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Multiqubit controlled unitary gate by adiabatic passage with an optical cavity
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A new implementation of quantum gates by adiabatic passage with an optical cavity is proposed. This
implementation allows one to perform not only elementary gates, such as one-qubit gates and a cantrolled-
gate, but also multiqubit controlled unitary gates. Some quantum gates are numerically simulated. From the
simulation results, it is concluded that this implementation of the three-qubit controlled gates is more efficient
than decomposing into the elementary gates.
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[. INTRODUCTION implement one-qubit unitary gates, two-qubit controlled uni-
tary gates, and multiqubit controlled unitary gates in this
It is well known that any gate operation in quantum com-scheme. In Sec. VI, a one-quhit/2 gate, a two-qubit con-
putation can be performed only with one-qubit unitary gategrolled = gate, and a three-qubit controlled gate are nu-
and two-qubit conditional gates, such as controNed- merically simulated. Furthermore, the efficiency of the
gates[1,2]. In this sense, a set of these elementary gates ignplementation of the multiqubit gates is also discussed in
universal for quantum computation. Many physical imple-Sec. VI. The conclusion is presented in Sec. VII.
mentations of two-qubit conditional gates have been pro-
posed and demonstrat¢8,4]. However, it is desirable that Il. THE SCHEME

multiqubit gates, such as¢n+1)-qubit controlled unitary The scheme proposed in this paper is shown in Fig. 1. It is
gates withn control qubits(n=2,3,---), are directly and composed of five-level atoms fixed inside a single-mode op-
efficiently implemented without decomposing into the el-tical cavity. The three lower levels are assumed to be so
ementary gates because the realization of quantum algetable that the decoherence of them is negligible compared to
rithms, such as Shor’s algorithm for prime factorifff or  the decoherence of the two upper levels and the cavity decay.
Grover’s algorithm for database searfij, requires many Thekth qubit is stored in two of the three lower statf@),
multiqubit gates and because the decomposition of the muland |1),, in the kth atom. Similar schemes have been pro-
tiqubit gates into the elementary gates requires a number gfosed beforg16,21-24. The qubits are addressed by their
gate steps and additional qubfs3,7. Several proposals of transition frequencies or positions. Two levels of each atom,
efficient implementations of multiqubit gates have been re{2), and|3),, are strongly coupled via the cavity-mode field.
ported[8—14. These schemes use cold trapped ions coupletthis scheme will be realized with trapped idi$,22—24 or
to one another through the collective quantized mof&8],  with impurity levels in a solid, such as Prions in Y,SiOs
nuclear magnetic resonanfk0,1]], cavity photons coupled crystal [25], or nitrogen-vacancy color center in diamond
to one another through atomic bearfi?], quantum dots [26]. In the solid-state scheme, it is easy to satisfy a condi-
[13], or Cooper pairs in superconducting circi#]. tion that the coupling rates between the five-level atoms and
In this paper, we propose an implementation of multiqubitthe cavity are constant, while it is relatively difficult in the

controlled unitary gates. This implementation uses groundon-trap case to satisfy the condition because of fluctuation
states of atoms as qubits and utilizes adiabatic passage withof the trapped-ion positions.

single-mode optical cavity. Adiabatic passage has been used
for coherent population transf¢i5]. It is advantageous in
quantum computation because decoherence due to spontane

ous emission from excited states can be avoided and because ey B

it is robust against experimental parameter errors. Pellizzari

et al. have proposed a scheme implementing controlled uni- [ ¢ o o e o o
tary gates by a combination of Raman transition and adia-

batic passage with an optical cavity6]. Kis and Renzoni >/ [2>, W/ 251

have a_lso propqsed a method to implement all one-qubit o5 oo

gates via only adiabatic passdd€&]. Recently, some propos- — atom (c+1)

als for quantum computing via adiabatic passage have been
reported, especially in terms of geometric quantum compu- FiG. 1. (Color onling The scheme proposed in this paper. Five-
tation [18-2Q. The implementation presented in this paperievel atoms are fixed inside a single-mode optical cavity. Kine
allows adiabatic-passage-only gate operations. qubit is stored in two of the three lower staté, and|1),, in the

This paper is organized as follows. In Sec. Il, the schemeth atom. Two levels of each aton2), and |3),, are strongly
proposed here is explained. In Secs. IlI-V, we show how taoupled via the cavity-mode field.
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In the following sections, we show how to implement have recently been proposgB—-2Q. In this paper, however,

quantum gates in this scheme. we consider only the casgt)=0. In this sense, our imple-
mentation is different from the geometric quantum computa-
Il ONE-QUBIT GATE tion. ¢(t) is equal to zero if the phase 6K;(t) changes only

In the scheme, one-qubit gates on #ik qubit are per- yvhean(t)=0 (j=1,2. Then, the time evolution of the state
formed via adiabatic passage by Kis's methdd] using IS expressed as
four of the five stateg0)y, |1y, |2)«, and|4),. In the follow- o)) = ) = arl0) + Dt 6
ing, we explain the method in detail because the basic idea of [#0)) = [4o) = [441) = t0l0) + esDV). ®
the method is applied to multiqubit controlled unitary gatesTo perform the phase gat@) is first transferred t¢2) by this
in Secs. IV and V. We also explain the concept of adiabati@diabatic passage. Nex®) is adiabatically transferred back
passage here. Since the cavity-mode field is not used and iis €%|1). The phase shift is realized by the phase shift of
always in the vacuum state during the one-qubit gate operdd,(t). Thus, it turns out that the phase gate described by Eg.
tion, the state of the field is omitted in this section. The(1) can be achieved via the above adiabatic passage control-
subscriptk is also omitted. ling Q4(t) and Q(t).

An example of the phase gate is shown in Fig. 2 and is
explained in Sec. VI.

We first show how to implement one-qubit phase gates in o o
the scheme. Next, the one-qubit phase gates will be general- B. Generalization to one-qubit unitary gate
ized to one-qubit unitary gates. The operation of the one- Here we generalize the one-qubit phase gates to one-qubit
qubit phase gate of a phageis expressed using the initial pjtary gates.
state|yg) = ag|0) + a1|1) as follows: An arbitrary unitary operatolJ on the Hilbert space

o) — 1) = arg|0) + €%ay| 1). 1) spanned by{|0),|1)} can be represented as

Laser pulses resonant witth)-|4) and |2)-|4) transitions U = €“(|d)(d| +€7lc)c]), ()
are used to perform this phase gate. The interaction Hamiljth
tonian in the interaction picture and in the rotating-wave ap-
proximation is given by

H() =20, ()]4)(1] + £Q(1)]4)(2 + H.c. )

A. One-qubit phase gate

Q) ' ®
|c>:cosz|0>+e"1’ sin E|1>' (8)

HereQ,(t) and(),(t) are the Rabi frequencies corresponding 0 .

to the |1)-]4) and |2)-|4) transitions, respectively, and H.c. |d>:5'”5|0>‘e' COSE|1>- 9
denotes the Hermitian conjugate. The terms describing the

coupling between the five-level atoms and the cavity-modd=quation(7) means that) has eigenstatdsl) and|c) corre-
field have been removed for simplicity because they have nsponding to eigenvalues? and€*#, respectively. The op-
relation to the time evolution of the state in this processeration of the one-qubit unitary gate that operate®n a
Moreover, the terms corresponding to decoherence and deubit |i)=ag|0)+as|1)=a4/d)+aclc) is expressed as fol-
cay of both the five-level atoms and the cavity have beerows:

ignored assuming that the gate operation is finished before _ o i

the atom decoheres. This Hamiltonian has the following dark |9h0) — [¥) = Ulgho) = €%(agld) + €%afc)).  (10)
state, which is the eigenstate of the Hamiltonian correspond- To perform the unitary gate, laser pulses resonant with the
ing to zero eigenvalue and is decoupling from the uppet0)-|4) transition are used in addition to the pulses resonant
states[27]: with |1)-|4) and|2)-|4) transitions. The Hamiltonian is given

D)) = Q,(1)]1) - 0(1)[2), ® W

where the proportionality constant is chosen so {bét)) is H() =€) 4)(0] + A (D] 4)(L] + £ Q5(0)]4)(2] + H.c.,
normalized and is initially equal tfi). Under a certain con- (11)
dition, which is called adiabatic condition, the time evolution

of the state is given by whereQq(t), Q4(t), andQ,(t) are the Rabi frequencies cor-

responding to thé0)-|4), |1)-|4), and |2)-|4) transitions, re-
[ (0)) = |tho) — |¥h(t)) = ag|O) + € 7V|D(1)). (4)  spectively.Qq(t) and€,(t) are set aﬂo(t):Qc(t)cos% and
(1) =Q(e® sin%, respectively, with a functiorf)(t).

The Hamiltonian is then expressed as

H(D) =2 Q(0)[4)(c] + 2 Q5(1)|4)(2] + H.c. (12

t
1 ! ! d ’
A= 'J dt'(D(t )|@|D(t Uz ®) |d) is a dark state of the Hamiltonian. From the comparison
0 of Egs.(2) and(12), it is easily verified that the following
is called Berry phas§28]. This has a geometrical meaning operation can be achieved by controlling the Rabi frequen-
[29] and quantum computations using this geometrical phaseies in a similar manner to the phase gate:

This process is called adiabatic passage. Here, the pligse
which is given by
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o) — |9) = agld) + €%adc) =€ Ulyp). (13 H(t) = AQM(1)[3),(0] + QP ()34 1]
This operation is equivalent to that of the unitary gate de- + > 7g¥al3)(2l + H.c. (19
scribed by Eq(10) except for the global phasg The global k=12

phase is not important in quantum computation. Thus, it iﬁﬂereﬂ(l)(t)
shown that the one-qubit unitary gates can be performed vi
adiabatic passage in the present scheme.

andQ®@(t) are the Rabi frequencies correspond-
fhg to the|0),-3); and|1),-|3), transitions, respectivelg®

is a coupling rate between ttéh atom and the cavity-mode
field (k=1,2), which is dependent on the position of tkid

IV. CONTROLLED UNITARY GATE atom[30], anda is the annihilation operator for cavity pho-

. . . tons. This Hamiltonian has the following dark states:
In this section, we show how to implement controlled

unitary gates in our scheme. First, controlled phase gates are IDoo = gP|00)|0)y — QY]20)1),

explained. Next, the controlled phase gates are generalized to

controlled unitary gates in a similar manner to the generali- D D100y + g20D[21)0) = QL2221
zation of the one-qubit phase gates to the one-qubit unitary Do = @ 02[0)+g 2310 [22[1),
gates. (20

where the proportionality constants are chosen so that
A. Controlled phase gate |Dgo(t)) and|Dgy(t)) are normalized and are initially equal to
|00)|0) and |02)|0), respectively. Under the adiabatic condi-

The initial state is defined as . . )
o) tion and the condition that the Berry phase is equal to zero,

the evolution of the state in Step 2 is described as follows:
o= > a0, (14) P
170 ) — (1)
where |l115)=]l1)1]l), and @, denote a state of the two = arg dDoo(t)) + g 1| Doslt)) + ay o/ 10)[0) + ay 112)[0).
five-level atoms and the probability amplitude dfl.,) (21)

(1;,1,=0,1), respectively, and0) denotes the vacuum state
of the cavity-mode field. The output state of the controlledThe desired phase shift ¢02)|0) can be achieved by the

phase gate is defined as phase shift of)@(t).
' An example of the controlled phase gate is shown in Fig.
W= > €2 | [1115)]0). (15) 3 and is explained in Sec. VI.
11,1,=0,1
The procedure for the controlled phase gate is composed B. Generalization to controlled unitary gate

of the following three steps.

(Step 2 |1), is transferred td2), by adiabatic passage
with laser pulses resonant with),-|4), and|2),-|4), transi-
tions. The state then becomes

As in the case of the one-qubit unitary gate, the above
controlled phase gate can be generalized to controlled uni-
tary gates.

The unitary operator which is operated on the second qu-
bit depending on the state of the first qubit is represented as
[y = 2 (a,d110) + @ l1:2)]0). (16)  Eq.(7) with Eqs.(8) and(9). The initial state is represented

1=0.1 using|c), and|d), as follows:

(Step 2 The phase 0f02)|0) is shifted by adiabatic pas- ,
sage with laser pulses resonant with;-|3); and |1),-|3), o= 2 a 0= X a ulll0).  (22)
transitions in order to obtain the following state: l2/270.1 11=0.1

I5=cd
_ i(11-1)
)= 2 [a'1'0||10> ret ¢“'1’1||12>]|O>' (17 In a similar manner to the case of the one-qubit unitary gate,
1,=0,1 . . - .
we can obtain the following states instead of the states given

The detail of this step is explained later. A by Egs.(16)+18):

(Step 3 |2), is adiabatically transferred back &f|1), as ,
in Step 1. As a result, we obtain lyn) = | > (@, oll1d) + @, c[112))[0), (23

1=0,1
Iy = 2 €12%q | |I41,)[0). (18) .
11.1,=0,1 v lypy= 2 [all,d||ld> + e'(ll_l)¢a|l,c||12>]|0>a (24)
1,=0,1

The final state is the same as the output of the controlled
phase gate. Thus, it turns out that the controlled phase gate N il
can be performed by the above three steps. |p3) = | %l(“llvd“lw +el “'1~C|I1C>)|O>' (29

In the following, we explain the detail of Step 2. The e
Hamiltonian in Step 2 is given by The final state can be expressed withas follows:
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) = |0)1 (g gldy, + g ¢[C)2)|0) + | 1)1 (aq gldly, vacuum state of the cavity-mode field. The output state of the
is ' ’ ' three-qubit controlled phase gate is defined as
+€%a ([c),)|0)

=[0)1( o gld)s + 0|0} + €7 1),U(ry o) = 2 @dla  lIlbl5)0). (28)

1321370,1
+a,,(/C),)[0) The procedure for this gate is composed of the following
=[0)1(ap,00)2 + @ 1/1),)[0) three steps as in the case of the two-qubit controlled phase

-i) ate.

+€7%1)1U( 00); + @1,1/1),)|0). (26 9 (Step 1 |1)5 is adiabatically transferred {@); with laser
This is equal to the output of the controlled unitary gatepulses resonant witfl)s-|4); and |2)s-|4)5 transitions. The
except for the phase facter'’. The additional phase factor state then becomes
can be eliminated by a one-qubit phase gate on the first qu-
bit. In the case of a controlledoT (CNOT) gate, however, = 2 (a,0lil20) +a,411122)|0).  (29)
ly5) is exactly equal to the output of thenoT gate because 1112701
the eigenvalues dff corresponding to theNoT gate are 1 (Step 3 The phases 0012|0), |102)|0), and|002)[0) are
andd can be set to zero. Therefore, the additional phase gaihifted by adiabatic passage with laser pulses resonant with
is not necessary to perform timoT gate. |0)1-|3)1, |0)2-|3)2, and|1)s-|3)5 transitions in order to obtain

the following state:

= ay ollal0) + €127V | [151,2)]]0).
In Secs. Il and IV, we have shown how to implement 92 |1,|22:0,1[ '1"2‘0| 1120/ '1"2’1| 1122110

one-qubit unitary gates and two-qubit controlled unitary (30)
gates by adiabatic passage in our scheme. Since the set of

these elementary gates is universal for quantum computatiofThe detail of this step is explained later.

any quantum gate can be decomposed into them. For ex- (Step 3 |2) is adiabatically transferred back &f|1); as
ample, a three-qubit controlled unitary gate with two controlin Step 1. As a result, we obtain

qubits and a unitary operatdt on a target qubit, which is

denoted by &2-U gate, can be decomposed into tamoT lp= 2 sl l1ol)[0). (31)
gates, twoC-V gates(V?=U), and aC-V' gate[2]. A C"-U I2.1213=0,1

gate (n=3,4,--) can be decomposed intdr2-1) Toffoli  the final state is the same as the output of the three-qubit
gates(C*NoT gateg and aC-U gate with(n—1) additional  controlled phase gate.

work qubits [3]. However, it is desirable to implement the | the following, we explain the detail of Step 2. The
multiqubit gates more efficiently than decomposing into thepamiltonian in Step 2 is given by
elementary gates because the decomposition into the elemen-
tary gates requires many gate steps and additional qubitsH(t) = QM (1)|3),,(0] + 2Q2(1)|3),x0] + £QD(1)[3)55(1]
which will induce some problems such as a long gate time or ®
decoherence. + 2 fig¥al3y2 +H.. (32

In this section, it is shown that multiqubit controlled k=123
phase gates can be performed by adiabatic passage in there Q@ (t), Q@(t), and Q®)(t) are the Rabi frequencies
present scheme without decomposing into the elementaryorresponding to théd);-|3);, |0),-|3),, and|1)s-|3), transi-
gates. The efficiency of the multiqubit gates is discussed ifions, respectively, ang® is a coupling rate between tikéh

Sec. VI. Here we show only how to implement the multiqu- atom and the cavity-mode fielt=1,2,3. This Hamiltonian
bit controlled phase gates because multiqubit controlled uninas the following dark states:

tary gates can be realized in a similar manner to the multi- _ B

qubit controlled phase gates as in the case of the two-qubit  |Dggo = v2gPg?|000)|0) - V29V 02|020)|1)

controlled unitary gates explained in the last section. = (Dl D (2
-2g20%1200|1) + 0 Y02|220)[2),

V. MULTIQUBIT CONTROLLED UNITARY GATE

A. Three-qubit controlled phase gate
- . o1 = g¥]010(0) - 0P|210)1),
Before explaining general multiqubit controlled phase

gates, we explain the case of a three-qubit controlled phase
gate with two control qubits. The initial statey) is defined
as

D100 = 9'?100/0) - 2?[120)[1),
5 IDo12 = gP2®|012)|0) + g®QY]211)|0)
= 111512)|0Y, 2
|40) Il,lz,I3:0,1a|1’|2’|3| 1l21)[0) (27) —0Y0®212(1),

where|l11,3)=[11)4]12)5]l3)3 and ¢ ;. denote a state of the 203 PN
three five-level atoms and thleZSrobabiIity amplitude of [D1oa) o« g2427]102(0) + g=42®]121){0)
[0l (11,15,13=0,1), respectively, and|0) denotes the -020011221),
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IDgog) Vr'Eg(l)g(z)Q(3)|002>|0>+ \f'Eg(z)g(3)Q(1)l20]>|0) In the following, we explain the detail of Step 2. The
— —~ Hamiltonian in Step 2 is given by
+v29¥gP0?]022)|0) - V2900|022 1)

n

—2¢20®0D[202)|1) - 2gP 0V 02[221)|1) H(t) = 2 2Q®(1)[3),440] + AQ™ (1) 3)1n42(1]

+ Q(l)Q(Z)Q(3)|222>|2>, (33 k::Hl
where the proportionality constants are chosen so that + > 7ig®a|3)(2| + H.c. (39
|D|1,2,3(t)> is normalized and is initially equal tfl,l3)|0). k=1

The dark states with relation to the evolution of the state ar
only them wheng®?=g?=g® and (|QY|-|Q?))(|Q?)
-1Q®)(|Q®]-|QD]) 0. Under the adiabatic condition and @ gYa

the condition that the Berry phase is equal to zero, the evo- Doz 10 = O expl - W|O>11<2| [21:--10)[1), -+,
lution of the state in Step 2 is given by

%his Hamiltonian has the following dark states:

Y1) — [#(V)) = a0, dDood)) + 0,0, Doodt)) T oK o g¥a
i 00dDco 00400 Do.o0 >« IT Q7 expl = X 5 00(2] [[2-+- 20)|n),
+ a0,1,dDo1d1)) + @0,1,1D01A1) + @1 0, dD10odt)) K'=1 1
+ a10,1D1gdV) + @11 d110(0) + a1 1 4112)(0). oPa
The desired phase shifts 12)|0), [102|0), and |002)|0) (1)
can be achieved by the phase shift@P(t). _ %|1>n+1n+1<2|]|21'"12>|1>' o
An example of the three-qubit controlled phase gate is Q
shown in Fig. 4 and is explained in Sec. VI. (40
_qubi n " gk
B. (n+1) qu_It controlled phase gate . |D0...02) o H QKM exp| - 2 g (k(:\|o>kk<2|
In general(n+ 1)-qubit controlled phase gates withcon- =1 ke
trol qubits(n=1,2,---) can be performed by the following "
three steps as in the cases of the two-qubit and three-qubit _ g" )a|1> @[ |12+~ 22|n)
controlled phase gates. The initial stafg) is defined as Q1) 7/neined ’
o) = > a|1,|2,..,|n+l|ll|2---In+1>|0). (35) where the proportionality constants are chosen so that
lpl2r 4 Ine1=0,1 |D|1""n+1(t)> is normalized and is initially equal to
(Step 3 | 1), is adiabatically transferred t@),,,. The |I1---In+l>|_0>. The desired phase shifts can be achieved by the
state then becomes phase shift of2™(y).
)= | ;_O 1(“'1’---,'.1’0“1“' 100} + @ pall s+ 162)[0). VI. NUMERICAL SIMULATIONS
1507y,
36 In this section, a one-qubitr/2 gate, a two-qubit con-
(36)

_ trolled 7 gate, and a three-qubit gate are simulated by
(Step 3 The phases Ofl--+152) (I1,-++,1,=0,1, except  numerically solving Schrodinger equations. By comparing
for I;=l5="---=1,=1) are shifted by adiabatic passage with e simulation results of the two-qubit and three-qubit gates,

laser pulses resonant with0)c[3) (k=1,2,--,n) and  he efficiency of the present implementation of the multiqu-
|1)+1-|3)n+1 transitions in order to obtain the following state: p;t gates is discussed.

= 2 [ dli140)

I nlg=0,1 A. One-qubit phase gate
(1" 1eve Figure 2 shows the simulation result of a one-qubi2
tellle ay - 10210). (37) gate with the following initial state:
The detail of this step is explained later. 0y +|1)
(Step 3 [2),., is adiabatically transferred back to ly(0)) = — (41)
€%1)n.1. As a result, we obtain V2

Figure 2a) shows the absolute values of the Rabi fre-
Il Tnen)l0)- (38) quencies|Q;(t)| (solid line) and|Q,(t)| (dashed ling Figure
2(b) shows the phases of the Rabi frequencies[{y()]
Thus, the(n+1)-qubit controlled phase gate can be realized(solid line) and ariQ),(t)] (dashed ling Figures 2c) and
by the above three steps. 2(d) show the real part(solid line) and imaginary part

. n+1
|l/’3> = E el¢Hk:1|ka|ly.,.

I3 +lne1=0,1
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FIG. 2. (Color onling Numerical simulation of a one-qubit/2 0.0005 | (e)
gate. Time and Rabi frequencies are measured in arbitrary its. a® M
Absolute values of the Rabi frequencies. Solid lif2;(t)|. Dashed 0 ﬂ , JP\L ,
line: [Q,(t)|. (b) Phasegdegreg of the Rabi frequencies. Solid line: 03 | ®
ard Q4(t)]. Dashed line: afd),(t)]. (c) Real part(solid line) and ar
imaginary partdashed lingof the probability amplitude off). (d) /\/\
Real part(solid line) and imaginary partdashed ling of the prob-

ability amplitude of|2). (e) Error probability P4(t) defined by Eq.
(43).

FIG. 3. (Color onling Numerical simulation of a controllea
(dashed ling of the probability amplitudes ofl) and |2),  gate. The coupling rates were chosengdd=g?=g. (a) Scaled
respectively. On the other hand, the amplitudeOdfis con- ~ Rabi frequencies. Solid liné2,(t)/g. Dashed line€),(t)/g. Dotted
stant in this process. As expected, the final state is line: 0 (t)/g. Dot-dashed linef)?(t)/g. HereQ,(t) and(,(t) are
the Rabi frequencies of the pulses resonant Wit —|4), and
_ |0> + i|1> |2),—|4), transitions, respectively, and used in Step 1 and Step 3.
)= VE ' (42) (b) Probability amplitudes of00)|0) (solid line) and|10)|0) (dashed
line). (c) Probability amplitudes 0f01)|0) (solid line) and |02)|0)
Therefore, the one-qubit/2 gate is realized by this process. (dashed ling (d) Probability amplitudes of11)|0) (solid line) and
Figure Ze) shows the error probability defined by the |12)|0) (dashed ling (e) Error probability P¢(t) defined as in the
following equation: case of the one-qubit/2 gate.(f) Probability that the number of

the cavity-mode photons is one, which is denotedPhft).
Pe(t) = 1 = [(gt)] gis(t)) . (43)

Here|y(t)) is the state obtained by the simulation amt)) 1190 (dashed ling Figure 3c) shows the probability am-
is the dark state defined by E@). P.(t) is very small during plitudes of|01)(0) (solid line) and|02)0) (dashed ling Fig-

the gate operation. This means that the state is almost alway® 3d) shows the probgbility amplitudes ¢Il>_|0> (solid .
in tr?e darﬁ state and also means that the upper states afge) and|12){0) (dashed ling As expected, the final state is

almost unpopulated as expected. )= (|00) +02) + |10y — |11))|0)
= 5 .

(45)

B. Controlled phase gate Therefore, the controlled gate is realized by this process.
Figure 3 shows the simulation result of a controlled Figure 3e) ShOWS. the error propability defined as in the
gate with the following initial state: case of the _one—qu_b*rt-/z gate.P(t) is very small during the .
gate operation. This means that the state is almost always in
(|00) +|01) + |10 + |11))|0) the dark state and also means that the upper states are almost
2 : unpopulated as expected.
Figure 3f) shows the probability that the number of the
The coupling rates were chosen g8'=g'”=g. Figure  cavity-mode photons is one, which is denotedrt). This
3(a) shows the scaled Rabi frequenci€s(t)/g (solid line), s compared with that of the three-qubitgate later.
Q,(t)/g (dashed ling QY/g (dotted ling, andQ?/g (dot-
dashed ling where(),(t) andQ,(t) are the Rabi frequencies C. Three-qubit controlled phase gate
of the pulses resonant with),—|4), and |2),—|4), transi- Figure 4 shows the simulation result of a three-qubit con-
tions, respectively, and used in Step 1 and Step 3. Figime 3 trolled 7 gate with two control qubits. The initial state was
shows the probability amplitudes ¢80)|0) (solid line) and  defined as

[0)) = (44)
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4 - —
2 [ &y P ;'A\ a -t = * CJ * N

o rf’ % ‘_,'f‘. NV ’ \‘\

a 0 W 2 - —Ix /2
2 (@ FIG. 5. Decomposition of the three-qubit controlledjate into
p . . . . . two controllednoT gates, two controlledr/2 gates, and a con-

trolled (-7/2) gate.

dashed ling andQ®/g (dot-dot-dashed line whereQ,(t)

and Q,(t) are the Rabi frequencies of the pulses resonant
with |1)3—|4); and |2);—|4)5 transitions, respectively, and
used in Step 1 and Step 3. The shape®@t/g, O?/g, and
Q®/g were chosen so thatfQ®|-|Q?))(|Q?]|-]Q®))

X (|Q®]-]QW|) #0 is satisfied because then the dark states

%ix0

3 B4, with relation to time evolution are only the states shown by
Eq. (33). Figure 4b) shows the probability amplitudes of

= |000)|0) (solid line), [010)|0) (dashed ling |100)|0) (dotted

S8, line), and|[110)|0) (dot-dashed ling Figure 4c) shows the

probability amplitudes of001)|0) (solid line) and [002)|0)
(dashed ling Figure 4d) shows the probability amplitudes
of |011)|0) (solid line) and|012)|0) (dashed ling Figure 4e)
shows the probability amplitudes (#01)|0) (solid line) and
|102)|0) (dashed ling Figure 4f) shows the probability am-
plitudes of|111)|0) (solid line) and|112)|0) (dashed ling As
expected, the final state is

1
=== 2 (=112l l,l)|0). (47

V2i,1,1570,1

Therefore, the three-qubit controlled gate is realized by
this process.

From Figs. 3 and 4, it turns out that the gate time of the
three-qubit controlledr gate is nearly equal to that of the
two-qubit controlledw gate. On the other hand, the three-
qubit controlledw gate can be decomposed into five two-

FIG. 4. (Color online Numerical simulation of a three-qubit qubit controlled gategsee Fig. 3 Therefore, the present
controlledw gate with two control qubits. The coupling rates were implementation of the three-qubit controlledgate is about
chosen ag?=g®?=g®=g. (a) Scaled Rabi frequencies. Solid line: five times as fast as decomposing into two-qubit controlled
Q4(t)/g. Dashed linex),(t)/g. Dotted line:()V(t)/g. Dot-dashed  gates.
line: Q(t)/g. Dot-dot-dashed line®(t)/g. Here Q4(t) and Figure 4g) shows the error probability defined as in the
Q,(t) are the Rabi frequencies of the pulses resonant Wiith  case of the one-qubit/2 gate.Pg(t) is very small during the
~|4)3 and|2)3-|4)s transitions, respectively, and used in Step 1 andgate gperation. This means that the state is almost always in
Step 3.(b) Probability amplitudes 0f000|0) (solid line), [010/0)  the dark state and also means that the upper states are almost
(dashed ling |100)|0) (dotted ling, and|110)|0) (dot-dashed ling unpopulated as expected. By comparing Figs) and 4g),

(c) Probability amplitudes ofl001|0) (solid line) and |002)|0) W A
: - ) . e also find it is not the case that decoherence due to spon-
(dashed ling (d) Probability amplitudes of01/0) (solid line) and taneous emission from the upper states in the case of the

|012)|0) (dashed ling (e) Probability amplitudes of10D|0) (solid . . )

: . 5 . three-qubit controlled gate is much faster than in the case of
I d |102|0) (dashed | f) Probabilit litud f ;

ine) and [1020) (dashed ling (f) Probability amplitudes o the two-qubit controlled gate.

|112)|0) (solid line) and|112)|0) (dashed ling (g) Error probability X .
P4(t) defined as in the case of the one-qubi? gate.(h) Probabil- Elgure 4h) shows th,e prObab'I_'ty th"_"t th_e number of the
cavity-mode photons is equal tp which is denoted by

ity that the number of the cavity-mode photons is equgl twhich

is denoted byP;j(t) (j=1,2). Solid line: P,(t). Dashed lineP(t).
1

= 2

V2i,,0,1570,1

[0)) = [111213)|0). (46)

The coupling rates were chosengt8=g®?=g®=g. Fig-
ure 4a) shows the scaled Rabi frequenciés;(t)/g (solid
line), Q,(t)/g (dashed ling QV/g (dotted ling, /g (dot-

Pj(t) (j=1,2). By comparing Figs. @) and 4h), we find it is
not the case that decoherence due to cavity decay in the case
of the three-qubit controlled gate is much faster than in the
case of the two-qubit controlled gate.

From the above comparison of the three-qubit and two-
qubit controlled gates, it is concluded that the present imple-
mentation of the three-qubit controlled gates is more efficient
than decomposing into the elementary gates.
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In the following, we discuss the case (@f+ 1)-qubit con-  cient than decomposing into only the elementary gates.
trolled unitary gate§n=3,4,---). In the case without addi-
tional work qubits,(n+1)-qubit controlled unitary gates can
be decomposed int@"-3) two-qubit controlled gatef2]. VII. CONCLUSION
In the case with(n—1) additional work qubits, which are
undesirable because they will induce additional decoherence, In this paper, we have proposed an implementation of
(n+1)-qubit controlled unitary gates can be decomposed inténultiqubit controlled unitary gates by adiabatic passage with
2(n—-1) Toffoli gates and a two-qubit controlled gaf8]. a single-mode optical cavity. A one-qubit/2 gate, a two-
Since a Toffoli gate is decomposed into five two-qubit con-qubit controlledw gate, and a three-qubit controlled gate
trolled gates,(n+1)-qubit controlled gates are decomposedhave been numerically simulated. From the simulation re-
into (10n—9) two-qubit controlled gates in the case with sults, it has been shown that the present implementation of
work qubits. On the other hand, {h+1)-qubit controlled the three-qubit controlled gates is more efficient than decom-
gates can be realized in our scheme by choosing the pulg®sing into the elementary gates. The efficiency of general
shapes of the Rabi frequenci@¥(t) (k=1,2,--,n+1) so  multiqubit controlled gates is also discussed. If the multiqu-
that all|Q®(t)| are almost always unequal to one another ait controlled gates can be realized under the condition simi-
the case of the three-qubit controlled gates, the gate time oflar to that for the three-qubit controlled gates, the present
(n+1)-qubit controlled gate is a little longer than that of a implementation of the multiqubit controlled gates will be
n-qubit controlled gate. Therefore, if this assumption ismore efficient than decomposing into the elementary gates.
proved theoretically or experimentally, then it turns out thatTherefore, if this assumption is proved theoretically or ex-
in our scheme the gate time of(a+1)-qubit controlled gate perimentally, then the implementation presented in this paper
is much shorter than that ¢2™1-3) or (10n-9) two-qubit  will be useful to realize quantum algorithms, such as Shor’s
controlled gate$n=3,4,---) and the present implementation algorithm for prime factoring or Grover’s algorithm for da-
of (n+1)-qubit controlled unitary gates is much more effi- tabase search.
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