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Genuine quantum trajectories for non-Markovian processes
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A large class of non-Markovian quantum processes in open systems can be formulated through time-local
master equations which are not in Lindblad form. It is shown that such processes can be embedded in a
Markovian dynamics which involves a time-dependent Lindblad generator on an extended state space. If the
state space of the open system is given by some Hilbert sifatiee extended state space is the triple Hilbert
spaceH ® C3 which is obtained by combining the open system with a three-state system. This embedding is
used to derive an unraveling for non-Markovian time evolution by means of a stochastic process in the
extended state space. The process is defined through a stochastic Schrédinger equation which generates genu-
ine quantum trajectories for the state vector conditioned on a continuous monitoring of an environment. The
construction leads to a continuous measurement interpretation for non-Markovian dynamics within the frame-
work of the theory of quantum measurement.
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I. INTRODUCTION of short correlation times. For strong couplings and low-

An open quantum system is a certain distinguished quarf€mMperature environments memory effects can lead to pro-
tum system which is coupled to another quantum system, itgounced non-Markovian behavior.
environment1]. A particularly simple way of describing an |t 1S sometimes argued that the treatment of non-
open system is obtained in the Markovian approximation. ilarkovian processes by means of master equations necessar-
this approximation all memory effects due to system-"y requires solving integro-differential equations for the re-
environment correlations are neglected, which usually leadduced density matrix. Such equations arise, for example, in
to a Markovian master equation—that is, to a linear first-€ application of the Nakajima-Zwanzig projection operator
order differential equation for the reduced density magtty ~ echnique(12,13 which leads to dynamic equations involv-

of the open system with a time-independent generator. Geri'jg ahretarde(? rr?emory kemel and an integration over the
erally, one demands that the generator be in Lindblad forn‘?asl'_': Istory Oht € sys;em. h . £ th I
[2], which follows from the requirements of the conservation owever, the use of another variant of the projection op-

of probability and of the complete positivity of the dynami- erator method allows in many cases the derivation_of ap-
cal map|[3.4. proximate or even exact non-Markovian master equations for

the reduced density matrix which are local in time. This

A remarkable feature of Markovian master equations in hod is k he fi lutionlagEL ;
Lindblad form is given by the fact that they allow a stochas-Method is known as the time-convolution/g3<L) projec-
on operator techniqugl4-17. It leads to a first-order dif-

tic representation, also known as unraveling, by means of ' ;

stochastic Schrédinger equatid®SB for the state vector of erential equation

the open systerjb—9]. A SSE generates the time evolution of d

the state vector which results from a continuous monitoring —p(t) = K(t)p(t) (1)
of the environment of the systef0,1]]. A specific realiza- dt

tion {|y(t)),t=0} of the SSE is called a quantum trajectory: for the open system’s reduced density mapi®. The non-

At .e"?lCh timet=0 the open system IS known to be in a Markovian character of this TCL master equation is reflected
definite statey(t)) under the condition that a specific readout by the fact that its generatdé(t) depends explicitly on time

of the monltor!ng of the sys.tem_’s environment pe given. Theand is generally not in Lindblad form.
reduced density matrix at timteis therefore obtained if one

. . By contrast to the Nakajima-Zwanzig equation the TCL
averages the quantity/(t) (y(t)| over all possible quantum .\, e e quatiort) is local in time which means that the rate
trajectories. This means that the relatigst)=E[|y(t))

of change ofp(t) at any timet is given entirely in terms of
X(g{1)[] holds, where the symbdE denotes the ensemble p(t) and that there is no time integration over the past history
average or expectation value. _ in the equation of motion. To obtain the time-local form of
In the Markovian case it is thus true that the environmenine master equation one eliminates the dependence of the

acts as a quantum probe by which an indirect continuoug,re time evolution on the system’s history by introducing
observation of the system is carried out. The description byne exact backward propagator of the total systepen sys-
means of a Markovian master equaf[ion in Lindblad form i_s’tem plus environmepinto the Nakajima-Zwanzig equation.
however, only an approximation which uses the assumptiofnjs enables one to express the total density matrix at previ-

ous timest’ <t in terms of the total density matrix at tinte

and to derive a time-local master equation for the reduced
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Time-local equations which are of the form of the TCL Sec. lll B, whereas the derivation of the continuous measure-
master equatiofil) have also been derived by other means—ment unraveling is given in Sec. Ill C. The construction of
e.g., by path integral and influence functional techniqueshe SSE and its physical interpretation are illustrated by
[18,19. A well-known example is provided by the exact means of an example in Sec. IV.
equation of motion for a damped harmonic oscillator coupled A series of interesting stochastic unravelings of non-
linearly to a bosonic reservo|20-232. ~ Markovian quantum dynamics is known in the literature.

The fact that the TCL generator is generally not in Lind- section V contains a discussion of our results and of the

blad form leads to several important mathematical and physirg|ations to alternative non-Markovian SSEs, as well as some
cal consequences. In particular, a stochastic unraveling of the; nclusions

TCL master equation of the form indicated above does not
exist: Any such process will automatically produce a master
equation whose generator is in Lindblad form. The question | QUANTUM THEORY OF MARKOVIAN DYNAMICS
is therefore as to whether one can develop a general method

for the construction of stochastic Schrddinger equations for A. Time-dependent Lindblad generators
non-Markovian dynamics which do have a physical interpre-

tation in terms of continuous measurements. it is the purpose Ve consider a density matri¥/(t) on a state spaceé

of this paper to show that this is indeed possible. which obeys a master equation of the form
Our starting point is a time-local non-Markovian master
equation for the density matrixt) on some Hilbert spack aw(t) = LIOW() = — i[H(t),W(D)] + > Jt)W(D) I (t)
i

with a time-dependent and bounded generator. It will be

demonstrated that the dynamics given by such a master equa- 1

tion can always be embedded in a Markovian dynamics on -=> {JiT(t)Ji(t),W(t)}. (2
an appropriate extended state space. The non-Markovian dy- 27

namics thus appears as part of a Markovian evolution in Fhe commutator with the HamiltoniaH(t) represents the
larger state space.

If one chooses the extended state space as the HiIbeLrj{'| tary part of the evolution and the Lindblad operata(s

I describe the various decay channels of the system. In anal-
space of the total system, consisting of open system plus

environment, this statement is of course trivial. However, itogy o the terminology used for classical master equations,

turns out that the embedding can be realized in a fairlythe expressions\W.J: may be called gain terms, while the

simple, much smaller state space—namely, in the tenso?XpreSSioné‘Jr‘]"W}’ involving an anticommutator, may be

product spaceH ® C3. In physical terms this is the state referrer::i tho as Io§|s terms. h |

space of a composite quantum system which results if onle Both the Ham|t0n|.arH(t) and the operator§(t) are al-

combines the original open system on the state spaoath  0Wed to depend on time The generatoC(t) of the master

a further auxiliary three-state system described by the stagduation may thus be explicitly time dependent and does not

spaceC3. The open system could be, for example, a dampe@ecessanly lead to a semigroup. We observe, howe_ver, that

quantum particle interacting with a dissipative environmenth® Superoperatat(to) is in Lindblad form[2] for each fixed

The auxiliary system can then be realized through an addio=0. This means tha£(to) is in the form of the generator

tional internal degree of freedom of the particle which leadsCf @ quantum dynamical semigroup. The particular form of

to a state space spanned by three basis states. the _generator derives from t_he requirements of complete
It will be demonstrated that the dynamics in the extendedPOsitivity and of the conservation of the traf%4].

state space follows a Markovian master equation with a time- Under certain technical conditions which will be assumed

dependent generator in Lindblad form. The application of thd© be satisfied here, one concludes that @jyields a two-

standard unraveling of Markovian master equations to th@arameter family of completely positive and trace-preserving

dynamics in the extended state space therefore yields a stBl@psV(t,s) [23,24. These maps can be defined with the

chastic unraveling for the non-Markovian dynamics. The re-help of the chronological time-ordering operafoas

sulting SSE generates genuine quantum trajectories which do t

admit a physical interpretation in terms of a continuous ob- V(t,9) :Texp[f drﬁ(r)], t

servation carried out on an environment. The construction s

thus gives rise to a consistent measurement interpretation for .

non-Markovian evolution in full agreement with the general and satisfy

setting of quantum measurement theory. V(t,s)V(st') =V(tt'), t=s=t'. (4)
The paper is structured as follows. Section Il contains a .

brief review of the continuous measurement theory for Mar-In terms of these maps the solution of the master equaon

kovian dynamics. Time-dependent generators in Lindbladit timet can be written asM(t)=V(t,s)W(s), wheret=s

form are introduced in Sec. Il A, and Sec. I B treats the=0. Thus,V(t,s) propagates the density matrix at tira¢o

corresponding continuous measurement unraveling. Thée density matrix at time.

quantum measurement theory for non-Markovian evolution EachV(t,s) maps the space of density matrices into itself.

is developed in Sec. Ill. We introduce time-local non- This means tha¥/(t,s) can be applied to any density matrix

Markovian master equations in Sec. Ill A. The embedding ofW to yield another density matri¥(t,s)W. The domain of

these equations in a Markovian dynamics is constructed ithe mapsV(t,s) is thus the space of all density matrices and

=s5=0, (3
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is independent of time. Usually, one associates a Markovian dNi(t)de(t) = (sidei(t), (10)
master equation with a time-independent generator. We

slightly generalize this notion and refer to K8) as a Mar- E[dN;(t)] = [|3i(1)|D (1)) %dt. (11
kovian master equation with a time-dependent Lindblad gen- ) _

erator £(t). According to Eg.(10) the incrementsdN(t) are random

numbers which take the possible values 0 or 1. Moreover, if
dNi(t)=0 for a particulari, we havedN;(t)=0 for all j #i.

B. Stochastic unraveling and continuous measurement The state vector then performs the jump
interpretation
| i | | 3[ev)
As mentioned already in the Introduction a Markovian |D(t)) — OO (12)
i

master equation in Lindblad form leads to a stochastic un-

raveling through a random process in the state spacehis ~ Thus we see thalii(t) is an integer-valued process which
means that one can construct a stochastic dynamics for thunts the number of jumps of type

state vectofd(t)) in 7 which reproduces the density matrix Ve infer from 2Eq.(11) that dNi(t)=1 occurs with prob-
W(t) with the help of the expectation value ability [|J;(t)|®(t))|[*dt. The jump described by E12) thus
takes place at a rate d,(t)|®(t))[|>. The casedN,(t)=0 for
W(t) = E[|P(O)XD(D)]]. (5) alliis realized with probability 13;]|J;(t)|®(t))[%dt. In this

The stochastic unraveling is usually formulated for time-¢35€ the state vectad(t)) follows the deterministic drift

independent Lindblad operators. In the following we de-described b_y_ Eqe®). . . .
scribe the straightforward generalization of this concept to . SUmmarizing, the dynamics described by ).yields a

the case of the master equatig®) with time-dependent piecewise .det.erministic_ process—i.'e.., a randqm process
Lindblad operators)(t). This generalization will be used in whose realizations consist of deterministic evolution periods
i(1).

; ; ; interrupted by discontinuous quantum jumps. Since both the
Sec. Il C to obtain a stochastic measurement unraveling fol! N _
non-Markovian dynamics. deterministic drift(8) and the jumpg12) do not change the

To mathematically formulate the stochastic dynamics oni]orm' the whole process preserves the norm of the state vec

writes a stochastic Schrodinger equation for the state vect pr
|®(t)). An appropriate SSE for which the expectation value

(5) leads to the master equatied) is given by responding density matrix equatig®). This fact was the
Ji(H)|D(t)) original motivation for the development of stochastic wave
oo |®(1) [dNi(1),  function methods in atomic physics and quantum ofics
' an example, se5]). What is important in our context is the
(6) fact that, additionally, the stochastic process given by the
SSE allows a physical interpretation in terms of a continuous
measurement which is carried out on an environment of the
- i system.
G(|(1))) = lH(t) + 52 ”Ji(t)|q)(t)>”2:| ). (7)) To explain this point we consider a microscopic model in
! which the open system is weakly coupled to a number of
The term 4G(|®(t)))dt in Eq. (6), which is proportional to ?ndepe_ndent reservoia, one res_ervoir for eac_h value of the
the time incremendt, expresses the drift of the process. Thisindex i. Each reservoil}; consists of bosonic models,
drift contribution obviously corresponds to the nonlinearWhich satisfy the commutation relations

The formulation of the dynamics by means of a SSE bears
several numerical advantages over the integration of the cor-

dld(1) = =iG(d(M)dt+ >

where we have introduced the nonlinear operator

Schradinger-type equation [bmb;rﬂ] = 8,6\, (13)
d . i . ing i -
— (1) = —iG( D)), (8) The Lindblad operatoré,(t) appearing in the master equa
dt tion (2) couple linearly to the reservoir operators
whose linear part involves the non-Hermitian Hamiltonian Bi(t) = X, g, & @ W, (14)
. X
- i
H® =H(®) - 52 I, (9 where thew, are certain system frequencies;, is the fre-
I

quency of the modéy;, of reservoirR;, and theg;, are cou-
pling constants. Thus, the Hamiltonian of our model is taken

The nonlinear part of the drift ensures that, aIthod;gh) is 0 be
S-

non-Hermitian, the norm is conserved under the determini
tic time evolution given by Eq(8). 1 T T

The second term on the right-hand side of E8).repre- H,(t) =H() + —FE [HOB(1) +J(OB(M]. (15
sents a jump process leading to discontinuous changes of the v _
wave function, known as quantum jumps. These jumps argVe have included a factor 1T', wherel is a typical relax-
described here with the help of the Poisson incremeNi&)  ation rate of the system which will be introduced below. The
which satisfy the relations combination J;/\T" is therefore dimensionless and tig
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have the dimension of an inverse time, choosing units sucthe jump described in Eq12) and that these jumps occur at
thatz=1. a rate given byjjJ;(t)|®(t))|? [see Eq(11)].

The time evolution operator over the time interyalt’) For the case that no quantum is detected expreg&ion
will be denoted byU(t’,t). The correlation function of res- gives in the Born-Markov approximation
ervoir R; can be expressed through the spectral demé&ity,

which is assumed to be the same for all reservoirs: [B®) - iGN, (23)
which leads to the drift contributioni6(|®(t)))dt of Eq(6).
(0|B;(t")B](1)|0) :j dol (w)e @t (16)  The probability for this event is found to be
Here, |0) denotes the vacuum state definedtpy0)=0 for Po=1-2 pn=1- 2 (O] W)r. (24)
all i and all\. : '
Suppose that the state of the combined sygtepen sys- Considering that the detected quanta are annihilated on

tem plus reservoirdR;) at some timet is given by |W¥(t)) measuremeniquantum demolition measuremgnive see
=|d(1)) ®|0). At time t'=t+ 7 this state has evolved into the that for both alternatives described above the conditional
entangled statéJ(t’,t)|W(t)). We considerr to be a time state vector of the combined system after times again a
increment which is small compared to the time scale of thdensor product of an open system’s state vector and the
systematic motion of the system, but large compared to thgacuum state of the environment. Thus, we may repeat the
correlation time of the reservoirs. Suppose further that afneasurement process after each time incremerin the
time t' a measurement of the quanta in the reservoir modekmit of small 7 we then get a continuous measurement of the
b;, is carried out. According to the standard theory of quanenvironment and a resulting conditioned state vector of the
tum measuremer|26] the detection of a quantum in mode open system that follows the SS8).

b, projects the state vector onto the sthfg0). The open Summarizing, the SSEB) can be interpreted as resulting
system’s state conditioned on this event thus becomes from a continuous measurement of the quanta in the environ-

ment. This measurement is an indirect measurement in which
i_(o|bmu(t’,t)|\lf(t)>, (17) the jump(12) of the state vecto[d(t)) describes the mea-
VPix surement back action on the open system’s state conditioned
on the detection of a quantum in reservgir while the non-
linear Schrodinger equatiof8) yields the evolution of the
Pix = (O] U (L', 1) [P (1)) 2 (18)  state vector under the condition that no quantum is detected.

. . o The realizations of the process given by the SSE—i.e., the
is the corresponding probability. If, on the other hand, N0q, antum trajectories—thus allow a clear physical interpreta-

quantum is detected, one has to project the state vector onffy in accordance with the standard theory of quantum mea-
the vacuum state which yields the open system’s conditioned, ;.o nent.

State

where

1 !
(U, (), (19 IIl. QUANTUM MEASUREMENT INTERPRETATION
VPo OF NON-MARKOVIAN DYNAMICS

where ) . )
A. Time-local non-Markovian master equations

Po = KOV HW ()] (20) We investigate master equations for the density matrix
is the probability that no quantum is detected. p(t) of an open system which are of the following general
In the Born-Markov approximation the above expressionform:
simplifies considerably. We take a constant spectral density

I(@)zF/Zw, cprrgsponding to the.cast'a of broadband reser- —p(t) = K(t)p(t)

voirs with arbitrarily small correlation times. We further ne- dt

glect the Lamb shift contributions which lead to a renormal- — t
ization of the system Hamiltonian. The expressiti) then I[Hs(0),p(O]+ % [Ca(0p®D(V

becomequp to an irrelevant phase facjor

J(M]P®)
1)

+
This expression is seen to be independenk ofrherefore, + CalODB(V: P} (25
the total probability of observing a quantum in resenRjirs ~ The HamiltonianHg(t), C,(t), and theD,(t) are given, pos-
5 sibly time-dependent operators on the state spgdosf the
P=2 P = I[P (22 open system. The generatdft) may thus again depend ex-
» plicitly on time. The master equatiqi25) is, however, local
The last two equations show that, conditioned on the detedn time since it does not contain a time integration over a
tion of a quantum in reservoR;, the system state carries out memory kernel. The structure @f(t) was taken to ensure

1
o +D,(Hp(tCH()] - 5; {DlmC,
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that the Hermiticity and the trace pft) are conserved. If we and violates therefore the complete positivity of the genera-
chooseC,=D,=J;/\2, the generatoi(t) reduces to the tor.
form of a time-dependent Lindblad generatift). The Mar- Of course, we will assume in the following that the dy-
kovian master equatiof?) is thus a special case of E@5)  nhamics given by Eq25) yields a dynamical map(0) — p(t)
which will be referred to as non-Markovian master equationfor all times considered; that is, we suppose that &%)
With an appropriate choice for the Hamiltonibf(t) and  describes the evolution of true density matrices at ttme
the operatorsC,(t) and D(t), a large variety of physical into true density matrices at time>0. However, this as-
phenomena can be described by master equations of the forp¥mption does not imply that the propagation of an arbitrary
(25). For example, as mentioned in the Introduction a mastePOSitive matrix at time with the help of the master equation
equation of this form arises when app|y|ng the TCL projec-(25.) Iflecessal’lly |eadS tO a pOSItlve matrix for .future times.
tion operator techniqugl4,15 to the dynamics of an open This is only guaranteed if we propagate a density matftx
system. The basic idea underlying this technique is to rewhich results from the time evolution over the previous in-
move the memory kernel from the equations of motion byterval (0,t).
the introduction of the backward propagator. Under the con- A further important consequence of the form of the master
dition of factorizing initial conditions one then finds a homo- equation(25) is that it does not allow a stochastic unraveling
geneous master equation with a time-local generaty. of the type developed in Sec. Il B. Any unraveling of this
The latter can be determined explicitly through a systematikind would automatically produce a master equation with a
perturbation expansion in terms of ordered cumulantdime-dependent Lindblad generator. Trying to construct an
[16,17). Specific examples are the TCL master equations deunraveling which leads to the contributidd,(t)p(t) of the
scribing spin relaxatiori27,28, the spin-boson modgR9], master equation, one would find a process with negative
systems coupled to a spin bafB0,31], charged particles transitions rates, which is both unphysical and mathemati-
interacting with the electromagnetic fiefd2], and the atom  cally inconsistent.
laser[33].
Moreover, several exact time-local master equations of B- Markovian embedding of non-Markovian dynamics
the form (25) are known in the literature which have been  To overcome the difficulties in the development of a sto-
derived by other means. Examples are provided by the maghastic representation we are going to employ an interesting
ter equations for non-Markovian quantum Brownian mOtiongenera| feature of the non-Markovian master equaﬁﬂﬂ):
[20-22 and for the nonperturbative decay of atomic sys-Even if the generatof(t) is not in Lindblad form, it is
tems, which will be discussed in Sec. IV. always possible to construct an embedding of the non-
The existence of a homogeneous, time-local master equaarkovian dynamics in a Markovian evolution on a suitable
tion requires, in general, that the initial state of the totalextended state space. The precise formulation of this state-
system represent a tensor product state. For simplicity Wehent and its proof will be given in the following.
restrict ourselves to this case since we intend to develop The extended state space is obtained by combining the
stochastic unravelings for pure states of the reduced opegyiginal open system on the state spatavith another aux-
system. iliary quantum system. The auxiliary system is a three-state
Due to its explicit time dependence, the gener&t@ of  system whose state spac@is spanned by three basis states
the master equatio25) does not of course lead to a semi- |1), |2), and|3):
group. But even for a fixetE= 0 the superoperatdt(t) is, in 3
general, not in Lindblad form, by contrast to the property of (7= spad|1),2),[3)}. (27)
the generatoL(t) of the master equatio(®). To make this
point more explicit we introduce operatois,(t)=C,(t)
-D,[(t) and rewrite Eq(25) as

The Hilbert spacé:( of the combined system then becomes
the triple Hilbert space

H=H®C3=H,®H,d Ha. (29)

d
—p(t) =—i[H4t),p() ] + D1(t) p(t) + Do(t)p(t), (26 _ )
dtp( ) [Hs(®).p(0)] 10 20e(®. (28 The extended state space is thus given by the tensor product

of H andC3, which in turn is isomorphic to the orthogonal
sum of three copie®{,, H,, andH, of H. This means that

stateg®) in H take the general form

D) =[yn) @ 1) +[1h2) @ [2) +[¢h) @ [3), (29)

- }{Dl(t)Da(t),p}}, where|y,) € H for k=1,2,3. As apossible physical realiza-
2 tion of the extended state space one may thini{os the
state space of a damped quantum particle with an additional
1 internal degree of freedom which can be represented by a
Dyp=-2 [Ea(t)PEZ(t) - E{EZ('C) Ea(t),P}} : three-level system.
“ We now regard Eq(2) as an equation of motion on the
One observes thady(t) is in Lindblad form, whileD,(t) is ~ triple Hilbert space: that is\(t) is considered as a density
not: The superoperatdP,(t) carries an overall minus sign matrix on H governed by a master equation with time-

where we have defined the superoperators

Dip=2 [campCL(t) - SCLOC,0.} +D,0ADL()

a
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dynamics in H Hi,®Ha
W(0) = p(0) ® [x\)}{x| — =  W()

I i) AVAVAV 2
Ji,J2
dynamics in H

_ Wi
(0) — MW=

J: J
FIG. 1. lllustration of the embedding theorem: The initial den- : !

sity matrix p(0) evolves intop(t) according to the given non- Hs

Markovian master equatiof25). This evolution can be embedded

in a Markovian dynamics on the extended state sﬁﬁs@i ®C3in

which the density matri¥V(0) evolves intow(t) following the mas-

ter equation(2). FIG. 2. The extended state spddes C3="H,® H,® H3 and the

action of the operatorg defined in Eqs(36)—«39).

dependent Lindblad generat6tt). On the other hangh(t) is

a density matrix orf{ satisfying the given non-Markovian 1

master gquatiom25). We Wi1ltlyasgsumegin the following that WiA0) = (LUWO)2 = 12p(0) =

the operator<,(t) andD(t) are bounded. trWi(0)  t(LW(0)[2)  3tr p(0)
Our aim is show that by an appropriate chice of thewhich is Eq.(30) at timet=0.

HamiltonianH(t) and of the Lindblad operatoik(t) in Eq. To show that the relatiof30) is valid for all timest=0

(2) one can always achieve that the density maitt on74  we have to demonstrate that the right-hand side of this rela-

is connected to the density matkd{(t) onH by means of the tion satisfies the non-Markovian master equati@b), pro-

p(0), (39

relation (tr denotes the trage vided the Lindblad operator(t) in Eq. (2) are chosen ap-
propriately. To simplify the presentation we first treat the
():Wl_Z(t)_ (30) case that the master equati¢®25) only involves a single
trWy(t) operatorC(t) andD(t). Thus we write, suppressing the time
Here, we have defined arguments,
Wit) = (1W(D)]2), (31) d%p: —i[Hg p] + CpD' + DpCT—%{DTC+CTD,p}.
which is an operator acting oH. We can regard this opera-
tor Wi,(t) as a matrix which is formed by the coherences (39
(off-diagonal elemenjsof W(t) between states from the sub-  we define four time-dependent Lindblad operators for the
spaceH, and states from the subspak®. master equation2),
This is the embedding theorem. It states that the non-
Markovian dynamics of(t) can be expressed through the Ji(t) = C(1) ® [1(1 + D) @ 22|, (36)
time evolution of a certain set of coherencédg,(t) of a
density matrixW(t) on the extended space which follows a J() =D(1) ® [1X1| + C(1) ® [2)(2], (37)
Markovian dynamicgsee Fig. 1
To prove the embedding theorem we first demonstrate that Ja(t) = Q(1) ® [3X1], (38)
the relation(30) can be achieved to hold at time0. If p(0)
is any initial density matrix orH, we define a corresponding Ja(1) = Q(1) ® [3%2], (39
density matrix orf by and the Hamiltonian
W) = p(0) @ S12(1] + 222 +[1)2| + (1] HO =Hs(® & [1X1 + 242 +[3 @ =Hs © 1,
2 (40
=p(0) @ [){xl, (32 wherel; denotes the unit operator on the auxiliary spéée
where In Egs.(38) and (39) we have introduced a time-dependent
operator()(t) on H which will be defined below.
)= é[m +]2)] (33) According to the definitiong36) and(37) the operatorg;
V2 andJ, leave invariant the subspa@é, @ H, which contains

states of the formi,) ® |1)+|,) ® |2). The operators; and

J, defined in Eqs(38) and(39) induce transitionsl) — |3)

X . . and |2) — |3) between the states of the auxiliary three-state
three-state system in the pure stph(x|. It is obvious that ¢y ciem The extended state space and the action of the Lind-
W(0) given by~Eq.(32) is a true density matrix on the triple 554 operators are illustrated in Fig. 2.

Hilbert spaceH: i.e., we haveW(0)=0 and trW(t)=1. We have from the above definitiorisuppressing again
Moreover, Eq(32) yields the time argumenjs

is a state vector of the auxiliary system. We thus ob\&i0)
by combining the open system in the stai®) with the
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JIJl =Clce |11 + D'D® |2)(2|, (41) differ, however, with respect to the structure of the loss terms
which are given by the terms containing the anticommutator.
313,=D'D @ |11+ CTC ® [2)(2], 42 To get an equation of. motion of the (_jeswed form we now
22 RS 22| (42) choose() to be a solution of the equation
=00 e |11, (43) o'o+c'c+b'D=al+D'C+CD, (53)

which is equivalent to
Q' =al-(C-D)"(C-D). (54)

Here,| denotes the unit operator Gt anda=a(t) is a time-
dependent non-negative number. SifC&) is a positive op-
erator, a solutior() of Eq. (54) exists under the condition
that the right-hand side of E@¢54) be also a positive opera-
With the Lindblad operators defined in Eq86)—<39) and tor. Thus,a must be chosen in such a way that

with the Hamiltonian given by Eq40) the master equation

=00 [2)(2, (44)

and

4
> 313=(Q'0+C'C+DD) ® (|11 +[2)(2)). (45)
i=1

(2} leads to a= ||(C - D)|¢>”2 (55)
4 for all normalized state vectofg) in H. We note that it is at
EW = —i(1|[H W]|2>+Z <1|J_W‘1T|2> this point that the assumption of bounded operators enters
dt *? ’ = our construction. To make a definite choice we deéirie be
L2 the largest eigenvalue of the positive operat6r-D)'(C
4 tq —-D). This definition ensures that the inequal{gb) is satis-
22{ (L33 WH2). (46) fied and that a solutiof) of Eq. (54) exists.
. ] The solution of Eq(54) is, in general, not unique. @ is
On using Eq(45) we find a solution, then alsaJQ), whereU is an arbitrary unitary
4 operator. Changing into UQ does, however, not influence
> <1|{JiT‘]i1W}|2> ={Q'Q+C'C+D'D,W,}, (47) the equation of motioKi52) since only the combinatiofT()
i=1 enters this equation. In the language of quantum measure-
_ ) ment theory the transformatign— QpQ' is called a quan-
while Egs.(36)(40) yield tum operatior{34]. It describes the change of a density ma-
<1|J1W\1J{|2> = CW,,DT, (48) trix p under a generalized measurement whose outcome
occurs with probability #Q27Qp). We can thus say that the
Ay _ + unitary operatoitd, expressing our freedom in the choice of
(13, W3[2) = DWLCT, (49) Q, affects the change of the system statéut not the prob-
o b ability of its occurrence.
(13:WE2) = (1{3,WJ[2) = 0, (50 Substituting Eq(53) into Eg. (52) we get
<1|[H-W]|2> = [Hs,Wlﬂ- (51 %lez — i[HSr\NlZ-l + CW]_ZDT + DW12CT _ %{DTC
Employing the relation$47)—«51) in Eq. (46) we arrive at
q +C'D, Wy} — aWi,. (56)
d—tW12 = —i[Hg Wy,] + CW;,DT + DW,,C' We conclude from this equation that the tracé\g} satisfies
L the equation
_Zroto+ctc+pt _
pI 4+ CCHDID Wy (52 d%trwlzz —atrWy,. (57)

Here we see the reason for our choice of the extended state ) ) )
space and of the Lindblad operatdysThe operators; and ~ Using this fact as well as E¢56) one immediately demon-
J, have been chosen in such a way tBaacts from the left ~ Strates that the expression on the right-hand side of &3.
and D from the right on the coherenca¥,, or vice versa satisfies the desired master equat{8s), which concludes
[see Eqs(48) and (49)]. On the other hand, sinck andJ,  the proof of the embedding theorem.
induce transitions into the stai®) of the auxiliary system, ~_ The general case of an arbitrary number of operators
the corresponding gain terndsW.J; andJ,W.J of the master  Ca(t) andD,(1) in Eq. (25) can be treated in a similar way.
equation(2) do not contribute towards the equation of mo- T0 this end, one has to reintroduce the indeznd to carry
tion (52) for the coherenced/;, [see Eq(50)]. The subspace Out a summation ovex in the equations of motion. Thus, for
H, of the extended state space plays the role of a sink whicBach value otr we have a correspondir@,(t) and ana,(t),
will be used now to achieve that the loss terms of the masteds Well as fourd;,(t), i=1,2,3,4.
equation come out correctly. Finally we note that according to E¢56) the operator
We observe that Eq52) is already of a form which is W1 =(2[W|1)=W}, satisfies the same differential equation
similar to the desired master equati(8b). These equations as W, Since alsoW,;(0)=W,,0), we conclude that
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W,4(t) =W, (1) for all times. It follows that we can write, for nite physical interpretation in terms of a continuous measure-
any operatoiA on H, ment, as has been discussed in Sec. Il B.
We remark that for the cage=D the given master equa-

w (59) tion (35) is already in time-dependent Lindblad form. Our
tr{(l ® o) W(t)}’ construction then yielda(t)=0 [see inequality55)] and J;

=J,, as well asl;=J,=0. This means that the jump operators

J; andJ, are identical and that the decay channklandJ,
oy = |1)(2] + [2)(1] (59)  are closed. It follows thdi/s(t))=0 and tha{y;) evolves in
. . _ exactly the same way all,); that is, we have|y;(t))
is an operator on the auxiliary state space. This shows thazth(t»_ Equation (64) thus becomesp(t)=2E[|yx(t))

tcrfn %Zpigc?etrlr?]riln\é?jhiﬁrglz arl]l r?]t;zeszlgms:]?stréi f;f?&g;e X{yn(t)[]. Note that the factor of 2 is due to the normaliza-
g tion condition(61) which yields(s | y)=(s| ) =1. In the

of the extended system. . .
caseC=D our construction therefore reduces automatically
to the standard unraveling of a master equation in Lindblad

form.
The embedding of the previous section enables us to con-

struct a stochastic unraveling for the non-Markovian dynam-

ics given by the master equatig®b). Since the master equa- IV. EXAMPLE

tion governing W(t) involves a time-dependent Lindblad . .

generator, we can use the SSE developed in Sec. Il B for this AS an example we discuss a model for the non-Markovian

purpose. decay of a two-state system into the vacuum of a bosonic
The SSE(6) generates a stochastic process for the stat@ath. The model serves to illustrate how to construct the

vector |®(t)) in the triple Hilbert space. Employing the rep- €mbedding in a Markovian dynamics and how to interpret

resentatior(29) we write physically the quantum trajectories generated by the result-
ing SSE.
[@() = |¢a (D) @ [1) + (1) ® [2) + |¢a(1)) @ [3).
(60)

As shown in Sec. |l B the density matri/(t) on the ex- . The interaction picture master equation of the model is
tended state space is reproduced through the expecta’uqﬂ/en by

valueW(t) =E[|®(t){dD(t)|], and the norm of the state vector
is exactly conserved during the stochastic evolution: d . 1
y J —mn=—WH4mpm]+woﬂnmmn—iwunpmﬂ,

(DO]D(1)) = (ya®)]¢a(®)) + (O] a(0) + ()] s()) = 1. at
61) (65)

where

tr{Ap(t)} =

where

C. Stochastic unraveling for non-Markovian processes

A. Construction of the process

In accordance with Eq32) the initial state of the process
is taken to be of the form

) HY) = 2S00 (66)
= = — +
[®(0)=l¢) L0 \5['@ eh+le o2l (€2 This is an exact master equation for the nonperturbative de-
cay of a two-state system with excited stéteand ground
state|g), which interacts with a bosonic bafh]. o, =|e)(g]
ando_=|g)(g| are the usual raising and lowering operators of
the two-state system. These operators couple linearly to the
bath through an interaction Hamiltonian of the form
a_Q'(t)+0,Q(t), whereQ(t) is a bath operator depending
p(0) = E[| o) ¢]]. (63) linearly on the an_nihilation operators of the ba_lth modes.
The real functionsS(t) and y(t) are determined by the
The embedding theorem now reveals thet is obtained  yacuum correlation functiot|Q(t)Q'(t,)|0) of the bath. An
from the stochastic evolution with the help of the relationexample will be discussed beldisee Eq(92)]. The function

where|) is a normalized random state vectorfify (¢| )
=1, and|y) is the fixed state vector of the auxiliary three-
state system defined in Eq33). We thus have|i;(0))
=|y»(0))=(1/42)| @) and|y5(0))=0. Hence, Eq(30) at time
t=0 gives

[see Eq(30)] S(t) describes a time-dependent renormalization of the sys-
tem Hamiltonian induced by the coupling to the bdtamb
E t t
p(t) = QNG )H. (64) shift). Under the conditiony(t)=0 one can interpret the
E[(2(0)]91(1)] function y(t) as a time-dependent decay rate of the excited

Thus we have constructed a stochastic unraveling for thétate. But for certain spectral densitigét) may become
non-Markovian dynamics. It is important to realize that ournegative in certain time intervals such that the master equa-
construction leads to an unraveling through a normalized stdion (65) is not in Lindblad form and the generator is not
chastic state vectds(t)) and that the process allows a defi- completely positive.
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The master equation(65) can, however, always be Moreover, in the case(t)<0 the decay channelly andJ,
brought into the form of the non-Markovian master equationare open: This enables additional jumps of the state vector

(35) by means of the definitions described byl; andJ,. Equationg75) and(76) show thatl,
and J, lead to upward transitiongg) — |e) of the two-state
C(t) = 70 : (67) system(action of o) with simultaneous transitions between

the auxiliary states of the forri)—|3) or |2)—[3). A re-
population of the excited state) is thus possible through
10| jumps into the auxiliary stat), corresponding to the detec-
D(t) = v/~ sgny(t)o-. (68)  tion of a quantum in reservoR; or R,.
2 A detailed analysis of the process can be given in terms of
To obtain the operatof)(t) introduced in Eq(54) we first  the statistics of the quantum jumps. To this end, we note that
have to determine the quanti@&=a(t) which is defined to be the waiting time distribution for the SSg) is given by

the largest eigenvalue fC-D)T(C-D). This operator is TR 2
equal to 0 fory(t)=0 and equal to 3(t)|o,o_ for y(t)<O. F(ty,tg)=1- Texp{— iJ dsl—l(s)} D)), (77)
Thus we find to

(C-D)(C-D)=ao,o. (69) whereH is defined by Eq(9). F(t;,t) is the probability that

a jump takes place in the time interv@},t;), given that the

and previous jump occurred at timg and yielded the state
a(t) =|y(t)| - nt). (70) |®(ty)). Note that this is a true cumulative probability distri-
bution; i.e.,F(t;,ty) increases monotonically with and sat-
Hence, Eq(54) takes the form isfiesF(t,t,)=0. For our model we havisee Eqs(9), (40),
Q'0=al-(C-D)(C-D)=a(l - o,0.) =ao_o,, (45), and(53)]
(71

| , , A() = HeD) © 13- ~[a®)l + pOo,o] @ (11 +[2)(2)).
which leads to an obvious solution 2

(78)

QM = alo,. (72) _ »
The Lindblad operators); defined in Eqs.(36<39) are Let us analyze the process starting from the initial state
therefore given explicitly by: |®(0))=1e) ® |x) (79
B and investigate the occupation probabiligyt) of the ground
hi=y50-® [12)(1] + sgnvy|2)(2[], (73)  state. From the master equation it is clear that this quantity is
given by the simple expression
t
Jo=1/ %a'_ ® [sgny|1X(1] +|2)(2[]1, (74) Py(t) =1~ exr{— f dsv(S)] . (80)
0
Iz If v(s) takes on positive and negative values, this is a non-
Ja = Vao, @ [3)(1], (79 monotonic function of time. Our aim is to illustrate how the
_ stochastic dynamics reproduces this behavior and to explain
Jy=\ao, ® [3)(2]. (76)  the physical picture provided by the unraveling.
In the stochastic representation we have the formsede
o : Eq. (64)]
B. Physical interpretation
Considering times for which y(t) =0, we havea=0 [see O E[(g|¢1(t)>(¢2(t)|g>]. (82)
Egs. (70)] and, henceJ;=J,=0. This means that for(t) E[(2(D)]¢a(t)]

=0 the decay channels described lyand J, are closed:  \we denote the moment of the first jump tythe moment of

The process only involves the jumps of the state vector givelhe second jump by,. It follows from Eg. (77) that the

by the operators, andJ,. We infer from Eqs(73) and(74)  yaiting time distribution for the first jump is given by

that J; and J, induce downward transition) — |g) of the .

two-state systentaction ofo_). These transitions result from _ 1

the projection of the system’s state vector into the ground F(t,0=1 —ex;{— fo dSb/(S)|], (82)

state|g) conditioned on the detection of a quantum in reser-

voir R; or R,. and that the waiting time distribution for the second jump,
For () <0 the operators; andJ, again induce down- given that the first jump took place at tinbg becomes

ward transitions of the two-state system and, at the same t

time, introduce a relative phase factor of sgn-1 between F(tyt)=1- ex;{_f dsa(s)} i (83)

the states|l) and |2) of the auxiliary three-state system. t
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We further denote the total number of jumps in the time
interval (0,t) by N(t). Since the process starts from the state

(79), the first jump is given by the application df or J,

which project the state vector into the ground state. There-

fore, prior to the first jump we have(@ x(t)){(x(t)|g)=0;
immediately afterwards, we get (@ (t)){(t)|g)
=sgmny(t;). During the time intervals in which(t) <0 a sec-
ond jump described by; or J, is possible by which the state
vector leaves the manifol@{, ® H, and lands inH;. Once
the state vector is ifHz, no further jumps are possible. Of
course, we get again(@ ¢, (t)){i»(t)|g)=0 after the second
jump. Summarizing we have three possible alternatives

N(t) =00 2(g[n(t)X¢(b)]g) =0, (84)
N(t) =10 2(gln()X¥(t)|g) =sgny(ty), (85

N(t) =20 2(g|¢a(t))}¥(t)|g) =0, (86)
From these relations we find the expectation value

t .
E[2(glyn ()X ¢a(t)|g)] = f , dtyF(ty, 0)[1 = F(t,ty) Isgny(ty)

t
:exp[— f dtla(tl)]
0
t
—exp{- f dt1|7(t1)|]- (87)
0

Here, the quantit;dtll':(tl,O) is the probability that the first
jump occurs indt;, while 1-F(t,t;) is the probability that no
further jumps take place withifty,t).

PHYSICAL REVIEW A70, 012106(2004
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FIG. 3. Simulation of the SSEb) for the non-Markovian decay
of a two-state system. Top: ground-state probabififyobtained
from a sample of 19 quantum trajectoriegdots and analytical
solution (solid line). Bottom: expectation valu&[2(y»|4)]. Pa-
rameters:yy/N=25, A/ y,=0.2.

tem by an amoun®A (damped Jaynes-Cummings model
This leads to a bath correlation function of the form

(0QUQty[0) = 2% gt 92)

where y;* is the Markovian relaxation time and™ is the
correlation time of the bath. The simulation was carried out
in a nonperturbative regime: While the Born-Markov ap-
proximation requires thaty,/\<<1, the simulation uses
v/ \=25. In this regimey(t) becomes negative for certain
time intervals. These intervals can be seen in the figure as

A similar analysis can be performed to obtain the expecthose intervals over whictp, and E[2(y,|y4)] decrease

tation value of the quantity(2(t)| 4 (t)). One finds

Nt =00 2¢(t)]yn(t) =1, (89)
N(t) =10 2(p(t)|1(t)) = sgmpty), (89)
N(t) =20 2(y(1)]ya(t)) =0. (90)
Thus we get
EL2(4(1) |41 (1)) ]

t

=1-F(t,0) + J dtyF(ty, 0)[1 - F(t,ty)]sgny(ty)
0

t
=exp[—f dtla(tl)] (91)
0

The term 1-+(t,O)represents the no-jump probability—i.e.,
the contribution from the evem(t)=0. The resul{91) could
have been obtained also directly from Eg7). Using finally
Eqgs.(87) and(91) in Eqg. (81) we find, of course, the correct
expression80) for the excited-state probability.

monotonically with time. This is a signature for the fact that
transitions|1) —|3) or |2) — |3) become possible through the
channell; or J,. These channels are closed in the time inter-
vals over whichE[2(i»| )] stays constant.

The decrease of the ground-state probability can be inter-
preted as due to virtual processes in which a quantum is
emitted into the bath and reabsorbed at a later time. This is a
clear non-Markovian feature of the dynamics. In the stochas-
tic unraveling this decrease results from the contributions of
those quantum trajectories which involve at least one jump
and for which the first jump at timé, occurred during a
phase in whichy(t;) <0. The first jump then yields a nega-
tive contribution to the expectation values d24,;)(i»|g)
and of 2yy|ys) as a result of the relative phase factor
sgny(t;)=—1 between the staté®) and|2) introduced byd;
and J, [see EQs.(85) and (89)]. Moreover, in a possible
second jump the state vector leaves the maniteldb H, to
end up in a state proportional t@) ®|3), which gives
2| Y1) =0 [see EqQ(90)].

The decrease df, is therefore due to quantum trajecto-
ries for which a second jump is possible which leads to a

We illustrate the above analysis by means of an exampleeexcitation|g)—|e). Thus we see that the virtual emission
Figure 3 shows the results of a Monte Carlo simulation of theand reabsorption processes appear in the stochastic unravel-
SSE(6) for the case of a Lorentzian spectral density which ising in the extended state space as certain real processes—
detuned from the transition frequency of the two-state sysnamely, as jumps witld; or J, involving a negative phase
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factor (detection of a quantum in reservd® or R,) and as lated to the method of pseudomodéd,47. It employs an
jumps into the auxiliary statf8) (detection of a quantum in approximate Markovian embedding of a given non-
reservoirR; or R,). This shows how the quantum memory Markovian dynamics. This embedding is based on the as-
effect of virtual emission and reabsorption processes is ersumption that the reservoir can be represented by means of
coded and completely stored in the continuous measuremeff effective set of fictitious damped harmonic oscillator
record. modes. The Markovian embedding of the present paper is
realized in an entirely different way by the introduction of
the triple Hilbert space and avoids the expansion into
pseudomodes. It should also be noted that in the present
In this paper we have developed a general method for thE1ethod the density matrix(t) is not given by the partial
derivation of stochastic unravelings for non-Markovian trace of the density matri¥\(t) in the extended state space.
guantum processes given by time-local master equations of A further interesting method has been formulated by
the form(25). The key point of the construction is the fact Diosi, Gisin, and StrunZ37,3§. These authors employ a
that such master equations always allow a Markovian emnonlocal stochastic integro-differential equation for the state
bedding in an extended state space with a rather simpleector. As demonstrated by Gambetta and Wisef&® it
structure—namely, in the triple Hilbert spage® C3. Within ~ seems, however, that the nonlocal SSE does not admit a con-
this embedding the density matrip(t) of the original open tinuous measurement interpretation within the framework of
system is expressed through a certain set of coherences of tA&ndard quantum measurement the@ee alsd43] in this
full density matrixW(t) on the extended state space. contexy. This means that measurements carried out at differ-
The transition to the extended state space can be viewe?nt times on the environment will influence the dynamics in
physically as the addition of a further degree of freedom@d way which is incompatible with the stochastic process. The
which is realized by a three-level system. This enables one t§SE does therefore not generate genuine quantum trajecto-
represent the given non-Markovian dynamics by means of &€s in the sense it does for Markovian dynamics.
suitable interaction with a Markovian environment consist- A number of unravelings of non-Markovian dynamics has
ing of the reservoir®, introduced in Sec. Il B. Although the been proposef#4,45 which are based on the idea of propa-
generator of the given non-Markovian master equation nee@iating a paify:(t)), [¢-(t)) of stochastic state vectors and of
not be in Lindblad form, the corresponding dynamics in therepresenting the reduced density matrix with the help of the
extended state space is therefore governed by a timeéxpectation valug(t)=E[|y:(t))(¢,(1)[]. It is even possible
dependent Lindblad generator of the form of EB). The to design an exact stochastic unravelii3®,46 which nei-
lifting to an appropriate extended state space thus allows thiner requires the existence of a master equation nor a factor-
derivation of stochastic Schrodinger equations for nondzing initial state. This method makes use of a pair of inde-
Markovian dynamics through a consistent application of thependently evolving product states in the state space of the
standard theory of quantum measurement. The SSE’s oltetal system. Related stochastic wave function methods have
tained in this way generate genuine quantum trajectoriealso been formulated for the description of bosonic and fer-
with the physical interpretation of continuous measurementgnionic many-body systenig7,48 and for the simulation of
The construction of Sec. Ill B provides a fairly general quantum gasep49,50 by use of the positivé® representa-
method for the Markovian embedding of a given non-tion [51,52. A measurement interpretation of these stochas-
Markovian dynamics: Apart from the existence of the mastetic methods is, however, not available.
equation and from the boundedness of the operdipfs) A pair |¢4(1)), |y(1)) of state vectors can be considered as
andD,(t), no assumption was made regarding the interactioran element of the double Hilbert spagé® C2=H,oH,
Hamiltonian, the spectral density, the reservoir state, its temwhich is the tensor product dff and the state space of a
perature, etc. The Markovian embedding could therefore béwvo-state system. In Ref44] a stochastic unraveling in the
useful in itself since it enables one to employ well- double Hilbert space has been constructed. Although this
established and developed concepts from the theory of connethod has been demonstrated to provide a useful numerical
pletely positive maps and Lindblad generators in the study ofool, a continuous measurement interpretation seems again to
non-Markovian master equations. be impossible. This is connected to the fact that not only the
Formulating a non-Markovian unraveling we made use ofmaster equation irf{ but also the master equation in the
piecewise deterministic jump processes. In an electromagiouble Hilbert space is generally not in Lindblad form and
netic environment this corresponds, for example, to directhat the process does not preserve the norm of the state vec-
photodetection. It should be clear, however, that our derivator.
tion allows any unraveling in the extended state space. Alter- We mention finally some restrictions of the present theory.
natively one can use diffusion-type SSE’s, which in a con-Similar to the formulation of the Lindblad theorem, we made
tinuous measurement interpretation correspond to othesse of the assumption of boundedness of the oper@tgits
detection schemes like homodyne or heterodyne photodeteand D (t) in the non-Markovian master equatié®5). This
tion [10,11]. assumption excludes the immediate treatment of important
Various stochastic unravelings for non-Markovian dynam-cases, such as quantum Brownian motion which involves the
ics have been suggested in the literature, involving bottunbounded operators for position and momentum of the par-
jump processef35,3q as well as SSE’s with colored noise ticle. However, what is really needed in the proof is that the
[37-4Q. The technique developed by ImamodRb] is re-  inequality (55) is satisfied. Provided the dynamics of the

V. DISCUSSION AND CONCLUSIONS
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state vector is confined to an effective subspacé{obn
which the right-hand side of inequalitp5) is bounded, we
can still define a finitea(t) and construct the embedding. A
further restriction of the theory is that for certain models a
time-local master equation of the forf®5) may not exist for
very strong couplings. The latter can lead to singularities of

the TCL generator and to a breakdown of the TCL expansion The author would like to thank D. Burgarth and F. Petruc-
(an example is discussed [d]). It is an important open cione for helpful comments and stimulating discussions.

problem whether a continuous measurement unraveling can
be developed for such cases.
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