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We relate the notion of entanglement for quantum systems composed of two identical constituents to the
impossibility of attributing a complete set of properties to both particles. This implies definite constraints on
the mathematical form of the state vector associated with the whole system. We then analyze separately the
cases of fermion and boson systems, and we show how the consideration of both the Slater-Schmidt number of
the fermionic and bosonic analog of the Schmidt decomposition of the global state vector and the von Neu-
mann entropy of the one-particle reduced density operators can supply us with a consistent criterion for
detecting entanglement. In particular, the consideration of the von Neumann entropy is particularly useful in
deciding whether the correlations of the considered states are simply due to the indistinguishability of the
particles involved or are a genuine manifestation of the entanglement. The treatment leads to a full clarification
of the subtle aspects of entanglement of two identical constituents which have been a source of embarrassment
and of serious misunderstandings in the recent literature.
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I. INTRODUCTION

Quantum entanglement, considered by Schrödinger “the
characteristic trait of Quantum Mechanics, the one that en-
forces its entire departure from classical lines of thoughts”
[1], has played a central role in the historical development of
quantum mechanics and nowadays it constitutes an essential
resource for many aspects of quantum information and quan-
tum computation theory. In fact, the possibility of performing
reliable teleportation processes, of generating uncondition-
ally secure private keys in cryptography, or of devising quan-
tum algorithms allowing us to solve certain computational
problems in a more efficient way than the best known clas-
sical methods, is essentially based on the peculiar properties
of entangled states. However, in spite of the fact that en-
tangled states involving identical constituents are widely
used in the experimental implementations of the above men-
tioned (and many other) processes, the very notion of en-
tanglement for such ubiquitous physical systems seems to be
too often misunderstood, or not understood at all, in the cur-
rent scientific literature on the subject. The most frequent
misinterpretations arise in connection with the symmetriza-
tion postulate of quantum mechanics, which requires definite
symmetry properties for the state vectors associated with sys-
tems of identical particles. Their nonfactorized form seems
to suggest,1 when compared with the well-known case of
systems composed of distinguishable particles, the occur-

rence of an unavoidable form of entanglement when identi-
cal particles enter into play.

In a recent paper[2] (see also[3]) we analyzed in great
detail the problem of entanglement, dealing with systems of
two (or more) both distinguishable and identical particles. In
accordance with the position of the founding fathers of quan-
tum mechanics[1,4], we strictly related the nonoccurrence of
entanglement to the possibility of attributing complete sets of
properties with both constituents of the composite system. In
this way we were able to formulate an unambiguous criterion
for deciding whether a given state vector is entangled or not,
which works for the cases of both distinguishable and iden-
tical constituents. It has to be stressed that, contrary to what
has sometimes been stated, nonentangled states involving
identical constituents can actually occur.

Obviously, in the case of distinguishable particles, our
criterion is equivalent(as we showed in Ref.[2]) to the com-
monly used criteria to identify whether a system is entangled
or not, which involve consideration of the Schmidt number
of the biorthonormal decomposition of the state or, equiva-
lently, the evaluation of the von Neumann entropy of the
reduced statistical operators.

The situation is radically different in the case of compos-
ite systems involving identical constituents. In the literature,
various authors[5–7] have suggested identifying the en-
tangled or nonentangled nature of a system of two identical
constituents by resorting to natural generalizations of the
above mentioned criteria. In so doing they have met various
difficulties which emerge when one compares the results ob-
tained with the analogous ones for the case of distinguishable
particles. Moreover, the procedure yields apparently contra-
dictory results for the fermion and boson cases[6–8].

In this paper, we show that the source of the problems
rests in not having appropriately taken into account the fact
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that, even in the case in which it is physically legitimate and
correct to consider a state as nonentangled, so that one
knows the properties of the constituents, there is an unavoid-
able lack of information about the actual situation of the
constituents, arising from their identity. Furthermore, we
prove that by resorting to the general analysis of Refs.[2,3]
one can get a complete clarification of the matter and we
present a unified criterion for detecting entanglement in sys-
tems of identical particles such that(i) it involves both the
Slater-Schmidt number of the fermionic and bosonic analog
of the Schmidt decomposition of the state vectorsand the
von Neumann entropy of the reduced single-particle statisti-
cal operators;(ii ) it applies equally well for fermions and
bosons; and(iii ) it is in complete accordance with our origi-
nal criterion.

II. ENTANGLEMENT AND PROPERTIES

In this section we briefly review the arguments of Ref.
[2], which show that the correct way to identify the entangle-
ment is to relate it to the impossibility of attributing precise
properties to the(identical) constituents of a two-particle
systemS=S1+S2. As is well known, in the case of nonen-
tangled distinguishable particles the factorized nature of the
state vectorucs1,2dl= ufl1 ^ uxl2 is a necessary and sufficient
condition for being allowed to claim that subsystemS1 ob-
jectively possesses the(complete set of) properties associ-
ated with the state vectorufl1 and subsystemS2 those asso-
ciated with uxl2. We stress that in the case considered we
know not only the properties that are possessed but also to
which system they refer. Obviously, in the case of identical
constituents one cannot resort to the factorizability criterion
to claim that the two systems are nonentangled, otherwise
one would be led to conclude(mistakenly) that nonentangled
states cannot exist(an exception being made for two bosons
in the same state), since the necessary symmetry require-
ments forbid the occurrence of factorized states.

However, this naive and inappropriate conclusion derives
from taking a purely formal attitude about the problem, with-
out paying due attention to the physically meaningful condi-
tions which, when satisfied, allow one to legitimately state
that two systems are nonentangled. Such conditions are, pri-
marily, those of being allowed to claim that one particle pos-
sesses a precise and complete set of properties and the other
one exhibits analogous features. Obviously, one must always
keep clearly in mind that it is absurd to pretend to individu-
ate the particles, i.e., to identify which one possesses one set
of properties and which one the other set(in the case in
which such sets are different).

Considerations of this kind have led us to identify the
following physically appropriate criterion characterizing
nonentangled states of two identical particles.

Definition 2.1. The identical constituentsS1 and S2 of a
composite quantum systemS=S1+S2 are nonentangled when
both constituents possess a complete set of properties.

Obviously, we still have to make fully precise the mean-
ing of the expression “both constituents possess a complete
set of properties.” To this end we resort, first of all, to the
following definition.

Definition 2.2. Given a composite quantum systemS=S1
+S2 of two identical particles described by the normalized
state vectorucs1,2dl, we will say that one of the constituents
possesses a complete set of properties if and only if there
exists a one-dimensional projection operatorP, defined on
the single particle Hilbert spaceH, such that

kcs1,2duEPs1,2ducs1,2dl = 1 s1d

where

EPs1,2d = Ps1d
^ fI s2d − Ps2dg + fI s1d − Ps1dg ^ Ps2d

+ Ps1d
^ Ps2d. s2d

Condition(1) gives the probability of findingat leastone of
the two identical particles(of course we cannot say which
one) in the state associated with the one-dimensional projec-
tion operatorP.2 Since any state vector is a simultaneous
eigenvector of a complete set of commuting observables,
condition (1) allows us to attribute to at least one of the
particles the complete set of properties(eigenvalues) associ-
ated with the considered set of observables.

At this point we must distinguish two cases. If the two
identical particles are fermions, then one can immediately
prove (see Ref.[2]) that Eq. (1) implies that there exists
another one-dimensional projection operatorQ, which is or-
thogonal toP, such that the operatorEQ, which has the ex-
pression(2) with Q replacingP, also satisfies

kcs1,2duEQs1,2ducs1,2dl = 1. s3d

Obviously, in such a case, since it is simultaneously true that
there is at least one particle having the properties associated
with P and there is at least one particle having the properties
associated withQ and, moreover, such properties are mutu-
ally exclusive due to the orthogonality of the projection op-
erators, we can legitimately claim that, in the stateucs1,2dl,
one particle(it is meaningless to ask which one) has the
complete set of properties associated withP and one the
complete set associated withQ. As we showed in Ref.[2]
our request for nonentanglement leads, in the fermion case,
to the following theorem.

Theorem 2.1. The identical fermionsS1 andS2 of a com-
posite quantum systemS=S1+S2 described by the pure nor-
malized stateucs1,2dl are nonentangled if and only if
ucs1,2dl is obtained by antisymmetrizing a factorized state.

In the boson case the situation is slightly different since
the two particles can be in the same state. To be completely
general let us begin by assuming that at least one of the
constituents possesses a complete set of properties, so that
there exists a one-dimensional single-particle projection op-
eratorP such that the associatedEP satisfies Eq.(1). At this

2We remark that one could drop the last term in the expression of
Eq. (2), getting an operatoe whose expectation value gives the prob-
ability of finding precisely one particle in the state onto whichP
projects. In the case of identical fermions this makes no difference,
but for bosons it would not cover the case of both particles being in
the same state.

G. GHIRARDI AND L. MARINATTO PHYSICAL REVIEW A 70, 012109(2004)

012109-2



point we take into account the operatorPs1d ^ Ps2d and we
consider its expectation value in the stateucs1,2dl. Three
possible cases can occur.

(1) If kcs1,2duPs1d ^ Ps2ducs1,2dl=1, then we can say that
both particles possess the complete set of properties associ-
ated withP, and ucs1,2dl is the tensor product of two iden-
tical state vectors. This is the only situation in which the
unavoidable ambiguities ensuing from the identity of the
constituents disappear.

(2) If kcs1,2duPs1d ^ Ps2ducs1,2dl=0 then the condition
Eq. (1) implies that the state is obtained by symmetrizing the
product of two orthogonal states, one of which is the one on
which P projects, and, consequently, there is another one-
dimensional projection operatorQ orthogonal toP such that
Eq. (3) is satisfied, and the mean value ofQs1d ^ Qs2d also
vanishes. The situation is perfectly analogous to the fermion
case, and one can conclude that there is precisely one particle
possessing the properties identified byP and one possessing
the properties identified byQ.

(3) If kcs1,2duPs1d ^ Ps2ducs1,2dlP s0,1d, since condition
Eq. (1) implies that the state is obtained by symmetrizing the
product of two states, one of which is the one on whichP
projects, the second state cannot be orthogonal to the first
one. If we denote asQ the one-dimensional projection op-
erator on such a state, then we can immediately verify that
Eq. (3) holds and thatkcs1,2duQs1d ^ Qs2ducs1,2dlP s0,1d. In
such a situation, in spite of the fact that the two statements
“there is at least one particle with the properties associated
with P” and “there is at least one particle with the properties
associated withQ” are true, one cannot conclude that “there
is precisely one particle possessing the properties identified
by P and one possessing the properties identified byQ.”

The above considerations, as the reader can easily grasp
and as has been proved in Ref.[2], lead to the following
theorem.

Theorem 2.2. The identical bosons of a composite quan-
tum systemS=S1+S2 described by the pure normalized state
ucs1,2dl are nonentangled if and only if either the state is
obtained by symmetrizing a factorized product of two or-
thogonal states or it is the product of the same state for the
two particles.

Concluding, we have shown that, when one deals with the
problem of entanglement using the necessary logical rigor
and making appeal to the physical meaning of entanglement
itself, then the process of(anti)symmetrizing a state vector
does not necessarily lead to an entangled state.

In addition to the physical motivations we have presented,
there are other compelling reasons which show that our cri-
terion for nonentanglement is the correct one. It is in fact
easy to show that, when the conditions of Theorems 2.1 or
2.2 are satisfied, it is not possible to take advantage of the
form of the state vector to perform teleportation processes or
to violate Bell’s inequality. These facts further strengthen our
conclusion that the state is nonentangled.

To clarify our argument we resort to an extremely simple
example. Let us consider the following state of two identical
spin-1/2 fermions, in which we have denoted asuRl and uLl
two precise orthonormal states of the single-particle configu-
ration space having disjoint supports in two distant and non-

overlapping spatial regions right and left, respectively, and
with uz↑l anduz↓l the eigenvectors of the spin observablesz:

ucs1,2dl =
1
Î2

fuz↑l1uRl1 ^ uz↓l2uLl2 − uz↓l1uLl1 ^ uz↑l2uRl2g.

s4d

Such a state, which can be obtained by antisymmetrizing a
factorized state(that is, uz↑l1uRl1 ^ uz↓l2uLl2), makes per-
fectly legitimate a statement of the type3 “there is one par-
ticle at the right having spin up along thez direction and the
spatial properties associated withuRl and a particle at the left
having spin down along thez direction and the spatial prop-
erties associated withuLl.” As a consequence, this state does
not imply any(nonlocal) correlation between spin measure-
ments performed in the two spacelike separated regions right
and left and thus it cannot violate Bell’s inequality. This
follows immediately from the fact that, when the state is the

one of Eq.(4), we have for the mean valueEsaW ,bWd of the
product of the outcomes of two spin measurements along the

directionsaW and bW in the two regions right and left the fol-
lowing expression:

EsaW,bWd = kcufsW s1d ·aWPR
s1d

^ sW s2d ·bWPL
s2d

+ sW s1d ·bWPL
s1d

^ sW s2d ·aWPR
s2dgucl

= kz↑usW ·aW uz↑lkz↓usW ·bW uz↓l, s5d

where we have denoted asPR andPL the projection operators
on the closed linear manifolds of the spatial wave functions
with compact support in the right and left regions, respec-
tively. The occurrence of a factorized product of two mean

values implies that no choice of the unit vectorsaW, bW, cW, and

dW can lead to a violation of Bell’s inequality[9]:

uEsaW,bWd − EsaW,cWdu + uEsbW,dWd + EscW,dWdu ø 2. s6d

On the other hand, let us consider a state of the form

ufs1,2dl =
1

2
fuz↑l1uz↓l2 − uz↓l1uz↑l2g ^ fuRl1uLl2 + uLl1uRl2g,

s7d

which is the one used in the Bohm version of the Einstein-
Podolsky-Rosen argument of incompleteness. Since it cannot
be obtained by antisymmetrizing a factorized product of two
orthogonal states it is a genuine entangled state according to
our criterion. Correspondingly, one can easily prove that
such a state exhibits the nonlocal features leading to a viola-
tion of Bell’s inequality for a proper choice of the orienta-

tions aW, bW, cW, anddW.
In spite of their simplicity, the examples just considered

show clearly why vectors displaying the apparent form of an
entangled state, such as the one of Eq.(4), must be consid-

3Note that in making our statement we somehow individuate our
constituents by making reference to the fact that they lie in different
spatial regions. This remark is useful for the analysis that will fol-
low.
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ered as nonentangled, in perfect agreement with our crite-
rion.

III. THE ENTANGLEMENT CRITERIA

As we have already stressed, when one deals with quan-
tum systems composed of two distinguishable particles, the
appearance of entanglement is equivalent to the impossibility
of writing the state vector of the compound systemucs1,2dl
as a tensor product of two single-particle states. This in turn
implies two well-known formal facts:(i) by resorting to the
Schmidt decomposition, the global state turns out to be non-
entangled if and only if its associated Schmidt number(that
is, the number of nonzero coefficients in such a decomposi-
tion) equals 1;(ii ) the state is nonentangled if and only if the
von Neumann entropy of the reduced statistical operator as-
sociated with both particles is equal to zero.4

Both facts have clear physical implications and a precise
meaning: the first refers to the possibility of attributing a
complete and precise set of properties to each constituent,
the second ensures that we have the most complete and ex-
haustive information allowed by quantum theory about the
situation of each constituent. In fact, in a factorized state
each component subsystem is associated with a precise state
vector and the reduced statistical operator for one of the two
particles, for example, the one labeled by 1, i.e.,rs1d

=Trs2dfucs1,2dlkcs1,2dug, turns out to be a projection opera-
tor onto a one-dimensional manifold. Correspondingly, its
von Neumann entropySsrs1dd;−Trs1dfrs1dlog2rs1dg equals
zero. This result is correct since such a quantity measures the
lack of information about the single-particle subsystem and
there is, in fact, no uncertainty at all concerning the state that
must be attributed to it.

When passing to the more subtle case of interest, that is,
to systems composed of two identical constituents, the rela-
tions between entanglement and both the Schmidt number
and the von Neumann entropy of the reduced statistical op-
erators become less clear and require a careful analysis. The
purpose of this section is to clarify the matter and to present
a criterion for determining whether a state is entangled or not
which is (i) based on a consideration ofboth the Slater-
Schmidt number and the von Neumann entropy;(ii ) consis-
tent with our original criterion summarized in Definition 2.1;
(iii ) equally applicable to fermion and boson systems; and
finally (iv) able to unify in a consistent way various criteria
which have appeared recently in the literature[5–7].

We limit our considerations to the case of a finite-
dimensional single-particle Hilbert space and, in accordance
with the above remarks, we deal separately with the fermion
and the boson cases, since they exhibit quite different
features.

A. The fermion case

The notion of entanglement for systems composed of two
identical fermions has been discussed in Ref.[5] where a

fermionic analog of the Schmidt decomposition was exhib-
ited. Such a decomposition is based on a nice extension to
the set of the antisymmetric complex matrices of a well-
known theorem holding for antisymmetric real matrices(see,
for example,[10]). The theorem of[5] states the following.

Theorem 3.1. For any antisymmetricsN3Nd complex
matrix A [that is, APMsN,Cd and AT=−A], there exists a
unitary transformationU such thatA=UZUT, with Z a block-
diagonal matrix of the sort

Z = diagfZ0,Z1, . . . ,ZMg, Z0 = 0, Zi = F 0 zi

− zi 0
G , s8d

whereZ0 is the sN−2Md3 sN−2Md null matrix andzi are
complex numbers. Equivalently,Z is the direct sum of the
sN−2Md3 sN−2Md null matrix and theM s232d complex
antisymmetric matricesZi.

The fermionic analog of the Schmidt decomposition fol-
lows from an application of Theorem 3.1 to systems com-
posed of identical fermions.

Theorem 3.2. Any state vectorucs1,2dl describing two
identical fermions of spins and, consequently, belonging to
the antisymmetric manifoldAsC2s+1 ^ C2s+1d can be written
as

ucs1,2dl = o
i=1

s2s+1d/2

ai
1
Î2

fu2i − 1l1 ^ u2il2 − u2il1 ^ u2i − 1l2g,

s9d

where the stateshu2i −1l , u2ilj with i =1, . . . ,s2s+1d /2 con-
stitute an orthonormal basis ofC2s+1, and the complex coef-
ficientsai (some of which may vanish) satisfy the normaliza-
tion conditionoi uaiu2=1.

Following the authors of Ref.[5], the number of nonzero
coefficientsai appearing in the decomposition(9) is called
theSlater numberof ucs1,2dl. The relation of such a number
to the notion of entanglement has been made explicit in the
papers[6,7], where a state displaying the form of Eq.(9) is
called entangled if and only if its Slater number is strictly
greater than 1. It is worth noticing that this condition turns
out to be totally equivalent to our Definition 2.1. In fact,
given an arbitrary two-particle stateucs1,2dl, suppose that
its fermionic Schmidt decomposition has Slater number
equal to 1. According to Theorem 3.2, this means that there
exist two orthonormal vectorsu1l and u2l belonging toC2s+1

such that

ucs1,2dl =
1
Î2

fu1l1 ^ u2l2 − u2l1 ^ u1l2g, k1u2l = 0.

s10d

Since the state can be obtained by antisymmetrizing the
product stateu1l1 ^ u2l2, the state must be considered as non-
entangled in accordance with our criterion. Vice versa, any
state obtained by antisymmetrizing a factorized state has
Slater number equal to 1. On the contrary, if the Slater num-
ber is greater than(or equal to) two, the form Eq.(9) of the
state shows immediately that it cannot be obtained by anti-
symmetrizing a product of two orthonormal vectors, so that

4As is well known, given a statistical operatorr, its von Neumann
entropy is defined asSsrd;−Trfr ln rg where the base of the loga-
rithm function is the numbere. However, in the present paper, we
will rescale this quantity and follow the information theory conven-
tion of using all logarithms in base 2.
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the state must be considered as a genuinely entangled one.
So far the criterion of Refs.[5–7] and ours agree com-

pletely; however, some problems arise when one calculates
the von Neumann entropy of the reduced density operator
associated with one of the two particles.5 In fact from Eq.(9)
one gets

rs1d ; Trs2dfucs1,2dlkcs1,2dug

= o
i

uaiu2

2
fu2i − 1l1k2i − 1u + u2il1k2i ug. s11d

The von Neumann entropy for such an operator, which is
already in its diagonal form, can be easily calculated:

Ssrs1dd ; − Trs1dfrs1dlog2 rs1dg

= − o
i

uaiu2log2
uaiu2

2
= 1 −o

i

uaiu2log2uaiu2. s12d

It follows trivially that

Ssrs1dd ù 1 ∀ uaiu2 P f0,1g, o
i

uaiu2 = 1. s13d

In analogy with the case of distinguishable particles, one
could be tempted to regard this quantity as a measure of
entanglement. But, according to the authors of Refs.[6,8],
this naturally raises the following two puzzling issues:(i)
Ssrs1dd of Eq. (12) attains its minimum valueSmin=1 in cor-
respondence with a state with Slater number equal to 1
(which, in accordance with their position, is assumed to iden-
tify a nonentangled state), contrary to what happens for a
(nonentangled) state of distinguishable particles with
Schmidt number equal to 1, for which the value of the en-
tropy still takes its minimum value which, however, equals
0; (ii ) moreover, in the case of two identical bosons, the
minimum of the analogous quantity, as we will show later, is
null. This seems to imply that the von Neumann entropy is
inappropriate to deal with our problem since it gives differ-
ent measures of entanglement for boson and fermion states.

The problematic aspects of this situation derive entirely
from not having taken correctly into account the real mean-
ing of the von Neumann entropy as a measure of the uncer-
tainty about the state of a quantum system. To be more pre-
cise, let us consider a stateucs1,2dl with Slater number
equal to 1, i.e., a nonentangled state according to our and the
Slater number criterion, like that of Eq.(10). As we stressed
in Sec. I, in this situation we can attribute definite quantum
statesu1l and u2l to the particles but, since they are totally
indistinguishable, we cannot know whether, for example,
particle 1 is associated with the stateu1l or with the stateu2l.
As a natural consequence, the reduced density operator of

each particle and its associated von Neumann entropy reflect
such an unavoidable ignorance.6 Actually, they are equal to

rs1 or 2d =
1

2
fu1lk1u + u2lk2ug ⇒ Ssrs1 or 2dd = 1. s14d

It should be obvious that we cannot pretend that the operator
rs1 or 2d of Eq. (14) describes the properties ofpreciselythe
first or of the second particle of the system: once again, due
to the subtle implications of the identity in quantum mechan-
ics, such an operator describes correctly the properties of a
randomly chosen particle(a particle that cannot be better
identified). Accordingly, in this case, the quantity
Ssrs1 or 2dd=1 correctly measures the uncertainty concerning
the quantum state to attribute to each of the two identical
physical subsystems, and, in this situation, it cannot be re-
garded as a measure of the entanglement of the whole state.

A counterpart of this is the fact that the only quantum
correlations exhibited by the stateucs1,2dl of Eq. (10) are
those related to the exchange properties of the indistinguish-
able fermions. As we have stressed before, such correlations
cannot be used to violate Bell’s inequality or to perform any
teleportation process. Accordingly, they cannot be considered
as a manifestation of entanglement.

Continuing our analysis, if we consider a state vector with
Slater number strictly greater than 1, i.e., an entangled state
according to our and to the Slater number criterion, the von
Neumann entropy of the associated reduced density operator
turns out to be strictly greater than 1[see Eq.(13)]. In addi-
tion to the minimum amount of uncertainty deriving from the
indistinguishability of the particles, there is now theaddi-
tional ignorance naturally connected with the genuine en-
tanglement of the state. In this case, in fact, we cannot iden-
tify two quantum states that can be attributed7 to the pair of
particles(contrary to the previously described situation).

To conclude this subsection, we exhibit the criteria for
detecting entanglement involving the Slater number or the
von Neumann entropy, in the case of two identical fermions.
Such criteria are totally consistent with our original require-
ment that definite properties can be attributed to both com-
ponent subsystems of a nonentangled state:

Theorem 3.3. A state vectorucs1,2dl describing two iden-
tical fermions is nonentangled if and only if its Slater num-
ber is equal to 1 or equivalently if and only if the von Neu-
mann entropy of the one-particle reduced density operator
Ssrs1 or 2dd is equal to 1.

In full agreement with the previous considerations we can
say that the von Neumann entropy is a measure both of the
amount of uncertainty deriving from the indistinguishability
of the involved particlesand of the possible uncertainty re-

5Since the state vector of the compound systemucs1,2dl is anti-
symmetric under the exchange of the two particles, its associated
density operatorrs1+2d;ucs1,2dlkcs1,2du is a symmetric operator
and the reduced density operators of the two particles are equal, that
is, rs1d;Trs2dfrs1+2dg=rs2d;Trs1dfrs1+2dg.

6To avoid any misunderstanding we stress that with the expression
“ignorance” we do not intend any lack of knowledge about the
system. In fact in the considered case this ignorance derives entirely
from the fact that, within quantum mechanics, there is no conceiv-
able way to individuate identical particles.

7With this expression we mean that a measurement aimed to test
whether there is one particle in stateu1l and one in stateu2l gives
with certainty a positive outcome.
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lated to the entangled nature of the states(that is, the impos-
sibility of attributing two definite state vectors to the pair of
particles). This quantity, in the case of fermions, is strictly
greater than 1, and the greater it is, the larger is the amount
of entanglement of the state.

Before coming to the boson case, a last remark is appro-
priate. Let us consider a nonentangled state of two fermions
which has the form of Eq.(10). Suppose we choose two
arbitrary orthonormal vectorsu1l and u2l belonging to the
two-dimensional manifold spanned by the statesu1l and u2l,
such that

u1l = au1l + bu2l, u2l = − b* u1l + a* u2l, s15d

with uau2+ ubu2=1.
Substituting these expressions in Eq.(10) we have

ucs1,2dl =
1
Î2

fu1l1 ^ u2l2 − u2l1 ^ u1l2g. s16d

Therefore, when a state is obtained by antisymmetrizing the
product of two orthogonal single-particle states, the same
state can also be obtained by antisymmetrizing the product of
any pair of orthogonal states belonging to the two-
dimensional manifold spanned by the original states. This is
not surprising but it raises some questions concerning the
problem of the assignment of definite properties to the con-
stituents. In fact, Eq.(16) shows that, just as we can claim
that in the state of Eq.(10) there is one particle with the
properties associated withu1l and one with the properties
associated withu2l, we can make an analogous statement

with reference to any two arbitrary orthogonal statesu1̄l and

u2̄l of the same manifold. However, this peculiar feature is
only apparently problematic. In fact, it seems so because
here we are confining our consideration to the spin degrees
of freedom. When one takes into account also the space de-
grees of freedom one realizes that the only physically inter-
esting situations are those associated with states like the one
of Eq. (4), that is, those in which one wants, for example, to
investigate the spin properties of a particle that has a precise
location.8 As we have seen, in such a state one can make
precise claims about the spin state of the particle in the right
or left, respectively, contrary to what happens for a state like
the one of Eq.(7) which is genuinely entangled. This point
has been exhaustively discussed in Ref.[2], to which we
refer the reader for a more detailed analysis.

B. The boson case

Let us now pass to the more delicate case of two identical
bosons. In such a case, dealing with the problem of their
entanglement requires great care in order to avoid possible

misunderstandings. Let us start, as before, by considering the
bosonic Schmidt decomposition for an arbitrary state vector
ucs1,2dl belonging to the symmetric manifoldSsC2s+1

^ C2s+1d describing two identical bosons, and let us recall a
well-known theorem of matrix analysis(the so-called Takagi
factorization theorem[11], a particular instance of a more
general theorem named the singular value decomposition)
which is particularly useful for this case.

Theorem 3.4. For any symmetricsN3Nd complex matrix
B [that is, BPMsN,Cd and BT=B] there exists a unitary
transformationU such thatB=USUT, whereS is a real non-
negative diagonal matrixS=diagfb1, . . . ,bNg. The columns
of U are an orthonormal set of eigenvectors ofBB† and the
diagonal entries ofS are the nonnegative square roots of the
corresponding eigenvalues.

It is worth noticing that the columns of the unitary opera-
tor U must be built by choosing a precise set9 of eigenvectors
of BB† (to be determined in an appropriate manner, see[11]).
The bosonic Schmidt decomposition turns out to be a trivial
consequence of the just mentioned theorem 3.4.

Theorem 3.5. Any state vector describing two identical
s-spin boson particlesucs1,2dl and, consequently, belonging
to the symmetric manifoldSsC2s+1 ^ C2s+1d can be written as

ucs1,2dl = o
i=1

2s+1

biuil1 ^ uil2, s17d

where the stateshuilj, with i =1, . . . ,2s+1, constitute an or-
thonormal basis forC2s+1, and the real nonnegative coeffi-
cientsbi are the diagonal elements of the matrixS and sat-
isfy the normalization conditionoi bi

2=1.
The Schmidt decomposition of Eq.(17) is always unique

when the eigenvalues of the operatorBB† are nondegenerate,
as happens for the biorthonormal decomposition of states
describing distinguishable particles.

In analogy with the case of two distinguishable particles
and of two identical fermions, one could naively be inclined
to term entangled any bosonic state whose Schmidt number
[that is, the number of nonzero coefficients in the decompo-
sition (17)] is strictly greater than 1(as clearly stated, for
example, in Ref.[6]). However, as we will show, this crite-
rion turns out to be inappropriate because the states with
Schmidt number equal to 1(that is, factorized states in which
the two bosons are in the same state) do not exhaust the class
of nonentangled pairs of identical bosons.

In order to identify a satisfactory and unambiguous crite-
rion for detecting entanglement in systems of identical
bosons, we resort to the decomposition of Eq.(17) and we
analyze separately the cases of Schmidt number equal to 1,
2, and greater than or equal to 3.

Schmidt number=1. In this case the factorized state
ucs1,2dl= ui!l ^ ui!l describes two identical bosons in the
same stateui!l. It is obvious that such a state must be con-
sidered as nonentangled because one knows precisely the
properties of both constituents and, consequently, no uncer-

8Obviously, due to the previous remarks concerning the arbitrari-
ness of the states appearing in Eq.(10), also with reference to Eq.
(4) one might claim, e.g., that there is with certainty a particle in the
state 1/Î2fuz↑luRl+ uz↓luLlg and one in the state 1/Î2fuz↑luRl
− uz↓luLlg. However, such states are not physically interesting and
the corresponding measurements are extremely difficult(if not im-
possible) to perform.

9With this expression we mean that one has to appropriately
choose the phase factors of the eigenstates.
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tainty remains concerning which particle has which property.
This fact perfectly agrees with the von Neumann entropy of
the single-particle reduced statistical operatorsSsrs1 or 2dd be-
ing null.

Schmidt number=2. According to Eq.(17), the most gen-
eral state with Schmidt number equal to 2 has the following
form:

ucs1,2dl = b1u1l1 ^ u1l2 + b2u2l1 ^ u2l2, s18d

whereb1
2+b2

2=1. The single-particle reduced density opera-
tor and its associated von Neumann entropy are

rs1 or 2d = b1
2u1lk1u + b2

2u2lk2u, s19d

Ssrs1 or 2dd = − b1
2 log2 b1

2 − b2
2 log2 b2

2. s20d

We can now distinguish two cases, depending on the values
of the nonnegative coefficientsb1 andb2.

First we consider the case where the two coefficients are
equal, that is,b1=b2=1/Î2, and we prove the following
theorem.

Theorem 3.6. The conditionb1=b2=1/Î2 is necessary
and sufficient in order that the stateucs1,2dl=b1u1l1 ^ u1l2

+b2u2l1 ^ u2l2 might be obtained by symmetrizing the factor-
ized product of two orthogonal states.

Proof. Suppose that the stateucs1,2dl is obtained by sym-
metrizing the tensor product of two orthogonal statesufl and
uxl. If we define the orthogonal statesu1l=1/Î2sufl+ uxld
and u2l= i /Î2sufl− uxld, we get

ucs1,2dl =
1
Î2

fufl1 ^ uxl2 + uxl1 ^ ufl2g

=
1
Î2

fu1l1 ^ u1l2 + u2l1 ^ u2l2g. s21d

On the contrary, ifb1=b2=1/Î2 in Eq.(18), then by defining
the orthogonal statesufl=1/Î2su1l− i u2ld and uxl=1/Î2su1l
+ i u2ld, one gets

ucs1,2dl =
1
Î2

fufl1 ^ uxl2 + uxl1 ^ ufl2g, s22d

thus showing thatucs1,2dl can be obtained by symmetrizing
the factorized product of two orthogonal states. j

In this situation, and in full accordance with our Theorem
2.2, one must consider this state as a nonentangled one since
it is possible to attribute definite state vectors to both par-
ticles (of course, once again, we cannot say which particle is
associated with the stateufl or uxl because of their indistin-
guishability). Actually, such a state has preciselythe same
conceptual status and exhibits the same physical featuresas
the nonentangled states of a pair of fermions and the reduced
density operatorrs1 or 2d describes the physical state of one
randomly chosen boson(given that one of them is associated
with the stateufl while the other with the stateuxl):

rs1 or 2d =
1

2
fuflkfu + uxlkxug. s23d

Moreover, since the state contains no correlations but those
descending from the exchange of the two identical particles,
the von Neumann entropySsrs1 or 2dd, according to Eq.(20),
is correctly equal to 1 and our ignorance concerns only
which particle has to be associated with which state.

Before proceeding a short digression is appropriate. First,
if one chooses any pair of orthonormal vectors that are a
linear combination,with real coefficients, of the above states
u1l and u2l:

u1̄l = au1l + bu2l, u2̄l = − bu1l + au2l, s24d

wherea ,bPR anda2+b2=1, one has

ucs1,2dl =
1
Î2

fu1l1 ^ u1l2 + u2l1 ^ u2l2g

=
1
Î2

fu1̄l1 ^ u1̄l2 + u2̄l1 ^ u2̄l2g. s25d

Thus, as in the case of distinguishable particles, when degen-
eracy occurs, the Schmidt decomposition is not unique.

This situation recalls the one we met in the case of two
nonentangled fermions. However, the possibility of writing
ucs1,2dl in different Schmidt forms, contrary to what hap-
pens with fermions, is absolutely unproblematic from the
physically interesting point of view of the properties pos-
sessed by the two particles. Actually, the pair of orthonormal
states whose symmetrization leads to the expression for the
state of Eq.(22) is uniquely determined in the present case.
Accordingly, for identical bosons there is no ambiguity con-
cerning the properties, which allows us to claim that in the
state of Eq.(22) there is one particle with the properties
identified by ufl and one with the properties identified by
uxl. It is illuminating to stress the difference between two
ways of looking at the properties of the constituents accord-
ing to what emerges naturally when one expresses the state
in the form of Eq.(22) or of Eq. (25). Actually, if one looks
at the form of Eq.(25), without taking into account that it
has been obtained by symmetrizing a factorized pair of or-
thogonal states, one is naturally led to make different state-
ments, which, however, have aprobabilisticcharacter, i.e., to
assert that with probability 1/2 both particle are(in the sense

they will be found to be) in stateu1l (or u1̄l) and with the

same probability they are in stateu2l (or u2̄l).
Let us now consider the second case, i.e., the one in

which b1Þb2, and prove the following theorem.
Theorem 3.7. The conditionb1Þb2 is necessary and suf-

ficient in order that the stateucs1,2dl=b1u1l1 ^ u1l2+b2u2l1

^ u2l2 might be obtained by symmetrizing the factorized
product of two nonorthogonal states.

Proof. Since the Schmidt number ofucs1,2dl, and as a
consequence the rank of the reduced statistical operators, is
equal to 2, the state is obtained either by symmetrizing the
factorized product of two orthogonal states or by symmetriz-
ing the product of two nonorthogonal states. In fact, if at
least three linearly independent states were involved in the
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symmetrization procedure, the rank of the single-particle sta-
tistical operator would consequently be strictly greater than
2. This theorem is then simply the logical negation of the
previous Theorem 3.6. j

As we have just proved, in this case the stateucs1,2dl can
be obtained by symmetrizing a factorized product of two
nonorthogonal statesufl and uxl:

ucs1,2dl =
1

Î2s1 + ukxuflu2d
fufl1 ^ uxl2 + uxl1 ^ ufl2g,

kxufl Þ 0. s26d

Then, if one defines the vectoruf'l as the unique normalized
vector orthogonal toufl and lying in the two-dimensional
manifold spanned byufl anduxl, the state of Eq.(26) can be
written as10

ucs1,2dl = aufl1 ^ ufl2 +
b
Î2

fufl1 ^ uf'l2 + uf'l1 ^ ufl2g,

s27d

with certain complex coefficientsa,bÞ0 satisfying the nor-
malization condition uau2+ ubu2=1 and depending on the
modulus of the scalar productukx uflu in the following way:
ubu=s1−zkxuflz2d1/2s1+zkxuflz2d−1/2.

In this case, the criteria adopted in Refs.[6–8] correctly
lead one to declare the state of Eq.(27) as a genuine en-
tangled one. Since this state is obtained by symmetrizing a
factorized product of twononorthogonalvectors, it is impos-
sible to attribute to both particles definite properties, so that
it has to be considered as entangled within our approach also.
It is of some interest to exhibit explicitly the Schmidt decom-
position of the state of Eq.(27):

ucs1,2dl =Î1 +Î1 − ubu4

2
u1l1 ^ u1l2

+Î1 −Î1 − ubu4

2
u2l1 ^ u2l2, ubu P s0,1d,

s28d

where the orthonormal statesu1l and u2l are defined as

u1l =
ubueiua/2

Î2 − uau2 − Î1 − ubu4
Sufl +

Î1 − ubu4 − uau2

Î2ab!
uf'lD ,

u2l =
i ubueiua/2

Î2 − uau2 + Î1 − ubu4
Sufl −

Î1 − ubu4 + uau2

Î2ab!
uf'lD ,

s29d

with a= uaueiua, a andbÞ0, anduau2+ ubu2=1. It is worth no-
ticing that, contrary to what happens for the nonentangled

state of Eq.(22), the Schmidt decomposition of Eq.(27) is
now uniquely determined. This reflects the fact that the two
eigenvalues of the operatorBB†, whereB is the matrix of the
coefficients of the decomposition ofucs1,2dl of Eq. (27) on
a factorized single-particle basis includingufl and uf'l, are
distinct.

Let us come now to a consideration, for the case under
investigation, of the reduced density operator describing one
randomly chosen particle and of its associated von Neumann
entropy. They are given by Eqs.(19) and (20) which imme-
diately show that the entropy belongs to the open interval
s0,1d. Actually, assuming thatb1

2.1/2, in a measurement
process there is a probability greater than 1/2 of finding both
bosons in the same physical stateu1l, and a probability less
than 1/2 of finding them both in the orthogonal stateu2l.
Accordingly, in this situation we have more information
about the single-particle state than in the case of the nonen-
tangled state of Eq.(22) and, as a consequence, the von
Neumann entropy is strictly less than 1.

Schmidt numberù3. In this situation, the state is a genu-
ine entangled one since it cannot be obtained by symmetriz-
ing a factorized product of two orthogonal states,11 and the
von Neumann entropy of the reduced density operators is
such thatSsrs1 or 2ddP s0, log2s2s+1dg. As before, the en-
tropy is close to zero when, in the Schmidt decomposition of
the state, one of its coefficients is very close to 1, implying
that there is a very high probability of being right in claiming
that both bosons are(in the usual quantum sense of “will be
found to be if a measurement is performed”) in the state
associated with the largest coefficient. On the contrary, the
entropy equals log2s2s+1d when the decomposition involves
all the basis states ofC2s+1 with equal weights(a maximally
entangled state). Moreover, as we will prove below, when the
entropy lies within the intervals0,1d, there is a precise state
such that the probability of finding a(randomly chosen) par-
ticle in it, in the appropriate measurement, is greater than
1/2. Obviously, the identification of the privileged state
mentioned requires a knowledge of the Schmidt decomposi-
tion, since this state is the one associated with the largestbi
appearing in Eq.(17). This feature is a consequence of the
following theorem.

Theorem 3.8. Consider the statistical operatorr
=oipiuilki u where at least three of its weightspi are different
from zero. If each nonzero weightpi is strictly less than 1/2,
then the von Neumann entropySsrd is strictly greater than 1.

Proof. let us consider the following functionfsp1,p2d of
two variables:

fsp1,p2d ; − o
i=1

2

pi log2 pi − s1 − p1 − p2dlog2s1 − p1 − p2d

s30d

with p1,p2P s0,1/2d and p1+p2.1/2. The only stationary
point of fsp1,p2d in the considered(open) region is a maxi-

10We notice that one could have equivalently defined the vector
ux'l as the unique normalized vector orthogonal touxl and lying in
the two-dimensional manifold spanned byufl and uxl, without
modifying the forthcoming conclusions.

11In fact, if this was true, the rank of the reduced density operator
would be equal to 2, in contradiction with the fact that a Schmidt
number greater than or equal to 3 implies a rank equal to or greater
than 3.
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mum, while the minimum value off is attained on the
boundary of such a region and it equals 1. As a consequence,
given a rank-3 statistical operatorr=oi=1

3 piuilki u, its von Neu-
mann entropySsrd= fsp1,p2d is strictly greater than 1 when-
ever pi P s0,1/2d , i =1,2,3. Let us nowsuppose that the
theorem holds true for an arbitrary rankn.3 statistical op-
eratorr=oi=1

n piuilki u and let us prove that it also holds true
for an arbitrary rank-sn+1d statistical operator in the follow-
ing way. Take anyp1, which by assumption is smaller than
1/2, and split it into two positive weightsp11 andp12, so that
p1=p11+p12. A basic property of the Shannon entropy func-
tion −oipilog2pi tells us that

− sp11 + p12dlog2sp11 + p12d − o
i=2

n

pilog2pi

, − p11log2p11 − p12log2p12 − o
i=2

n

pilog2pi . s31d

By hypothesis the left hand side(LHS) of Eq. (31) is strictly
greater than 1 since it is the von Neumann entropy of a
statistical operator of rankn with weights strictly less than
1/2, while the RHS is the von Neumann entropy of a statis-
tical operator of rank n+1. Since the weights
sp11,p12,p2, . . . ,pnd, apart from being constrained to belong
to the intervals0,1/2d, are totally arbitrary, we have proved
that the von Neumann entropy of any rank-sn+1d statistical
operator, with all weights belonging tos0,1/2d, is strictly
greater than 1. By induction the theorem holds true for all
n.3. j

Summarizing the previous analysis, we have seen that, in
the case of two identical bosons, consideration of the
Schmidt number alone to detect the entanglement of a state
fails, since there exist bosonic states with Schmidt number
equal to 2 which can be entangled as well as nonentangled.
Similarly, we have seen that the von Neumann entropy of the
reduced statistical operators of the nonentangled state of Eq.
(21) is equal to 1, and that the same value can characterize
entangled states with Schmidt number greater than or equal
to 3. Accordingly, the von Neumann entropy criterion also
does not allow, by itself, an unambiguous identification of
nonentangled states.

Concluding, we have shown that a complete and satisfac-
tory criterion for distinguishing entangled from nonentangled
boson states should involve consideration ofboth the
Schmidt number criterionand the von Neumann entropy of
the reduced density operator of each single particle, in accor-
dance with the following theorem.

Theorem 3.9. A state vectorucs1,2dl describing two iden-
tical bosons is nonentangled if and only if either its Schmidt
number is equal to 1, or the Schmidt number is equal to 2
and the von Neumann entropy of the one-particle reduced
density operatorSsrs1 or 2dd is equal to 1. Alternatively, one
might say that the state is nonentangled if and only if either
its von Neumann entropy is equal to 0, or it is equal to 1 and
the Schmidt number is equal to 2.

IV. SUMMARY

To conclude our paper we summarize the previous results
and give a general overview of the problem of characterizing
the entanglement of quantum systems composed of two iden-
tical particles. First of all we recall that this problem can be
dealt with in a completely rigorous way by following our
original criterion of Ref.[2] expressed in the Definition 2.1.
However, here we are interested in analyzing the criteria
based on the determination of the Slater and the Schmidt
numbers of the (fermionic and bosonic, respectively)
Schmidt decomposition of the state vector of the composite
system and on the evaluation of the von Neumann entropy of
the reduced density operators associated with each single
constituent. As usual, we deal separately with the cases of
two identical fermions and of two identical bosons.

We start with a system of two identical fermions.

A. Two identical fermions

(1) Slater number ofucs1,2dl=1⇔Ssrs1 or 2dd=1⇔ non-
entangled state.

(2) Slater number ofucs1,2dl.1⇔Ssrs1 or 2dd.1⇔ en-
tangled state.

In the first case the state can be obtained by antisymme-
trizing a tensor product of two orthogonal single-particle
states, while in the second case it cannot.

In the considered case the two criteria are, as indicated,
fully equivalent, and they identify precisely the same states
as our criterion. It is interesting to notice that, since identical
fermions cannot be in the same state, at least the uncertainty
corresponding to the impossibility of identifying which par-
ticle has which property, when there is no entanglement, is
always present. This is why the minimum value of the en-
tropy turns out to be equal to 1. In such a case, when one
makes a precise claim concerning the state of arandomly
chosen particle, there is a probability equal to 1/2 that the
claim is correct. On the other hand, when the Slater number
is greater than 1, or, equivalently, the entropy is larger than 1,
there is no state such that the statement “this particle, if
subjected to the appropriate measurement, will be found in
such a state” has a probability equal to or greater than 1/2.
Thus, the nonentangled state is the one in which one has the
maximum information about the state of the system.

The case of two identical bosons is slightly more in-
volved. We recall the conclusions we have reached.

B. Two identical bosons

(1) Schmidt number of ucs1,2dl=1⇔Ssrs1 or 2dd=0
⇒ nonentangled state.

(2) Schmidt number of ucs1,2dl=2 and Ssrs1 or 2dd
P s0,1d⇒ entangled state.

(3) Schmidt number ofucs1,2dl=2 and Ssrs1 or 2dd=1
⇒ nonentangled state.

(4) Schmidt number ofucs1,2dl.2⇒ entangled state.
In the first case the state is the tensor product of the same

single-particle vector; in the second case the state can be
obtained by symmetrizing two nonorthogonal vectors and
thus no definite property can be attributed to both sub-
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systems. In the third case the state can be obtained by sym-
metrizing a tensor product of two orthogonal vectors while in
the last one it involves more than two linearly independent
single-particle states and the von Neumann entropy
Ssrs1 or 2dd can take any value within the interval
f0, log2s2s+1dg. The above list exhibits some interesting fea-
tures. First of all it shows clearly that the Schmidt number
cannot be used, unless it has the value 1, to identify nonen-
tangled states, since there are both entangled and nonen-
tangled states with Schmidt number equal to 2. It also shows
that the von Neumann entropy criterion does not allow, by
itself, a clear-cut identification of the nonentangled states
since it can take the value 1 both for a nonentangled state of
Schmidt number 2 and for an entangled state of Schmidt
number greater than 2.

As discussed in this paper, the von Neumann entropy sup-
plies us, by itself, with important information concerning the
state of a randomly chosen constituent: when it lies in the
intervals0,1d there is a precise state such that the probability
of finding it in an appropriate measurement is greater than
1/2.

V. CONCLUSIONS

In this paper we have discussed in general the problem of
deciding whether a state describing a system of two identical
particles is entangled or not. We recalled the general criteria

and results derived in Refs.[2,3], which make explicit refer-
ence to the possibility of attributing a complete set of objec-
tive properties to both constituents. We have shown how this
attitude allows one to clarify the somewhat puzzling situa-
tion that one meets when resorting to the consideration either
of the Slater and the Schmidt number of the(fermionic and
bosonic) Schmidt decomposition or of the von Neumann en-
tropy of the reduced statistical operator for detecting en-
tanglement. Our analysis has made clear that some alleged
difficulties of the mentioned approaches derive simply from
not having appropriately taken into account the peculiar role
of the identity within the quantum formalism. In particular,
we have shown how the consideration of the von Neumann
entropy allows one to determine whether the uncertainty
concerning the states arises simply from the identity of the
particles or is also a genuine consequence of the entangle-
ment. With reference to this problem we stress once more
that, when all our lack of information derives simply from
the identity, the existing correlations cannot be used as a
quantum mechanical resource to implement any teleportation
procedure or to violate Bell’s inequality, contrary to what
happens for an entangled state.
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