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We consider the Casimir-Polder interaction between two atoms, one in the ground state and the other in its
excited state. The interaction is time dependent for this system, because of the dynamical self-dressing and the
spontaneous decay of the excited atom. We calculate the dynamical Casimir-Polder potential between the two
atoms using an effective Hamiltonian approach. The results obtained and their physical meaning are discussed
and compared with previous results based on a time-independent approach, which uses a nonnormalizable
dressed state for the excited atom.
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I. INTRODUCTION

The existence of field fluctuations in the vacuum state is a
remarkable prediction of quantum field theory. Vacuum fluc-
tuations produce observable effects such as the Casimir force
between two neutral mirrors or dielectrics in the vacuum[1]
and the Casimir-Polder force between neutral atoms or mol-
ecules in their ground state[2]. The Casimir-Polder forces
are long-range effects due to the interaction of the atoms
with the common quantum radiation field. For intermolecular
distances smaller than typical atomic transition wavelengths
from the ground state, they reduce to van der Waals forces;
for larger distances they decrease more rapidly than van der
Waals forces due to retardation effects[2,3]. The physical
origin of the Casimir-Polder force has been investigated in
the past in terms of dressed vacuum fluctuations, radiation
reaction field, or vacuum field correlations(for a review, see
[4]). More recent studies have also considered the Casimir-
Polder dispersion energy between two molecules, one in an
excited state and the other in the ground state[5–7]. The van
der Waals–like interaction between an excited atom and a
dieletric surface has also been considered[8]. These calcula-
tions are based on fourth-order perturbation theory and they
are time independent. In fact, the spontaneous decay of the
excited atom, as well as its dynamical self-dressing, is not
included in these calculations, the excited atom being treated
as if it were in a stable state. The time-independent potential
contains two terms: one resulting from virtual photon ex-
change and the other from the resonance due to the possibil-
ity of the emission of a resonant photon[6]. The term arising
from the virtual photon exchange has the same structure as
the Casimir-Polder potential for ground-state atoms. The
resonant term is a polynomial in the inverse of the intermo-
lecular separationR. Finally, the possibility of enhancement
of van der Waals forces in nonequilibrium situations has re-
cently been suggested[9]; this indicates that the matter is not
entirely settled and explains our interest in Casimir-Polder
forces in dynamical situations. The term “dynamic” in gen-

eral may refer to two situations, one time dependent and the
other frequency dependent, which may also lead to dynamic
potentials. This paper is concerned with the first case, i.e.,
explicitly time-dependent siatuations.

In this paper, we shall adopt a time-dependent approach
for the calculation of the Casimir-Polder potential between a
ground-state and an excited-state atom or molecule. This ap-
proach, which takes into account both the short time dynami-
cal dressing and the spontaneous decay of the excited atomic
state, will give a deeper understanding of the physical nature
of the Casimir-Polder force.

As usual, the interaction energy between the excited- and
the ground-state atom is assumed to stem from the response
of the latter to the field emitted by the former. This idea has
recently been used in the different context of the calculation
of the Casimir-Polder force between partially dressed atoms
[10]. We use perturbation theory, and this limits the validity
of our results to times shorter than the lifetime of the excited
atom. We find that this potential is zero before the “causality
time” t=R/c, coherently with relativistic causality. For
t.R/c, we find that the interaction energy contains three
terms. Two of them were already obtained in previous time-
independent calculations[6]. The third term is additional and
it is time dependent; it describes the time dependence of the
force when one atom is initially in its bare excited state. This
term vanishes for times larger than the time scale of the
dynamical dressing of the excited state, which coincides with
the so-called Zeno time[11]; after the Zeno time(but at
times shorter than the time scale of the spontaneous decay
g−1 of the excited atomic state), the interaction energy re-
duces to that obtained by time-independent calculations.

The paper is organized as follows. In Sec. II we describe
our effective Hamiltonian approach, and in Sec. III we obtain
the complete Casimir-Polder potential between the excited-
and the ground-state atom, inclusive of the earlier(time-
independent[6]) and of the additional(time-dependent)
terms.

II. THE EFFECTIVE HAMILTONIAN

We consider two atomsA andB interacting with the elec-
tromagnetic radiation field in the Coulomb gauge;r A andr B*Electronic address: roberto.passante@pa.ibf.cnr.it

PHYSICAL REVIEW A 70, 012107(2004)

1050-2947/2004/70(1)/012107(5)/$22.50 ©2004 The American Physical Society70 012107-1



are their positions. AtomA is approximated as a two-level
system. Its interaction with the radiation field, in the multi-
polar coupling scheme and within the dipole approximation,
is described by the following Hamiltonian[4]:

H = "v0Sz
A + o

k j

"vkak j
† ak j + o

k j

sek jS+
A − ek j

! S−
Adsak je

ik·rA

− ak j
† e−ik·rAd, s1d

wherev0=ck0 is the transition frequency of the atom andSz,
S+, andS− are the pseudospin atomic operators. The coupling
constantek j in the multipolar coupling scheme is given by

ek j = iS2p"ck

V
D1/2

êk j · mA, s2d

wheremA is the transition dipole moment of atomA and êk j
are the polarization unit vectors.

The use of the multipolar form of the interaction Hamil-
tonian is very convenient in our calculation. In fact, in this
coupling scheme the momentum conjugate to the vector po-
tential is the transverse displacement field which, outside the
atoms, coincides with the total electric field[12] (transverse
plus longitudinal). In this way, we directly obtain the total
field generated by one atom, inclusive of the longitudinal
components.

We assume that att=0 the atomA is in its bare excited
state, while the atomB is in the ground state. The two atoms
are in general different, and we consider a factorized state as
the initial state. We are interested in the dynamical Casimir-
Polder potential between these two atoms. Our calculation
proceeds in two steps. First, we obtain the electromagnetic
field emitted by the initially excited atomA and then we
evaluate the interaction energy of the ground-state atomB
with this field. We have already used a similar procedure to
obtain the Casimir-Polder potential between ground-state at-
oms and shown its relation to the spatial correlations of
vacuum fluctuations[13].

The interaction energy of the ground-state atomB with
the field emitted by the excited atomA can be conveniently
obtained by an effective interaction, which is quadratic in the
field operators. The two atoms are in general different. This
quadratic coupling can be obtained by a unitary transforma-
tion from the multipolar Hamiltonian, and it is given by
[14,15]

Hef f = −
1

2o
k j

aBskdkEk jsr B,td ·Esr B,tdl = −
1

2o
k j

o
k8 j8

aBskd

3kEk jsr B,td ·Ek8 j8sr B,tdl, s3d

where the average in Eq.(3) has to be taken on the initial
state of the system(atom A excited and the field in the
vacuum state), aBskd is the ground-state dynamic polarizabil-
ity of the atomB, and

Esr B,td = o
k j

Ek jsr B,td = io
k j

Î2p"vk

V
fêk jak jstdeik·r B

− êk j
! ak j

† stde−ik·r Bg s4d

is the field operator evaluated at the position of atomB,
Ek jsr B,td being itssk jd component, which includes a contri-
bution coming from the presence of atomA. In this way, we
obtain the Casimir-Polder potential between the atomsA and
B from the response of atomB to the field emitted by atom
A. We stress that the field operatorE in Eq. (4) is the trans-
verse displacement field operator(that is, the momentum
conjugate to the vector potential) which, outside the atoms,
coincides with the total electric field operator[12]: longitu-
dinal field contributions are already included in Eq.(4).

III. THE DYNAMICAL CASIMIR-POLDER
POTENTIAL

The first step in obtaining the time-dependent Casimir-
Polder potential, as outlined above, is to evaluate the average
value of the operatorEk jsr B,td ·Ek8 j8sr B,td on the initial
state, that is, the state with atomA excited and the field in the
vacuum state. We obtain this quantity by solving at the sec-
ond order in the coupling constant the Heisenberg equations
of motion for the field operators and using the Hamiltonian
(1), and then taking the average value on the state att=0; the
calculation is sketched out in the Appendix. Our procedure
closely follows that of Power and Thirunamachandran[15]
for a multilevel atom, with the difference that we have spe-
cialized to a two-level case and that we deal explicitly with
the caset.R/c. Substitution of Eq.(A8) into Eq. (3) yields
the following expression for the average value ofHef f, which
gives the Casimir-Polder potential between the two atoms:

DEAB = −
1

2 o
k jk8 j8

aBskdk↑Ah0k jjuEk jsr B,td ·Ek8 j8sr B,tdu↑Ah0k jjl =
1

2
S2pc

V
D2

o
k jk8 j8

sêk j · êk8 j8dsêk j · mAdsêk8 j8 · mAdkk8

3FaBskdfFtsv0 + vkdeisk·R−vktd − Ftsv0 − vkde−isk·R−vktdgfFt
*sv0 − vk8de

isk8·R−vk8td − Ft
*sv0 + vk8de

−isk8·R−vk8tdg

+ iaBskdeisk·R−vktdS 1

v0 − vk
heisk8·R−vk8tdfFtsvk + vk8d − Ftsv0 + vk8dg − e−isk8·R−vk8tdfFtsvk − vk8d − Ftsv0 − vk8dgj

+
1

v0 + vk
heisk8·R−vk8tdfFtsvk + vk8d − Ft

*sv0 − vk8dg − e−isk8·R−vk8tdfFtsvk − vk8d − Ft
*sv0 + vk8dgjD− iaBsk8de−isk·R−vktd
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3S 1

v0 − vk
he−isk8·R−vk8tdfFt

*svk + vk8d − Ft
*sv0 + vk8dg − eisk8·R−vk8tdfFt

*svk − vk8d − Ft
*sv0 − vk8dgj

+
1

v0 + vk
he−isk8·R−vk8tdfFt

*svk + vk8d − Ftsv0 − vk8dg − eisk8·R−vk8tdfFt
*svk − vk8d − Ftsv0 + vk8dgjDG , s5d

where the complex functionFtsxd is defined in Eq.(A7).
We first perform integrations and summations overk8 j8 in the continuum limit, obtaining

DEsA,Bd =
p

V
mm

Amn
Ao

k j

sêk jd,sêk jdm 3 HaBskdicfFtsv0 − vkde−isk·R−cktd − Ftsv0 + vkdeisk·R−cktdge−ik0ctF,n
R eik0R

R
+ aBskdeik·R

3F 1

k0 − k
SF,n

R e−ikR

R
− eisk0−kdctF,n

R e−ik0R

R
D +

1

k0 + k
SF,n

R e−ikR

R
− e−isk0+kdctF,n

R eik0R

R
DG + e−ik·RF 1

k0 − k
SaBskdF,n

R eikR

R

− aBsk0de−isk0−kdctF,n
R eik0R

R
D +

1

k0 + k
SaBskdF,n

R eikR

R
− aBsk0deisk0+kdctF,n

R e−ik0R

R
DGJQsct − Rd, s6d

where we have defined the differential operator acting on the
variableR as

F,n
R = s− dn,¹

2 + ¹,¹nd. s7d

The presence of theQ function in Eq.(6) ensures relativ-
istic causality in the propagation of the field generated by
atomA and consequently in the interaction between the two
atoms. TheQ function results from integrals overk of the
following kind:

PE
−`

`

dk
eikx

k + k0
askd = ipf2Qsxd − 1ge−ik0xask0d. s8d

After lengthy calculations which include integration over
k j of some of the terms containing 1/sk0−kd, Eq. (6) can be
expressed in the more compact form

DEsA,Bd =
2p

V
mm

Amn
Ao

k j

sêk jd,sêk jdm
k

k0 − k

3 ReFeik·RS2aBskdF,n
R e−ikR

R
− faBskd

+ aBsk0dgeisk0−kdctF,n
R e−ik0R

R
DGQsct − Rd. s9d

After summation oversk jd in the continuum limit and
some algebraic manipulations where the analytical properties
of the dynamical polarizabilityaBskd are used, we finally get

DEsA,Bd =F− mm
Amn

AaBsk0dF,n
R 1

R
F,m

R̄ 1

R̄
cosk0sR− R̄d

+
"c

2p
F,n

R 1

R
F,m

R̄ 1

R̄
E

0

`

due−usR+R̄damn
A siudaBsiud

+
1

p
mm

Amn
AF,n

R 1

R
F,m

R̄ 1

R̄

3Scosk0sct − RdE
0

`

dufaBsiud + aBsiu0dge−uct

3
2k0sinh uR̄

k0
2 + u2 + sin k0sct − RdE

0

`

dufaBsiud

+ aBsiu0dge−uct2u sinh uR̄

k0
2 + u2 DG

R=R̄

Qsct − Rd, s10d

where the variableR̄, which is put equal toR after the action

of the differential operatorF,m
R̄ , has been conveniently intro-

duced in order to distinguish the variables on which the op-

eratorsF,n
R and F,m

R̄ operate.aAsiud is the dynamical polar-
izability of the excited state of the atomA, extended to
imaginary frequenciesiu,

amn
A siud =

2k0mm
Amn

A

"csk0
2 + u2d

. s11d

For a two-level system, the dynamical polarizability of the
excited state coincides with that of the ground state except
for a change of its sign. The experimental observability of
time dependences of the form implied by expression(10) has
been discussed in[16].

We notice from Eq.(10) that the first two terms inside the
square brackets are time independent, whereas the third term
depends on time. This time-dependent term contains, inside
the u integrals, an exponential factor decreasing with time.
For a givenR, this term rapidly vanishes to zero with a time
scale of the order ofk0

−1/c=v0
−1. This means that, for this

given R,ct after a transient in which there is a time-
dependent Casimir-Polder interaction, then the interatomic
interaction stabilizes to
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DEsA,Bd = S− mm
Amn

AaBsk0dF,n
R 1

R
F,m

R 1

R̄
cosk0sR− R̄d

+
"c

2p
F,n

R 1

R
F,m

R̄ 1

R̄
E

0

`

due−usR+R̄damn
A siudaBsiudD

R=R̄

,

s12d

which is time independent. We note that the time scalev0
−1 of

the dynamical Casimir-Polder potential is the same as at the
nonexponential early stage of the spontaneous decay of the
excited atom(Zeno time). Details of the time-dependent term
in Eq. (10) may depend on the choice of the initial state at
t=0, in our case a bare excited state. Other possible choices,
for example a partially dressed state, might yield a different
expression for this term, but we expect that the general prop-
erties of the time-dependent energy should not change. The
time-dependent energy in Eq.(10) yields a time-dependent
force between the two atoms, which in principle is observ-
able. During this stage of the decay, the self-dressing of the
atom occurs[17]. This indicates that the time-dependent part
of the potential is related to the interaction of atomB with
the dynamical photon cloud of atomA, which is generated
during its self-dressing. Our result(10) is valid only up to
times of the order ofg−1 or smaller, whereg is the decay rate
of the excited state, because of the limitation of the pertur-
bation theory we have used. However, for atomic systems the
time interval betweenk0

−1/c andg−1 is typically quite a long
interval. Equation(12) coincides with the result obtained by
Power and Thirunamachandran using a time-independent ap-
proach based on a nonnormalizable dressed excited state for
atomA [6,7]. This part of the potential has two components:
one has the same form as the potential for ground-state at-
oms, and the other is spatially oscillating and is related to the
fact that the excited atom can emit a resonant photon.

IV. CONCLUSIONS

We have considered the Casimir-Polder intermolecular in-
teraction between two atoms, one in its ground state and the
other excited. The latter is assumed to be att=0 in its bare
excited state. We have used an effective Hamiltonian ap-
proach, and the interaction energy between the two atoms
stems from the interaction of the ground-state atom(through
its dynamical polarizability) with the field generated by the
excited atom. The interaction energy yielding the Casimir-
Polder potential is time dependent because of the dynamical

self-dressing processes of the excited atom; there is also a
contribution to the potential from the resonance related to the
possibility of emission of a resonant photon by the excited
atom. We find that for timest@v0

−1, that is, for times larger
than the inverse of the transition frequency of the excited
atom, and fort.R/c the Casimir-Polder interaction becomes
time independent. In this limit its expression coincides with
that already obtained by Power and Thirunamachandran us-
ing a time-independent approach and based on a nonnormal-
izable dressed state for the excited atom. We argue that the
time-dependent part of the potential that we obtain is due to
virtual photons that are emitted by the excited atom in the
very early stages of its decay.

ACKNOWLEDGMENTS

This work was supported by the European Commission
under Contract No. HPHA-CT-2001-40002 and in part by the
bilateral Italian-Japanese Project 15C1 on Quantum Informa-
tion and Computation of the Italian Ministry for Foreign Af-
fairs. Partial support by Ministero dell’Università e della
Ricerca Scientifica e Tecnologica and by Comitato Regionale
di Ricerche Nucleari e di Struttura della Materia is also ac-
knowledged.

APPENDIX: ITERATIVE SOLUTION OF THE
HEISENBERG EQUATIONS

In this appendix we outline the iterative solution of the
Heisenberg equations describing the interaction of atomA
with the radiation field, using the Hamiltonian(1) for the part
pertaining to atomA. The Heisenberg equations for the field
and atomic operators are

ȧk jstd = − ivkak jstd +
i

"
fek jS+

Astd − ek j
* S−

Astdge−ik·r A,

sA1d

Ṡ+
Astd = iv0S+

Astd +
2i

"
Sz

Astdo
k j

ek j
* fak jstdeik·r A − ak j

† stde−ik·r Ag.

sA2d

The iterative solution of these equations and their Hermit-
ian conjugates yields the perturbative expansion of the field
operators

ak jstd = ak j
s0dstd + ak j

s1dstd + ak j
s2dstd + ¯ , sA3d

where

ak j
s0dstd = ak js0de−ivkt, sA4d

ak j
s1dstd =

i

"
e−ivktfek jS+

As0dFt
*sv0 + vkd − ek j

* S−
As0dFt

*sv0 − vkdge−ik·r A, sA5d
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ak j
s2dstd = −

2i

"2Sz
As0de−ivkte−ik·r Ao

k8 j8
Fak8 j8s0deik8·r ASek jek8 j8

* Ftsvk − vk8d − Ftsv0 + vkd

v0 + vk8
+ ek j

* ek8 j8

Ftsvk − vk8d − Ft
*sv0 − vkd

v0 − vk8
D

− ak8 j8
† s0de−ik8·r ASek jek8 j8

* Ftsvk + vk8d − Ftsv0 + vkd

v0 − vk8
+ ek j

* ek8 j8

Ftsvk + vk8d − Ft
*sv0 − vkd

v0 + vk8
DG , sA6d

where we have defined the function

Ftsxd =E
0

t

dt8eixt8. sA7d

Using Eqs.(A4)–(A6), we obtain the following expression for the average value of the field operators present in Eq.(3) on
the initial state of the system(atomA+ field) u↑Ah0k jjl:

kEk jsr B,td ·Ek jsr B,tdl = − S2pc

V
D2

sêk j · êk8 j8dsêk j · mAdsêk8 j8 · mAdkk8HfFtsv0 + vkdeisk·R−vktd − Ftsv0 − vkde−isk·R−vktdg

3fFt
*sv0 − vk8de

isk8·R−vk8td − Ft
*sv0 + vk8de

−isk8·R−vk8tdg+ F− SFtsvk + vk8d − Ftsv0 + vk8d

isv0 − vkd

+
Ftsvk + vk8d − Ft

*sv0 − vk8d

isv0 + vkd
Deisk+k8d·R−isvk+vk8dt + SFtsvk − vk8d − Ftsv0 − vk8d

isv0 − vkd

+
Ftsvk − vk8d − Ft

*sv0 + vk8d

isv0 + vkd
Deisk−k8d·R−isvk−vk8dt + c.c.sk ↔ k8dGJ sA8d

(the last term indicates the complex conjugate of the terms inside the square bracket after exchange betweenk and k8). R
=r B−r A is the interatomic separation.
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