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A large class of non-Markovian quantum processes in open systems can be formulated through time-local
master equations which are not in Lindblad form. It is shown that such processes can be embedded in a
Markovian dynamics which involves a time-dependent Lindblad generator on an extended state space. If the
state space of the open system is given by some Hilbert spaceH, the extended state space is the triple Hilbert
spaceH ^ C3 which is obtained by combining the open system with a three-state system. This embedding is
used to derive an unraveling for non-Markovian time evolution by means of a stochastic process in the
extended state space. The process is defined through a stochastic Schrödinger equation which generates genu-
ine quantum trajectories for the state vector conditioned on a continuous monitoring of an environment. The
construction leads to a continuous measurement interpretation for non-Markovian dynamics within the frame-
work of the theory of quantum measurement.
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I. INTRODUCTION

An open quantum system is a certain distinguished quan-
tum system which is coupled to another quantum system, its
environment[1]. A particularly simple way of describing an
open system is obtained in the Markovian approximation. In
this approximation all memory effects due to system-
environment correlations are neglected, which usually leads
to a Markovian master equation—that is, to a linear first-
order differential equation for the reduced density matrixrstd
of the open system with a time-independent generator. Gen-
erally, one demands that the generator be in Lindblad form
[2], which follows from the requirements of the conservation
of probability and of the complete positivity of the dynami-
cal map[3,4].

A remarkable feature of Markovian master equations in
Lindblad form is given by the fact that they allow a stochas-
tic representation, also known as unraveling, by means of a
stochastic Schrödinger equation(SSE) for the state vector of
the open system[5–9]. A SSE generates the time evolution of
the state vector which results from a continuous monitoring
of the environment of the system[10,11]. A specific realiza-
tion hucstdl ,tù0j of the SSE is called a quantum trajectory:
At each time tù0 the open system is known to be in a
definite stateucstdl under the condition that a specific readout
of the monitoring of the system’s environment be given. The
reduced density matrix at timet is therefore obtained if one
averages the quantityucstdlkcstdu over all possible quantum
trajectories. This means that the relationrstd=Efucstdl
3kcstdug holds, where the symbolE denotes the ensemble
average or expectation value.

In the Markovian case it is thus true that the environment
acts as a quantum probe by which an indirect continuous
observation of the system is carried out. The description by
means of a Markovian master equation in Lindblad form is,
however, only an approximation which uses the assumption

of short correlation times. For strong couplings and low-
temperature environments memory effects can lead to pro-
nounced non-Markovian behavior.

It is sometimes argued that the treatment of non-
Markovian processes by means of master equations necessar-
ily requires solving integro-differential equations for the re-
duced density matrix. Such equations arise, for example, in
the application of the Nakajima-Zwanzig projection operator
technique[12,13] which leads to dynamic equations involv-
ing a retarded memory kernel and an integration over the
past history of the system.

However, the use of another variant of the projection op-
erator method allows in many cases the derivation of ap-
proximate or even exact non-Markovian master equations for
the reduced density matrix which are local in time. This
method is known as the time-convolutionless(TCL) projec-
tion operator technique[14–17]. It leads to a first-order dif-
ferential equation

d

dt
rstd = Kstdrstd s1d

for the open system’s reduced density matrixrstd. The non-
Markovian character of this TCL master equation is reflected
by the fact that its generatorKstd depends explicitly on time
and is generally not in Lindblad form.

By contrast to the Nakajima-Zwanzig equation the TCL
master equation(1) is local in time which means that the rate
of change ofrstd at any timet is given entirely in terms of
rstd and that there is no time integration over the past history
in the equation of motion. To obtain the time-local form of
the master equation one eliminates the dependence of the
future time evolution on the system’s history by introducing
the exact backward propagator of the total system(open sys-
tem plus environment) into the Nakajima-Zwanzig equation.
This enables one to express the total density matrix at previ-
ous timest8, t in terms of the total density matrix at timet
and to derive a time-local master equation for the reduced
density matrix.*Electronic address: breuer@physik.uni-freiburg.de
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Time-local equations which are of the form of the TCL
master equation(1) have also been derived by other means—
e.g., by path integral and influence functional techniques
[18,19]. A well-known example is provided by the exact
equation of motion for a damped harmonic oscillator coupled
linearly to a bosonic reservoir[20–22].

The fact that the TCL generator is generally not in Lind-
blad form leads to several important mathematical and physi-
cal consequences. In particular, a stochastic unraveling of the
TCL master equation of the form indicated above does not
exist: Any such process will automatically produce a master
equation whose generator is in Lindblad form. The question
is therefore as to whether one can develop a general method
for the construction of stochastic Schrödinger equations for
non-Markovian dynamics which do have a physical interpre-
tation in terms of continuous measurements. It is the purpose
of this paper to show that this is indeed possible.

Our starting point is a time-local non-Markovian master
equation for the density matrixrstd on some Hilbert spaceH
with a time-dependent and bounded generator. It will be
demonstrated that the dynamics given by such a master equa-
tion can always be embedded in a Markovian dynamics on
an appropriate extended state space. The non-Markovian dy-
namics thus appears as part of a Markovian evolution in a
larger state space.

If one chooses the extended state space as the Hilbert
space of the total system, consisting of open system plus
environment, this statement is of course trivial. However, it
turns out that the embedding can be realized in a fairly
simple, much smaller state space—namely, in the tensor
product spaceH ^ C3. In physical terms this is the state
space of a composite quantum system which results if one
combines the original open system on the state spaceH with
a further auxiliary three-state system described by the state
spaceC3. The open system could be, for example, a damped
quantum particle interacting with a dissipative environment.
The auxiliary system can then be realized through an addi-
tional internal degree of freedom of the particle which leads
to a state space spanned by three basis states.

It will be demonstrated that the dynamics in the extended
state space follows a Markovian master equation with a time-
dependent generator in Lindblad form. The application of the
standard unraveling of Markovian master equations to the
dynamics in the extended state space therefore yields a sto-
chastic unraveling for the non-Markovian dynamics. The re-
sulting SSE generates genuine quantum trajectories which do
admit a physical interpretation in terms of a continuous ob-
servation carried out on an environment. The construction
thus gives rise to a consistent measurement interpretation for
non-Markovian evolution in full agreement with the general
setting of quantum measurement theory.

The paper is structured as follows. Section II contains a
brief review of the continuous measurement theory for Mar-
kovian dynamics. Time-dependent generators in Lindblad
form are introduced in Sec. II A, and Sec. II B treats the
corresponding continuous measurement unraveling. The
quantum measurement theory for non-Markovian evolution
is developed in Sec. III. We introduce time-local non-
Markovian master equations in Sec. III A. The embedding of
these equations in a Markovian dynamics is constructed in

Sec. III B, whereas the derivation of the continuous measure-
ment unraveling is given in Sec. III C. The construction of
the SSE and its physical interpretation are illustrated by
means of an example in Sec. IV.

A series of interesting stochastic unravelings of non-
Markovian quantum dynamics is known in the literature.
Section V contains a discussion of our results and of the
relations to alternative non-Markovian SSEs, as well as some
conclusions.

II. QUANTUM THEORY OF MARKOVIAN DYNAMICS

A. Time-dependent Lindblad generators

We consider a density matrixWstd on a state spaceH̃
which obeys a master equation of the form

d

dt
Wstd = LstdWstd ; − ifHstd,Wstdg + o

i

JistdWstdJi
†std

−
1

2o
i

hJi
†stdJistd,Wstdj. s2d

The commutator with the HamiltonianHstd represents the
unitary part of the evolution and the Lindblad operatorsJistd
describe the various decay channels of the system. In anal-
ogy to the terminology used for classical master equations,
the expressionsJiWJi

† may be called gain terms, while the
expressionshJi

†Ji ,Wj, involving an anticommutator, may be
referred to as loss terms.

Both the HamiltonianHstd and the operatorsJistd are al-
lowed to depend on timet. The generatorLstd of the master
equation may thus be explicitly time dependent and does not
necessarily lead to a semigroup. We observe, however, that
the superoperatorLst0d is in Lindblad form[2] for each fixed
t0ù0. This means thatLst0d is in the form of the generator
of a quantum dynamical semigroup. The particular form of
the generator derives from the requirements of complete
positivity and of the conservation of the trace[3,4].

Under certain technical conditions which will be assumed
to be satisfied here, one concludes that Eq.(2) yields a two-
parameter family of completely positive and trace-preserving
mapsVst ,sd [23,24]. These maps can be defined with the
help of the chronological time-ordering operatorT as

Vst,sd = T expFE
s

t

dtLstdG, t ù sù 0, s3d

and satisfy

Vst,sdVss,t8d = Vst,t8d, t ù sù t8. s4d

In terms of these maps the solution of the master equation(2)
at time t can be written asWstd=Vst ,sdWssd, where tùs
ù0. Thus,Vst ,sd propagates the density matrix at times to
the density matrix at timet.

EachVst ,sd maps the space of density matrices into itself.
This means thatVst ,sd can be applied to any density matrix
W to yield another density matrixVst ,sdW. The domain of
the mapsVst ,sd is thus the space of all density matrices and
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is independent of time. Usually, one associates a Markovian
master equation with a time-independent generator. We
slightly generalize this notion and refer to Eq.(2) as a Mar-
kovian master equation with a time-dependent Lindblad gen-
eratorLstd.

B. Stochastic unraveling and continuous measurement
interpretation

As mentioned already in the Introduction a Markovian
master equation in Lindblad form leads to a stochastic un-

raveling through a random process in the state spaceH̃. This
means that one can construct a stochastic dynamics for the

state vectoruFstdl in H̃ which reproduces the density matrix
Wstd with the help of the expectation value

Wstd = EfuFstdlkFstdug. s5d

The stochastic unraveling is usually formulated for time-
independent Lindblad operators. In the following we de-
scribe the straightforward generalization of this concept to
the case of the master equation(2) with time-dependent
Lindblad operatorsJistd. This generalization will be used in
Sec. III C to obtain a stochastic measurement unraveling for
non-Markovian dynamics.

To mathematically formulate the stochastic dynamics one
writes a stochastic Schrödinger equation for the state vector
uFstdl. An appropriate SSE for which the expectation value
(5) leads to the master equation(2) is given by

duFstdl = − iG„uFstdl…dt + o
i
F JistduFstdl

iJistduFstdli
− uFstdlGdNistd,

s6d

where we have introduced the nonlinear operator

G„uFstdl… ; FĤstd +
i

2o
i

iJistduFstdli2GuFstdl. s7d

The term −iGsuFstdlddt in Eq. (6), which is proportional to
the time incrementdt, expresses the drift of the process. This
drift contribution obviously corresponds to the nonlinear
Schrödinger-type equation

d

dt
uFstdl = − iG„uFstdl…, s8d

whose linear part involves the non-Hermitian Hamiltonian

Ĥstd = Hstd −
i

2o
i

Ji
†stdJistd. s9d

The nonlinear part of the drift ensures that, althoughĤstd is
non-Hermitian, the norm is conserved under the determinis-
tic time evolution given by Eq.(8).

The second term on the right-hand side of Eq.(6) repre-
sents a jump process leading to discontinuous changes of the
wave function, known as quantum jumps. These jumps are
described here with the help of the Poisson incrementsdNistd
which satisfy the relations

dNistddNjstd = di jdNistd, s10d

EfdNistdg = iJistduFstdli2dt. s11d

According to Eq. (10) the incrementsdNistd are random
numbers which take the possible values 0 or 1. Moreover, if
dNistd=0 for a particulari, we havedNjstd=0 for all j Þ i.
The state vector then performs the jump

uFstdl → JistduFstdl
iJistduFstdli

. s12d

Thus we see thatNistd is an integer-valued process which
counts the number of jumps of typei.

We infer from Eq.(11) that dNistd=1 occurs with prob-
ability iJistduFstdli2dt. The jump described by Eq.(12) thus
takes place at a rate ofiJistduFstdli2. The casedNistd=0 for
all i is realized with probability 1−oiiJistduFstdli2dt. In this
case the state vectoruFstdl follows the deterministic drift
described by Eq.(8).

Summarizing, the dynamics described by Eq.(6) yields a
piecewise deterministic process—i.e., a random process
whose realizations consist of deterministic evolution periods
interrupted by discontinuous quantum jumps. Since both the
deterministic drift(8) and the jumps(12) do not change the
norm, the whole process preserves the norm of the state vec-
tor.

The formulation of the dynamics by means of a SSE bears
several numerical advantages over the integration of the cor-
responding density matrix equation(2). This fact was the
original motivation for the development of stochastic wave
function methods in atomic physics and quantum optics(for
an example, see[25]). What is important in our context is the
fact that, additionally, the stochastic process given by the
SSE allows a physical interpretation in terms of a continuous
measurement which is carried out on an environment of the
system.

To explain this point we consider a microscopic model in
which the open system is weakly coupled to a number of
independent reservoirsRi, one reservoir for each value of the
index i. Each reservoirRi consists of bosonic modesbil
which satisfy the commutation relations

fbil,bjm
† g = di jdlm. s13d

The Lindblad operatorsJistd appearing in the master equa-
tion (2) couple linearly to the reservoir operators

Bistd = o
l

gileisvi−vildtbil, s14d

where thevi are certain system frequencies,vil is the fre-
quency of the modebil of reservoirRi, and thegil are cou-
pling constants. Thus, the Hamiltonian of our model is taken
to be

HIstd = Hstd +
1

ÎG
o

i

fJistdBi
†std + Ji

†stdBistdg. s15d

We have included a factor 1/ÎG, whereG is a typical relax-
ation rate of the system which will be introduced below. The
combination Ji /ÎG is therefore dimensionless and theBi
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have the dimension of an inverse time, choosing units such
that "=1.

The time evolution operator over the time intervalst ,t8d
will be denoted byUst8 ,td. The correlation function of res-
ervoir Ri can be expressed through the spectral densityIsvd,
which is assumed to be the same for all reservoirs:

k0uBist8dBi
†stdu0l =E dvIsvdeisvi−vdst8−td. s16d

Here, u0l denotes the vacuum state defined bybilu0l=0 for
all i and alll.

Suppose that the state of the combined system(open sys-
tem plus reservoirsRi) at some timet is given by uCstdl
= uFstdl ^ u0l. At time t8= t+t this state has evolved into the
entangled stateUst8 ,tduCstdl. We considert to be a time
increment which is small compared to the time scale of the
systematic motion of the system, but large compared to the
correlation time of the reservoirs. Suppose further that at
time t8 a measurement of the quanta in the reservoir modes
bil is carried out. According to the standard theory of quan-
tum measurement[26] the detection of a quantum in mode
bil projects the state vector onto the statebil

† u0l. The open
system’s state conditioned on this event thus becomes

1
Îpil

k0ubilUst8,tduCstdl, s17d

where

pil = ik0ubilUst8,tduCstdli2 s18d

is the corresponding probability. If, on the other hand, no
quantum is detected, one has to project the state vector onto
the vacuum state which yields the open system’s conditioned
state

1
Îp0

k0uUst8,tduCstdl, s19d

where

p0 = ik0uUst8,tduCstdli2 s20d

is the probability that no quantum is detected.
In the Born-Markov approximation the above expression

simplifies considerably. We take a constant spectral density
Isvd=G /2p, corresponding to the case of broadband reser-
voirs with arbitrarily small correlation times. We further ne-
glect the Lamb shift contributions which lead to a renormal-
ization of the system Hamiltonian. The expression(17) then
becomes(up to an irrelevant phase factor)

JistduFstdl
iJistduFstdli

. s21d

This expression is seen to be independent ofl. Therefore,
the total probability of observing a quantum in reservoirRi is

pi = o
l

pil = iJistduFstdli2t. s22d

The last two equations show that, conditioned on the detec-
tion of a quantum in reservoirRi, the system state carries out

the jump described in Eq.(12) and that these jumps occur at
a rate given byiJistduFstdli2 [see Eq.(11)].

For the case that no quantum is detected expression(19)
gives in the Born-Markov approximation

uFstdl − iG„uFstdl…t, s23d

which leads to the drift contribution −iG(uFstdl)dt of Eq.(6).
The probability for this event is found to be

p0 = 1 −o
l

pil = 1 −o
i

iJistduFstdli2t. s24d

Considering that the detected quanta are annihilated on
measurement(quantum demolition measurement) we see
that for both alternatives described above the conditional
state vector of the combined system after timet is again a
tensor product of an open system’s state vector and the
vacuum state of the environment. Thus, we may repeat the
measurement process after each time incrementt. In the
limit of small t we then get a continuous measurement of the
environment and a resulting conditioned state vector of the
open system that follows the SSE(6).

Summarizing, the SSE(6) can be interpreted as resulting
from a continuous measurement of the quanta in the environ-
ment. This measurement is an indirect measurement in which
the jump (12) of the state vectoruFstdl describes the mea-
surement back action on the open system’s state conditioned
on the detection of a quantum in reservoirRi, while the non-
linear Schrödinger equation(8) yields the evolution of the
state vector under the condition that no quantum is detected.
The realizations of the process given by the SSE—i.e., the
quantum trajectories—thus allow a clear physical interpreta-
tion in accordance with the standard theory of quantum mea-
surement.

III. QUANTUM MEASUREMENT INTERPRETATION
OF NON-MARKOVIAN DYNAMICS

A. Time-local non-Markovian master equations

We investigate master equations for the density matrix
rstd of an open system which are of the following general
form:

d

dt
rstd = Kstdrstd

; − ifHSstd,rstdg + o
a

fCastdrstdDa
†std

+ DastdrstdCa
†stdg −

1

2o
a

hDa
†stdCastd

+ Ca
†stdDastd,rstdj. s25d

The HamiltonianHSstd, Castd, and theDastd are given, pos-
sibly time-dependent operators on the state spaceH of the
open system. The generatorKstd may thus again depend ex-
plicitly on time. The master equation(25) is, however, local
in time since it does not contain a time integration over a
memory kernel. The structure ofKstd was taken to ensure
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that the Hermiticity and the trace ofrstd are conserved. If we
chooseCa=Da;Ji /Î2, the generatorKstd reduces to the
form of a time-dependent Lindblad generatorLstd. The Mar-
kovian master equation(2) is thus a special case of Eq.(25)
which will be referred to as non-Markovian master equation.

With an appropriate choice for the HamiltonianHSstd and
the operatorsCastd and Dastd, a large variety of physical
phenomena can be described by master equations of the form
(25). For example, as mentioned in the Introduction a master
equation of this form arises when applying the TCL projec-
tion operator technique[14,15] to the dynamics of an open
system. The basic idea underlying this technique is to re-
move the memory kernel from the equations of motion by
the introduction of the backward propagator. Under the con-
dition of factorizing initial conditions one then finds a homo-
geneous master equation with a time-local generatorKstd.
The latter can be determined explicitly through a systematic
perturbation expansion in terms of ordered cumulants
[16,17]. Specific examples are the TCL master equations de-
scribing spin relaxation[27,28], the spin-boson model[29],
systems coupled to a spin bath[30,31], charged particles
interacting with the electromagnetic field[32], and the atom
laser[33].

Moreover, several exact time-local master equations of
the form (25) are known in the literature which have been
derived by other means. Examples are provided by the mas-
ter equations for non-Markovian quantum Brownian motion
[20–22] and for the nonperturbative decay of atomic sys-
tems, which will be discussed in Sec. IV.

The existence of a homogeneous, time-local master equa-
tion requires, in general, that the initial state of the total
system represent a tensor product state. For simplicity we
restrict ourselves to this case since we intend to develop
stochastic unravelings for pure states of the reduced open
system.

Due to its explicit time dependence, the generatorKstd of
the master equation(25) does not of course lead to a semi-
group. But even for a fixedtù0 the superoperatorKstd is, in
general, not in Lindblad form, by contrast to the property of
the generatorLstd of the master equation(2). To make this
point more explicit we introduce operatorsEastd=Castd
−Dastd and rewrite Eq.(25) as

d

dt
rstd = − ifHSstd,rstdg + D1stdrstd + D2stdrstd, s26d

where we have defined the superoperators

D1stdr ; o
a
FCastdrCa

†std −
1

2
hCa

†stdCastd,rj + DastdrDa
†std

−
1

2
hDa

†stdDastd,rjG ,

D2stdr ; − o
a
FEastdrEa

†std −
1

2
hEa

†stdEastd,rjG .

One observes thatD1std is in Lindblad form, whileD2std is
not: The superoperatorD2std carries an overall minus sign

and violates therefore the complete positivity of the genera-
tor.

Of course, we will assume in the following that the dy-
namics given by Eq.(25) yields a dynamical maprs0d°rstd
for all times considered; that is, we suppose that Eq.(25)
describes the evolution of true density matrices at timet=0
into true density matrices at timet.0. However, this as-
sumption does not imply that the propagation of an arbitrary
positive matrix at timet with the help of the master equation
(25) necessarily leads to a positive matrix for future times.
This is only guaranteed if we propagate a density matrixrstd
which results from the time evolution over the previous in-
terval s0,td.

A further important consequence of the form of the master
equation(25) is that it does not allow a stochastic unraveling
of the type developed in Sec. II B. Any unraveling of this
kind would automatically produce a master equation with a
time-dependent Lindblad generator. Trying to construct an
unraveling which leads to the contributionD2stdrstd of the
master equation, one would find a process with negative
transitions rates, which is both unphysical and mathemati-
cally inconsistent.

B. Markovian embedding of non-Markovian dynamics

To overcome the difficulties in the development of a sto-
chastic representation we are going to employ an interesting
general feature of the non-Markovian master equation(25):
Even if the generatorKstd is not in Lindblad form, it is
always possible to construct an embedding of the non-
Markovian dynamics in a Markovian evolution on a suitable
extended state space. The precise formulation of this state-
ment and its proof will be given in the following.

The extended state space is obtained by combining the
original open system on the state spaceH with another aux-
iliary quantum system. The auxiliary system is a three-state
system whose state spaceC3 is spanned by three basis states
u1l, u2l, and u3l:

C3 = spanhu1l,u2l,u3lj. s27d

The Hilbert spaceH̃ of the combined system then becomes
the triple Hilbert space

H̃ = H ^ C3 > H1 % H2 % H3. s28d

The extended state space is thus given by the tensor product
of H andC3, which in turn is isomorphic to the orthogonal
sum of three copiesH1, H2, andH3 of H. This means that

statesuFl in H̃ take the general form

uFl = uc1l ^ u1l + uc2l ^ u2l + uc3l ^ u3l, s29d

whereuckl[H for k=1,2,3. As apossible physical realiza-
tion of the extended state space one may think ofH as the
state space of a damped quantum particle with an additional
internal degree of freedom which can be represented by a
three-level system.

We now regard Eq.(2) as an equation of motion on the
triple Hilbert space: that is,Wstd is considered as a density

matrix on H̃ governed by a master equation with time-
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dependent Lindblad generatorLstd. On the other hand,rstd is
a density matrix onH satisfying the given non-Markovian
master equation(25). We will assume in the following that
the operatorsCastd andDastd are bounded.

Our aim is show that by an appropriate chice of the
HamiltonianHstd and of the Lindblad operatorsJistd in Eq.
(2) one can always achieve that the density matrixrstd on H
is connected to the density matrixWstd on H̃ by means of the
relation (tr denotes the trace):

rstd =
W12std

trW12std
. s30d

Here, we have defined

W12std = k1uWstdu2l, s31d

which is an operator acting onH. We can regard this opera-
tor W12std as a matrix which is formed by the coherences
(off-diagonal elements) of Wstd between states from the sub-
spaceH1 and states from the subspaceH2.

This is the embedding theorem. It states that the non-
Markovian dynamics ofrstd can be expressed through the
time evolution of a certain set of coherencesW12std of a
density matrixWstd on the extended space which follows a
Markovian dynamics(see Fig. 1).

To prove the embedding theorem we first demonstrate that
the relation(30) can be achieved to hold at timet=0. If rs0d
is any initial density matrix onH, we define a corresponding

density matrix onH̃ by

Ws0d ; rs0d ^
1

2
fu1lk1u + u2lk2u + u1lk2u + u2lk1ug

= rs0d ^ uxlkxu, s32d

where

uxl =
1
Î2

fu1l + u2lg s33d

is a state vector of the auxiliary system. We thus obtainWs0d
by combining the open system in the staters0d with the
three-state system in the pure stateuxlkxu. It is obvious that
Ws0d given by Eq.(32) is a true density matrix on the triple

Hilbert spaceH̃: i.e., we haveWs0dù0 and trWstd=1.
Moreover, Eq.(32) yields

W12s0d
trW12s0d

=
k1uWs0du2l

trk1uWs0du2l
=

1
2rs0d

1
2tr rs0d

= rs0d, s34d

which is Eq.(30) at time t=0.
To show that the relation(30) is valid for all timestù0

we have to demonstrate that the right-hand side of this rela-
tion satisfies the non-Markovian master equation(25), pro-
vided the Lindblad operatorsJistd in Eq. (2) are chosen ap-
propriately. To simplify the presentation we first treat the
case that the master equation(25) only involves a single
operatorCstd andDstd. Thus we write, suppressing the time
arguments,

d

dt
r = − ifHS,rg + CrD† + DrC† −

1

2
hD†C + C†D,rj.

s35d

We define four time-dependent Lindblad operators for the
master equation(2),

J1std = Cstd ^ u1lk1u + Dstd ^ u2lk2u, s36d

J2std = Dstd ^ u1lk1u + Cstd ^ u2lk2u, s37d

J3std = Vstd ^ u3lk1u, s38d

J4std = Vstd ^ u3lk2u, s39d

and the Hamiltonian

Hstd = HSstd ^ fu1lk1u + u2lk2u + u3lk3ug ; HSstd ^ I3,

s40d

whereI3 denotes the unit operator on the auxiliary spaceC3.
In Eqs. (38) and (39) we have introduced a time-dependent
operatorVstd on H which will be defined below.

According to the definitions(36) and(37) the operatorsJ1
andJ2 leave invariant the subspaceH1 % H2 which contains
states of the formuc1l ^ u1l+ uc2l ^ u2l. The operatorsJ3 and
J4 defined in Eqs.(38) and (39) induce transitionsu1l→ u3l
and u2l→ u3l between the states of the auxiliary three-state
system. The extended state space and the action of the Lind-
blad operators are illustrated in Fig. 2.

We have from the above definitions(suppressing again
the time arguments)

FIG. 1. Illustration of the embedding theorem: The initial den-
sity matrix rs0d evolves into rstd according to the given non-
Markovian master equation(25). This evolution can be embedded

in a Markovian dynamics on the extended state spaceH̃=H ^ C3 in
which the density matrixWs0d evolves intoWstd following the mas-
ter equation(2). FIG. 2. The extended state spaceH ^ C3=H1 % H2 % H3 and the

action of the operatorsJi defined in Eqs.(36)–(39).
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J1
†J1 = C†C ^ u1lk1u + D†D ^ u2lk2u, s41d

J2
†J2 = D†D ^ u1lk1u + C†C ^ u2lk2u, s42d

J3
†J3 = V†V ^ u1lk1u, s43d

J4
†J4 = V†V ^ u2lk2u, s44d

and

o
i=1

4

Ji
†Ji = sV†V + C†C + D†Dd ^ su1lk1u + u2lk2ud. s45d

With the Lindblad operators defined in Eqs.(36)–(39) and
with the Hamiltonian given by Eq.(40) the master equation
(2) leads to

d

dt
W12 = − ik1ufH,Wgu2l + o

i=1

4

k1uJiWJi
†u2l

−
1

2o
i=1

4

k1uhJi
†Ji,Wju2l. s46d

On using Eq.(45) we find

o
i=1

4

k1uhJi
†Ji,Wju2l = hV†V + C†C + D†D,W12j, s47d

while Eqs.(36)–(40) yield

k1uJ1WJ1
†u2l = CW12D

†, s48d

k1uJ2WJ2
†u2l = DW12C

†, s49d

k1uJ3WJ3
†u2l = k1uJ4WJ4

†u2l = 0, s50d

k1ufH,Wgu2l = fHS,W12g. s51d

Employing the relations(47)–(51) in Eq. (46) we arrive at

d

dt
W12 = − ifHS,W12g + CW12D

† + DW12C
†

−
1

2
hV†V + C†C + D†D,W12j. s52d

Here we see the reason for our choice of the extended state
space and of the Lindblad operatorsJi. The operatorsJ1 and
J2 have been chosen in such a way thatC acts from the left
and D† from the right on the coherencesW12 or vice versa
[see Eqs.(48) and (49)]. On the other hand, sinceJ3 andJ4
induce transitions into the stateu3l of the auxiliary system,
the corresponding gain termsJ3WJ3

† andJ4WJ4
† of the master

equation(2) do not contribute towards the equation of mo-
tion (52) for the coherencesW12 [see Eq.(50)]. The subspace
H3 of the extended state space plays the role of a sink which
will be used now to achieve that the loss terms of the master
equation come out correctly.

We observe that Eq.(52) is already of a form which is
similar to the desired master equation(35). These equations

differ, however, with respect to the structure of the loss terms
which are given by the terms containing the anticommutator.
To get an equation of motion of the desired form we now
chooseV to be a solution of the equation

V†V + C†C + D†D = aI + D†C + C†D, s53d

which is equivalent to

V†V = aI − sC − Dd†sC − Dd. s54d

Here,I denotes the unit operator onH anda=astd is a time-
dependent non-negative number. SinceV†V is a positive op-
erator, a solutionV of Eq. (54) exists under the condition
that the right-hand side of Eq.(54) be also a positive opera-
tor. Thus,a must be chosen in such a way that

a ù isC − Dducli2 s55d

for all normalized state vectorsucl in H. We note that it is at
this point that the assumption of bounded operators enters
our construction. To make a definite choice we definea to be
the largest eigenvalue of the positive operatorsC−Dd†sC
−Dd. This definition ensures that the inequality(55) is satis-
fied and that a solutionV of Eq. (54) exists.

The solution of Eq.(54) is, in general, not unique. IfV is
a solution, then alsoUV, where U is an arbitrary unitary
operator. ChangingV into UV does, however, not influence
the equation of motion(52) since only the combinationV†V
enters this equation. In the language of quantum measure-
ment theory the transformationr°VrV† is called a quan-
tum operation[34]. It describes the change of a density ma-
trix r under a generalized measurement whose outcome
occurs with probability trsV†Vrd. We can thus say that the
unitary operatorU, expressing our freedom in the choice of
V, affects the change of the system stater, but not the prob-
ability of its occurrence.

Substituting Eq.(53) into Eq. (52) we get

d

dt
W12 = − ifHS,W12g + CW12D

† + DW12C
† −

1

2
hD†C

+ C†D,W12j − aW12. s56d

We conclude from this equation that the trace ofW12 satisfies
the equation

d

dt
trW12 = − a trW12. s57d

Using this fact as well as Eq.(56) one immediately demon-
strates that the expression on the right-hand side of Eq.(30)
satisfies the desired master equation(35), which concludes
the proof of the embedding theorem.

The general case of an arbitrary number of operators
Castd andDastd in Eq. (25) can be treated in a similar way.
To this end, one has to reintroduce the indexa and to carry
out a summation overa in the equations of motion. Thus, for
each value ofa we have a correspondingVastd and anaastd,
as well as fourJiastd, i =1,2,3,4.

Finally we note that according to Eq.(56) the operator
W21;k2uWu1l=W12

† satisfies the same differential equation
as W12. Since also W21s0d=W12s0d, we conclude that
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W21std=W12std for all times. It follows that we can write, for
any operatorA on H,

trhArstdj =
trhsA ^ sxdWstdj
trhsI ^ sxdWstdj

, s58d

where

sx = u1lk2u + u2lk1u s59d

is an operator on the auxiliary state space. This shows that
the expectation value of all observablesA in the staterstd
can be determined through measurements on the stateWstd
of the extended system.

C. Stochastic unraveling for non-Markovian processes

The embedding of the previous section enables us to con-
struct a stochastic unraveling for the non-Markovian dynam-
ics given by the master equation(25). Since the master equa-
tion governing Wstd involves a time-dependent Lindblad
generator, we can use the SSE developed in Sec. II B for this
purpose.

The SSE(6) generates a stochastic process for the state
vector uFstdl in the triple Hilbert space. Employing the rep-
resentation(29) we write

uFstdl = uc1stdl ^ u1l + uc2stdl ^ u2l + uc3stdl ^ u3l.

s60d

As shown in Sec. II B the density matrixWstd on the ex-
tended state space is reproduced through the expectation
valueWstd=EfuFstdlkFstdug, and the norm of the state vector
is exactly conserved during the stochastic evolution:

kFstduFstdl ; kc1stduc1stdl + kc2stduc2stdl + kc3stduc3stdl = 1.

s61d

In accordance with Eq.(32) the initial state of the process
is taken to be of the form

uFs0dl = uwl ^ uxl =
1
Î2

fuwl ^ u1l + uwl ^ u2lg, s62d

where uwl is a normalized random state vector inH, kw uwl
=1, and uxl is the fixed state vector of the auxiliary three-
state system defined in Eq.(33). We thus haveuc1s0dl
= uc2s0dl=s1/Î2duwl and uc3s0dl=0. Hence, Eq.(30) at time
t=0 gives

rs0d = Efuwlkwug. s63d

The embedding theorem now reveals thatrstd is obtained
from the stochastic evolution with the help of the relation
[see Eq.(30)]

rstd =
Efuc1stdlkc2stdug
Efkc2stduc1stdlg

. s64d

Thus we have constructed a stochastic unraveling for the
non-Markovian dynamics. It is important to realize that our
construction leads to an unraveling through a normalized sto-
chastic state vectoruFstdl and that the process allows a defi-

nite physical interpretation in terms of a continuous measure-
ment, as has been discussed in Sec. II B.

We remark that for the caseC=D the given master equa-
tion (35) is already in time-dependent Lindblad form. Our
construction then yieldsastd=0 [see inequality(55)] andJ1

=J2, as well asJ3=J4=0. This means that the jump operators
J1 andJ2 are identical and that the decay channelsJ3 andJ4
are closed. It follows thatuc3stdl;0 and thatuc1l evolves in
exactly the same way asuc2l; that is, we haveuc1stdl
;uc2stdl. Equation (64) thus becomesrstd=2Efuc1stdl
3kc1stdug. Note that the factor of 2 is due to the normaliza-
tion condition(61) which yieldskc1uc1l=kc2uc2l= 1

2. In the
caseC=D our construction therefore reduces automatically
to the standard unraveling of a master equation in Lindblad
form.

IV. EXAMPLE

As an example we discuss a model for the non-Markovian
decay of a two-state system into the vacuum of a bosonic
bath. The model serves to illustrate how to construct the
embedding in a Markovian dynamics and how to interpret
physically the quantum trajectories generated by the result-
ing SSE.

A. Construction of the process

The interaction picture master equation of the model is
given by

d

dt
rstd = − ifHSstd,rstdg + gstdSs−rstds+ −

1

2
hs+s−,rstdjD ,

s65d

where

HSstd =
1

2
Sstds+s−. s66d

This is an exact master equation for the nonperturbative de-
cay of a two-state system with excited stateuel and ground
stateugl, which interacts with a bosonic bath[1]. s+= uelkgu
ands−= uglkeu are the usual raising and lowering operators of
the two-state system. These operators couple linearly to the
bath through an interaction Hamiltonian of the form
s−Q†std+s+Qstd, where Qstd is a bath operator depending
linearly on the annihilation operators of the bath modes.

The real functionsSstd and gstd are determined by the
vacuum correlation functionk0uQstdQ†st1du0l of the bath. An
example will be discussed below[see Eq.(92)]. The function
Sstd describes a time-dependent renormalization of the sys-
tem Hamiltonian induced by the coupling to the bath(Lamb
shift). Under the conditiongstdù0 one can interpret the
function gstd as a time-dependent decay rate of the excited
state. But for certain spectral densitiesgstd may become
negative in certain time intervals such that the master equa-
tion (65) is not in Lindblad form and the generator is not
completely positive.
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The master equation(65) can, however, always be
brought into the form of the non-Markovian master equation
(35) by means of the definitions

Cstd =Îugstdu
2

s−, s67d

Dstd =Îugstdu
2

sgngstds−. s68d

To obtain the operatorVstd introduced in Eq.(54) we first
have to determine the quantitya=astd which is defined to be
the largest eigenvalue ofsC−Dd†sC−Dd. This operator is
equal to 0 forgstdù0 and equal to 2ugstdus+s− for gstd,0.
Thus we find

sC − Dd†sC − Dd = as+s− s69d

and

astd = ugstdu − gstd. s70d

Hence, Eq.(54) takes the form

V†V = aI − sC − Dd†sC − Dd = asI − s+s−d = as−s+,

s71d

which leads to an obvious solution

Vstd = Îastds+. s72d

The Lindblad operatorsJi defined in Eqs.(36)–(39) are
therefore given explicitly by:

J1 =Îugu
2

s− ^ fu1lk1u + sgngu2lk2ug, s73d

J2 =Îugu
2

s− ^ fsgngu1lk1u + u2lk2ug, s74d

J3 = Îas+ ^ u3lk1u, s75d

J4 = Îas+ ^ u3lk2u. s76d

B. Physical interpretation

Considering timest for which gstdù0, we havea=0 [see
Eqs. (70)] and, hence,J3=J4=0. This means that forgstd
ù0 the decay channels described byJ3 and J4 are closed:
The process only involves the jumps of the state vector given
by the operatorsJ1 andJ2. We infer from Eqs.(73) and(74)
that J1 and J2 induce downward transitionsuel→ ugl of the
two-state system(action ofs−). These transitions result from
the projection of the system’s state vector into the ground
stateugl conditioned on the detection of a quantum in reser-
voir R1 or R2.

For gstd,0 the operatorsJ1 and J2 again induce down-
ward transitions of the two-state system and, at the same
time, introduce a relative phase factor of sgng=−1 between
the statesu1l and u2l of the auxiliary three-state system.

Moreover, in the casegstd,0 the decay channelsJ3 andJ4

are open: This enables additional jumps of the state vector
described byJ3 andJ4. Equations(75) and(76) show thatJ3
and J4 lead to upward transitionsugl→ uel of the two-state
system(action ofs+) with simultaneous transitions between
the auxiliary states of the formu1l→ u3l or u2l→ u3l. A re-
population of the excited stateuel is thus possible through
jumps into the auxiliary stateu3l, corresponding to the detec-
tion of a quantum in reservoirR3 or R4.

A detailed analysis of the process can be given in terms of
the statistics of the quantum jumps. To this end, we note that
the waiting time distribution for the SSE(6) is given by

Fst1,t0d = 1 −IT expF− iE
t0

t1

dsĤssdGuFst0dlI2

, s77d

whereĤ is defined by Eq.(9). Fst1,t0d is the probability that
a jump takes place in the time intervalst0,t1d, given that the
previous jump occurred at timet0 and yielded the state
uFst0dl. Note that this is a true cumulative probability distri-
bution; i.e.,Fst1,t0d increases monotonically witht1 and sat-
isfiesFst0,t0d=0. For our model we have[see Eqs.(9), (40),
(45), and(53)]

Ĥstd = HSstd ^ I3 −
i

2
fastdI + gstds+s−g ^ su1lk1u + u2lk2ud.

s78d

Let us analyze the process starting from the initial state

uFs0dl = uel ^ uxl s79d

and investigate the occupation probabilitypgstd of the ground
state. From the master equation it is clear that this quantity is
given by the simple expression

pgstd = 1 − expF−E
0

t

dsgssdG . s80d

If gssd takes on positive and negative values, this is a non-
monotonic function of time. Our aim is to illustrate how the
stochastic dynamics reproduces this behavior and to explain
the physical picture provided by the unraveling.

In the stochastic representation we have the formula[see
Eq. (64)]

pgstd =
Efkguc1stdlkc2stduglg

Efkc2stduc1stdlg
. s81d

We denote the moment of the first jump byt1, the moment of
the second jump byt2. It follows from Eq. (77) that the
waiting time distribution for the first jump is given by

Fst1,0d = 1 − expF−E
0

t1

dsugssduG , s82d

and that the waiting time distribution for the second jump,
given that the first jump took place at timet1, becomes

Fst2,t1d = 1 − expF−E
t1

t2

dsassdG . s83d
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We further denote the total number of jumps in the time
interval s0,td by Nstd. Since the process starts from the state
(79), the first jump is given by the application ofJ1 or J2
which project the state vector into the ground state. There-
fore, prior to the first jump we have 2kguc1stdlkc2stdugl=0;
immediately afterwards, we get 2kguc1stdlkc2stdugl
=sgngst1d. During the time intervals in whichgstd,0 a sec-
ond jump described byJ3 or J4 is possible by which the state
vector leaves the manifoldH1 % H2 and lands inH3. Once
the state vector is inH3, no further jumps are possible. Of
course, we get again 2kguc1stdlkc2stdugl=0 after the second
jump. Summarizing we have three possible alternatives

Nstd = 0 ⇒ 2kguc1stdlkc2stdugl = 0, s84d

Nstd = 1 ⇒ 2kguc1stdlkc2stdugl = sgngst1d, s85d

Nstd = 2 ⇒ 2kguc1stdlkc2stdugl = 0, s86d

From these relations we find the expectation value

Ef2kguc1stdlkc2stduglg =E
0

t

dt1Ḟst1,0df1 − Fst,t1dgsgngst1d

= expF−E
0

t

dt1ast1dG
− expF−E

0

t

dt1ugst1duG . s87d

Here, the quantitydt1Ḟst1,0d is the probability that the first
jump occurs indt1, while 1−Fst ,t1d is the probability that no
further jumps take place withinst1,td.

A similar analysis can be performed to obtain the expec-
tation value of the quantity 2kc2std uc1stdl. One finds

Nstd = 0 ⇒ 2kc2stduc1stdl = 1, s88d

Nstd = 1 ⇒ 2kc2stduc1stdl = sgngst1d, s89d

Nstd = 2 ⇒ 2kc2stduc1stdl = 0. s90d

Thus we get

Ef2kc2stduc1stdlg

= 1 −Fst,0d +E
0

t

dt1Ḟst1,0df1 − Fst,t1dgsgngst1d

= expF−E
0

t

dt1ast1dG . s91d

The term 1−Fst ,0drepresents the no-jump probability—i.e.,
the contribution from the eventNstd=0. The result(91) could
have been obtained also directly from Eq.(57). Using finally
Eqs.(87) and(91) in Eq. (81) we find, of course, the correct
expression(80) for the excited-state probability.

We illustrate the above analysis by means of an example.
Figure 3 shows the results of a Monte Carlo simulation of the
SSE(6) for the case of a Lorentzian spectral density which is
detuned from the transition frequency of the two-state sys-

tem by an amountD (damped Jaynes-Cummings model).
This leads to a bath correlation function of the form

k0uQstdQ†st1du0l =
g0l

2
eiDst−t1d−lut−t1u, s92d

whereg0
−1 is the Markovian relaxation time andl−1 is the

correlation time of the bath. The simulation was carried out
in a nonperturbative regime: While the Born-Markov ap-
proximation requires thatg0/l!1, the simulation uses
g0/l=25. In this regimegstd becomes negative for certain
time intervals. These intervals can be seen in the figure as
those intervals over whichpg and Ef2kc2uc1lg decrease
monotonically with time. This is a signature for the fact that
transitionsu1l→ u3l or u2l→ u3l become possible through the
channelJ3 or J4. These channels are closed in the time inter-
vals over whichEf2kc2uc1lg stays constant.

The decrease of the ground-state probability can be inter-
preted as due to virtual processes in which a quantum is
emitted into the bath and reabsorbed at a later time. This is a
clear non-Markovian feature of the dynamics. In the stochas-
tic unraveling this decrease results from the contributions of
those quantum trajectories which involve at least one jump
and for which the first jump at timet1 occurred during a
phase in whichgst1d,0. The first jump then yields a nega-
tive contribution to the expectation values of 2kguc1lkc2ugl
and of 2kc2uc1l as a result of the relative phase factor
sgngst1d=−1 between the statesu1l and u2l introduced byJ1

and J2 [see Eqs.(85) and (89)]. Moreover, in a possible
second jump the state vector leaves the manifoldH1 % H2 to
end up in a state proportional touel ^ u3l, which gives
2kc2uc1l=0 [see Eq.(90)].

The decrease ofpg is therefore due to quantum trajecto-
ries for which a second jump is possible which leads to a
reexcitationugl→ uel. Thus we see that the virtual emission
and reabsorption processes appear in the stochastic unravel-
ing in the extended state space as certain real processes—
namely, as jumps withJ1 or J2 involving a negative phase

FIG. 3. Simulation of the SSE(6) for the non-Markovian decay
of a two-state system. Top: ground-state probabilitypg obtained
from a sample of 105 quantum trajectories(dots) and analytical
solution (solid line). Bottom: expectation valueEf2kc2uc1lg. Pa-
rameters:g0/l=25, D /g0=0.2.
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factor (detection of a quantum in reservoirR1 or R2) and as
jumps into the auxiliary stateu3l (detection of a quantum in
reservoirR3 or R4). This shows how the quantum memory
effect of virtual emission and reabsorption processes is en-
coded and completely stored in the continuous measurement
record.

V. DISCUSSION AND CONCLUSIONS

In this paper we have developed a general method for the
derivation of stochastic unravelings for non-Markovian
quantum processes given by time-local master equations of
the form (25). The key point of the construction is the fact
that such master equations always allow a Markovian em-
bedding in an extended state space with a rather simple
structure—namely, in the triple Hilbert spaceH ^ C3. Within
this embedding the density matrixrstd of the original open
system is expressed through a certain set of coherences of the
full density matrixWstd on the extended state space.

The transition to the extended state space can be viewed
physically as the addition of a further degree of freedom
which is realized by a three-level system. This enables one to
represent the given non-Markovian dynamics by means of a
suitable interaction with a Markovian environment consist-
ing of the reservoirsRi introduced in Sec. II B. Although the
generator of the given non-Markovian master equation need
not be in Lindblad form, the corresponding dynamics in the
extended state space is therefore governed by a time-
dependent Lindblad generator of the form of Eq.(2). The
lifting to an appropriate extended state space thus allows the
derivation of stochastic Schrödinger equations for non-
Markovian dynamics through a consistent application of the
standard theory of quantum measurement. The SSE’s ob-
tained in this way generate genuine quantum trajectories
with the physical interpretation of continuous measurements.

The construction of Sec. III B provides a fairly general
method for the Markovian embedding of a given non-
Markovian dynamics: Apart from the existence of the master
equation and from the boundedness of the operatorsCastd
andDastd, no assumption was made regarding the interaction
Hamiltonian, the spectral density, the reservoir state, its tem-
perature, etc. The Markovian embedding could therefore be
useful in itself since it enables one to employ well-
established and developed concepts from the theory of com-
pletely positive maps and Lindblad generators in the study of
non-Markovian master equations.

Formulating a non-Markovian unraveling we made use of
piecewise deterministic jump processes. In an electromag-
netic environment this corresponds, for example, to direct
photodetection. It should be clear, however, that our deriva-
tion allows any unraveling in the extended state space. Alter-
natively one can use diffusion-type SSE’s, which in a con-
tinuous measurement interpretation correspond to other
detection schemes like homodyne or heterodyne photodetec-
tion [10,11].

Various stochastic unravelings for non-Markovian dynam-
ics have been suggested in the literature, involving both
jump processes[35,36] as well as SSE’s with colored noise
[37–40]. The technique developed by Imamoglu[35] is re-

lated to the method of pseudomodes[41,42]. It employs an
approximate Markovian embedding of a given non-
Markovian dynamics. This embedding is based on the as-
sumption that the reservoir can be represented by means of
an effective set of fictitious damped harmonic oscillator
modes. The Markovian embedding of the present paper is
realized in an entirely different way by the introduction of
the triple Hilbert space and avoids the expansion into
pseudomodes. It should also be noted that in the present
method the density matrixrstd is not given by the partial
trace of the density matrixWstd in the extended state space.

A further interesting method has been formulated by
Diósi, Gisin, and Strunz[37,38]. These authors employ a
nonlocal stochastic integro-differential equation for the state
vector. As demonstrated by Gambetta and Wiseman[39] it
seems, however, that the nonlocal SSE does not admit a con-
tinuous measurement interpretation within the framework of
standard quantum measurement theory(see also[43] in this
context). This means that measurements carried out at differ-
ent times on the environment will influence the dynamics in
a way which is incompatible with the stochastic process. The
SSE does therefore not generate genuine quantum trajecto-
ries in the sense it does for Markovian dynamics.

A number of unravelings of non-Markovian dynamics has
been proposed[44,45] which are based on the idea of propa-
gating a pairuc1stdl, uc2stdl of stochastic state vectors and of
representing the reduced density matrix with the help of the
expectation valuerstd=Efuc1stdlkc2stdug. It is even possible
to design an exact stochastic unraveling[30,46] which nei-
ther requires the existence of a master equation nor a factor-
izing initial state. This method makes use of a pair of inde-
pendently evolving product states in the state space of the
total system. Related stochastic wave function methods have
also been formulated for the description of bosonic and fer-
mionic many-body systems[47,48] and for the simulation of
quantum gases[49,50] by use of the positiveP representa-
tion [51,52]. A measurement interpretation of these stochas-
tic methods is, however, not available.

A pair uc1stdl, uc2stdl of state vectors can be considered as
an element of the double Hilbert spaceH ^ C2>H1 % H2
which is the tensor product ofH and the state space of a
two-state system. In Ref.[44] a stochastic unraveling in the
double Hilbert space has been constructed. Although this
method has been demonstrated to provide a useful numerical
tool, a continuous measurement interpretation seems again to
be impossible. This is connected to the fact that not only the
master equation inH but also the master equation in the
double Hilbert space is generally not in Lindblad form and
that the process does not preserve the norm of the state vec-
tor.

We mention finally some restrictions of the present theory.
Similar to the formulation of the Lindblad theorem, we made
use of the assumption of boundedness of the operatorsCastd
and Dastd in the non-Markovian master equation(25). This
assumption excludes the immediate treatment of important
cases, such as quantum Brownian motion which involves the
unbounded operators for position and momentum of the par-
ticle. However, what is really needed in the proof is that the
inequality (55) is satisfied. Provided the dynamics of the
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state vector is confined to an effective subspace ofH on
which the right-hand side of inequality(55) is bounded, we
can still define a finiteastd and construct the embedding. A
further restriction of the theory is that for certain models a
time-local master equation of the form(25) may not exist for
very strong couplings. The latter can lead to singularities of
the TCL generator and to a breakdown of the TCL expansion
(an example is discussed in[1]). It is an important open

problem whether a continuous measurement unraveling can
be developed for such cases.
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