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A new implementation of quantum gates by adiabatic passage with an optical cavity is proposed. This
implementation allows one to perform not only elementary gates, such as one-qubit gates and a controlled-NOT

gate, but also multiqubit controlled unitary gates. Some quantum gates are numerically simulated. From the
simulation results, it is concluded that this implementation of the three-qubit controlled gates is more efficient
than decomposing into the elementary gates.
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I. INTRODUCTION

It is well known that any gate operation in quantum com-
putation can be performed only with one-qubit unitary gates
and two-qubit conditional gates, such as controlled-NOT

gates[1,2]. In this sense, a set of these elementary gates is
universal for quantum computation. Many physical imple-
mentations of two-qubit conditional gates have been pro-
posed and demonstrated[3,4]. However, it is desirable that
multiqubit gates, such assn+1d-qubit controlled unitary
gates withn control qubitssn=2,3,¯ d, are directly and
efficiently implemented without decomposing into the el-
ementary gates because the realization of quantum algo-
rithms, such as Shor’s algorithm for prime factoring[5] or
Grover’s algorithm for database search[6], requires many
multiqubit gates and because the decomposition of the mul-
tiqubit gates into the elementary gates requires a number of
gate steps and additional qubits[2,3,7]. Several proposals of
efficient implementations of multiqubit gates have been re-
ported[8–14]. These schemes use cold trapped ions coupled
to one another through the collective quantized motion[8,9],
nuclear magnetic resonance[10,11], cavity photons coupled
to one another through atomic beams[12], quantum dots
[13], or Cooper pairs in superconducting circuit[14].

In this paper, we propose an implementation of multiqubit
controlled unitary gates. This implementation uses ground
states of atoms as qubits and utilizes adiabatic passage with a
single-mode optical cavity. Adiabatic passage has been used
for coherent population transfer[15]. It is advantageous in
quantum computation because decoherence due to spontane-
ous emission from excited states can be avoided and because
it is robust against experimental parameter errors. Pellizzari
et al. have proposed a scheme implementing controlled uni-
tary gates by a combination of Raman transition and adia-
batic passage with an optical cavity[16]. Kis and Renzoni
have also proposed a method to implement all one-qubit
gates via only adiabatic passage[17]. Recently, some propos-
als for quantum computing via adiabatic passage have been
reported, especially in terms of geometric quantum compu-
tation [18–20]. The implementation presented in this paper
allows adiabatic-passage-only gate operations.

This paper is organized as follows. In Sec. II, the scheme
proposed here is explained. In Secs. III–V, we show how to

implement one-qubit unitary gates, two-qubit controlled uni-
tary gates, and multiqubit controlled unitary gates in this
scheme. In Sec. VI, a one-qubitp /2 gate, a two-qubit con-
trolled p gate, and a three-qubit controlledp gate are nu-
merically simulated. Furthermore, the efficiency of the
implementation of the multiqubit gates is also discussed in
Sec. VI. The conclusion is presented in Sec. VII.

II. THE SCHEME

The scheme proposed in this paper is shown in Fig. 1. It is
composed of five-level atoms fixed inside a single-mode op-
tical cavity. The three lower levels are assumed to be so
stable that the decoherence of them is negligible compared to
the decoherence of the two upper levels and the cavity decay.
The kth qubit is stored in two of the three lower states,u0lk
and u1lk, in the kth atom. Similar schemes have been pro-
posed before[16,21–24]. The qubits are addressed by their
transition frequencies or positions. Two levels of each atom,
u2lk and u3lk, are strongly coupled via the cavity-mode field.
This scheme will be realized with trapped ions[16,22–24] or
with impurity levels in a solid, such as Pr3+ ions in Y2SiO5
crystal [25], or nitrogen-vacancy color center in diamond
[26]. In the solid-state scheme, it is easy to satisfy a condi-
tion that the coupling rates between the five-level atoms and
the cavity are constant, while it is relatively difficult in the
ion-trap case to satisfy the condition because of fluctuation
of the trapped-ion positions.

FIG. 1. (Color online) The scheme proposed in this paper. Five-
level atoms are fixed inside a single-mode optical cavity. Thekth
qubit is stored in two of the three lower states,u0lk and u1lk, in the
kth atom. Two levels of each atom,u2lk and u3lk, are strongly
coupled via the cavity-mode field.
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In the following sections, we show how to implement
quantum gates in this scheme.

III. ONE-QUBIT GATE

In the scheme, one-qubit gates on thekth qubit are per-
formed via adiabatic passage by Kis’s method[17] using
four of the five states:u0lk, u1lk, u2lk, andu4lk. In the follow-
ing, we explain the method in detail because the basic idea of
the method is applied to multiqubit controlled unitary gates
in Secs. IV and V. We also explain the concept of adiabatic
passage here. Since the cavity-mode field is not used and is
always in the vacuum state during the one-qubit gate opera-
tion, the state of the field is omitted in this section. The
subscriptk is also omitted.

A. One-qubit phase gate

We first show how to implement one-qubit phase gates in
the scheme. Next, the one-qubit phase gates will be general-
ized to one-qubit unitary gates. The operation of the one-
qubit phase gate of a phasef is expressed using the initial
stateuc0l=a0u0l+a1u1l as follows:

uc0l → ucl = a0u0l + eifa1u1l. s1d

Laser pulses resonant withu1l-u4l and u2l-u4l transitions
are used to perform this phase gate. The interaction Hamil-
tonian in the interaction picture and in the rotating-wave ap-
proximation is given by

Hstd = "V1stdu4lk1u + "V2stdu4lk2u + H.c. s2d

HereV1std andV2std are the Rabi frequencies corresponding
to the u1l-u4l and u2l-u4l transitions, respectively, and H.c.
denotes the Hermitian conjugate. The terms describing the
coupling between the five-level atoms and the cavity-mode
field have been removed for simplicity because they have no
relation to the time evolution of the state in this process.
Moreover, the terms corresponding to decoherence and de-
cay of both the five-level atoms and the cavity have been
ignored assuming that the gate operation is finished before
the atom decoheres. This Hamiltonian has the following dark
state, which is the eigenstate of the Hamiltonian correspond-
ing to zero eigenvalue and is decoupling from the upper
states[27]:

uDstdl ~ V2stdu1l − V1stdu2l, s3d

where the proportionality constant is chosen so thatuDstdl is
normalized and is initially equal tou1l. Under a certain con-
dition, which is called adiabatic condition, the time evolution
of the state is given by

ucs0dl = uc0l → ucstdl = a0u0l + a1e
igstduDstdl. s4d

This process is called adiabatic passage. Here, the phasegstd,
which is given by

gstd = iE
0

t

dt8kDst8du
d

dt8
uDst8dl, s5d

is called Berry phase[28]. This has a geometrical meaning
[29] and quantum computations using this geometrical phase

have recently been proposed[18–20]. In this paper, however,
we consider only the casegstd=0. In this sense, our imple-
mentation is different from the geometric quantum computa-
tion. gstd is equal to zero if the phase ofV jstd changes only
whenV jstd=0 s j =1,2d. Then, the time evolution of the state
is expressed as

ucs0dl = uc0l → ucstdl = a0u0l + a1uDstdl. s6d

To perform the phase gate,u1l is first transferred tou2l by this
adiabatic passage. Next,u2l is adiabatically transferred back
to eifu1l. The phase shiftf is realized by the phase shift of
V2std. Thus, it turns out that the phase gate described by Eq.
(1) can be achieved via the above adiabatic passage control-
ling V1std andV2std.

An example of the phase gate is shown in Fig. 2 and is
explained in Sec. VI.

B. Generalization to one-qubit unitary gate

Here we generalize the one-qubit phase gates to one-qubit
unitary gates.

An arbitrary unitary operatorU on the Hilbert space
spanned by{u0l,u1l} can be represented as

U = eiusudlkdu + eifuclkcud, s7d

with

ucl = cos
Q

2
u0l + eiF sin

Q

2
u1l, s8d

udl = sin
Q

2
u0l − eiF cos

Q

2
u1l. s9d

Equation(7) means thatU has eigenstatesudl and ucl corre-
sponding to eigenvalueseiu andeisu+fd, respectively. The op-
eration of the one-qubit unitary gate that operatesU on a
qubit uc0l=a0u0l+a1u1l=adudl+acucl is expressed as fol-
lows:

uc0l → ucl = Uuc0l = eiusadudl + eifacucld. s10d

To perform the unitary gate, laser pulses resonant with the
u0l-u4l transition are used in addition to the pulses resonant
with u1l-u4l and u2l-u4l transitions. The Hamiltonian is given
by

Hstd = "V0stdu4lk0u + "V1stdu4lk1u + "V2stdu4lk2u + H.c.,

s11d

whereV0std, V1std, andV2std are the Rabi frequencies cor-
responding to theu0l-u4l, u1l-u4l, and u2l-u4l transitions, re-
spectively.V0std andV1std are set asV0std=VcstdcosQ

2 and
V1std=Vcstde−iF sin Q

2 , respectively, with a functionVcstd.
The Hamiltonian is then expressed as

Hstd = "Vcstdu4lkcu + "V2stdu4lk2u + H.c. s12d

udl is a dark state of the Hamiltonian. From the comparison
of Eqs. (2) and (12), it is easily verified that the following
operation can be achieved by controlling the Rabi frequen-
cies in a similar manner to the phase gate:
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uc0l → uc8l = adudl + eifacucl = e−iuUuc0l. s13d

This operation is equivalent to that of the unitary gate de-
scribed by Eq.(10) except for the global phaseu. The global
phase is not important in quantum computation. Thus, it is
shown that the one-qubit unitary gates can be performed via
adiabatic passage in the present scheme.

IV. CONTROLLED UNITARY GATE

In this section, we show how to implement controlled
unitary gates in our scheme. First, controlled phase gates are
explained. Next, the controlled phase gates are generalized to
controlled unitary gates in a similar manner to the generali-
zation of the one-qubit phase gates to the one-qubit unitary
gates.

A. Controlled phase gate

The initial stateuc0l is defined as

uc0l = o
l1,l2=0,1

al1,l2
ul1l2lu0l, s14d

where ul1l2l= ul1l1ul2l2 and al1,l2
denote a state of the two

five-level atoms and the probability amplitude oful1l2l
sl1, l2=0,1d, respectively, andu0l denotes the vacuum state
of the cavity-mode field. The output state of the controlled
phase gate is defined as

ucl = o
l1,l2=0,1

eil 1l2fal1,l2
ul1l2lu0l. s15d

The procedure for the controlled phase gate is composed
of the following three steps.

(Step 1) u1l2 is transferred tou2l2 by adiabatic passage
with laser pulses resonant withu1l2-u4l2 and u2l2-u4l2 transi-
tions. The state then becomes

uc1l = o
l1=0,1

sal1,0ul10l + al1,1ul12ldu0l. s16d

(Step 2) The phase ofu02lu0l is shifted by adiabatic pas-
sage with laser pulses resonant withu0l1-u3l1 and u1l2-u3l2
transitions in order to obtain the following state:

uc2l = o
l1=0,1

fal1,0ul10l + eisl1−1dfal1,1ul12lgu0l. s17d

The detail of this step is explained later.
(Step 3) u2l2 is adiabatically transferred back toeifu1l2 as

in Step 1. As a result, we obtain

uc3l = o
l1,l2=0,1

eil 1l2fal1,l2
ul1l2lu0l. s18d

The final state is the same as the output of the controlled
phase gate. Thus, it turns out that the controlled phase gate
can be performed by the above three steps.

In the following, we explain the detail of Step 2. The
Hamiltonian in Step 2 is given by

Hstd = "Vs1dstdu3l11k0u + "Vs2dstdu3l22k1u

+ o
k=1,2

"gskdau3lkkk2u + H.c. s19d

HereVs1dstd andVs2dstd are the Rabi frequencies correspond-
ing to theu0l1-u3l1 and u1l2-u3l2 transitions, respectively,gskd

is a coupling rate between thekth atom and the cavity-mode
field sk=1,2d, which is dependent on the position of thekth
atom [30], anda is the annihilation operator for cavity pho-
tons. This Hamiltonian has the following dark states:

uD00l ~ gs1du00lu0l − Vs1du20lu1l,

uD02l ~ gs1dVs2du02lu0l + gs2dVs1du21lu0l − Vs1dVs2du22lu1l,

s20d

where the proportionality constants are chosen so that
uD00stdl and uD02stdl are normalized and are initially equal to
u00lu0l and u02lu0l, respectively. Under the adiabatic condi-
tion and the condition that the Berry phase is equal to zero,
the evolution of the state in Step 2 is described as follows:

uc1l → ucstdl

= a0,0uD00stdl + a0,1uD02stdl + a1,0u10lu0l + a1,1u12lu0l.

s21d

The desired phase shift ofu02lu0l can be achieved by the
phase shift ofVs2dstd.

An example of the controlled phase gate is shown in Fig.
3 and is explained in Sec. VI.

B. Generalization to controlled unitary gate

As in the case of the one-qubit unitary gate, the above
controlled phase gate can be generalized to controlled uni-
tary gates.

The unitary operator which is operated on the second qu-
bit depending on the state of the first qubit is represented as
Eq. (7) with Eqs.(8) and(9). The initial state is represented
using ucl2 and udl2 as follows:

uc0l = o
l1,l2=0,1

al1,l2
ul1l2lu0l = o

l1=0,1

l28=c,d

al1,l28
ul1l28lu0l. s22d

In a similar manner to the case of the one-qubit unitary gate,
we can obtain the following states instead of the states given
by Eqs.(16)–(18):

uc18l = o
l1=0,1

sal1,dul1dl + al1,cul12ldu0l, s23d

uc28l = o
l1=0,1

fal1,dul1dl + eisl1−1dfal1,cul12lgu0l, s24d

uc38l = o
l1=0,1

sal1,dul1dl + eil 1fal1,cul1cldu0l. s25d

The final state can be expressed withU as follows:
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uc38l = u0l1sa0,dudl2 + a0,cucl2du0l + u1l1sa1,dudl2

+ eifa1,cucl2du0l

= u0l1sa0,dudl2 + a0,cucl2du0l + e−iuu1l1Usa1,dudl2

+ a1,cucl2du0l

= u0l1sa0,0u0l2 + a0,1u1l2du0l

+ e−iuu1l1Usa1,0u0l2 + a1,1u1l2du0l. s26d

This is equal to the output of the controlled unitary gate
except for the phase factore−iu. The additional phase factor
can be eliminated by a one-qubit phase gate on the first qu-
bit. In the case of a controlled-NOT (CNOT) gate, however,
uc38l is exactly equal to the output of theCNOT gate because
the eigenvalues ofU corresponding to theCNOT gate are ±1
andu can be set to zero. Therefore, the additional phase gate
is not necessary to perform theCNOT gate.

V. MULTIQUBIT CONTROLLED UNITARY GATE

In Secs. III and IV, we have shown how to implement
one-qubit unitary gates and two-qubit controlled unitary
gates by adiabatic passage in our scheme. Since the set of
these elementary gates is universal for quantum computation,
any quantum gate can be decomposed into them. For ex-
ample, a three-qubit controlled unitary gate with two control
qubits and a unitary operatorU on a target qubit, which is
denoted by aC2-U gate, can be decomposed into twoCNOT

gates, twoC-V gatessV2=Ud, and aC-V† gate[2]. A Cn-U
gate sn=3,4,¯ d can be decomposed into 2sn−1d Toffoli
gates(C2-NOT gates) and aC-U gate withsn−1d additional
work qubits [3]. However, it is desirable to implement the
multiqubit gates more efficiently than decomposing into the
elementary gates because the decomposition into the elemen-
tary gates requires many gate steps and additional qubits
which will induce some problems such as a long gate time or
decoherence.

In this section, it is shown that multiqubit controlled
phase gates can be performed by adiabatic passage in the
present scheme without decomposing into the elementary
gates. The efficiency of the multiqubit gates is discussed in
Sec. VI. Here we show only how to implement the multiqu-
bit controlled phase gates because multiqubit controlled uni-
tary gates can be realized in a similar manner to the multi-
qubit controlled phase gates as in the case of the two-qubit
controlled unitary gates explained in the last section.

A. Three-qubit controlled phase gate

Before explaining general multiqubit controlled phase
gates, we explain the case of a three-qubit controlled phase
gate with two control qubits. The initial stateuc0l is defined
as

uc0l = o
l1,l2,l3=0,1

al1,l2,l3
ul1l2l3lu0l, s27d

where ul1l2l3l= ul1l1ul2l2ul3l3 and al1,l2,l3
denote a state of the

three five-level atoms and the probability amplitude of
ul1l2l3l sl1, l2, l3=0,1d, respectively, andu0l denotes the

vacuum state of the cavity-mode field. The output state of the
three-qubit controlled phase gate is defined as

ucl = o
l1,l2,l3=0,1

eil 1l2l3fal1,l2,l3
ul1l2l3lu0l. s28d

The procedure for this gate is composed of the following
three steps as in the case of the two-qubit controlled phase
gate.

(Step 1) u1l3 is adiabatically transferred tou2l3 with laser
pulses resonant withu1l3-u4l3 and u2l3-u4l3 transitions. The
state then becomes

uc1l = o
l1,l2=0,1

sal1,l2,0ul1l20l + al1,l2,1ul1l22ldu0l. s29d

(Step 2) The phases ofu012lu0l, u102lu0l, and u002lu0l are
shifted by adiabatic passage with laser pulses resonant with
u0l1-u3l1, u0l2-u3l2, andu1l3-u3l3 transitions in order to obtain
the following state:

uc2l = o
l1,l2=0,1

fal1,l2,0ul1l20l + eisl1l2−1dfal1,l2,1ul1l22lgu0l.

s30d

The detail of this step is explained later.
(Step 3) u2l3 is adiabatically transferred back toeifu1l3 as

in Step 1. As a result, we obtain

uc3l = o
l1,l2,l3=0,1

eil 1l2l3fal1,l2,l3
ul1l2l3lu0l. s31d

The final state is the same as the output of the three-qubit
controlled phase gate.

In the following, we explain the detail of Step 2. The
Hamiltonian in Step 2 is given by

Hstd = "Vs1dstdu3l11k0u + "Vs2dstdu3l22k0u + "Vs3dstdu3l33k1u

+ o
k=1,2,3

"gskdau3lkkk2u + H.c. s32d

Here Vs1dstd, Vs2dstd, and Vs3dstd are the Rabi frequencies
corresponding to theu0l1-u3l1, u0l2-u3l2, and u1l3-u3l3 transi-
tions, respectively, andgskd is a coupling rate between thekth
atom and the cavity-mode fieldsk=1,2,3d. This Hamiltonian
has the following dark states:

uD000l ~ Î2gs1dgs2du000lu0l − Î2gs1dVs2du020lu1l

− Î2gs2dVs1du200lu1l + Vs1dVs2du220lu2l,

uD010l ~ gs1du010lu0l − Vs1du210lu1l,

uD100l ~ gs2du100lu0l − Vs2du120lu1l,

uD012l ~ gs1dVs3du012lu0l + gs3dVs1du211lu0l

− Vs1dVs3du212lu1l,

uD102l ~ gs2dVs3du102lu0l + gs3dVs2du121lu0l

− Vs2dVs3du122lu1l,
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uD002l ~ Î2gs1dgs2dVs3du002lu0l + Î2gs2dgs3dVs1du201lu0l

+ Î2gs3dgs1dVs2du021lu0l − Î2gs1dVs2dVs3du022lu1l

− Î2gs2dVs3dVs1du202lu1l − Î2gs3dVs1dVs2du221lu1l

+ Vs1dVs2dVs3du222lu2l, s33d

where the proportionality constants are chosen so that
uDl1l2l3

stdl is normalized and is initially equal toul1l2l3lu0l.
The dark states with relation to the evolution of the state are
only them when gs1d=gs2d=gs3d and suVs1du− uVs2dudsuVs2du
− uVs3dudsuVs3du− uVs1dudÞ0. Under the adiabatic condition and
the condition that the Berry phase is equal to zero, the evo-
lution of the state in Step 2 is given by

uc1l → ucstdl = a0,0,0uD000stdl + a0,0,1uD002stdl

+ a0,1,0uD010stdl + a0,1,1uD012stdl + a1,0,0uD100stdl

+ a1,0,1uD102stdl + a1,1,0u110lu0l + a1,1,1u112lu0l.

s34d

The desired phase shifts ofu012lu0l, u102lu0l, and u002lu0l
can be achieved by the phase shift ofVs3dstd.

An example of the three-qubit controlled phase gate is
shown in Fig. 4 and is explained in Sec. VI.

B. „n+1…-qubit controlled phase gate

In general,sn+1d-qubit controlled phase gates withn con-
trol qubits sn=1,2,¯ d can be performed by the following
three steps as in the cases of the two-qubit and three-qubit
controlled phase gates. The initial stateuc0l is defined as

uc0l = o
l1,l2,¯,ln+1=0,1

al1,l2,¯,ln+1
ul1l2 ¯ ln+1lu0l. s35d

(Step 1) u1ln+1 is adiabatically transferred tou2ln+1. The
state then becomes

uc1l = o
l1,¯,ln=0,1

sal1,¯,ln,0ul1 ¯ ln0l + al1,¯,ln,1ul1 ¯ ln2ldu0l.

s36d

(Step 2) The phases oful1¯ ln2l (l1,¯ , ln=0,1, except
for l1= l2=¯ = ln=1) are shifted by adiabatic passage with
laser pulses resonant withu0lk-u3lk sk=1,2,¯ ,nd and
u1ln+1-u3ln+1 transitions in order to obtain the following state:

uc2l = o
l1,¯,ln=0,1

fal1,¯,ln,0ul1 ¯ ln0l

+ eispk=1

n
lk−1dfal1,¯,ln,1ul1 ¯ ln2lu0l. s37d

The detail of this step is explained later.
(Step 3) u2ln+1 is adiabatically transferred back to

eifu1ln+1. As a result, we obtain

uc3l = o
l1,¯,ln+1=0,1

eifpk=1

n+1
lkal1,¯,ln+1

ul1 ¯ ln+1lu0l. s38d

Thus, thesn+1d-qubit controlled phase gate can be realized
by the above three steps.

In the following, we explain the detail of Step 2. The
Hamiltonian in Step 2 is given by

Hstd = o
k=1

n

"Vskdstdu3lkkk0u + "Vsn+1dstdu3ln+1n+1k1u

+ o
k=1

n+1

"gskdau3lkkk2u + H.c. s39d

This Hamiltonian has the following dark states:

uD01̄ 10l ~ Vs1d expF−
gs1da

Vs1d u0l11k2uGu21¯ 10lu1l, ¯ ,

uD0¯00l ~ p
k8=1

n

Vsk8d expF− o
k=1

n
gskda

Vskd u0lkkk2uGu2¯ 20lunl,

uD01̄ 12l ~ Vs1dVsn+1d expF−
gs1da

Vs1d u0l11k2u

−
gsn+1da

Vsn+1d u1ln+1n+1k2uGu21¯ 12lu1l, ¯ ,

s40d

uD0¯02l ~ p
k8=1

n

Vsk8dVsn+1d expF− o
k=1

n
gskda

Vskd u0lkkk2u

−
gsn+1da

Vsn+1d u1ln+1n+1k2uGu2¯ 22lunl,

where the proportionality constants are chosen so that
uDl1¯ln+1

stdl is normalized and is initially equal to
ul1¯ ln+1lu0l. The desired phase shifts can be achieved by the
phase shift ofVsn+1dstd.

VI. NUMERICAL SIMULATIONS

In this section, a one-qubitp /2 gate, a two-qubit con-
trolled p gate, and a three-qubitp gate are simulated by
numerically solving Schrödinger equations. By comparing
the simulation results of the two-qubit and three-qubit gates,
the efficiency of the present implementation of the multiqu-
bit gates is discussed.

A. One-qubit phase gate

Figure 2 shows the simulation result of a one-qubitp /2
gate with the following initial state:

ucs0dl =
u0l + u1l

Î2
. s41d

Figure 2(a) shows the absolute values of the Rabi fre-
quencies,uV1stdu (solid line) anduV2stdu (dashed line). Figure
2(b) shows the phases of the Rabi frequencies, argfV1stdg
(solid line) and argfV2stdg (dashed line). Figures 2(c) and
2(d) show the real part(solid line) and imaginary part
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(dashed line) of the probability amplitudes ofu1l and u2l,
respectively. On the other hand, the amplitude ofu0l is con-
stant in this process. As expected, the final state is

ucl =
u0l + i u1l

Î2
. s42d

Therefore, the one-qubitp /2 gate is realized by this process.
Figure 2(e) shows the error probability defined by the

following equation:

Pestd = 1 − ukcstducsstdlu2. s43d

Hereucsstdl is the state obtained by the simulation anducstdl
is the dark state defined by Eq.(6). Pestd is very small during
the gate operation. This means that the state is almost always
in the dark state and also means that the upper states are
almost unpopulated as expected.

B. Controlled phase gate

Figure 3 shows the simulation result of a controlledp
gate with the following initial state:

ucs0dl =
su00l + u01l + u10l + u11ldu0l

2
. s44d

The coupling rates were chosen asgs1d=gs2d=g. Figure
3(a) shows the scaled Rabi frequencies:V1std /g (solid line),
V2std /g (dashed line), Vs1d /g (dotted line), andVs2d /g (dot-
dashed line), whereV1std andV2std are the Rabi frequencies
of the pulses resonant withu1l2− u4l2 and u2l2− u4l2 transi-
tions, respectively, and used in Step 1 and Step 3. Figure 3(b)
shows the probability amplitudes ofu00lu0l (solid line) and

u10lu0l (dashed line). Figure 3(c) shows the probability am-
plitudes ofu01lu0l (solid line) and u02lu0l (dashed line). Fig-
ure 3(d) shows the probability amplitudes ofu11lu0l (solid
line) and u12lu0l (dashed line). As expected, the final state is

ucl =
su00l + u01l + u10l − u11ldu0l

2
. s45d

Therefore, the controlledp gate is realized by this process.
Figure 3(e) shows the error probability defined as in the

case of the one-qubitp /2 gate.Pestd is very small during the
gate operation. This means that the state is almost always in
the dark state and also means that the upper states are almost
unpopulated as expected.

Figure 3(f) shows the probability that the number of the
cavity-mode photons is one, which is denoted byP1std. This
is compared with that of the three-qubitp gate later.

C. Three-qubit controlled phase gate

Figure 4 shows the simulation result of a three-qubit con-
trolled p gate with two control qubits. The initial state was
defined as

FIG. 2. (Color online) Numerical simulation of a one-qubitp /2
gate. Time and Rabi frequencies are measured in arbitrary units.(a)
Absolute values of the Rabi frequencies. Solid line:uV1stdu. Dashed
line: uV2stdu. (b) Phases(degree) of the Rabi frequencies. Solid line:
argfV1stdg. Dashed line: argfV2stdg. (c) Real part(solid line) and
imaginary part(dashed line) of the probability amplitude ofu1l. (d)
Real part(solid line) and imaginary part(dashed line) of the prob-
ability amplitude ofu2l. (e) Error probabilityPestd defined by Eq.
(43).

FIG. 3. (Color online) Numerical simulation of a controlledp
gate. The coupling rates were chosen asgs1d=gs2d=g. (a) Scaled
Rabi frequencies. Solid line:V1std /g. Dashed line:V2std /g. Dotted
line: Vs1dstd /g. Dot-dashed line:Vs2dstd /g. HereV1std andV2std are
the Rabi frequencies of the pulses resonant withu1l2− u4l2 and
u2l2− u4l2 transitions, respectively, and used in Step 1 and Step 3.
(b) Probability amplitudes ofu00lu0l (solid line) and u10lu0l (dashed
line). (c) Probability amplitudes ofu01lu0l (solid line) and u02lu0l
(dashed line). (d) Probability amplitudes ofu11lu0l (solid line) and
u12lu0l (dashed line). (e) Error probability Pestd defined as in the
case of the one-qubitp /2 gate.(f) Probability that the number of
the cavity-mode photons is one, which is denoted byP1std.
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ucs0dl =
1

2Î2
o

l1,l2,l3=0,1
ul1l2l3lu0l. s46d

The coupling rates were chosen asgs1d=gs2d=gs3d=g. Fig-
ure 4(a) shows the scaled Rabi frequencies:V1std /g (solid
line), V2std /g (dashed line), Vs1d /g (dotted line), Vs2d /g (dot-

dashed line), andVs3d /g (dot-dot-dashed line), whereV1std
and V2std are the Rabi frequencies of the pulses resonant
with u1l3− u4l3 and u2l3− u4l3 transitions, respectively, and
used in Step 1 and Step 3. The shapes ofVs1d /g, Vs2d /g, and
Vs3d /g were chosen so thatsuVs1du− uVs2dudsuVs2du− uVs3dud
3suVs3du− uVs1dudÞ0 is satisfied because then the dark states
with relation to time evolution are only the states shown by
Eq. (33). Figure 4(b) shows the probability amplitudes of
u000lu0l (solid line), u010lu0l (dashed line), u100lu0l (dotted
line), and u110lu0l (dot-dashed line). Figure 4(c) shows the
probability amplitudes ofu001lu0l (solid line) and u002lu0l
(dashed line). Figure 4(d) shows the probability amplitudes
of u011lu0l (solid line) andu012lu0l (dashed line). Figure 4(e)
shows the probability amplitudes ofu101lu0l (solid line) and
u102lu0l (dashed line). Figure 4(f) shows the probability am-
plitudes ofu111lu0l (solid line) and u112lu0l (dashed line). As
expected, the final state is

ucl =
1

2Î2
o

l1,l2,l3=0,1
s− 1dl1l2l3ul1l2l3lu0l. s47d

Therefore, the three-qubit controlledp gate is realized by
this process.

From Figs. 3 and 4, it turns out that the gate time of the
three-qubit controlledp gate is nearly equal to that of the
two-qubit controlledp gate. On the other hand, the three-
qubit controlledp gate can be decomposed into five two-
qubit controlled gates(see Fig. 5). Therefore, the present
implementation of the three-qubit controlledp gate is about
five times as fast as decomposing into two-qubit controlled
gates.

Figure 4(g) shows the error probability defined as in the
case of the one-qubitp /2 gate.Pestd is very small during the
gate operation. This means that the state is almost always in
the dark state and also means that the upper states are almost
unpopulated as expected. By comparing Figs. 3(e) and 4(g),
we also find it is not the case that decoherence due to spon-
taneous emission from the upper states in the case of the
three-qubit controlled gate is much faster than in the case of
the two-qubit controlled gate.

Figure 4(h) shows the probability that the number of the
cavity-mode photons is equal toj , which is denoted by
Pjstd s j =1,2d. By comparing Figs. 3(f) and 4(h), we find it is
not the case that decoherence due to cavity decay in the case
of the three-qubit controlled gate is much faster than in the
case of the two-qubit controlled gate.

From the above comparison of the three-qubit and two-
qubit controlled gates, it is concluded that the present imple-
mentation of the three-qubit controlled gates is more efficient
than decomposing into the elementary gates.

FIG. 4. (Color online) Numerical simulation of a three-qubit
controlledp gate with two control qubits. The coupling rates were
chosen asgs1d=gs2d=gs3d=g. (a) Scaled Rabi frequencies. Solid line:
V1std /g. Dashed line:V2std /g. Dotted line:Vs1dstd /g. Dot-dashed
line: Vs2dstd /g. Dot-dot-dashed line:Vs3dstd /g. Here V1std and
V2std are the Rabi frequencies of the pulses resonant withu1l3

− u4l3 andu2l3− u4l3 transitions, respectively, and used in Step 1 and
Step 3.(b) Probability amplitudes ofu000lu0l (solid line), u010lu0l
(dashed line), u100lu0l (dotted line), and u110lu0l (dot-dashed line).
(c) Probability amplitudes ofu001lu0l (solid line) and u002lu0l
(dashed line). (d) Probability amplitudes ofu011lu0l (solid line) and
u012lu0l (dashed line). (e) Probability amplitudes ofu101lu0l (solid
line) and u102lu0l (dashed line). (f) Probability amplitudes of
u111lu0l (solid line) and u112lu0l (dashed line). (g) Error probability
Pestd defined as in the case of the one-qubitp /2 gate.(h) Probabil-
ity that the number of the cavity-mode photons is equal toj , which
is denoted byPjstd s j =1,2d. Solid line: P1std. Dashed line:P2std.

FIG. 5. Decomposition of the three-qubit controlledp gate into
two controlled-NOT gates, two controlledp /2 gates, and a con-
trolled s−p /2d gate.
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In the following, we discuss the case ofsn+1d-qubit con-
trolled unitary gatessn=3,4,¯ d. In the case without addi-
tional work qubits,sn+1d-qubit controlled unitary gates can
be decomposed intos2n+1−3d two-qubit controlled gates[2].
In the case withsn−1d additional work qubits, which are
undesirable because they will induce additional decoherence,
sn+1d-qubit controlled unitary gates can be decomposed into
2sn−1d Toffoli gates and a two-qubit controlled gate[3].
Since a Toffoli gate is decomposed into five two-qubit con-
trolled gates,sn+1d-qubit controlled gates are decomposed
into s10n−9d two-qubit controlled gates in the case with
work qubits. On the other hand, ifsn+1d-qubit controlled
gates can be realized in our scheme by choosing the pulse
shapes of the Rabi frequenciesVskdstd sk=1,2,¯ ,n+1d so
that all uVskdstdu are almost always unequal to one another as
the case of the three-qubit controlled gates, the gate time of a
sn+1d-qubit controlled gate is a little longer than that of a
n-qubit controlled gate. Therefore, if this assumption is
proved theoretically or experimentally, then it turns out that
in our scheme the gate time of asn+1d-qubit controlled gate
is much shorter than that ofs2n+1−3d or s10n−9d two-qubit
controlled gatessn=3,4,¯ d and the present implementation
of sn+1d-qubit controlled unitary gates is much more effi-

cient than decomposing into only the elementary gates.

VII. CONCLUSION

In this paper, we have proposed an implementation of
multiqubit controlled unitary gates by adiabatic passage with
a single-mode optical cavity. A one-qubitp /2 gate, a two-
qubit controlledp gate, and a three-qubit controlledp gate
have been numerically simulated. From the simulation re-
sults, it has been shown that the present implementation of
the three-qubit controlled gates is more efficient than decom-
posing into the elementary gates. The efficiency of general
multiqubit controlled gates is also discussed. If the multiqu-
bit controlled gates can be realized under the condition simi-
lar to that for the three-qubit controlled gates, the present
implementation of the multiqubit controlled gates will be
more efficient than decomposing into the elementary gates.
Therefore, if this assumption is proved theoretically or ex-
perimentally, then the implementation presented in this paper
will be useful to realize quantum algorithms, such as Shor’s
algorithm for prime factoring or Grover’s algorithm for da-
tabase search.
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