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Interferometry of single particles with internal degrees of freedom is investigated. We discuss the interfer-
ence patterns obtained when an internal state evolution device is inserted into one or both the paths of the
interferometer. The interference pattern obtained is not uniquely determined by the completely positive maps
(CPMs) that describe how the devices evolve the internal state of a particle. By using the concept of gluing of
CPMs, we investigate the structure of all possible interference patterns obtainable for given trace preserving
internal state CPMs. We discuss what can be inferred about the gluing, given a sufficiently rich set of inter-
ference experiments. It is shown that the standard interferometric setup is limited in its abilities to distinguish
different gluings. A generalized interferometric setup is introduced with the capacity to distinguish all gluings.
We also connect to another approach using the well known fact that channels can be realized using a joint
unitary evolution of the system and an ancillary system. We deduce the set of all such unitary “representations”
and relate the structure of this set to gluings and interference phenomena.
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I. INTRODUCTION

Single-particle interferometry has been widely used to
demonstrate quantum mechanical phenomena. The central
question in his investigation is how interference phenomena
are affected when arbitrary operations are applied to the in-
ternal degrees of freedom of the particle. Only quite recently
has this question received explicit attention in the literature
[1–3]. These types of studies are relevant since the transition
to general operations provides a richer structure in the inter-
ference phenomena. Furthermore, general operations may
give more realistic descriptions of interference experiments
where noise and decoherence effects cannot be neglected[4].

It has been shown[1] that the interference patterns ob-
tained in an interferometer are not uniquely determined by
the operations applied. This calls for an investigation of what
interference effects are compatible with a given pair of op-
erations. By applying the concept of gluing[5] of completely
positive maps(CPMs), we will see that it is the choice of
gluing that determines the interference effects. We are thus
able to describe all the interference effects compatible with
given operations.

We also investigate another intuitively reasonable ap-
proach to implementing operations in an interferometer,
which has been used in other investigations[1–3]. This uses
the well known fact that operations can be realized using
joint unitary evolution with the system and an ancillary sys-
tem. Here we investigate the relation between this approach
and the gluing concept in order to clarify how the choice of
joint unitary evolution affects the interference.

The above questions treat the problem of what interfer-
ence patterns are compatible with given channels. We also
turn the question around and ask what information the inter-
ference experiments can reveal about the gluing. It is shown
that the ordinary interferometric setup has only a limited

capacity to determine the gluing. However, it is shown that it
is possible to construct a generalized interferometer for
which there is a bijective correspondence between gluings
and interference effects. In Ref.[5] a complete characteriza-
tion of all possible trace preserving gluings of given channels
was developed. The generalized interferometer provides us
with a way to determine these gluings. As such it opens up
for experimental investigations of these types of problems.

The structure of this article is the following. In Sec. II the
model for the two-path interferometer is introduced. Here we
also make the basic questions of this investigation more pre-
cise. In Sec. III the interferometer is discussed in terms of the
gluing concept. By application of the theory developed in
Refs. [5–7], all possible trace preserving gluings are ex-
pressed. In Sec. IV we deduce all possible interference ef-
fects compatible with given channels. Moreover, we investi-
gate what can be inferred about an unknown gluing by
performing interference experiments. In Sec. V, a generaliza-
tion of the interferometric setup is introduced. It is shown
that this generalized interferometer has the power to deter-
mine arbitrary unknown trace preserving gluings of two ar-
bitrary known channels. Section VI connects the unitary rep-
resentation approach with the gluing approach, by translating
results from Refs.[6,7] to the present context. In Sec. VII all
unitary representations of given channels are deduced. The
structure of this set is investigated in terms of gluings, which
makes it possible to select arbitrary gluings of a channel and
an identity channel by a choice of unitary representation. In
Sec. VIII the nature of the nonuniqueness of interference
effects and gluings is discussed. The conclusions are pre-
sented in Sec. IX.

II. THE TWO-PATH INTERFEROMETER

The spatial degree of freedom of the interferometer is
modeled as a two-dimensional Hilbert spaceHs, spanned by
u1l and u2l, which correspond to the particle being localized
in paths 1 and 2, respectively. The internal Hilbert space is*Electronic address: johan.aaberg@kvac.uu.se
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denotedHI and the total Hilbert space isHs^ HI.
The interferometer consists of three parts: First, a “prepa-

ration stage,” consisting of a 50-50 beam splitter that creates
a superposition of the particle in the two paths; second, an
“interaction stage,” where the state of the particle is affected;
Last, the “measurement stage,” where a variable phase
shifter is inserted into one of the paths, followed by a second
beam splitter, and finally a detector that determines the pres-
ence or nonpresence of the particle in one of the outgoing
paths.

We regard the preparation stage of the interferometer only
as a way to create special types of states on the two paths. If
the particle is initially in path 2 and the internal state is
represented by the density operatorrI, the first beam splitter
creates a state of the formri = uclkcu ^ rI, where ucl
=s1/Î2dsu1l+ u2ld. This first beam splitter, as well as the sec-
ond beam splitter, is modeled by the unitary operatorUbs
=s1/Î2dsu1lk1u+ u1lk2u− u2lk1u+ u2lk2ud.

In the interaction stage the total stateri of the particle
may change into some new stater f. This state is thereafter
analyzed in the measurement stage. We return to the interac-
tion stage below and focus for a moment on the measure-
ment stage. The phase shifter is described by the unitary
operatorUps= u1lk1u+eixu2lk2u, wherex is a real number. The
probability of finding the particle in path 1, after the second
beam-splitter, is[8,9]

p1 = Trfsu1lk1u ^ 1̂IdUbsUpsr fUps
† Ubs

† g

=
1

2
+ uEucosfargsEd − xg, s1d

whereE=k1uTrIsr fdu2l, and where 1ˆ
I is the identity operator

on HI. Thus, the effect of the measurement stage is to mea-
sure the off-diagonal element of the reduced density operator
of the spatial degree of freedom, in thehu1l , u2lj basis. The
absolute valueuEu and the argument argsEd determine the
visibility and the phase shift, respectively, of the interference
pattern.

In the interaction stage some operation acts on the total
state of the particle. Here the words “operation” and “chan-
nel” are synonymous with a trace preserving completely
positive map[10]. The operation is described by a channel
Ftot that maps the initial total stateri to the final total state
r f =Ftotsrid.

Suppose we have a device that can evolve the internal
state of a particle sent through it. The action of this device is
described by the channelF1. What is the interference pattern
if this device is inserted into path 1? One may be tempted to
answer that the interference pattern should be uniquely de-
termined by the channelF1. This is, however, not the case
[1]. The channelF1 does not provide sufficient information
to determine the interference pattern. The root of this phe-
nomenon is that the total channelFtot is not uniquely deter-
mined by F1 [5]. One way to put this is to say that the
internal state channelF1 is not a “complete” description of
the evolution device when it is to act in a path of an inter-
ferometer. The following example may clarify the situation.

What is the channel describing a phase shifter? Since the
only effect of the phase shifter is to add an overall phase, it
is the identity CPM. If we prepare particles, let them pass a
phase shifter, and then measure the state of the outgoing
particles, the phase shifter has no measurable effect. How-
ever, when inserted into the interferometer, the effect of the
phase shifter is visible as a constant phase shift in the inter-
ference pattern. Hence, the channel describing the phase
shifter, regarded as a device on its own, is not a sufficient
description of the phase shifter when acting inside an inter-
ferometer.

In this investigation, we wish to find all possible interfer-
ence patterns compatible with given internal state evolution
channels. We approach this problem from two different di-
rections. The first approach is to note that the total channel
Ftot can be regarded as a subspace preserving gluing[5] of
F1 acting in path 1 and the identity CPM acting in path 2.
We also consider more general situations with a nontrivial
evolution device in each path of the interferometer. These
questions are discussed in Secs. III–V, where we also discuss
what can be inferred about unknown gluings from interfer-
ence experiments.

The second approach is to use the well known fact that
channels can be realized using joint unitary evolution of the
system and an ancillary system[10] as

F1srId = TrasUIarI ^ ualkauUIa
† d, s2d

whereHa is the Hilbert space of the ancillary system andual
is a normalized state of the ancilla. A reasonable method to
create an operationFtot would be the following: LetUsIa be
the unitary operator acting onHs^ HI ^ Ha as

UsIa = u1lk1u ^ UIa + u2lk2u ^ 1̂I ^ 1̂a. s3d

In words, this means that if the particle passes path 1 the
ancilla interacts with the particle. If it passes path 2, then
nothing happens. The total evolution of the particle would
then be

r f = Ftotsrid = TrasUsIari ^ ualkauUsIa
† d. s4d

If we assume that the initial total state is created with a beam
splitter ri = uclkcu ^ rI, the interference is determined by[2]

EsrId =
1

2
TrskauUIaualrId. s5d

E is a function from the set of internal state density operators
rI to the set of complex numbers. We refer to this function as
the interference function.

At first sight this procedure may seem as a straightfor-
ward way to calculate the interference phenomenon caused
by a given channelF1. However, the operatorUIa, which we
use to represent the internal state evolution device, is not
unique. There exist several unitary operators that realizeF1
via Eq. (2). The choice ofUIa affects the interference effect,
as the following example shows.

Suppose we have a channelF1 and a representationUIa of
this channel which gives a nontrivial interference functionE.
Suppose the internal Hilbert space is of dimensionN, +`.
It follows that there exists some Kraus representation ofF1

JOHAN ÅBERG PHYSICAL REVIEW A70, 012103(2004)

012103-2



with at mostN2 elements[6]. Hence, there exist operatorsVk

on HI such thatF1srId=ok=1
N2

VkrIVk
†. Assume an ancilla sys-

tem with Hilbert spaceHa of dimension N2+1. Let
hual , ua1l , . . . ,uaN2lj be an orthonormal basis ofHa. On HI

^ Ha one can construct the following operator:

UIa8 = 1̂I ^ 1̂a − 1̂I ^ ualkau − o
j ,l=1

N2

VjVl
†

^ uajlkalu

+ o
j=1

N2

Vj ^ uajlkau + o
j=1

N2

Vj
†

^ ualkaju. s6d

One can verify thatUIa8 is a unitary operator, and also thatF1
is obtained ifUIa8 is inserted into Eq.(2), instead ofUIa.
Hence,UIa andUIa8 realize the same CPMF1. A global uni-
tary operatorUsIa8 can be constructed, as in Eq.(3), but with
UIa8 replaced byUIa. With UsIa8 , a modified global operation
Ftot8 can be constructed via Eq.(4). For this new operation
the interference function satisfiesE8srId=0 for every rI.
Hence, there are no interference fringes for any input state.
In other words, we have constructed two evolution devices
which give the same internal state evolution, but which nev-
ertheless give rise to two different interference effects. This
example shows that we may choose to set the visibility to
zero. In Sec. VII it is shown that the choice ofUIa may affect
the interference in more general ways. This may be of rel-
evance for studies like[2], where the relative phase for
CPMs is defined in terms of unitary representations.

III. GLUINGS

In this section we introduce the main tool, gluing of chan-
nels, which we will use to analyze the interferometer. We
here give a brief overview of the concepts developed in Refs.
[5–7], and translate two results from Ref.[5], which will be
needed in the subsequent analysis.

A device, whose effect on the internal state of a particle
sent through it, is described by a channelF1. Likewise, an-
other device is described by a channelF2. These devices are
inserted, one in each path of the interferometer. The question
is, what is the “global” channelFtot that describes the total
operation the single particle has experienced when passing
the two devices? The total Hilbert space of the interferometer
can be decomposed into the orthogonal subspaces Sphu1lj
^ HI and Sphu2lj ^ HI, each representing pure states local-
ized in one of the paths.(Sp denotes the linear span.) If the
particle is localized in path 1, then channelF1 operates on
the internal degree of freedom. If the particle is localized in
path 2, then channelF2 is effected. The set of all trace pre-
serving gluings of the two channelsF1 and F2 is precisely
the set of all possible total channelsFtot compatible withF1
andF2 [5]. The set of trace preserving gluings of two chan-
nels is the same as the set ofsubspace preserving(SP) glu-
ings of these two channels[5].

In the present context, the set of SP channels has a rather
simple conceptual interpretation. With respect to the two
paths of the interferometer, a global channelFtot is SP if and
only if it causes no transport of probability weight between

the two paths. More precisely, the channelFtot is subspace

preserving if and only if Trfu1lk1u ^ 1̂IFtotsrdg=Trsu1lk1u
^ 1̂Ird for all density operatorsr on Hs^ HI.

The following proposition is a translation of a general
result on SP gluings[5] to the situation considered here.

Proposition 1. Let F1 be a channel with linearly indepen-
dent Kraus representationhVnjn=1

N and let F2 be a channel
with linearly independent Kraus representationhWmjm=1

M . All
trace preserving gluings ofF1 andF2 can be written

Ftotsrd = u1lk1u ^ o
n=1

N

Vnk1uru1lVn
†+ u2lk2u ^ o

m=1

M

Wmk2uru2lWm
†

+ u1lk2u ^ o
n,m

Cn,mVnk1uru2lWm
†

+ u2lk1u ^ o
n,m

Cn,m
* Wmk2uru1lVn

† s7d

for all density operatorsr on Hs^ HI, where the matrixC
=fCn,mgn=1,m=1

N,M satisfies the condition

IN ù CC†, s8d

where IN is the N3N identity matrix. Moreover, Eq.(7)
defines a bijection between the set of trace preserving glu-
ings and the set ofN3M matricesC that satisfy Eq.(8).

We will in the following refer to the matrixC, of the
above proposition as thegluing matrix. Note that the choice
of linearly independent Kraus representations does not affect
the set of gluings. The Kraus representations play only the
role of a “reference” in terms of which we can describe the
gluing using the gluing matrix. When changing the linearly
independent Kraus representations, the new and the old glu-
ing matrices are related asC8=U1CU2

†, whereU1 andU2 are
unitary matrices relating the old Kraus representations to the
new ones[6].

It is to be noted that the above proposition is not formu-
lated correctly from a technical point of view. It is stated that
the CPMsF1 andF2 are glued. To be correct we should first

construct a CPMF̄1 acting on density operators on Sphu1lj
^ HI. If the original CPM has Kraus representationhVnjn,

then F̄1 has Kraus representationhu1lk1u ^ Vnjn. Similarly,

one can constructF̄2. To be correct, it isF̄1 andF̄2 that are

glued. However, since the difference betweenF1 and F̄1 is
purely technical, we do not make any distinction between
them here.

The set of channels given by Proposition 1 is rather “al-
lowing” in the sense that it includes cases where the two
devices may interact or share correlated resources during the
operation. If one wishes to model twoindependentdevices,
restrictions have to be imposed on the set of gluings. In Ref.
[7] the concept ofsubspace localityhas been introduced.
Subspace locality is intended to describe a total operation
Ftot which is composed from two independent operations,
each acting on one location, without any need for communi-
cation or sharing of correlated resources, and where the two
locations are associated with orthogonal subspaces, rather
than a tensor product decomposition. The following proposi-
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tion is a translation of a general result on subspace local
gluings [5], to the present conditions. The set of subspace
local gluings are calledlocal subspace preserving(LSP) glu-
ings.

Proposition 2. Let F1 be a channel with linearly indepen-
dent Kraus representationhVnjn=1

N and let F2 be a channel
with linearly independent Kraus representationhWmjm=1

M . All
LSP gluings ofF1 andF2 can be written

Ftotsrd = u1lk1u ^ o
n=1

N

Vnk1uru1lVn
†+ u2lk2u ^ o

m=1

M

Wmk2uru2lWm
†

+ u1lk2u ^ Vk1uru2lW†+ u2lk1u ^ Wk2uru1lV† s9d

for all density operatorsr on Hs^ HI, where

V = o
n=1

N

c1,nVn, W= o
m=1

M

c2,mWm, s10d

where the vectorsc1=fc1,ngn=1
N and c2=fc2,mgm=1

M satisfy the
conditions

ic1i2 = o
n

uc1,nu2 ø 1, ic2i2 = o
m

uc2,mu2 ø 1.

Moreover, if a total channelFtot can be written as above,
then it is a LSP gluing ofF1 andF2.

Note that the vectorsc1 and c2 are not uniquely deter-
mined by the LSP gluing, but the gluing matrixC=c1c2

† is.
The most simple example of a gluing is the gluing of two

identity channels(which is also an example of an LSP glu-
ing). The total CPM is

Ftotsrd = u1lk1u ^ k1uru1l + u2lk2u ^ k2uru2l + reifu1lk2u

^ k1uru2l + re−ifu2lk1u ^ k2uru1l. s11d

In this case the gluing matrix is reduced to a single complex
numberc=reif, with 0ø r ø1. Although the two channels
are identity channels, there is still a freedom in the choice
of gluing. Suppose the input state of channel(11) is ri
= uclkcu ^ rI with ucl=s1/Î2dsu1l+ u2ld. The output state
is r f = u1lk1u ^ rI + u1lk2u ^ rI +reifu1lk2u ^ rI +re−ifu2lk1u ^ rI.
The smallerr, the smaller is the “coherence” between the
two paths. Although we have two identity channels we may
nevertheless completely destroy the coherence by settingr
=0. Hence, in this case the effect of the gluing is a relative
phase shift and some degree of destruction of coherence be-
tween the two paths.

IV. DETERMINING THE GLUING

So far we have considered only the structure of the set of
gluings on the two paths of the interferometer. We now turn
to the interference effects caused by these channels. Here we
obtain expressions for all possible interference effects com-
patible with given channels. Moreover, we investigate what
interference experiments may tell us about unknown gluings.

To make the analysis as clear as possible, we assume the
input states to be of the formri = uclkcu ^ rI with ucl
=s1/Î2dsu1l+ u2ld. This is the type of states created by the

beam splitter, as described in the Introduction.
Assume channelsF1 and F2 and consider the possible

total channelsFtot given by Proposition 1. One can deduce
the interference functionE to be

EsrId =
1

2
TrsRrId, s12d

where

R= o
n,m=1

N,M

Cn,mWm
† Vn, s13d

with Cn,m as in Proposition 1. In the more restrictive case of
LSP gluings, given by Proposition 2, one obtains

R= o
n,m=1

N,M

c1,nc2,m
* Wm

† Vn, s14d

with the vectorsc1 andc2 as in Proposition 2.
We have now found all the possible interference effects

compatible with two given channels. As seen, all possible
choices of interference effects can be reached by some
choice of gluing matrixC. As seen the interference effects
are determined by the gluings, not the channelsper se.

Since the gluing determines the interference effect this
means that the interference experiment gives us information
about the gluing at hand. This means that, if we have an
unknown gluing, we might possibly use the interferometer to
reveal what gluing we have. In the following we investigate
to what extent this is possible.

Assuming the internal state channelsF1 and F2 are
known, what can be said about the gluing from the interfer-
ence experiments? Since the interference functionE is linear,
it follows that E is determined by its values on a set of
internal states forming a basis ofLsHId, whereLsHId denotes
the set of all linear operators onHI. If hunljn=1

N is an
ON-basis of HI, then the set of density operators
hunlknujnø hucnn8lkcnn8u , uxnn8lkxnn8ujn,n8:n.n8, where ucnn8l
=s1/Î2dsunl+ un8ld, uxnn8l=s1/Î2dsunl+ i un8ld, is such a basis.
Given such a set of interference experiments, the functionE,
and by that the operatorR, can be determined. But the task is
not to findR, but the gluing matrixC. From Eq.(13) it can
be seen that ifhWm

† Vnjn,m=1
N,M is a linearly independent set; then

the coefficientsCn,m are determined byR. Hence, we can
conclude the following.

Proposition 3. Let the CPMFtot be a trace preserving
gluing of two channels with linearly independent Kraus rep-
resentationshVnjn=1

N and hWmjm=1
M , respectively. If the set

hWm
† Vnjn,m=1

N,M is linearly independent, then the gluing matrixC
is uniquely determined by the interference functionE.

It is not always necessary to run the experiment over a
basis of density operators ofLsHId. All information attain-
able is extracted for a set of density operators spanning the
subspace SphWm

† Vnjn,m=1
N,M . Note also that Proposition 3 is

about the specific type of setup considered here. As is shown
in Sec. V one can construct generalized interference experi-
ments that give more information. One may further note that
this proposition gives only a sufficient condition. It is an

JOHAN ÅBERG PHYSICAL REVIEW A70, 012103(2004)

012103-4



open question whether or not it is also a necessary condition.
The condition (8) may possibly cause some cases to be
uniquely determined in spite of a linearly dependent set
hWm

† Vnjn,m=1
N,M . Additional constraints, such as restriction to

LSP gluings, may possibly help to determine the gluing.
The following examples illustrate various situations that

may arise. If one of the devices to be glued is the identity
CPM, thenR=om=1

M c1,1c2,m
* Wm

† . Since the sethWmjm=1
M is lin-

early independent, it follows that the gluing matrix(which
now is a 13M matrix) with C1,m=c1,1c2,m

* is uniquely deter-
mined. Hence, the gluing, in sense of the gluing matrix, is
uniquely determined. We can conclude the following.

Proposition 4. Let Ftot be a trace preserving gluing of a
channelF1 and an identity channel. The gluing matrixC of
Ftot, with respect to some linearly independent Kraus repre-
sentation of the channelF1, is uniquely determined by the
interference functionE.

Although this is a special case it is a rather important one.
Physically it corresponds to a situation where we have a
“black box” inserted into one of the paths of the interferom-
eter. Using the interferometer we can investigate evolution
caused by this black box. What Proposition 3 tells us is that
the ordinary interferometer is sufficient to fully explore this
black box, with respect to the gluing property. These aspects
will be discussed further in Sec. VIII.

As a second example consider devicesF1 and F2, with
linearly independent Kraus representationshuc1lknujn=1

N and
huc2lkmujm=1

N , respectively. Bothuc1l anduc2l are normalized,
and hunljn=1

N is some orthonormal basis ofHI. These two
devices have the effect of taking arbitrary internal states to
the pure statesuc1lkc1u and uc2lkc2u, respectively. If uc1l
= uc2l then Wm

† Vn= umlknu. The sethumlknujm,n=1
N is linearly

independent and the gluing can be completely determined. If,
on the other hand, the two output statesuc1l and uc2l are
orthogonal, thenWm

† Vn=0, and nothing can be inferred about
the gluing. One may note that in this case the interference
function E is identically zero and there are no interference
fringes.

There are cases when it is possible to partially infer the
gluing matrix. Let both channelsF1 andF2 have the linearly
independent Kraus representationhunlknujn=1

N . This corre-
sponds to devices that set all off-diagonal elements in the
hunljn=1

N basis to zero, but leave the diagonal elements intact.
One finds thatWm

† Vn=dmnunlknu. Hence, the diagonal ele-
mentsCn,n can be determined, but not the off-diagonal ele-
ments. This example also demonstrates that it is not always
necessary to run the interference experiments on a basis of
density operators spanning the whole ofLsHId. Here it is
sufficient to run the experiment for a set spanning the sub-
space Sphunlknujn=1

N .
With these examples we clearly see that this interferom-

eter cannot distinguish all gluings. Moreover, we see that its
abilities to recognize the gluings depend on which channels
are glued. Although the interferometer is sufficient in the
special case given by Proposition 4, it is problematic as an
experimental tool if one wishes to investigate what gluings
of general type are present in an evolution mechanism.

In the above examples one may recognize a distant anal-
ogy with the problem of an undefined noncyclic geometric

phase, because of vanishing visibility when the interfering
states are orthogonal. In Refs.[11–13] the concept of an
off-diagonal geometric phase is introduced, which in some
sense extracts more phase information. In Sec. V a general-
ized interferometer is introduced, which has the ability to
completely determine arbitrary gluings; this seems vaguely
analogous to the idea behind the off-diagonal geometric
phase. Note, however, that the geometric phase is based on
given initial states, while here we consider channels.

V. GENERALIZED INTERFEROMETRY

It is disturbing that the interferometric setup has only a
limited capacity to determine the gluing. Here it is shown
that there exists a generalization of the interference setup,
with the capacity to completely determine any trace preserv-
ing gluing of any pair of channels.

The standard two-path interferometer determines a detec-
tion probability as a function of a variable phase shift in one
of the paths. This variable phase shift can be regarded as a
family of unitary operators acting on the internal state. This
suggests a generalization, namely, to find the probability as a
function of all unitary operators acting on one of the paths,
not only the subfamily of phase shifts.

In very much the same way as described in Sec. II we
consider a setup with a beam splitter creating an input state
ri = uclkcu ^ rI, followed by an interaction stage with two
evolution devices acting according to some gluing. Then fol-
lows a variable unitary operatorU in one path, acting on the

total state asu1lk1u ^ U+ u2lk2u ^ 1̂I. Finally, there is the sec-
ond beam splitter and a measurement of location of the par-
ticle. Much as in Sec. II, one finds that the probability of
finding the particle in path 1, after the final beam splitter, is

p1 =
1

2
+ uGsU,rIducoshargfGsU,rIdgj, s15d

GsU,rId =
1

2 o
n,m=1

N,M

Cn,mTrsWm
† UVnrId. s16d

Although not needed in principle, it may be convenient to
add a variable phase shifter to obtainp1= 1

2
+ uGsU ,rIducoshargfGsU ,rIdg−xj. This means that for a spe-
cific choice ofrI andU one performs ordinary interference
experiments to determineGsU ,rId. We call G the general-
ized interference function. One may note thatEsrId
=Gs1̂I ,rId.

One may wonder if it is not possible to generalize this
setup even further. What if another unitary operatorU8 is
applied to the second path? Moreover, one may apply unitary

operatorsŪ andŪ8 to the two pathsbeforethe action of the
two evolution devices. However, this does not provide any
more information than doesG. The generalized interferom-
eter, as described above, has the power to distinguish all
trace preserving gluings of two known channels.

Lemma 1 and Proposition 5 below are formulated in
slightly more general settings than in the rest of this investi-
gation. Here we allow the internal state channels to have
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output on a Hilbert spaceHT different from the input Hilbert
spaceHS. We say that the channels havesource spaceHS
and target spaceHT [6]. This means that the interferometer
might start with one type of system on the input side, but end
in another type of system on the output side. Propositions 1
and 2 both remain true under this generalization, with the
modification that the total channelFtot has source space
Hs^ HS and target spaceHs^ HT. The variable unitary op-
erator U in the generalized interferometer, as described
above, operates on the target space.

Lemma 1. Let hVkjk=1
K and hWk8jk8=1

K be two bases(not
necessarily orthonormal) of LsHS,HTd. The set of linear
maps hhkk8jk,k8=1

K , where the elements are defined as
hkk8sQd=Wk8

† QVk, ∀ QPLsHTd, is a basis of
L(LsHTd ,LsHSd).

In this lemmaLsHS,HTd denotes the set of all linear
mappings fromHS to HT. The proof of this lemma is very
similar to a proof in Ref.[6]. There it is proved that the set
hfkk8jk,k8=1

K , defined by fkk8sQd=VkQVk8
† , is a basis of

L(LsHSd ,LsHTd), if hVkjk is a basis ofLsHS,HTd.
Proposition 5. Let the CPMFtot be a trace preserving

gluing of two channelsF1 and F2. The gluing matrixC of
Ftot, with respect to some linearly independent Kraus repre-
sentations of the channelsF1 andF2, is uniquely determined
by the generalized interference functionG.

The procedure described here can be said to be a process
tomography of the channelFtot [14–17], but with somea
priori information on the process; since we already have the
information on which channels are glued, and wish to deter-
mine the gluing.

Proof. The function GsU ,rId can be writtenGsU ,rId
= 1

2TrfFsUdrIg, with FsUd=on,m=1
N,M Cn,mWm

† UVn. For each
fixed U the operatorFsUd can be determined, given the val-
ues ofGsU ,rId on a set of density operators forming a basis
of LsHSd.

It is always possible to find a basis ofLsHTd consisting of
unitary operators[18]. SinceF is a linear map, it is deter-
mined by how it maps such a basis. Hence, ifG is known,
the functionF is known.

Both hVnjn=1
N andhWmjm=1

M are linearly independent. From

these we construct two baseshṼnjn=1
K and hW̃mjm=1

K of
LsHS,HTd, by adding linearly independent elements. We add
these elements in such a way that the firstNsMd elements are
hVnjn=1

N shWmjm=1
M d. The unknown matrixC is extended such

that Cm,n=0 if m.M or if n.N. With these extensions all
the conditions of Lemma 1 are satisfied. Hence, the matrixC
is uniquely determined, since it is formed by the expansion
coefficients ofF, with respect to the basishhkk8jk,k8=1

K . j

One can note another approach to constructing an inter-
ferometer to determine the gluing matrix. In this alter-
native setup the initial internal staterI is fixed, and instead

there are two variable local unitary operators:Ū before and
U after the evolution devices. This arrangement results in

another interference functionḠrI
sU ,Ūd. If both the vari-

able unitary operators act in path 1, thenḠrI
sU ,Ūd

=onm Cn,mTrsWm
† UVnŪrId. With an appropriate choice of the

initial internal staterI, the functionḠ can determine arbi-

trary gluings. By using the following lemma, which is stated
without proof, one can show that acceptable initial states
have nonsingular density operators.

Lemma 2. Let r be a density operator onH. There exists
a set of unitary operatorshUkjk=1

K such thathUkrjk=1
K is a basis

of LsHd if and only if r is nonsingular.
One may note that the maximally mixed state is an ac-

ceptable choice of initial state, while a pure state is not.
Although the functionḠ or other similar constructions in

principle give the same information asG, there may be other
aspects that may make one preferable compared to the oth-
ers. Apart from the question of difficulties of experimental
realization, there are also questions about statistics and sen-
sitivity to errors. These questions are not addressed here, but
below we will see another type of consideration where the
choice of setup does matter.

We here relate the material in this and the previous sec-
tion to some measures introduced in Ref.[1]. These mea-
sures relate, through a certain construction, the visibility in
an interferometer to Kraus representations of two given
channels inserted into the interferometer. The dependence on
the choice of Kraus representations one can recognize as the
different choices of LSP gluings of the given channels. That
the gluings are LSP can be seen by comparing the construc-
tion in Ref. [1] with Proposition 7, in the next section. In
Ref. [1] the coherent fidelityFc between two Kraus repre-
sentations is defined as the visibility in the ordinary interfer-
ometer, when the initial internal state is maximally mixed. In
the language used here,Fc is the visibility caused by a LSP
gluing of the two given channels. Hence,FcsF1,F2,Cd
=2uEs1/N1̂Idu, whereC is a LSP gluing matrixC=c1c2

†, with
respect to some arbitrary choices of linearly independent
Kraus representations. In Ref.[1] the maximal coherent fi-
delity is defined as the the maximum ofFc over all possible
pairs of Kraus representations of the two channels. This can

be recognized as the maximum of 2uEs1/N 1̂Idu over all pos-
sible LSP gluings ofF1 andF2. In Ref. [1] it is also deter-
mined what is the closest unitary channel to a given Kraus
representation of a channel. The closest unitary operator is
defined as the one giving the largest visibility for the maxi-
mally mixed state as input state, when the operation acts in
one path and the unitary operator acts in the other path. The
maximal visibility so reached can be recognized as the maxi-

mum of 2uGsU ,1 /N 1̂Idu over all unitaryU, for a fixed LSP
gluing of the channel and the identity channel.

Using the generalized interferometer one might define
several different measures in the same spirit as in Ref.[1]. In
doing this, one must be aware that the setup may matter in a
nontrivial way. We have seen that the two setups leading to

G andḠ are equivalent in their abilities to determine gluings.
However, when defining measures based on maximizing vis-
ibilities, these two setups, as well as other constructions, may
give different answers. As an example one may consider
AsF1,F2,Cd=supU,rI

uGsU ,rIdu, which corresponds to the
maximal visibility over all unitary shifts and initial internal
states. If we restrict to LSP gluings one can deduce that
AsF1,F2,Cd= 1

2supici=1iVucliiWucli, with V and W as in
Proposition 9. One may consider another setup, which is the
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same as the construction leading toḠ, with the only modifi-
cation that we also admit variations of the initial internal
state. The corresponding interference function is

G̃sU ,Ū ,rId= 1
2onm CnmTrsWm

† UVnŪrId. Clearly, knowledge

of G̃ is sufficient to determine the gluing. In this sense,G̃ is
equivalent toG. In analogy with the functionA one may

considerBsF1,F2,Cd=supU,Ū,rI
uG̃sU ,Ū ,rIdu. One can show

that, in the case of LSP gluings,BsF1,F2,Cd
= 1

2supici=1iVuclisupixi=1iWuxli= 1
2iViiWi. There exist LSP

gluings for which AsF1,F2,CdÞBsF1,F2,Cd. One ex-
ample is if both F1 and F2 have Kraus representation
hu1lk1u , u2lk2uj, wherehu1l , u2lj is an orthonormal basis of a
two-dimensionalHI. We assume that the LSP gluing is such
that V= u1lk1u and W= u2lk2u. In this caseAsF1,F2,Cd= 1

4
andBsF1,F2,Cd= 1

2. Hence, for these types of questions the
choice of interference setup matters.

VI. UNITARY REPRESENTATION OF GLUINGS

In this section we connect the gluing approach with the
approach using unitary channels acting on combinations of
the system and ancillary systems. In Refs.[6,7] it has been
shown that for a special class of CPMs the property of being
SP or LSP can be characterized in terms of unitary actions on
system-ancilla combinations. The present setting of a two-
path interferometer belongs to this special class of CPMs.

The following proposition is a translation of a proposition
in Ref. [6] to the specific condition considered here.

Proposition 6. A channel Ftot is SP on sSphu1lj
^ HI ,Sphu2lj ^ HId if and only if there exists an ancilla space
Ha, a normalized stateualPHa, and unitary operatorsU1
andU2 on HI ^ Ha such that

Ftotsrd = TrasUr ^ ualkauU†d s17d

for all density operatorsr on Hs^ HI, where

U = u1lk1u ^ U1 + u2lk2u ^ U2. s18d

Note that every trace preserving gluing of two channels is
a SP gluing. Vice versa, every SP channel is a trace preserv-
ing gluing of two channels[5]. The two channels that are
glued areF1 and F2, which are obtained fromU1 and U2,
respectively, through Eq.(2). To see this, note that if the
particle is localized in path 1 with internal staterI, then the
result of the mappingFtot is again localized in path 1, but
with the new internal stateF1srId.

The following gives a similar construction for LSP chan-
nels, and is a translation of a proposition in Ref.[7] to the
present context.

Proposition 7. A channel Ftot is LSP on sSphu1lj
^ HI ,Sphu2lj ^ HId if and only if there exist Hilbert spaces
Ha1,Ha2, normalized vectorsua1lPHa1, ua2lPHa2, a uni-
tary operatorU1 on HI ^ Ha1, and a unitary operatorU2 on
HI ^ Ha2 such that

Ftotsrd = Tra1,a2sUr ^ ua1lka1u ^ ua2lka2uU†d, s19d

for all density operatorsr on Hs^ HI, where

U = u1lk1u ^ U1 ^ 1̂a2 + u2lk2u ^ U2 ^ 1̂a1. s20d

Comparing Propositions 6 and 7, one can see the differ-
ence. For SP gluings the system of interest interacts with one
and the same ancilla system, while for the LSP gluings there
are two ancillary systems. If the particle passes path 1, it
interacts only with ancilla 1, while leaving ancilla 2 un-
touched, and the other way around if the particle passes path
2.

In the special case of a gluing of a channel and an identity
channel, Eqs.(19) and(20) are unnecessarily complicated. In
this case all possible gluings, which necessarily are LSP, can
be reached using only one ancillary system. In the next sec-
tion we will see that every such gluing can be written as in
Eq. (4) with a joint unitary operator as in Eq.(3), for a
suitably chosen ancillary space.

VII. UNITARY REPRESENTATION OF CHANNELS

As exemplified in the Introduction, one may use a joint
unitary evolution with an ancilla system to implement a
channel in one of the paths of the interferometer. It was also
shown that the choice of unitary representation may affect
the interference effects. From Secs. III and IV we know that
it is the gluing that determines the interference effects. More-
over, from the previous section we know that every gluing
can be expressed through such unitary representations.
Hence, there must exist some connection between the choice
of unitary representation and the resulting gluing. The mate-
rial in the previous sections does not provide us with any
explicit relation between the unitary representations and the
resulting gluing. Here we establish such a relation, in the
special case of gluings of a channel and an identity channel.
Ultimately we will obtain a strategy to determine which glu-
ing a given unitary representation gives rise to. Vice versa, if
we have a specific gluing of a channel and an identity chan-
nel which we wish to implement, we will have means to
select unitary operators that create precisely this gluing. This
may be of use in theoretical investigations as well as in de-
sign of actual physical realizations.

We wish to find the relation between the unitary represen-
tation of a channelF1 and the LSP gluingFtot which this
representation gives rise to, as described in the Introduction.
To do this we first deduce an expression for the set of all
unitary representations of a given channelF1, which then is
related to the LSP gluings. The only limiting assumption is
that the Hilbert space of the internal degree of freedom and
the ancillary Hilbert space are finite dimensional. The strat-
egy to be used is that every unitary representationUIa can be
decomposed into two complementary partial isometriesR
andW, whereR, say, contains the “gluing information.” By
using this decomposition, an equivalence relation can be de-
fined on the set of unitary representations, which tells if these
can be distinguished or not in the interferometer. The equiva-
lence classes correspond to the different LSP gluings.

Let F1 be a trace preserving CPM. LetHa be finite di-
mensional, and let ualPHa be normalized. We let
UsF1,Ha, uald denote the set of all unitary operatorsUIa

which representF1 via Eq. (2).
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The Kraus number KsF1d of a CPMF1 is the number of
operators in a linearly independent Kraus representation of
F1 [6]. One can see thatUsF1,Ha, uald is empty if
KsF1d.dimsHad.

If an operatorRPLsHd satisfiesR†R=Pi and RR†=Pf,
where Pi and Pf are projectors onto two subspaces ofH,
thenR is apartial isometry[19]. We say that the projectorPi
projects onto theinitial spaceof R. Likewise we say thatPf
projects onto thefinal spaceof R. One may note that the
subspaces onto whichPi and Pf project are of the same di-
mension. In the following we letPi

' denote the complemen-
tary projector toPi and similarly withPf

' andPf.
Lemma 3. Let hVkjk=1

K be a linearly independent Kraus
representation of a trace preserving CPMF1. Let
hua1l , . . . ,uaKlj be an orthonormal set ofK elements in an at
leastK-dimensional spaceHa. Then the operator

R= o
k=1

K

Vk ^ uaklkau s21d

is a partial isometry.
To prove this lemma one has to show that

Pi = 1̂ ^ ualkau, Pf = o
kk8

VkVk8
†

^ uaklkak8u s22d

are projectors. We state without proof the following lemma.
Lemma 4. Let U be a unitary operator onH. Let Pi andPf

be projectors onto two subspaces of equal dimension. If
PfUPi is a partial isometry, thenPf

'UPi
' is a partial isometry

and

U = PfUPi + Pf
'UPi

'. s23d

Here we introduce some notation. LetHa be at leastK
dimensional. LetAK denote the set of all orderedK-tuples
sua1l , . . . ,uaKld of pairwise orthonormal elements inHa. Note
that two elementsā,ā8PAK are equal if and only ifuakl
= uak8l, k=1, . . . ,K.

Let hVkjk=1
K be a linearly independent Kraus representation

of some channel. GivenāPAK, let Rā denote the range of
the operatorR as defined in Eq.(21). By Lemma 3, it follows
that R is a partial isometry. The initial space ofR is H
^ Sphualj and the final space isRā. Let Wā denote the set of
partial isometries onHI ^ Ha with initial space sHI

^ Sphualjd' and final spaceRā
'.

Proposition 8. Let hVkjk=1
K with K=KsF1d be a linearly

independent Kraus representation of the channelF1. Let Ha
be at leastK dimensional and letualPHa be normalized.
Then

UIa = W+ o
k=1

K

Vk ^ uaklkau s24d

defines a bijection between the setUsF1,Ha, uald and the set
of all pairs sā,Wd with āPAK andWPWā.

Proof. First it is proved that ifāPAK and WPWā then
the operator UIa defined by Eq. (24) belongs to
UsF1,Ha, uald. One can verify thatUIa, so defined, is unitary
since it is a sum of two complementary partial isometries.

Moreover, one can verify thatUIa representsF1 via Eq. (2).
Hence,UIaPUsF1,Ha, uald.

It has to be shown that ifUIaPUsF1,Ha, uald then there
exist āPAK and WPWā, which giveUIa via Eq. (24). Let
hublljl=1

N be an arbitrary orthonormal basis ofHa. It follows
that hWljl=1

N with Wl =kbluUIaual is a Kraus representation of
F1. Let hVkjk=1

K be a linearly independent Kraus representa-
tion of F1. It is well known [20] that any two Kraus repre-
sentations can be connected through a unitary matrix, where
the Kraus representation with the smaller number of ele-
ments is padded with zero operators in such a way that the
two sets have the same number of elements. Note that the set
hWljl=1

N has at least as many elements ashVkjK=1
K , since the

last is a linearly independent Kraus representation[6]. The
existence of a unitary matrix connecting padded sets of
Kraus operator is equivalent to the existence of anN3K
matrix M such thatWl =ok=1

K MlkVk, for all l =1, . . . ,N, and
such thatM†M = IK, whereIK denotes theK3K identity ma-
trix. Define the sethuakljk=1

K by uakl=ol=1
N Mlkubll for k

=1, . . . ,K. One can verify thathuakljk=1
K is an orthonormal set.

Let Pi and Pf be defined as in Eq.(22). Using the fact that
F1 is trace preserving, one can verify thatPfUIaPi =R, with
R defined as in Eq.(21). Sincehuakljk=1

K and hVkjk=1
K satisfy

the properties required by Lemma 3, it follows thatR is a
partial isometry. By Lemma 4 it follows thatUIa can be
written as in Eq.(24) with W=Pf

'UIaPi
'. By Lemma 4 it

follows that W is a partial isometry with the correct initial
and final spaces.

Finally, it has to be shown that if two pairssā,Wd and
sā8 ,W8d are different, then the corresponding operatorsUIa

andUIa8 are different. Assume these two pairs are mapped to
the sameU. Then

W− W8 = o
k=1

K

Vk ^ suak8l − uakldkau. s25d

The operatorW−W8 maps elements inHI ^ Sphualj to the
zero element. Similarly,ok=1

K Vk ^ suak8l− uakldkau maps ele-
ments inHI ^ Sphualj' to the zero element. Hence, from Eq.
(25) it follows that W−W8=0 and ok=1

K Vk ^ suak8l− uakldkau
=0. Let uxlPHa be arbitrary. By applyingkxu “from the left”
andual “from the right” onto the last expression, one obtains
ok=1

K skx uak8l−kx uakldVk=0. By linear independence of
hVkjk=1

K , and the arbitrariness ofuxl it follows that ā8= ā.
Hence, no two distinct pairs are mapped to the same unitary
operator. j

Using the interferometric setup, as described in the Intro-
duction, two unitary representationsUIa and UIa8 are distin-
guishable in the interferometer, if and only if the correspond-
ing interference functionsE and E8 are different. From Eq.
(5) and Proposition 8 it follows that the interference function
is EsrId= 1

2ok=1
K kakualTrsVkrId. Because of the linear inde-

pendence ofhVkjk=1
K , two unitary representations are distin-

guishable if and only if the corresponding vectorsskakualdk=1
K

andskak8 ualdk=1
K are different. SincehVkjk=1

K is a linearly inde-
pendent Kraus representation ofF1, it follows that
skakualdk=1

K can be identified with the 13KsF1d gluing ma-
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trix C. As shown in Sec. IV, the gluing matrix is uniquely
determined by the interference functionE, for this type of
gluing. From this it follows that two unitary representations
UIa and UIa8 are distinguishable in the interferometer if and
only if they correspond to different LSP gluings of the chan-
nel F1 and the identity channel. Another way to put this is to
say thatUsF1,Ha, uald can be equipped with an equivalence
relation ,. Two unitary representations are equivalent,UIa

,UIa8 , if skakualdk=1
K =skak8 ualdk=1

K . As we have seen, this is
equivalent to being indistinguishable by the interferometer,
which is the same as saying that they correspond to the same
LSP gluing ofF1 and the identity channel.

Since the gluing matrixC, in the present case, is only a
row (or column) matrix, it can be regarded as a vector. If this
vectorC satisfiesiCi=1, we say that the LSP gluing ismaxi-
mal.

Using Eqs.(3) and (4), it is possible to define a mapping
M from the setUsF1,Ha, uald to the set of LSP gluings of
the channelF1 and the identity channel.

Proposition 9. Let F1 be a channel. LetHa be finite di-
mensional andualPHa normalized.

(1) If dimsHad,KsF1d thenUsF1,Ha, uald is empty.
(2) If dimsHad=KsF1d then M defines a bijection be-

tween the set of equivalence classes under, and the set of
maximal LSP gluings ofF1 and the identity channel.

(3) If dimsHad.KsF1d then M defines a bijection be-
tween the set of equivalence classes under, and the set of
LSP gluings ofF1 and the identity channel.

In essence this proposition says that if the dimension of
the Hilbert space of the ancilla is equal to the Kraus number
of the channelF1, then we reach precisely the maximal LSP
gluings through the unitary representations. If the dimension
of the ancillary Hilbert space is strictly larger than the Kraus
number, then we reach all LSP gluings ofF1 and the identity
channel.

Proof. The first statement follows sinceKsF1d is the mini-
mal number of elements in any Kraus representation ofF1
[6].

For the second statement, assumeUIaPUsF1,Ha, uald.
By using Proposition 8 and Eqs.(3) and (4), one finds that
the gluing matrix isC=fkakualgk=1

K . SinceHa is K dimen-
sional, it follows thathuakljk=1

K is an orthonormal basis ofHa.
Sinceual is normalized,okucku2=ok=1

K ukakualu2=1. Hence, the
gluing is maximal. One can see that all elements in an
equivalence class are mapped to the same gluing. Moreover,
two elements from different equivalence classes are mapped
to different gluings.

It has to be shown that every maximal gluing can be
reached viaM. Suppose we have a maximal gluing with
gluing matrixC. If we regard the gluing matrix as a vector, it
follows thatCPCK, such thatiCi=1. It is always possible to
find an orthonormal basisā=huakljk=1

K of Ha, such thatCk

=kakual. Let UIa be defined fromhuakljk=1
K , through Eq.(24),

for some arbitrary choice ofWPWā.
For the case dimsHad.KsF1d one can reason very simi-

larly as above, with the modification thathuakljk=1
K spans a

proper subspace ofHa. This implies that the gluing matrix

does not have to be maximal, and we can reach all the LSP
gluings. j

VIII. DISCUSSION

As we have demonstrated it is not the internal state chan-
nelsper sethat determine the interference pattern, but their
gluings. Even if it assumed that the devices are acting inde-
pendently of each other(LSP gluing), there remains an arbi-
trariness in the interference pattern, which corresponds to the
nonuniqueness of LSP gluings. Here we concentrate on the
special case of gluings of a channelF1 and an identity chan-
nel. Such gluings can be described as pairssF1,Vd, whereV
is as in Eq.(10). One way to understand the nonuniqueness
is to describe the state of the particle in the interferometer in
terms of an occupation number representation. This describes
the occupation states of the two paths, rather than the loca-
tion of the particle. It is sufficient to extend the Hilbert space
of the internal degree of freedom with one additional dimen-
sion spanned by a “vacuum state,” which describes the non-
presence of the particle in that path[7]. The total extended
Hilbert space is the tensor product of two such extended
Hilbert spaces. In the case of a trace preserving gluing of a
channel and an identity channel, the corresponding channel
in the occupation number representation can be written as a

product channelF̃1 ^ Ĩ2, whereĨ2 is the identity channel act-
ing on operators on the extended Hilbert space of the empty

path. The channelF̃1 takes the form[7]

F̃1sr̃d = o
k

Vkr̃Vk
† + Vr̃u0lk0u + u0lk0ur̃V† + u0lk0ur̃u0lk0u,

s26d

where u0l is the vacuum state of the path in whichF̃1 acts.

As seen, the extended channelF̃1 contains the same infor-
mation as the pairsF1,Vd. To every trace preserving gluing
of the channelF1 and the identity channel, there corresponds

a channelF̃1. The channelF̃1 describes not only what the
machine does with a particle present in the input, but also
what is does with superpositions of the particle and the
vacuum state. For more details concerning this occupation
number approach the reader is referred to Refs.[5,7].

In Sec. IV(Proposition 4) we saw that the ordinary inter-
ferometric setup has the power to determine trace preserving
gluings of a channel and an identity channel. Hence, it can
determine the operatorV in Eq. (26). In other words, the
interferometer has the capacity to reveal more about the glo-
bal evolution than direct measurements, as pointed out in

Ref. [1]. However, the equivalent description in terms ofF̃1
suggests that another strategy is possible, at least in prin-
ciple. If the evolution device is subjected to a process tomog-

raphy on theextendedHilbert space, the channelF̃1 would
be revealed and hence provide the same information as the
interference experiments would. This would correspond to
preparing states including linear combinations of the particle
in some internal state and the vacuum state. Similarly, the
measurements performed on the output has to be sufficiently
rich on the extended state space. Leaving aside the question
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of how such states actually would be produced, and how
such measurements would be performed, this means that the
interferometer is not really necessary to determine trace pre-
serving gluings of a channel and the identity channel. The
same information could, in principle, be obtained with direct
measurement on the output states, provided the input states
and the measurements are sufficiently general on the ex-
tended Hilbert space.

IX. CONCLUSIONS

Two-path single-particle interferometry of particles with
an internal degree of freedom is investigated. Given internal
state evolution devices, whose action is characterized by
trace preserving completely positive maps(channels), we ask
how the interference phenomena are affected when such de-
vices are inserted into the paths of the interferometer. We
investigate the nonuniqueness of the interference patterns for
given internal state evolution channels. This question is ap-
proached from two points of view. The first is to use the
concept of gluing of completely positive maps developed in
Ref. [5]. It is found that the possible interference effects are
determined by the gluings, rather than the internal state chan-
nels per se. Using the gluing approach we deduce all pos-
sible interference effects compatible with given channels.

In the second approach we make use of the fact that chan-
nels can be realized using joint unitary evolution on a system
and an ancillary system. By this approach we connect to
other investigations in the literature[1–3] in which joint uni-

tary evolution is used in interferometers. The choice of joint
unitary evolution used to realize a given channel is not
unique. Although two such unitary operators realize the same
channel, they may cause different interference phenomena
when the machine is inserted into one of the paths of the
interferometer. We investigate which gluing each choice of
unitary representation gives rise to, and hence which inter-
ference pattern. Conversely, if one wishes to construct a spe-
cific gluing we determine the possible choices of unitary
representations which give the desired gluing. This may be
of use in the design of actual physical implementations of
this type of channel.

In previous work[5] the set of all possible trace preserv-
ing gluings of given pairs of channels has been deduced.
Here we extend this work by investigating how interferom-
eters can be used to analyze which gluing is actually present.
It is shown that the standard interferometer in general has a
limited capacity to determine the gluing. Several gluings
give rise to identical interference phenomena. Due to these
limitations we here introduce a generalized interferometer. It
is shown that this setup has the capacity to distinguish all
possible trace preserving gluings of arbitrary channels. As
such this provides a tool for experimental investigations of
which gluings are present in actual evolutions.
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