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We relate the notion of entanglement for quantum systems composed of two identical constituents to the
impossibility of attributing a complete set of properties to both particles. This implies definite constraints on
the mathematical form of the state vector associated with the whole system. We then analyze separately the
cases of fermion and boson systems, and we show how the consideration of both the Slater-Schmidt number of
the fermionic and bosonic analog of the Schmidt decomposition of the global state vector and the von Neu-
mann entropy of the one-particle reduced density operators can supply us with a consistent criterion for
detecting entanglement. In particular, the consideration of the von Neumann entropy is particularly useful in
deciding whether the correlations of the considered states are simply due to the indistinguishability of the
particles involved or are a genuine manifestation of the entanglement. The treatment leads to a full clarification
of the subtle aspects of entanglement of two identical constituents which have been a source of embarrassment
and of serious misunderstandings in the recent literature.
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I. INTRODUCTION rence of an unavoidable form of entanglement when identi-
cal particles enter into play.

Quantum entanglement, considered by Schrodinger “the |n a recent papef2] (see alsq3]) we analyzed in great
characteristic trait of Quantum Mechanics, the one that endetail the problem of entanglement, dealing with systems of
forces its entire departure from classical lines of thoughtstwo (or more both distinguishable and identical particles. In
[1], has played a central role in the historical development ohccordance with the position of the founding fathers of quan-
guantum mechanics and nowadays it constitutes an essenttaim mechanic§l,4], we strictly related the nonoccurrence of
resource for many aspects of quantum information and quarentanglement to the possibility of attributing complete sets of
tum computation theory. In fact, the possibility of performing properties with both constituents of the composite system. In
reliable teleportation processes, of generating unconditionthis way we were able to formulate an unambiguous criterion
ally secure private keys in cryptography, or of devising quanfor deciding whether a given state vector is entangled or not,
tum algorithms allowing us to solve certain computationalWhich works for the cases of both distinguishable and iden-
problems in a more efficient way than the best known clastical constituents. It has to be stressed that, contrary to what

sical methods, is essentially based on the peculiar properti&%as sometimes been stated, nonentangled states involving

of entangled states. However, in spite of the fact that en- egttl)cal colnst]tu(tar:\ts can ac;u(zja'll){. occ_urh bl ticl
tangled states involving identical constituents are widely viously, In the case of distinguishable particies, our

criterion is equivalenfas we showed in Ref2]) to the com-

used in the experimental implementations of the above menrhonly used criteria to identify whether a system is entangled

tioned (and many othe_rprpcesses, t_he very notion of en- or not, which involve consideration of the Schmidt number
tanglement for such ubiquitous physical systems seems 10 g e hiorthonormal decomposition of the state or, equiva-
too often misunderstood, or not understood at all, in the CUlently, the evaluation of the von Neumann entrop’y of the
rent scientific literature on the subject. The most frequentoqced statistical operators.
misinterpretations arise in connection with the symmetriza- - e sjtyation is radically different in the case of compos-
tion postulate of quantum mechanics, which requires definitge gystems involving identical constituents. In the literature,
symmetry properties for the state vectors associated with sy$irious author5-7] have suggested identifying the en-
tems of identical particles. The_ir nonfactorized form SeeMYangled or nonentangled nature of a system of two identical
to suggest, when compared with the well-known case of .,qgiituents by resorting to natural generalizations of the
systems composed of distinguishable particles, the occulyoye mentioned criteria. In so doing they have met various
difficulties which emerge when one compares the results ob-
tained with the analogous ones for the case of distinguishable

*Email address: ghirardi@ts.infn.it particles. Moreover, the procedure yields apparently contra-

"Email address: marinatto@ts.infn.it dictory results for the fermion and boson caggs8§|.

The only important exception being represented by the peculiar In this paper, we show that the source of the problems
case of identical case of identical bosons in the same state. rests in not having appropriately taken into account the fact
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that, even in the case in which it is physically legitimate and Definition 2.2 Given a composite quantum syst&aS;
correct to consider a state as nonentangled, so that oneS, of two identical particles described by the normalized
knows the properties of the constituents, there is an unavoidstate vectofy(1,2)), we will say that one of the constituents
able lack of information about the actual situation of thepossesses a complete set of properties if and only if there
constituents, arising from their identity. Furthermore, weexists a one-dimensional projection opera®rdefined on
prove that by resorting to the general analysis of REfs3]  the single particle Hilbert spack, such that

one can get a complete clarification of the matter and we

present a unified criterion for detecting entanglement in sys- (4(1,2)|Ep(1,2)|14(1,2)) =1 (&8)]
tems of identical particles such th@j it involves both the

Slater-Schmidt number of the fermionic and bosonic analogvhere

of the Schmidt decomposition of the state vectarsl the

von Neumann entropy of the reduced single-particle statisti- ~ €p(1,2 =PY @ [I¥ - P@]+[IV - pW] @ P?

cal operators{ii) it applies equally well for fermions and +PD g p@, ()
bosons; andiii) it is in complete accordance with our origi-

nal criterion. Condition(1) gives the probability of findingt leastone of

the two identical particlegsof course we cannot say which
one in the state associated with the one-dimensional projec-
Il. ENTANGLEMENT AND PROPERTIES tion operatorP.2 Since any state vector is a simultaneous
In this section we briefly review the arguments of Ref.&igenvector of a complete set of commuting observables,
[2], which show that the correct way to identify the entangle-condition (1) allows us to attribute to at least one of the
ment is to relate it to the impossibility of attributing precise Particles the complete set of properti@sgenvaluepassoci-
properties to the(identica) constituents of a two-particle ated with the considered set of observables.
systemS=S,+S,. As is well known, in the case of nonen- At this point we must distinguish two cases. If the two
tangled distinguishable particles the factorized nature of théentical particles are fermions, then one can immediately
state vectofy(1,2)=|$), ® |x), is a necessary and sufficient Prove (see Ref.[2]) that Eq. (1) implies that there exists
condition for being allowed to claim that subsyst@nob- ~ another one-dimensional projection opera@rwhich is or-
jectively possesses theomplete set of properties associ- thogonal toP, such that the operatat, which has the ex-
ated with the state vectds); and subsysters, those asso- Pression(2) with Q replacingP, also satisfies
ciated with|x),. We stress that in the case considered we
know not o|rﬁy2the properties that are possessed but also to (K(1,2[E4(1,2)[9(1,2) = 1. (3
which system they refer. Obviously, in the case of identicalOb iously. i h . it is simult v true that
constituents one cannot resort to the factorizability criterio VIOUSIy, In Such a case, since It is simuftaneously true tha
to claim that the two systems are nonentangled, otherwis ere is at least one particle havmg.the properties assoma_tted
one would be led to concludenistakenly that nonentangled with P and th‘?fe Is at least one particle havmg.the properties
states cannot exigan exception being made for two bosons assouated_ WitiQ and, moreover, suc_:h propertles. are mutu-
in the same staje since the necessary symmetry require-aIIy exclusive due o the orthog_onallty (_)f the projection op-
ments forbid the occurrence of factorized states. erators, we can legitimately claim that, in the statL , 2)),

However, this naive and inappropriate conclusion derived"€ [:;atrtlcle(tlt |fs meampgless to 'a?kdw\z;:hg o;ﬂaas t:;]e
from taking a purely formal attitude about the problem, with- COMPIEte SEL o properties associate na one he

out paying due attention to the physically meaningful condi—Complete Ste]'f assomatfzd V\I"Q‘ Ast, lvve dShQW‘t*r? '? Re_f[2]
tions which, when satisfied, allow one to legitimately statePUr request for nonentangiement leads, n the tfermion case,

that two systems are nonentangled. Such conditions are, ﬁQ the following theoirem._ .
y g P Theorem 2.1The identical fermionss; and S, of a com-

marily, those of being allowed to claim that one particle pos- i ; 8-S +S d ibed by th
sesses a precise and complete set of properties and the otfpgSIte quantum syste Si+5, describe y the pure nor-
alized state|y(1,2)) are nonentangled if and only if

one exhibits analogous features. Obviously, one must alwaﬂ? ) ' i o .
keep clearly in mind that it is absurd to pretend to individu-w(l'z)> is obtained by antisymmetrizing a factorized state.

ate the particles, i.e., to identify which one possesses one set /N the boson case the situation is slightly different since
of properties and which one the other g&t the case in the two particles can be in the same state. To be completely
which such sets are different gener_al let us begin by assuming that at least one of the
Considerations of this kind have led us to identify theconstituents possesses a complete set of properties, so that
following physically appropriate criterion characterizing there exists a one-dimensional single-particle projection op-
nonentangled states of two identical particles. eratorP such that the associaté@ satisfies Eq(1). At this
Definition 2.1 The identical constituentS; and S, of a
composite quantum syste§¥ S, +S, are nonentangled when 2 remark that one could drop the last term in the expression of
both constituents possess a complete set of properties.  gq.(2), getting an operatoe whose expectation value gives the prob-
Obviously, we still have to make fully precise the mean- apility of finding precisely one particle in the state onto whieh
ing of the expression “both constituents possess a completgojects. In the case of identical fermions this makes no difference,
set of properties.” To this end we resort, first of all, to thebut for bosons it would not cover the case of both particles being in
following definition. the same state.
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point we take into account the operatef’ ® P® and we  overlapping spatial regions right and left, respectively, and
consider its expectation value in the staté1,2)). Three with |z]) and|z]) the eigenvectors of the spin observable
possible cases can occur. 1

(1) I (Y1, 2|PV @ PEIy(1,2)=1, then we can say that |y(1,2)) = {z1)1|Rx @ [z1)olL) = [21alhs @ [21)R)].
both particles possess the complete set of properties associ- V2
ated withP, and|(1,2)) is the tensor product of two iden- (4)
tical state vectors. This is the only situation in which the
unavoidable ambiguities ensuing from the identity of theSuch a state, which can be obtained by antisymmetrizing a
constituents disappear. factorized state(that is, |z1)1|R);®|z]),|L),), makes per-

@) If (4(1,2|PYeP?|y(1,2)=0 then the condition f_ectly Iegitimate a statement of the ‘éth_ere _is one par-
Eq. (1) implies that the state is obtained by symmetrizing theficle at the right having spin up along tiadirection and the
product of two orthogonal states, one of which is the one orpPatial properties associated wild and a particle at the left
which P projects, and, consequently, there is another onefi@ving spin down along thedirection and the spatial prop-
dimensional projection operat@ orthogonal toP such that ~ €rties associated with.).” As a consequence, this state does
Eq. (3) is satisfied, and the mean value ©fY ® Q? also not imply any(nonloca} correlann_between spin measure-
vanishes. The situation is perfectly analogous to the fermiof€nts performed in the two spacelike separated regions right
case, and one can conclude that there is precisely one partid@d |eft and thus it cannot violate Bell's inequality. This
possessing the properties identified Byand one possessing follows immediately from the fact that, when the state is the
the properties identified b§. one of Eq.(4), we have for the mean valuga,b) of the

3) If (y(1,2|PY o P?|y(1,2) e (0,1), since condition  product of the outcomes of two spin measurements along the
Eq. (1) implies that the state is obtained by symmetrizing thedirectionsa and b in the two regions right and left the fol-
product of two states, one of which is the one on whiRh |owing expression:
projects, the second state cannot be orthogonal to the first

one. If we denote a® the one-dimensional projection op- E(&b) = (yl[¢? - aPF ® 62 - bP?

erator on such a state, then we can immediately verify that D) Pod) o =2 2p@)

Eq. (3) holds and thaty(1,2)|QY © Q?|(1,2)  (0,1). In +aV-bP’ ® ¢ - aPR ]|y

such a situation, in spite of the fact that the two statements =(z1|G- dz1)zl| G- 5|Zl>, (5)

“there is at least one particle with the properties associated

with P” and “there is at least one particle with the propertieswhere we have denoted Rg andP, the projection operators
associated witlQ” are true, one cannot conclude that “there on the closed linear manifolds of the spatial wave functions
is precisely one particle possessing the properties identifiedith compact support in the right and left regions, respec-
by P and one possessing the properties identifiedQby tively. The occurrence of a factorized product of two mean

The above considerations, as the reader can easily gragg|yes implies that no choice of the unit vectérsﬁ, ¢, and

and as has been proved in R§2], lead to the following d can lead to a violation of Bell's inequali]:
theorem. '

Theorem 2.2The identical bosons of a composite quan- IE(&,b) - E(&,8)| +|E(b,d) + E(E,d)| < 2. (6)
tum systen5=S,+S, described by the pure normalized state )
|#(1,2)) are nonentangled if and only if either the state isOn the other hand, let us consider a state of the form
obtained by symmetrizing a factorized product of two or- 1
thogonal states or it is the product of the same state for thd#(1,2)) = §[|ZT>1|Zl>2‘ 21)1121)2] ® [[R)1[L)2 + [L)1|R)-],
two particles.

Concluding, we have shown that, when one deals with the (7)

problem of entanglement using the necessary logical rigojypich is the one used in the Bohm version of the Einstein-
and making appeal to the physical meaning of entanglemerg,qqsky-Rosen argument of incompleteness. Since it cannot
itself, then the process @antjsymmetrizing a state VeCIOr e ohtained by antisymmetrizing a factorized product of two

does not necessarily lead to an entangled state. orthogonal states it is a genuine entangled state according to
In addition to the physical motivations we have presented, ;- criterion. Correspondingly, one can easily prove that

there are other compelling reasons which show that our crig;,cp, 5 state exhibits the nonlocal features leading to a viola-

terion for nonentanglement is the_qorrect one. Itis in factiy of Bell's inequality for a proper choice of the orienta-
easy to show that, when the conditions of Theorems 2.1 Or’onsé b & andd

2.2 are satisfied, it is not possible to take advantage of thé | ite of their simplicity. th les iust idered
form of the state vector to perform teleportation processes or N Spite of their simplicity, the examples Just considere

to violate Bell's inequality. These facts further strengthen our°‘hOW clearly why vectors displaying the apparent form .Of an
conclusion that the state is nonentangled. entangled state, such as the one of &y, must be consid-

To clarify our argument we resort to an extremely simple
example. Let us consider the following state of two identical *Note that in making our statement we somehow individuate our
spin-1/2 fermions, in which we have denoted/@sand|L) constituents by making reference to the fact that they lie in different
two precise orthonormal states of the single-particle configuspatial regions. This remark is useful for the analysis that will fol-
ration space having disjoint supports in two distant and nontow.
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ered as nonentangled, in perfect agreement with our critefermionic analog of the Schmidt decomposition was exhib-

rion. ited. Such a decomposition is based on a nice extension to

the set of the antisymmetric complex matrices of a well-
lll. THE ENTANGLEMENT CRITERIA known theorem holding for antisymmetric real matri¢sse,

As we have already stressed, when one deals with quarier example [10]). The theorem of5] states the following.
tum systems composed of two distinguishable particles, the Theorem 3.1 For any antisymmetridNx N) complex
appearance of entanglement is equivalent to the impossibilityhatrix A [that is, Ae M(N,C) and AT=-A], there exists a
of writing the state vector of the compound syste#il, 2))  ynitary transformatioty such that=UZUT, with Z a block-
as a tensor product of two single-particle states. This in turgjiagonal matrix of the sort
implies two well-known formal facts(i) by resorting to the
Schmidt decomposition, the global state turns out to be non- ) 0 gz
entangled if and only if its associated Schmidt numftleat Z=diadZyZy, ... Zul, Zo=0, Zi= {_ z 0 } (8)
is, the number of nonzero coefficients in such a decomposi-
tion) equals 1{ii) the state is nonentangled if and only if the where Z; is the (N-2M) X (N-2M) null matrix andz are
von Neumann entropy of the reduced statistical operator asomplex numbers. Equivalently, is the direct sum of the
sociated with both particles is equal to zéro. (N=2M) X (N-2M) null matrix and theM (2x 2) complex

Both facts have clear physical implications and a precisgintisymmetric matrice;.
meaning: the first refers to the possibility of attributing a  The fermionic analog of the Schmidt decomposition fol-

complete and precise set of properties to each constituents from an application of Theorem 3.1 to systems com-
the second ensures that we have the most complete and €sseq of identical fermions.

haustive information allowed by quantum theory about the” 0o, 3.2Any state vectorly(1,2)) describing two

situation of each constituent. In fact, in a factorized Statquntical fermions of spirs and, consequently, belonging to
each component subsystem is associated with a precise st % antisymmetric manifoldd(C25*1& (25*3) can be written

vector and the reduced statistical operator for one of the twi
particles, for example, the one labeled by 1, ip® @S

=Tr[|y(1,2))y(1,2)|], turns out to be a projection opera- stz

tor onto a one-dimensional manifold. Correspondingly, its |y(1,2))= > a-=[|2i - 1); ® |2i), - |2i); ® |2i - 1),],
von Neumann entropyS(pY)=-TrY[pMlog,p'] equals i1 \2 ! 2 ! 2
zero. This result is correct since such a quantity measures the (9)

lack of information about the single-particle subsystem and

there is, in fact, no uncertainty at all concerning the state thawhere the state§2i-1),|2i)} with i=1, ... (2s+1)/2 con-

must be attributed to it. stitute an orthonormal basis 6f5*!, and the complex coef-
When passing to the more subtle case of interest, that ificientsa; (some of which may vanigisatisfy the normaliza-

to systems composed of two identical constituents, the relaion condition; |a;]?=1.

tions between entanglement and both the Schmidt number Following the authors of Ref5], the number of nonzero

and the von Neumann entropy of the reduced statistical opsoefficientsa; appearing in the decompositiaf) is called

erators become less clear and require a careful analysis. Thiee Slater numbeof |(1,2)). The relation of such a number

purpose of this section is to clarify the matter and to presento the notion of entanglement has been made explicit in the

a criterion for determining whether a state is entangled or nopapers[6,7], where a state displaying the form of ) is

which is (i) based on a consideration &bth the Slater- called entangled if and only if its Slater number is strictly

Schmidt number and the von Neumann entra(iiy;consis-  greater than 1. It is worth noticing that this condition turns

tent with our original criterion summarized in Definition 2.1; out to be totally equivalent to our Definition 2.1. In fact,

(ii) equally applicable to fermion and boson systems; andjiven an arbitrary two-particle state(1,2)), suppose that

finally (iv) able to unify in a consistent way various criteria its fermionic Schmidt decomposition has Slater number

which have appeared recently in the literat{e7]. equal to 1. According to Theorem 3.2, this means that there
We limit our considerations to the case of a finite- exist two orthonormal vectord) and|2) belonging toC2s*

dimensional single-particle Hilbert space and, in accordanceuch that

with the above remarks, we deal separately with the fermion 1

?nd the boson cases, since they exhibit quite different (1,2 = =[]0, ® |2), - [2), ® [1),], (1[2)=0.

eatures. \2

A. The fermion case (10

The notion of entanglement for systems composed of tw@ince the state can be obtained by antisymmetrizing the
identical fermions has been discussed in RBf.where a  product statél), ®|2),, the state must be considered as non-
entangled in accordance with our criterion. Vice versa, any

*As is well known, given a statistical operaiarits von Neumann ~ State obtained by antisymmetrizing a factorized state has
entropy is defined aS(p) =-Tr[p In p] where the base of the loga- Slater number equal to 1. On the contrary, if the Slater num-

rithm function is the numbee. However, in the present paper, we ber is greater thagor equal tg two, the form Eq.(9) of the

will rescale this quantity and follow the information theory conven- State shows immediately that it cannot be obtained by anti-
tion of using all logarithms in base 2. symmetrizing a product of two orthonormal vectors, so that
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the state must be considered as a genuinely entangled one2ach particle and its associated von Neumann entropy reflect
So far the criterion of Refs[5-7] and ours agree com- such an unavoidable ignorantactually, they are equal to

pletely; however, some problems arise when one calculates

the von Neumann entropy of the reduced density operator

associated with one of the two particfem fact from Eq.(9)

one gets

p(l or2) — %[|1><1| + |2><2|] 0 S(p(l or 2)) =1. (149

It should be obvious that we cannot pretend that the operator
p = TrA[| (1, 2)(1,2)[] pt o 2 of Eq. (14) describes the properties pfeciselythe
a2 firsthor ofthe_se(ipnd_ partic;lehof_;[jhe system: once againr,] due
A NS GNP L T to the subtle implications of the identity in quantum mechan-
Ei 2 [121 = 1)1 = 1]+ [2Do(2i]]. (1) ics, such an operator describes correctly the properties of a
randomly chosen particléa particle that cannot be better
The von Neumann entropy for such an operator, which iddentified. Accordingly, in this case, the quantity

already in its diagonal form, can be easily calculated: S(p't @ 2)=1 correctly measures the uncertainty concerning
the quantum state to attribute to each of the two identical
S(pY) = - T pMlog, pV] physical subsystems, and, in this situation, it cannot be re-
a2 garded as a measure of the entanglement of the whole state.
=-> |a1'|2|0927 =1-> la|?log,|a;?. (12) A counterpart of this is the fact that the only quantum
1 I

correlations exhibited by the staté(1,2)) of Eq. (10) are
those related to the exchange properties of the indistinguish-
It follows trivially that able fermions. As we have stressed before, such correlations
cannot be used to violate Bell's inequality or to perform any
SeP) =1 Olal?e[0,1], > lal?=1. (13 teleportation process. Accordingly, they cannot be considered
[ as a manifestation of entanglement.
Continuing our analysis, if we consider a state vector with
In analogy with the case of distinguishable particles, onesjater number strictly greater than 1, i.e., an entangled state
could be tempted to regard this quantity as a measure afccording to our and to the Slater number criterion, the von
entanglement. But, according to the authors of RE8s8],  Neumann entropy of the associated reduced density operator
this naturally raises the following two puzzling issués:  turns out to be strictly greater than[¢ee Eq(13)]. In addi-
S(p') of Eq. (12) attains its minimum valu&y;,=1 in cor-  tion to the minimum amount of uncertainty deriving from the
respondence with a state with Slater number equal to indistinguishability of the particles, there is now thddi-
(which, in accordance with their position, is assumed to identional ignorance naturally connected with the genuine en-
tify a nonentangled statecontrary to what happens for a tanglement of the state. In this case, in fact, we cannot iden-
(nonentangled state of distinguishable particles with tify two quantum states that can be attributéa the pair of
Schmidt number equal to 1, for which the value of the en-particles(contrary to the previously described situaion
tropy still takes its minimum value which, however, equals To conclude this subsection, we exhibit the criteria for
0; (i) moreover, in the case of two identical bosons, thedetecting entanglement involving the Slater number or the
minimum of the analogous quantity, as we will show later, isvon Neumann entropy, in the case of two identical fermions.
null. This seems to imply that the von Neumann entropy isSuch criteria are totally consistent with our original require-
inappropriate to deal with our problem since it gives differ-ment that definite properties can be attributed to both com-
ent measures of entanglement for boson and fermion stateponent subsystems of a nonentangled state:

The problematic aspects of this situation derive entirely Theorem 3.3A state vectot(1,2)) describing two iden-
from not having taken correctly into account the real meantical fermions is nonentangled if and only if its Slater num-
ing of the von Neumann entropy as a measure of the unceper is equal to 1 or equivalently if and only if the von Neu-
tainty about the state of a quantum system. To be more prénann entropy of the one-particle reduced density operator
cise, let us consider a stafg(1,2) with Slater number g o 2)) js equal to 1.
equal to 1, i.e., a nonentangled state according to our and the In full agreement with the previous considerations we can
Slater number criterion, like that of E¢LO). As we stressed  say that the von Neumann entropy is a measure both of the
in Sec. 1, in this situation we can attribute definite quantumamount of uncertainty deriving from the indistinguishability
states|1) and |2) to the particles but, since they are totally of the involved particlesand of the possible uncertainty re-
indistinguishable, we cannot know whether, for example,
particle 1 is associated with the stétg or with the staté2). 5

As a natural consequence, the reduced density operator of To avoid any misunderstanding we stress that with the expression
' “ignorance” we do not intend any lack of knowledge about the

- system. In fact in the considered case this ignorance derives entirely
®Since the state vector of the compound systed , 2)) is anti- from the fact that, within quantum mechanics, there is no conceiv-

symmetric under the exchange of the two particles, its associateable way to individuate identical particles.

density operatop™*2=|y(1,2)(1,2)| is a symmetric operator  ‘With this expression we mean that a measurement aimed to test

and the reduced density operators of the two particles are equal, thahether there is one particle in stdfg and one in staté2) gives

is, pV=Tr@[p(1+2]= p(@ = T p(1+2], with certainty a positive outcome.
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lated to the entangled nature of the stgtésat is, the impos- misunderstandings. Let us start, as before, by considering the
sibility of attributing two definite state vectors to the pair of bosonic Schmidt decomposition for an arbitrary state vector
particleg. This quantity, in the case of fermions, is strictly |¢(1,2)) belonging to the symmetric manifold(C?*?
greater than 1, and the greater it is, the larger is the amoumt (>5*1) describing two identical bosons, and let us recall a
of entanglement of the state. well-known theorem of matrix analysi{ghe so-called Takagi

Before coming to the boson case, a last remark is apprdfactorization theorenj11], a particular instance of a more
priate. Let us consider a nonentangled state of two fermiongeneral theorem named the singular value decompogition
which has the form of Eq(10). Suppose we choose two which is particularly useful for this case.

arbitrary ort'honormaI. vectorfl) and |2) belonging to the Theorem 3.4For any symmetri¢N X N) complex matrix
two-dimensional manifold spanned by the stdfesand|2), B [that is, B < M(N,C) and B'=B] there exists a unitary
such that transformatiorlJ such thaB=UXUT, whereX. is a real non-

negative diagonal matri =diadb;, ... ,by]. The columns

T 5
D+al2), (15) of U are an orthonormal set of eigenvectorsBB" and the

D=all)+B2), [2=-5

with |a|?+|8>=1. diagonal entries oF are the nonnegative square roots of the
Substituting these expressions in E40) we have corresponding eigenvalues.
It is worth noticing that the columns of the unitary opera-
lY(1,2) = #[ﬁh ® [2),—[2); ® [1),]. (16)  torU must be built by choosing a preciseset eigenvectors
V2 of BB' (to be determined in an appropriate manner,[449.

. . . . The bosonic Schmidt decomposition turns out to be a trivial
Therefore, when a state is obtained by antisymmetrizing th%onsequence of the just mentioned theorem 3.4
product of two orthogonal single-particle states, the same Theorem 3.5Any state vector describing two identical

state can also be obtained by antisymmetrizing the product : : :
any pair of orthogonal states belonging to the two-cgspln boson particle/(1,2) and, consequently, belonging

; ; (25+1 o (125+1 ;
dimensional manifold spanned by the original states. This i%o the symmetric manifold(C="& C=) can be written as

not surprising but it raises some questions concerning the 2s+1
problem of the assignment of definite properties to the con- [4(1,2) = > biliyy ® |i)s, (17)
stituents. In fact, Eq(16) shows that, just as we can claim i=1

that in the state of Eq(10) there is one particle with the _ o _
properties associated witfl) and one with the properties Where the state§li)}, with i=1,...,%+1, constitute an or-
associated witH2), we can make an analogous statementhonormal basis fo’**!, and the real nonnegative coeffi-

with reference to any two arbitrary orthogonal stdigsand ~ Cientsb; are the diagonal elements of the mattand sat-

P . . . ._isfy the normalization conditiot; bizzl.

|2) of the same manifold. However, this peculiar feature is The Schmidt decomposition of E¢L7) is always unique
only apparently prpblemaﬂc. In' fact,' It seems S0 becaussvhen the eigenvalues of the operaBB' are nondegenerate
here we are confining our consideration to the spin degreeg ’

of freedom. When one takes into account also the space da—Z Szﬁgﬁ%nziég;gtgghzg{éhggg{gg decomposition of states

grees of freedom one realizes that the only physically inter- In analogy with the case of two distinguishable particles

esting situations are those associated with states like the oNe 4 of two identical fermions. one could naively be inclined

of Eq. (4), that is, those in which one wants, for example, tQto term entangled any bosonic state whose Schmidt number

investigate the spin properties of a particle that has a preC'Sghat is, the number of nonzero coefficients in the decompo-

. 8 .
IO(;at_log. I':'?n we br:)a\ﬁhseen_,nlnt:tucgf zt;\hztate tp?(j'catlr?em'aﬁ ition (17)] is strictly greater than las clearly stated, for
precise claims about the spin state particie In ng xample, in Ref[6]). However, as we will show, this crite-

or left, respectively, contrary to \(vhat happens for a.State."kq'ion turns out to be inappropriate because the states with
the one of Eq(7) which is genuinely entangled. This point Schmidt number equal to(that is, factorized states in which

?;Sertiﬁznre?dh;ug;vael%gr'zcggtsa?g o;narg%;itso which we the two bosons are in the same state not exhaust the class
: of nonentangled pairs of identical bosons.
In order to identify a satisfactory and unambiguous crite-
B. The boson case rion for detecting entanglement in systems of identical

Let us now pass to the more delicate case of two identicdp0SOns, we resort to the decomposition of ELy) and we
bosons. In such a case, dealing with the problem of thei@nalyze separately the cases of Schmidt number equal to 1,

entanglement requires great care in order to avoid possibié and greater than or equal to 3. _
Schmidt number=1In this case the factorized state

- l(1,2)=[i*)®[i*) describes two identical bosons in the
Obviously, due to the previous remarks concerning the arbitrariggme Statéi*). It is obvious that such a state must be con-
ness of the states appearing in E%0), also with reference 0 Eq. - gjgered as nonentangled because one knows precisely the

(4) one might claim, e.g., that there is with certaintyagarticle in theproperties of both constituents and, consequently, no uncer-
state 1K2[|z1)|R)+|z|)|L)] and one in the state 12[|z])|R)

—|zl)|L)]. However, such states are not physically interesting and_____
the corresponding measurements are extremely diffiduttot im- With this expression we mean that one has to appropriately
possible to perform. choose the phase factors of the eigenstates.
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tainty remains concerning which particle has which property. Qo2 L

This fact perfectly agrees with the von Neumann entropy of p = §[|¢><¢| + )] (23

the single-particle reduced statistical operays® " ?) be-

ing null. Moreover, since the state contains no correlations but those

Schmidt number=2According to Eq(17), the most gen- descending from the exchange of the two identical particles,
eral state with Schmidt number equal to 2 has the followinghe von Neumann entrop§(p* © ), according to Eq(20),
form: is correctly equal to 1 and our ignorance concerns only

which particle has to be associated with which state.
[4(1,2)) = by 1)1 ® |1), + by|2); ® [2)5, (18) Before proceeding a short digression is appropriate. First,
if one chooses any pair of orthonormal vectors that are a
Whereb§+b§:1_ The single-particle reduced density opera-linear combinationwith real coefficientsof the above states
tor and its associated von Neumann entropy are 1) and|2):

D=L +p2), [2)=-A1)+a2), (24)

wherea, 8 e R and a?+8°=1, one has

plord = bf|1><1| + b§|2><2|v (19

(Lor2) = _ 1 |og, b? - b2 log, b. 20 1
Spm " T)=-bilogy by—byloga b, (20) HL.2)= 1D 0 1,23 |22]
v

We can now distinguish two cases, depending on the values L

of the nonnegative coefficients andb.. = 1) @ (1) + [2): @ [2) 25
First we consider the case where the two coefficients are V’EH 1@ [D2+[21® 2] 29

equal, that is,b;=b,=1/y2, and we prove the following

theorem. Thus, as in the case of distinguishable particles, when degen-
Theorem 3.6 The conditionb1:b2:1/\s’§ is necessary €racy occurs, the Schmidt decomposition is not unique.
and sufficient in order that the stalig(1,2))=by|1); ®|1), This situation recalls the one we met in the case of two

+b,/2). ® |2}, might be obtained by symmetrizing the factor- nonentar)gleq fermions. However, the possibility of writing
izef:|i pﬁod|ut>:% ofI?wo orthogclmal st);\teys. 'ing |y(1,2) in different Schmidt forms, contrary to what hap-
Proof. Suppose that the staig(1,2)) is obtained by sym- P€Ns with fermions, is absolutely unproblematic from the

metrizing the tensor product of two orthogonal statssand physically interesting point of view of the properties pos-
). If we define the orthogonal stat¢$>:1/\f'§(|¢)+|x>) sessed by the two particles. Actually, the pair of orthonormal
and|2>:i/\f§(|¢)—|x>) we get states whose symmetrization leads to the expression for the

state of Eq(22) is uniquely determined in the present case.
1 Accordingly, for identical bosons there is no ambiguity con-
- cerning the properties, which allows us to claim that in the
[9(1.2) \"E[|¢>l® 2+ [ @ )] state of EQ.(22) there is one particle with the properties
1 identified by|#) and one with the properties identified by
= ’—E[|1>1® 1), +]2); @ [2),]. (21) Ix). It i?IiIIulininatingﬁ1 to stress the fdirf;ference between tW(Zj
\ ways of looking at the properties of the constituents accord-
_ ing to what emerges naturally when one expresses the state
On the contrary, ib;=b,=1/v2 in Eq.(18), then by defining in the form of Eq.(22) or of Eq.(25). Actually, if one looks
the orthogonal stateghy=1/12(|1)-i|2)) and|x)=1/v2(|1)  at the form of Eq.25), without taking into account that it
+i|2)), one gets has been obtained by symmetrizing a factorized pair of or-
thogonal states, one is naturally led to make different state-
1 ments, which, however, havepaobabilisticcharacter, i.e., to
l¥(1,2) = E[|¢>l ® [x)2+ [X)1 ® |#)2], (220 assert that with probability 1/2 both particle e the sense

they will be found to bgin state|1) (or [1)) and with the

thus showing that(1,2)) can be obtained by symmetrizing same probability they are in staf (or |2)).

the factorized product of two orthogonal states. | Let us now consider the second case, i.e., the one in
In this situation, and in full accordance with our Theoremwhich b; # b,, and prove the following theorem.

2.2, one must consider this state as a nonentangled one sinceTheorem 3.7The conditionb, # b, is necessary and suf-

it is possible to attribute definite state vectors to both parficient in order that the states(1,2))=b;|1); ® |1),+b,|2);

ticles (of course, once again, we cannot say which particle is®|2), might be obtained by symmetrizing the factorized

associated with the stateb) or |x) because of their indistin- product of two nonorthogonal states.

guishability). Actually, such a state has precisahe same Proof. Since the Schmidt number ¢§(1,2), and as a

conceptual status and exhibits the same physical featses consequence the rank of the reduced statistical operators, is

the nonentangled states of a pair of fermions and the reducesjual to 2, the state is obtained either by symmetrizing the

density operatop* ° 2 describes the physical state of one factorized product of two orthogonal states or by symmetriz-

randomly chosen bosdgiven that one of them is associated ing the product of two nonorthogonal states. In fact, if at

with the state/¢) while the other with the statl)): least three linearly independent states were involved in the
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symmetrization procedure, the rank of the single-particle stastate of Eq.(22), the Schmidt decomposition of E¢R7) is
tistical operator would consequently be strictly greater thamow uniquely determined. This reflects the fact that the two
2. This theorem is then simply the logical negation of theeigenvalues of the operatBB', whereB is the matrix of the
previous Theorem 3.6. m coefficients of the decomposition pf(1,2)) of Eq. (27) on

As we have just proved, in this case the staid ,2)) can  a factorized single-particle basis includipg) and|¢, ), are

be obtained by symmetrizing a factorized product of twodistinct. _ _
nonorthogonal stateg) and |y): Let us come now to a consideration, for the case under

investigation, of the reduced density operator describing one
randomly chosen particle and of its associated von Neumann
[P @ 2+ )@ b, entropy. They are given by Eq&l9) and (20) which imme-
diately show that the entropy belongs to the open interval
(0,2). Actually, assuming thab?>1/2, in a measurement
(xl¢) #0. (26) process there is a probability greater than 1/2 of finding both
Then, if one defines the vectps ) as the unique normalized bosons in the same physical stéty, and a probability less
vector orthogonal tde) and lying in the two-dimensional than 1/2 of finding them both in the orthogonal stég

manifold S(Panned bis) and|x), the state of Eq(26) can be  Accordingly, in this situation we have more information
written ag about the single-particle state than in the case of the nonen-

b tangled state of Eq(22) and, as a consequence, the von
[¥(1,2) =ald)1 @ [¢p), + E[Icﬁh@ )2+ b))y, Neumann entropy is strictly Jess than 1.

1
1'2 = =
2 B oD

Schmidt numbet3. In this situation, the state is a genu-

27) ine entangled one since it cannot be obtained by symmetriz-
ing a factorized product of two orthogonal statésind the

with certain complex coefficients, b+ 0 satisfying the nor- von Neumann entropy of the reduced density operators is
malization condition |a|2+|b[?=1 and depending on the such thatS(p™ " 2) e (0,log,(2s+1)]. As before, the en-
modulus of the scalar produfy| ¢)| in the following way:  tropy is close to zero when, in the Schmidt decomposition of
[b|=(1-|{x| DDA +|(x] )P Y2 the state, one of its coefficients is very close to 1, implying

In this case, the criteria adopted in Reﬂ'G_SJ Correct|y that there is a very hlgh probablllty of beiﬂg rlght in Claiming
lead one to declare the state of Eqn as a genuine en- that both bosons a.r(m the usual quantum sense of “will be
tangled one. Since this state is obtained by symmetrizing fpund to be if a measurement is performpdti the state
factorized product of twmonorthogonalectors, it is impos- associated with the Iargest coefficient. On the contrary, the
sible to attribute to both particles definite properties, so tha€ntropy equals log2s+1) when the decomposition involves
it has to be considered as entangled within our approach alsgll the basis states ¢f>*! with equal weightga maximally
It is of some interest to exhibit explicitly the Schmidt decom- €éntangled stajeMoreover, as we will prove below, when the

position of the state of Eq27): entropy lies within the interval0, 1), there is a precise state
_ such that the probability of finding @andomly chosenpar-
H(1,2)) = /1+\e"l—|b|4|l> ® [1) ticle in it, in the appropriate measurement, is greater than
e 2 1 2 1/2. Obviously, the identification of the privileged state
mentioned requires a knowledge of the Schmidt decomposi-
1-V1-|b* tion, since this state is the one associated with the latgest
2 12)1® [2),, bl € (0,2), appearing in Eq(17). This feature is a consequence of the
29) following theorem.
Theorem 3.8 Consider the statistical operatop
where the orthonormal staték and|2) are defined as =2;pili)(i| where at least three of its weighpsare different
o — 5 from zero. If each nonzero weigpt_is stfictly less than 1/2,
1) = |ble <|¢> + vl ‘|_b| - |a| |¢i>> then the von Neumann entrof®p) is strictly greater than 1.
V2 -la? -1 -] \2ab* ’ Proof. let us consider the following functiof(p,,p,) of
two variables:
____ilplers? V1-[bf* + a2 :
12)= Golp Vi D= Gy #) f(pup2) = =2 pi 10z pi = (1~ Py~ PDIoge(1 =Py~ )
(29) (30)

with a=|ale’’s, a andb+ 0, and|a]*+|b*>=1. It is worth no-  with p;,p, e (0,1/2 and p;+p,>1/2. The only stationary
ticing that, contrary to what happens for the nonentangleghoint of f(p,,p,) in the consideredopen region is a maxi-

e notice that one could have equivalently defined the vector N fact, if this was true, the rank of the reduced density operator
|x ) as the unique normalized vector orthogona|xjpand lying in  would be equal to 2, in contradiction with the fact that a Schmidt
the two-dimensional manifold spanned byg) and |x), without  number greater than or equal to 3 implies a rank equal to or greater
modifying the forthcoming conclusions. than 3.
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mum, while the minimum value of is attained on the V. SUMMARY
boundary of such a region and it equals 1. As a consequence
given a rank-3 statistical operathEf’:lpi|i><i|, its von Neu-

mann entropyS(p) =f(p4, p,) is strictly greater than 1 when-

" To conclude our paper we summarize the previous results
and give a general overview of the problem of characterizing
. the entanglement of quantum systems composed of two iden-
ever p; € (0,1/2,i=1,2,3. Le_t us nowsuppose _that the tical partigles. First 0(11 all we rezall that thispproblem can be
theorem hglds _trqe for an arbitrary rank>_3 statistical op-  yealt with in a completely rigorous way by following our
erator p=2{L,pjli)i| and let us prove that it also holds true original criterion of Ref[2] expressed in the Definition 2.1.
for an arbitrary rankn+1) statistical operator in the follow- However, here we are interested in analyzing the criteria
ing way. Take anyp,, which by assumption is smaller than pased on the determination of the Slater and the Schmidt
1/2, and split it into two positive weights;; andpy, so that  pnymbers of the (fermionic and bosonic, respectively
P1=P11t P12 A basic property of the Shannon entropy func- schmidt decomposition of the state vector of the composite
tion —Z;pjlogyp; tells us that system and on the evaluation of the von Neumann entropy of
the reduced density operators associated with each single
constituent. As usual, we deal separately with the cases of
(P11 + PL)l0GAPr1+ Pra) - S pilog,p two identical fermions and of two identical bosons.

Pri¥ P12)10G2 P11+ Py = PilogP We start with a system of two identical fermions.

n

n
< = P11l0gzP11 ~ P10GP12~ 2 Pilogzpi.  (31)
i=2 (1) Slater number of(1,2))=1« S(p* o ?)=1- non-
entangled state.
) _ S (2) Slater number of(1,2)>1 S(pt o 2)>1- en-
By hypothesis the left hand sideHS) of Eq. (31) is strictly tangled state.

greater than 1 since it is the von Neumann entropy of & | the first case the state can be obtained by antisymme-
statistical operator of rank with weights strictly less than trizing a tensor product of two orthogonal single-particle
1_/2, while the RHS is the von Neumgnn entropy of a Statis'states, while in the second case it cannot.
tical operator of rank n+1. Since the weights In the considered case the two criteria are, as indicated,
(P11, P12, P2, - ,Pn), @part from being constrained to belong 1y equivalent, and they identify precisely the same states
to the interval(0,1/2), are totally arbitrary, we have proved a5 oyr criterion. It is interesting to notice that, since identical
that the von Neumann entropy of any rafrk- 1) statistical  fermions cannot be in the same state, at least the uncertainty
operator, with all weights belonging t®,1/2), is strictly  corresponding to the impossibility of identifying which par-
greater than 1. By induction the theorem holds true for alkicle has which property, when there is no entanglement, is
n>3. u always present. This is why the minimum value of the en-
Summarizing the previous analysis, we have seen that, iftopy turns out to be equal to 1. In such a case, when one
the case of two identical bosons, consideration of thQnakes a precise claim Concerning the state malajomw
Schmidt number alone to detect the entanglement of a statshosen particlethere is a probability equal to 1/2 that the
fails, since there exist bosonic states with Schmidt numbeg|aim is correct. On the other hand, when the Slater number
equal to 2 which can be entangled as well as nonentanglegk greater than 1, or, equivalently, the entropy is larger than 1,
Similarly, we have seen that the von Neumann entropy of théhere is no state such that the statement “this particle, if
reduced statistical operators of the nonentangled state of Edubjected to the appropriate measurement, will be found in
(21) is equal to 1, and that the same value can characterizch a state” has a probability equal to or greater than 1/2.
entangled states with Schmidt number greater than or equahus, the nonentangled state is the one in which one has the
to 3. Accordingly, the von Neumann entropy criterion alsomaximum information about the state of the system.
does not allow, by itself, an unambiguous identification of The case of two identical bosons is slightly more in-
nonentangled states. volved. We recall the conclusions we have reached.
Concluding, we have shown that a complete and satisfac-
tory criterion for distinguishing entangled from nonentangled
boson states should involve consideration ldth the
Schmidt number criteriomnd the von Neumann entropy of (1) Schmidt number of [¢(1,2)=1< S(p* " ?)=0
the reduced density operator of each single particle, in accofZ nonentangled state.
dance with the following theorem. (2) Schmidt number of[#(1,2)=2 and S(p* " ?)
Theorem 3.9A state vectoty(1,2)) describing two iden- € (0,1)0 entangled state.
tical bosons is nonentangled if and only if either its Schmidt (3) Schmidt number of/y(1,2)=2 and S(p* o ?)=1
number is equal to 1, or the Schmidt number is equal to 21 nonentangled state.
and the von Neumann entropy of the one-particle reduced (4) Schmidt number ofy(1,2))>20 entangled state.
density operatoS(p* ° ?) is equal to 1. Alternatively, one In the first case the state is the tensor product of the same
might say that the state is nonentangled if and only if eithesingle-particle vector; in the second case the state can be
its von Neumann entropy is equal to 0, or it is equal to 1 andbbtained by symmetrizing two nonorthogonal vectors and
the Schmidt number is equal to 2. thus no definite property can be attributed to both sub-

A. Two identical fermions

B. Two identical bosons
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systems. In the third case the state can be obtained by syrand results derived in Reff2,3], which make explicit refer-
metrizing a tensor product of two orthogonal vectors while inence to the possibility of attributing a complete set of objec-
the last one it involves more than two linearly independentive properties to both constituents. We have shown how this
single-particle states and the von Neumann entropgttitude allows one to clarify the somewhat puzzling situa-
S(ptt o 2) can take any value within the interval tion that one meets when resorting to the consideration either
[0,log,(2s+1)]. The above list exhibits some interesting fea- of the Slater and the Schmidt number of itfiermionic and
tures. First of all it shows clearly that the Schmidt numberbosonig Schmidt decomposition or of the von Neumann en-
cannot be used, unless it has the value 1, to identify noneriropy of the reduced statistical operator for detecting en-
tangled states, since there are both entangled and nonei@nglement. Our analysis has made clear that some alleged
tangled states with Schmidt number equal to 2. It also showdlifficulties of the mentioned approaches derive simply from
that the von Neumann entropy criterion does not allow, bynot having appropriately taken into account the peculiar role
itself, a clear-cut identification of the nonentangled state®f the identity within the quantum formalism. In particular,
since it can take the value 1 both for a nonentangled state a¥e have shown how the consideration of the von Neumann
Schmidt number 2 and for an entangled state of Schmidentropy allows one to determine whether the uncertainty
number greater than 2. concerning the states arises simply from the identity of the

As discussed in this paper, the von Neumann entropy sugparticles or is also a genuine consequence of the entangle-
plies us, by itself, with important information concerning the ment. With reference to this problem we stress once more
state of a randomly chosen constituent: when it lies in théhat, when all our lack of information derives simply from
interval (0, 1) there is a precise state such that the probabilitythe identity, the existing correlations cannot be used as a
of finding it in an appropriate measurement is greater thagluantum mechanical resource to implement any teleportation
1/2. procedure or to violate Bell's inequality, contrary to what

happens for an entangled state.
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