. III, the transport of the marker atoms
(i) is realized by globally changing the external lattice con-
trol parameters which allows for creating a periodic array of

FIG. 1. Basic operations with a marker atom on a quantum
register:(i) forward and backward transport steps,(ii ) local interac-
tion with register qubits.

FIG. 2. Realizing an entangling operation between distant atoms
based on the elementary steps described in Fig. 1:(a) swapping the
first qubit onto the marker atom,(b) transporting the marker atom
unto the second qubit and local interaction,(c) transport back to the
first qubit and inverse swap.
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double-well structures with different well depths. In this way
the marker atom can be transferred from its initial site into
the first excited state of one of the neighboring wells, while
the register atom located there(as well as any other register
atom in the lattice) remains in its trap ground state. From
here the marker can be transported further to the ground state
of the next site(which is not occupied by an atom) or back
again to its initial position. By repeating these transport steps
the marker atoms can be transported to an arbitary lattice
site. This scheme avoids there being two permanently inter-
acting atoms at any lattice site.

Due to the fact that the lattice parameters are changed
globally, all marker atoms undergo the same, parallel move-
ment. Thus, when more ground-state marker atoms are intro-
duced at different sites, a certain lattice transformation will
transport all of them in the same way. By suitably choosing
the pattern of marker atoms, multiqubit operations can be
carried out in parallel or with predefined patterns(an ex-
ample is encoding and syndrome extraction for error correc-
tion).

When a marker and a register atom are at the same site we
realize the coupling(ii ) of Fig. 1 by making use of the strong
molecular interaction between the marker and the register
atom, which can be controlled by an external magnetic field
giving rise to a Feshbach resonance[22]. The physics behind
this mechanism, as well as the gate operations, will be de-
tailed in Secs. IV and V, respectively. Of course, this sort of
interaction can be employed in any neutral-atom quantum
computation proposal. In this paper, we will outline its gen-
eral features, and we will focus on its specific use in the
context of marker-atom quantum computing.

The principle of the single qubit gate is the following. The
marker atom is transported to the register atom we want to
address. Then the molecular interaction is “switched on” via
an external magnetic or optical field, i.e., we perform a
Feshbach ramp which leads to a level splitting of the atomic
states. Clearly this splitting is only present at the site with
two atoms. With appropriately detuned external lasers we
can then perform arbitrary single qubit rotations

u0l → cossadu1l − i sinsadeiwu0l,

u1l → − i sinsadu1l + cossadeiwu0l, s1d

where the anglea is given by the interaction time with the
lasers(and their intensities) and the phasef is determined by
the dynamics of the Feshbach ramp. The lasers need not be
focused down to the lattice constant. The spatial width is
merely limited by the distance to the next marker atom(ex-
cept if we want to perform the same rotation there).

The principle of two qubit gates is already shown in Fig.
2, where in step(b) we either perform a swap operation
between register and marker atomue1e2l→ ue2e1l or a phase
gateue1e2l→expfiws1−e1ds1−e2dgue1e2l, wheree1,2P h0,1j.
As we will describe in Sec. V, the phase gate as well as the
swap gate are again based on the tunable molecular interac-
tion between two atoms at one lattice site. In the first case the
phase is acquired by a Feshbach ramp which affects only the
stateu00l while in the case of the swap gate we need, similar
to the case of the single qubit rotation, an additional laser

field which couples resonantly the state which is shifted by
the molecular interaction and the statesu01l and u10l. The
laser will again affect only the sites where two atoms are
present thus again it does not have to be focused.

In addition to relaxing addressability constraints, our
scheme bears several other advantages: for instance, it does
not require a state-dependent lattice[23]. As described in
Sec. I that method has a couple of disadvantages and, fur-
thermore, the realization and stabilization of such potentials
poses a major experimental challenge. In our scheme the
quantum register logical state never gets entangled with the
atomic motion, eliminating a major source of decoherence.
Even collisional phases, acquired by the marker atom while
being transported over occupied lattice sites, can be made
state insensitive by an appropriate choice of the atomic hy-
perfine states(a typical example being Rb, for which the
singlet and the triplet scattering lengths coincide[24]), thus
contributing only a global phase to the evolution of the
whole register.

Our two-qubit gate concept does not requireper se a
lattice-type potential, but it could be realized with the same
success in any controllable double-well potential. An ex-
ample is given by high-intensity dipole traps of the kind
described in Ref.[15]. The most important advantage pro-
vided by periodic trapping potentials, such as those available
in optical lattices or atom chips, is the possibility to scale the
system up to a high number of qubits, which is one of the
essential requirements for fault-tolerant quantum computa-
tion [25]. Hence, in the following sections, we shall focus on
optical lattices as a natural context for the implementation of
our scheme.

III. ATOM TRANSPORT IN TIME
DEPENDENT SUPERLATTICES

The transport scheme we describe in this section makes
use of a time-dependent optical superlattice configuration
which can be far off resonant from the relevant optical tran-
sition to avoid spontaneous emission and is not specialized to
specific atomic species. The atom transport is independent of
the considered internal states and allows for using them=0
states of different hyperfine manifolds, i.e., states of a “clock
transition” which are not affected by external magnetic
fields.

In the following we will describe the laser configuration
which is necessary to realize the superlattice and detail the
transport of single atoms in the periodic potential by chang-
ing the intensities and phases of the lasers. We will further-
more discuss optimization methods.

A. Realization of the superlattice

For the realization of the superlattice potential we propose
using a configuration of four intersecting lasers as was used
in Ref. [26]. The setup is shown in Fig. 3. Two pairs of laser
beams intersect with an angleua and ub, respectively. The
lasers of frequencyva (pair a) andvb (pair b) interact with
atoms which are considered as two level systems with tran-
sition frequencyv0. In an interaction picture, the Hamil-
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tonian for the internal degrees of freedom of an atom can
then be written as

H = H0 + "Das+s− −
1

2
hs+dWfEW asrWd + EW bsrWdeidtg + s−dWpfEW a

†srWd

+ EW b
†srWde−idtgj, s2d

whereH0=pW2/2m is the kinetic energy operator. Furthermore
we introducedDa,b=v0−va,b,d=va−vb, the atomic dipole

momentdW (whose dependence on diatomic internal degrees
of freedom is understood) and the electric fields

EW asrWd = o
j=1,2

E j«W je
iskW j·rW+f jd, s3d

EW bsrWd = o
j=3,4

E j«W je
iskW j·rW+f jd, s4d

where«W j are the normalized polarization vectors,E j the field
amplitudes, and the wave vectors have the magnitudeka

;ukW1u= ukW2u=va/c,kb;ukW3u= ukW4u=vb/c.
The laser pairs are assumed to be far off detuned from

atomic resonance and from each other so we can adiabati-
cally eliminate the upper atomic level and obtain an effective
Hamiltonian in the position representation

Heff = −
"2

2m
¹W 2 − S udW ·EW asrWdu2

4"Da
+

udW·EW bsrWdu2

4"Db
D . s5d

According to the geometry of the laser setup the second term
of Eq. (5) can be written as

Usxd = −F 1

4"Da
o

j=1,2
udW«W ju2E j

2 +
1

4"Db
o

j=3,4
udW«W ju2E j

2

+
sdW«W1dsdWp«W2dE1E2

4"Da
cosf2kax sinsua/2d + f1 − f2g

+
sdW«W3dsdWp«W4dE3E4

4"Db
cosf2kbx sinsub/2d + f3 − f4dG

s6d

;U0 + U1cosf2kax sinsua/2d + f1 − f2g

+ U2cosf2kbx sinsub/2d + f3 − f4g, s7d

whereU0 is merely a constant. In Sec. III B we will choose
it according to Eq.(10). If we set f1=f2, f;f4−f3, ua
=p (counterpropagating lasers), and

ub = 2 arcsinS ka

2kb
D < 2 arcsinS1

2
D =

p

3
, s8d

the potential is of the type

Usxd = U0 + U1coss2kxd + U2cosskx − fd s9d

with k;ka<kb. The potential(9) leads to a particle confine-
ment along thex axis. We will assume in the following that
the confinement in the transverse directionsy andz is much
stronger than along thex direction so that we have effec-
tively a one-dimensional system. This can be achieved via
two additional pairs of counterpropagating lasers with a
higher intensity than those used to produce the superlattice
potential alongx, and with a slight detuning from the latter
(and from each other) to avoid interference effects that
would spoil the overall three-dimensional lattice structure
[26].

B. Single atom transport

The transport of an atom through the lattice is achieved by
varying the amplitudesUistd and the relative phasefstd of
the two lattice components, which is done by changing the
intensities and phases of the lasers—see Eq.(6). The poten-
tial (9) then becomes time dependent:Usxd→Usx,td.

For the description of the transport process it is useful to
rewrite the potential(9) depending on two parametersu1std
andu2std:

U0std =
V

4
f2 − u1std + u2stdg, s10d

U1std =
V

4
f2 − u1std − u2stdg, s11d

U2std =
V

2
Îu1

2std + u2std2, s12d

FIG. 3. Laser setup. The plane containing the wave vectorskW1,2

of a laser paira intersects the plane containing the wave vectorskW3,4

of a laser pairb at thex axis. The planes can have a finite angle
between them. The angle between the lasers in each of the pairs are
ua andub, respectively(see also Ref.[26]).

CALARCO et al. PHYSICAL REVIEW A 70, 012306(2004)

012306-4



fstd = s arctanfu2std/u1std + lpg. s13d

At time t=0 we setU2std=0, i.e., u1s0d=u2s0d=0 and thus
we simply have a cosine-potential of depthV and periodicity
a0=p /k. However, in general, the periodicity of the lattice is
a1=2p /k and the shape of the optical potential can be de-
signed in the following way.

The parameteru1std approximately controls the height
Vf1−u1stdg of every second barrier depending on the param-
eter l P h0,1j: If l =0 the height of every “odd” barrier is
changed while in case ofl =1 the height of every “even”
barrier is changed, i.e., in the first case barriers with maxima
at x=s2j +1dp /k and in the latter case barriers with maxima
at x=2jp /k are modified forU2=0 and j PZ. By changing
u1std we can thus create a specific periodic array of double
well potentials. The parameteru2std controls additionally the
difference of the minimaVu2std of such a double well poten-
tial, while sP h±1j determines if the leftss=1d or right ss
=−1d well is raised.

An example is shown in Fig. 4 forl =0,s=1 and two
different values foru1 andu2. The potentialUsx,td is given
in units of the recoil energyEr ="2k2/2m where m is the
atomic mass appearing in the time-dependent Schrödinger
equation

i"
d

dt
csx,td = −

"2

2m

d2

dx2csx,td + Usx,tdcsx,td s14d

which has to be solved for the study of single atom transport.
The elementary steps of the atom transport are done by tun-
nelling in the double well potentials. An example is shown in
Fig. 5 for s=1, l =0, andV=100Er:

At the initial time t=0, whereu1s0d=u2s0d=0, we con-
sider two neighboring wells, with one atom in the motional
ground state of the left well[Fig. 5(a)]. The probability den-
sities ucMsx,tdu2 of the atom are indicated by the solid lines
in this figure. The superscriptM indicates the wave function
of the atom to be transported, i.e., the wave function of the
“marker atom” as introduced in Sec. II. Also shown in this
figure by the dashed lines are the probability densities of the
“register atom” ucRsx,tdu2, initially located in the ground
state of the right well in this example and which is supposed
to remain at its lattice site during the transport. Our goal in

the process described here is to transfer the left atom into the
first excited state of the right well without affecting the other
one. This can be accomplished by changing the parameters
u1,2std according to the following steps, which are illustrated
in Fig. 5.

(i) Between the timest=0 andt= t1 we raise very rapidly
the minimum of the left well, such that its ground state
crosses in energy the right well’s first excited state.

(ii ) In the time intervalft1,t2g we lower the central barrier
down to a point where the atom can tunnel from left to right
while at the same time we start to lower the left well.

(iii ) In the time intervalft2,t3g the barrier is raised up
again while we continue to lower back the left well.

FIG. 4. PotentialUsx,td at two different times andV=100Er

(with recoil energyEr ="2k2/2m). At t0=0 u1s0d=u2s0d=0 (dashed
line) while at t1.0 we setu1st1d=0.5,u2st2d=0.2, ands=1,l =0
(solid line). In the latter case the difference between the minima is
approximately 20Er and the height of every second barrier is re-
duced by approximately 50%.

FIG. 5. Illustration of steps(i)–(iv) of the transport process as
described in the text. Also shown are the square of the absolute
value of the single particle wave functions of the atom which is
transported(i.e., the “marker atom”), ucMsxdu2 (solid lines), and of
the register atom which is supposed to remain at its lattice site,
ucRsxdu2 (dashed lines). The example shown requiress=1 and l
=0.
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(iv) During the time intervalft3,t4g we restore the initial
potential shape.

By doing steps(ii ) and(iii ) adiabatically the atom stays in
the second excited state of the double well potential which is
at t1 the ground state of the left well and att3 the first excited
state of the right well. Thus the atom is transported from left
to right.

An effective transport procedure requires appropriate
“pulse functions”u1std and u2std while the direction of the
transport is governed by the parameterss , l. Let us assume
for simplicity that the marker atom is located initially at a
sitekxj =s2j +1/2dp , j PZ. Then the process shown in Fig. 5
requiress=1 andl =0 while for a further movement to the
motional ground state on the right we have to sets=−1 and
l =1 and to perform the same pulse functions backwards in
time. For moving an atom from the ground state to the first
excited state of the left neighboring well we have to sets
=−1 and l =1 and to apply the forward pulse functions. In
this case a further movement to the left ground state requires
s=1 andl =0 and the backward pulse function. Note that the
abrupt changes of the phasef take place whileU2 is zero,
i.e., when the corresponding lasers are completely blocked
off from the atoms. Every transport of an atom across the
lattice can be divided into these four elementary processes.
Since the pulse sequence is in all cases the same(except for
time reversal) we can focus in the following on the example
shown in Fig. 5.

The feasibility of our quantum-computing scheme de-
pends on the time scale on which quantum operations can be
performed. Clearly the latter is directly connected to the
speed of the transport process. In this respect steps(i) and
(iv) can be performed over much shorter times than step(ii )
and(iii ), which are limited for example by the energy differ-
ence to the other motional states. In order to examine adia-
batic transport during step(ii ) and(iii ) it is thus necessary to
study the instantaneous eigenenergies of an atom during the
transport process in dependence on the parameters we can
control, i.e., the pulse functionsu1,2std.

Since Usx,td is periodic, we can calculate the instanta-
neous eigenenergies and eigenfunctions of the single particle
Hamiltonian by introducing Bloch functionsck

sndsxd
=eikxuk

sndsxd with Bloch vectork and band indexn. In Fourier
space the stationary Schrödinger equation takes the form

"2

2m
sq − kd2ũk

sndsq,td + o
q8

Ũsq − q8,tdũk
sndsq,td

= Ek
sndstdũk

sndsq,td, s15d

where

ũk
sndsq,td =

1

ai
E

0

ai

dx eiqxuk
sndsx,td,

uksx,td = o
q

e−iqxũksq,td, q =
2np

ai
, n P Z , s16d

and

Ũsq,td = U0stddq,0 +
U1std

2
sd2k,q + d2k,−qd

+
U2std

2
seifstddk,q + e−ifstddk,−qd, s17d

whereai with i =0,1 are the lattice constants, i.e.,a0=p /k if
U2=0 anda1=2p /k if U2Þ0. By assuming periodic bound-
ary conditions the Bloch vectork gets quantized, i.e.,k
=2np /Ma0,n=−M /2 , . . . ,M /2, whereM is the number of
lattice sites. Given the functionsuksxd we can furthermore
construct Wannier functions which are localized at lattice
sitesxi,

wsndsx − xid =
1

ÎM
o
k

eiksx−xiduk
sndsxd. s18d

These functions are needed, for example, as initial states for
solving the time-dependent Schrödinger equation(14). Since
in our considerations the lowest bands are always practically
flat, i.e., the Bloch states for a given band are approximately
degenerate, the Wannier functions are also in good approxi-
mation eigenstates of the Hamiltonian and thus dispersion of
the wave packet during the time evolution is negligible.

Equation(15) is a linear system of equations which can be
solved numerically after truncatingq at sufficiently high val-
ues. The instantaneous eigenenergiesEk

sndstd gained in this
way are very important to find an adiabatic passage for the
atom transport. An example for the band structure is shown
in Fig. 6. As can be seen from this figure,V is sufficiently
large to be in a tight binding regime, i.e., the lower bands are
flat and there is no tunneling between different wells.

For an efficient adiabatic transport the pulse functions
have now to be chosen such that the corresponding energies
Ek

sndstd behave in an appropriate way during the transport
steps(ii ) and (iii ), i.e., one should, for example, avoid level
crossings of the initial energy with the energies of other
states. An example is shown in Fig. 7(a).

As already mentioned the Bloch states in the lowest bands
are almost degenerate so we can restrict ourselves to an ar-
bitrary value ofk, e.g., k=0. The upper solid line in this
figure corresponds to the “path” of the atom to be transported

FIG. 6. Band structures for two different values ofu1,u2 and
V=100 Er ,s=1,l =0. (a) Initial values of the lattice parameters
fu1s0d=u2s0d=0g. (b) Band structure during the transport process
su1=0.99,u2=0.13d. The two figures correspond to the situations
shown in Figs. 5(a) and 5(c).
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initially located in the left well while the lower solid line
indicates the path of the atom located in the right well. The
initial depth of the potential wells isV=100Er leading to a
“trap frequency” in a single well of about 20vr (vr ;Er /" is
the recoil frequency). Keeping the height of the barrier con-
stant we raise the minimum of the left well such that the
ground-state energy of the left well crosses the first excited
state energy of the right well[step (i)]. Then we proceed
according to steps(ii ) and(iii ). By reducing the height of the
central barriers the trap frequency decreases and by adjusting
appropriately the pulse functions we avoid that the solid lines
cross the dashed lines. After timet3 the original potential
shape is restored[step(iv)]. The pulse functionsu1,2std used
for this example and the corresponding time-dependent
physical relevant parametersU1,2std ,fstd are shown in Figs.
7(b)–7(d), respectively.

The fidelities of the processes, given by

FA = UE dx cApsx,Tdcfin
A sxdU2

, s19d

are numerically calculated by solving the time-dependent
single particle Schrödinger equation in position representa-

tion (14) by using the Crank-Nicholson scheme[27] where
as initial statecini

A and final statecfin
A we choose Wannier

functions(18) which are located in the corresponding wells.
The superscriptAP hM ,Rj indicates again the wave function
of the atom to be transported(marker atom) and the atom
which is supposed to stay located at its well(register atom).

In case of the example of Fig. 7 we getFM =99.91% for
propagating the marker atom wave function andFR

=99.98% for propagating the register atom wave function
from t1 to t3 in a time T= t3− t1=20/vr. In the case of ru-
bidium svr =2p33.8 kHzd this would correspond to a time
T=0.8 ms and for sodiumsvr =2p325 kHzd we would have
T=130ms. For the optical superlattice described in Ref.[26]
a laser power ofP=3 mW was sufficient to create a maximal
potential depth of 2Ui ,60ER for 87Rb. Keeping the ratio of
laser intensity and detuning constant we haveUi ,ÎP. For a
potential depth of roughlyUi ,50ER which is required in the
above example[see Fig. 7(c)] we can estimate the required
maximal laser power to be merelyP<8−9 mW.

C. Pulse optimization

If we relax the constraint of adiabatic transport during
step(ii ) and (iii ) the process described in the previous sub-
section can be significantly accelerated. In this case the pulse
sequences have to be engineered in a certain way which can
be done by using quantum optimal control techniques as de-
tailed, e.g., in Refs.[28–30]. Thereby the evolution of a
quantum system governed by a set of control parameters[in
our case these are the functionsu1,2std] is tailored to reach a
predetermined target statecfin with optimized fidelity within
a specific timeT. For notational convenience we will denote
in the following the timet= t1 as t=0 andt= t3 as t=T.

The basic idea is to minimize the infidelity of the process
with the constraint that the Schrödinger equation has to be
fulfilled. This amounts to find the stationary point of a func-
tional, leading to a set of equations for the wave function and
auxiliary statesxA which are introduced as Lagrange multi-
pliers. In our case this functional takes the form

LscM,cR,ċM,ċR,xM,xR,u1,u2d

= o
APhM,Rj

F1 −UE dx cfin
A sxdcApsx,TdU2

+ 2 ReSE
0

T

dtE dx xAsx,td

3HċAsx,td+
i

"
Hfu1std,u2stdgcAsx,tdJpDG , s20d

with

H„u1std,u2std… = −
"2

2m

d2

dx2 + U„x,u1std,u2std…, s21d

where the last term in Eq.(21) is the potential(9), which
depends on the control parameters. As can be seen from Eq.
(20) we are looking for a minimum of the sum of the infi-
delities of the process for the marker atom and the register

FIG. 7. Adiabatic atom transfer between lattice sites:(a) Instan-
taneous eigenenergiesEk=0

snd std. The upper solid line corresponds to
the motional energy of the atom to be transported and the lower
solid line corresponds to the register atom initially in the right well
(cf. see Fig. 5). (b) Corresponding control parametersu1,2. (c) Am-
plitudes of the lattice components.(d) Phase difference between
lattice components. The time axis is given in units of the recoil
frequencyvr ;Er /". The time intervalft1,t3g is not of the same
scale asf0,t1g ,ft3,t4g.
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atom. Setting the derivatives with respect to the arguments of
L equal to zero leads to the following set of equations:

i"ċAsx,td = H„u1std,u2std…cAsx,td, A P hR,Mj, s22d

i"ẋAsx,td = H„u1std,u2std…xAsx,td, A P hR,Mj s23d

with conditions

cAsx,0d = cini
A sxd, s24d

xAsx,Td ; cfin
A sxd E dx cfin

A sxdcApsx,Td, s25d

and

0 = − 2 Im o
APhM,Rj

Kj
A
„u1std,u2std…, j = 1,2 s26d

with

Kj
A
„u1std,u2stdd ; E dx cAsx,td

] U„x,u1std,u2std…
" ] ujstd

xApsx,td.

s27d

These equations are the basis of the optimal control algo-
rithm which minimizesL with respect touj. Thereby we
solve Eqs.(22) and (23) numerically by introducing a dis-
cretized time axis with time stepDt and by using the Crank-
Nicholson scheme. For the sake of completeness we briefly
describe the algorithm we use here. The following procedure,
called immediate feedback control, is guaranteed to give a
fidelity improvement at each iteration[31].

The Schrödinger equations(22) are integrated fromt=0
to t=T leading tocAsx,Td with an initial guess for the con-
trol parametersu1,2

s0dstd. At this point an iterative algorithm
starts during which the controlsu1,2

sndstd are updated.
Let us assume that we are in thenth iteration. Taking the

controls u1,2
sndstd, Eqs. (23) have to be solved backwards in

time, i.e., fromt=T to t=0, with “end values”(25) which can
be interpreted as the part ofcAsx,Td that has reached the
objective. Given the solutionsxAsx,0d the functionsxAsx,td
and cAsx,td [with initial conditions (24)] are now again
evolved forward in time while the control parameters are
updated during each time step according to

uj
sn+1dstd = uj

sndstd +
2

lstd
Im o

APhM,Rj
Kj

A
„u1

sndstd,u2
sndstd….

s28d

During the forward evolutionxsx,t+Dtd is calculated using
the controlsu1,2

sndstd while csx,t+Dtd is evolved according to
u1,2

sn+1dstd. The weightlstd is used to enforce fixed initial and
final conditions on the control pulses. Given these solutions
we go on with the next iteration.

The results of such a calculation after 135 iterations are
shown in Fig. 8 which corresponds to the situation of Fig. 5:
Fig. 8(a) shows the control parameters for transferring the
marker atom to the first excited state of its right neighboring
site while keeping the register atom at its initial location.

Figures 8(b) and 8(c) show the corresponding physical pa-
rameters. As starting valuesu1,2

s0dstd we took the pulses of the
adiabatic example(see Fig. 7). The use of the optimized
pulses leads to a reduction of the transport time down to
T3=5" /ER, which corresponds to 200ms for rubidium and
to 32 ms for sodium with a fidelity ofFM =FR=99.99%.

IV. COHERENT RESONANT COLLISIONS
IN A TRAP

The coupling scheme we are proposing can be imple-
mented either in dipole-force potentials, such as optical lat-
tices [32], or in static electromagnetic traps, such as atom
chips [21]. Performing gate operations as described in Sec.
IV requires a strong molecular interaction between register
atom and marker atom. Atoms can be coupled to molecular
states either by means of Feshbach resonances[22] or
through Raman photoassociation laser pulses[33]. For the
sake of concreteness, we focus here on Feshbach resonances
in optical lattices—however, all of our arguments can be
adapted, e.g., to Raman photoassociation on atom chips. We
consider87Rb atoms trapped in a two-component optical lat-
tice (see, e.g., Ref.[26]).

A. Feshbach resonances in confined geometry

A schematic picture of the Born-Oppenheimer potential
describing their interaction in the relative coordinater is
shown in Fig. 9. Negative values of the excitation numberv
label bound molecular eigenstates of the dimer system, while
positive v values denote unbound trapped two-atom states.
Such a potential exists for each collision channelubl, corre-
sponding to the relative motion and hyperfine angular mo-

FIG. 8. Nonadiabatic atom transfer between lattice sites.(a)
Control parametersu1,2. (b) Corresponding amplitudes of the lattice
components.(c) Phase difference between lattice components. The
time axis is given in units of the recoil frequencyvr ;Er /". The
time intervalft1,t3g is not of the same scale asf0,t1g ,ft3,t4g.
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mentum quantum numbers of the two colliding atoms.
Feshbach resonances occur when a bound stateunbl (v=−2
in the example shown) crosses the dissociation threshold for
a state having the same quantum numbers[22] while chang-
ing an external magnetic fieldB. Close to resonance, the
scattering length varies as

AbsBd = AbgS1 −
Db

B − Bb
D , s29d

whereAbg is a nonresonant background scattering length,Bb

is the resonant magnetic field, andDb is the width of the
resonance. The resonance energy varies almost linearly with
the field

«bsBd = sbsB − Bbd, s30d

with a slopesb. We are interested in the dynamics of such a
system in a confined geometry. Following Ref.[34], we shall
model it by the effective Hamiltonian

Hb = «bsBdunblknbu + o
v

fv"nuvlkvu + sVv
buvlknbu + H.c.dg,

s31d

where theuvl’s are the trapped relative-motion atomic eigen-
states of an isotropic harmonic oscillator trap having fre-
quencyn. The couplings to the resonance are

Vv
b = 2"nÎÎ4v + 3 abgdb/p s32d

with abg;Abg
Îmn /",db;Dbsb / s"nd. In a different geom-

etry, for instance in an elongated trap characterized by a ratio
g between the ground level spacings in the transverse and in
the longitudinal potential, the couplings can be calculated by
projection on the corresponding eigenstates(see Appendix
A). Accurate values for the resonance parametersDb andBb,
as well as forAbg, are now available from both theoretical
calculations and recent measurements[35].

The possibility of controlling the resonance energy via an
external magnetic field, as described by Eq.(30), provides a
straightforward way to steer the interaction between the at-

oms. Not only can the scattering length be varied over a
significant range—the atoms can also be adiabatically
coupled into a molecular state. An example of this sort of
process is shown in Fig. 10. Here, the eigenvalues of the
interacting Hamiltonian are shown for a six-level model in-
cluding the five lowest unbound trap states plus the resonant
state. The latter is ramped across threshold by applying an
external magnetic field having a linear dependence on time.
Both the so-called “diabatic” energies(i.e., those obtained by
neglecting the couplings to the resonance) and the adiabatic
ones(i.e., the actual eigenvalues of the full coupled Hamil-
tonian) are plotted against time for a certain ramp rate. The
important point to notice is that the ground state of the rela-
tive motion is adiabatically connected to the resonant state.
Therefore, if the atoms are prepared in their relative-motion
ground state and the resonance state is ramped across thresh-
old from above, the atoms are transferred into the bound
state, whose energy depends on the magnetic field—and the
process is actually reversible. This mechanism has been used
for the creation of molecules in ultracold gases[36–42], and
is very relevant in the present context of quantum informa-
tion processing due to its inherent state-dependent nature.
Indeed, the coupling to a specific resonant stateunbl is only
effective for a particular entrance channelubl, while in gen-
eral all other combinations of atomic hyperfine states(that is,
of logical qubit states in our case) will be unaffected by the
resonance. Thus the resonance-induced energy shift will
cause a two-particle phase to appear only for that particular
two-qubit computational basis state. We will see in the next
section how to use this effect in order to achieve a desired
C-phase gate.

B. Choosing qubit logical states

We will identify our qubit logical states with the clock-
transition states

FIG. 9. Interaction of two atoms in an external trap. The two
curves schematically describe the Born-Oppenheimer potential for
two scattering channels around a Feshbach resonance.

FIG. 10. Adiabatic(solid) and diabatic(dashed) energies of a
6-level expansion(molecular resonance level plus five trap levels of
an isotropic 100 kHz trap) with a linear ramp of magnetic field with
slope 5 G/ms. The adiabatic energy levels show a set of avoided
crossings. We use the Feshbach resonance level near 100 mT. The
coupling matrix elementV0 is 0.884hn for this trap.
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u0l ; uF = 1,mF = 0l, u1l ; uF = 2,mF = 0l s33d

and the auxiliary state as

uxl ; uF = 1,mF = 1l. s34d

The main advantage of this choice is that the qubit states are
not sensitive to the magnetic field, and hence not subject to
decoherence due to its fluctuations.

The level scheme for a single atom is shown in Fig. 11.
When we consider two atoms, the relevant level scheme is
described by Fig. 12 if they occupy their relative-motion
ground state. Appendix B shows that this is indeed the case
for two bosons stored in the ground and first axial excited
state of a cigar-shaped harmonic trap. In Fig. 12 the resonant
levels unbl are also shown, which are used to induce energy
shifts for the purpose of gate operation as described in the
next section. Indeed, in a confined geometry, the coupling to
such molecular states can induce dressing of the trapped
eigenstates with a half splittingDeb—controllable, by vary-
ing the external field, up to a maximum value equal on reso-
nance to the interaction strengthVb—as shown in Fig. 12 for
the collisional channelsubl= u00l , u0xl.

Our calculation with a realistic molecular interaction po-
tential yields, among others, two resonances atB0x=386 G
and B00=407 G, having widthsD0x=5.7 mG and D00
=16 mG, as shown in Fig. 13. These will be employed in the
following to effect logical gate operations.

V. QUANTUM OPERATIONS

Let us now examine in detail how to use the features
described above in order to perform quantum computation in

our system. Preparing all atoms in an initial state by optical
pumping requires no single-qubit addressing and can be per-
formed with standard techniques. To operate single- and two-
qubit gates we need to introduce marker atoms in the lattice.
These can be useful even if their absolute position is not
accurately known in the first place. Indeed, what matters in
our scheme is their position relative to qubit atoms, which
can be established by our tools(see below). As the next step,
according with the above discussion, performing a specific
algorithm will require a certain pattern of marker atoms, to
be consistently prepared without addressing of single sites.
The (conceptually) simplest option to achieve this goal could
be to directly transfer onto the qubit register an array of
marker atoms trapped in an initially separate lattice potential
of matching wavelength. However, this would require sig-
nificantly high precision, stability, and uniformity in super-
imposing the two independent potentials. This is in practice
actually a very similar requirement to that needed for state-
dependent lattices, which we aim at overcoming. In contrast,
our adiabatic transport scheme requires a single, state-
independent potential. Moreover, relying on the level struc-
ture of the lattice bands, it is less sensitive to details of the
potential shape such as its uniformity over a large number of
sites. Based on these features, a viable option would be to
prepare the marker atoms either in a periodic fashion, by
means of a superlattice tuned to the appropriate transition, or
in an ad hoclattice region, spatially separated from the one
where computation has to take place, to be subsequently
loaded into the latter via the transport mechanism detailed
above. The separation between the two lattice portions could
be adjusted in time in order to transfer a desired pattern of
marker atoms. Depending on the particular algorithm to be
executed, some of them could be prepared in the auxiliary
stateuxl and then be used to “catalyze” single-qubit opera-

FIG. 11. Internal level scheme for a single atom: qubit and aux-
iliary states.

FIG. 12. Internal level scheme for two coupled atoms: levels
involved in single-(left) and in two-qubit operations(right). The
Raman transitionsV1 sV2d used for single-(two-)qubit operations
are shown.

FIG. 13. Dependence of the scattering length of87Rb on the
external magnetic field for collisions in channelsu00l and u0xl.
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tions on register atoms(see Sec. V A), and some others in
the logical stateu0l or u1l, to be used as “messengers” to
mediate two-qubit operations between pairs of(not necessar-
ily neighboring) atoms(see Sec. V B).

A. Single-qubit gates

In the single-qubit case, the relevant resonance field is
B0x, while the lasers coupleu1xl with the lower dressed state
connected tou0xl with an effective Rabi frequencyV1 as in
the left part of Fig. 12. The process is resonant only if the
marker atom in stateuxl is present. In this way, specific sites
where the single-qubit operation takes place can be selected
even if the addressing laser cannot resolve them spatially
from neighboring sites. Moreover, the two-atoms state re-
mains always factorized, whence possible magnetic field
fluctuations, affecting the stateuxl (unlike u0l and u1l) will
yield only a global phase. In a rotating frame the Hamil-
tonian which describes this system takes the form

H = du1xlk1xu + «0xsBduMlkMu + V0
0xsu0xlkMu + uMlk0xud

+
V1

2
su0xlk1xu + u1xlk0xud, s35d

whered is the Raman detuning of two copropagating Raman
lasers,V0

0x is the coupling between the molecular stateuMl,
and the dissociated stateu0xl and«0xsBd is the energy of the
molecular state(we set the energy of theu0xl state to zero).
At the beginning of the operation the lasers are switched off
(i.e., V1=0) and the external magnetic field is adiabatically
tuned to the Feshbach resonance, i.e.,«0xsBd→«0xsB0xd=0.
This leads to a splitting of the two particle stateu0xl in two
new eigenstates

uS±
0xl =

1
Î2

su0xl ± uMld. s36d

These states are indicated in the left-hand side of Fig. 11
(here we haveD«0x=V0

0x since we are on resonance). For
finite laser power, in this basis the Hamiltonian takes the
form

H = du1xlk1xu + V0
0xsuS+

0xlkS+
0xu − uS−

0xlkS−
0xud +

V1

2Î2
fsuS+

0xl

+ uS−
0xldk1xu + u1xlskS+

0xu + kS−
0xudg. s37d

The Raman detuning is set tod=−V0
0x and if V1/V0

0x!1 we
can project out the stateuS+

0xl. This yields the two level
Hamiltonian

H = − V0
0xsu1xlk1xu + uS−

0xlkS−
0xud +

V1

2Î2
suS−

0xlk1xu + u1xlkS−
0xud,

s38d

i.e., if we finally tune the magnetic field out of the Feshbach
resonance again we get the transformation

u1xl → cossV1/2Î2tdu1xl − i sinsV1/2Î2tdeiwu0xl, s39d

u0xl → − i sinsV1/2Î2tdu1xl + cossV1/2Î2tdeiwu0xl. s40d

In this expression we included a phasew which is the(ad-
justable) phase accumulated during the adiabatic ramping
process of the magnetic field.

B. Two-qubit gates

In the two-qubit case, we take the marker atom to be in a
state of the logical subspace spanned byu0l and u1l. This
time, the field is ramped acrossB00, and the Raman lasers
couple for a timet—with Rabi frequencyV2—the lower
dressed state to the degenerate two-atom levelsu01l and u10l
(right part of Fig. 12). In a rotating frame the Hamiltonian
can be written as

H = dsu01lk01u + u10lk10ud + 2du11lk11u + «00sBduMlkMu

+ V0
00suMlk00u + u00lkMud +

V2

2
su00lk01u + u00lk10u + u11l

3k01u + u11lk10u + H.c.d. s41d

The notations are the same as in Eq.(35). We perform now
the same procedure as in the case of the single qubit rotation,
i.e., we tune adiabatically the magnetic field to the Feshbach
resonance, i.e.,«00sB00d=0 while V2=0. The Hamiltonian
with diagonalized molecular part reads

H = dsu01lk01u + u10lk10ud + 2du11lk11u + V0
00suS+

00lkS+
00u

− uS−
00lkS−

00ud +
V2

2Î2
fsuS+

00l + uS−
00ldk01u + suS+

00l + uS−
00ld

3k10u + u11lk01u + u11lk10u + H.c.g, s42d

where

uS±
00l =

1
Î2

su00l ± uMld. s43d

These states are shown on the right-hand side of Fig. 11
(now we haveDe00=V0

00). Taking the Raman detuning to be
d=−V0

00 amounts to the fact that(if V2/V0
00!1) the states

u11l and uS+
00l are effectively decoupled from the remaining

three states. Projecting out the uncoupled states the effective
Hamiltonian for the remaining three level system then takes
the form

H = − V0
00suS−

00lkS−
00u + u01lk01u + u10lk10ud +

V2

2Î2
suS−

00lk01u

+ uS−
00lk10u + u01lkS−

00u + u10lkS−
00ud. s44d

If we introduce the vector notation
ucl↔ skS−

00ucl ,k01ucl ,k10ucldT and disregard global phases
the time evolution operator of this system can be written as

Ustd =
1

21 2cstd − isstd − isstd
− isstd cstd + 1 cstd − 1

− isstd cstd − 1 cstd + 1
2 s45d

with cstd=cossV2t /2d and sstd=sv2dsV2t /2d. If we apply a
Raman pulse of durationt=2s2n+1dp /V2 and finally tune
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the magnetic field out of the Feshbach resonance again, we
get the following truth table for the operation:

u00l → − eiwu00l,

u01l → − u10l,

u10l → − u01l,

u11l → eiV0
00tu11l, s46d

where we again included the phasew, now accumulated by
stateu00l during the ramping process due to the interaction
energy shift, whose value can be adjusted by controlling the
magnetic field. Forw=2p andV0

00t=s2m+1dp—which im-
poses a commensurability conditionV2/V0

00=2s2n+1d / s2m
+1d between the Rabi frequency and the Feshbach energy
shift—a swap operation is performed. In addition to being an
essential ingredient for entangling gates between distant at-
oms as detailed in Sec. II, such a swap operation can greatly
help in the task of nondestructive qubit readout. To this aim,
the quantum state of an atom to be read out at the end of a
computation could be simply swapped onto a marker atom to
be subsequently transported to a different lattice region
where measurement can take place without physically dis-
turbing the register atoms, which can later be reused for logi-
cal operations.

On the other hand, if no Raman lasers are present andw
=p, a C-phase gate between register and marker atom is
obtained. A two qubit gate between distant register atoms can
be realized as described in Sec. II. Note that laser addressing
of single qubits is never required throughout the procedure.

The magnetic ramping process can even be performed
nonadiabatically, provided that the entire population is re-
turned to the trapped atomic ground state. This can be ac-
complished via a quantum optimal control technique in anal-
ogy with the above discussion for the transport process. The
control parameter in this case is the resonance energy«00,
which can be adjusted by varying the external magnetic field.
Care has to be taken in optimizing not only the absolute
value of the overlap of the final state onto the goal state, but
also its phasew. Figure 14 shows the optimization results for
a 100 kHz trap with a ratio ofn' /n=10 between the trap
frequenciesn' in the y,z directions andn in thex direction.
The final infidelity is about 2310−5 in this case.

VI. CONCLUSIONS

When it comes to using neutral atoms for the purpose of
quantum-information processing, besides the well-known
general criteria formulated by DiVincenzo[25], the fulfill-
ment of various practical requirements, specific to atomic
implementations, can make a difference on the road to ex-
perimental realization. For example, laser addressing of
single qubits, though being theoretically trivial, is limited by
diffraction, imposing a lower bound on the actual spacing
between qubits. Furthermore performing gate operations in
state-dependent potentials creates entanglement between in-
ternal and external degrees of freedom, which in turn is

prone to decoherence, as random fields typically affect dif-
ferently the two logical states. The same is true for internal-
state entanglement, if the qubit states are chosen with differ-
ent Landé factors and, unless the latter vanishes for both
states, they will be sensitive to magnetic-field fluctuations.

In this paper, we introduced the concept of “marking”
qubits via molecular interactions which allows for relaxing a
number of these constraints for neutral-atom quantum com-
puting. We have presented a scheme that enables quantum
gates and information transport in a quantum register, even
though requiring neither single-site addressing by externally
applied fields nor state-dependent external potential. More-
over, qubit states with the same(even vanishing) Landé fac-
tor can be employed; and the overall speed can be of the
order of the inverse atomic trapping frequency. We have
shown how this scheme can be implemented in two-
component optical lattices, whereby the mechanism used to
mark atoms is the molecular interaction responsible for
Feshbach resonances, which are currently a subject of in-
tense experimental research in the field of cold atoms, where
molecule formation via control of Feshbach resonances has
been recently achieved[37–42]. In other words, our proposal
relies on techniques that are presently being developed, and
represents therefore a feasible candidate for the implementa-
tion of quantum information processing with neutral atoms
in optical lattices.

Finally, the analysis presented here is limited to one-
dimensional systems, basically with a single marker atom.
Further conceptual development is possible, for instance in
exploring the interplay between several marker atoms on the
same lattice, or the extended flexibility given for instance by
higher-dimensional geometries; this will be the subject of
future investigations.
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APPENDIX A: DYNAMICS IN A CIGAR-SHAPED TRAP

The normalized eigenfunctions of a three-dimensional
(3D) harmonic oscillator in spherical coordinates are

Fn,m,

sph sr,u,fd =Î2a2,+3Gsn + , + 3/2d
n ! Gs, + 3/2d2 r,e−a2r2/2

3 1F1s− n,, + 3/2,a2r2dY,
m,su,fd,

sA1d

where a=Îmn /", Gsnd is the Euler Gamma function,

1F1sa,b,zd is the Kummer confluent hypergeometric func-
tion, andY,

m,su ,fd are the spherical harmonics. The normal-
ized eigenfunctions in cylindrical coordinates(we assume
the same frequencyn in the longitudinal direction, and a
transverse frequencyn' a factorg higher) are

Fn,m,

cyl sr,f,zd =
sardum,ueim,f−sa2gr2+a2z2d/2

Î2n, ! sÎp/ad3
Hnsazd 1F1s− ,,um,u + 1,ga2r2dYÎo

i,j=0

, s− ,dis− ,d jGsum,u + i + j + 1d
i ! j ! sm, + 1dism, + 1d jg

um,u+1 ,

sA2d

where Hnsxd are the Hermite polynomials andsadi =Gsa
+ id /Gsad is the Pochhammer symbol. We are interested in
s-wave scattering processes, so we restrict our analysis to the
eigenstates with,=m,=0 and obtain

kF2v+1,0,0
cyl uFw,0,0

sph l = 0, sA3d

kF2v,0,0
cyl uFw,0,0

sph l = s− 2d−vÎg23−ws2vd ! w ! s2w + 1d ! !

3o
i=0

w

o
j=0

v
s− 4di+js2i + 2j + 1d ! !

s2i + 1d ! s2j + 1d!

3

1F1S j +
1

2
,i + j +

3

2
, j +

3

2
,
g − 1

g + 1
D

sv − jd ! sw − id ! sg + 1di+j+3/2 .

sA4d

The coupling matrix elements in a cigar-shaped trap with
anisotropy factorgÞ1 are computed as

Vv
bsgd = o

w

kFv00
cyl uFw00

sphlVw
bsg = 1d, sA5d

where the spherical matrix elementsVwsg=1d are given by
Eq. (32).

APPENDIX B: CONDITIONAL LEVEL SHIFT
IN A QUASI-1D TRAP

Let us consider the three-dimensional stateuCS,mS
l of two

spin-1/2 bosons in a harmonic trap. In thex̂ direction, one
particle is in the trap ground stateuc0l, and the other in the
first excited stateuc1l. The transverse state is the ground state

uc'l for both particles.X and x are the center-of-mass and
relative coordinate. Denoting theith particle’s state byu¯ li,
the symmetrized states can be written as

uC0,0l =
u1l1u0l2 − u0l1u1l2

Î2

uc1l1uc0l2 − uc0l1uc1l2

Î2

=
u1l1u0l2 − u0l1u1l2

Î2
uc0lXuc1lx, sB1d

uC1,−1l = u0l1u0l2
uc1l1uc0l2 + uc0l1uc1l2

Î2
=u0l1u0l2uc1lXuc0lx,

sB2d

uC1,0l =
u1l1u0l2 + u0l1u1l2

Î2

uc1l1uc0l2 + uc0l1uc1l2

Î2

=
u1l1u0l2 + u0l1u1l2

Î2
uc1lXuc0lx, sB3d

uC1,1l = u1l1u1l2
uc1l1uc0l2 + uc0l1uc1l2

Î2
=u1l1u1l2uc1lXuc0lx.

sB4d

When we apply a static external magnetic field correspond-
ing to the Feshbach resonance for theu00l channel, the inter-
action only affects the stateuC1,−1l, dressing it with a split-
ting 2V0

00sgd that can easily be of the order of"n assuming a
ratio n' /n=10 of the trap frequencyn' in they,z directions
andn in thex direction. This means that the stateu0l1u0l2 can
be discriminated spectroscopically, allowing for different
kinds of gate operation as described in the text.
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