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Interferometry of single particles with internal degrees of freedom is investigated. We discuss the interfer-
ence patterns obtained when an internal state evolution device is inserted into one or both the paths of the
interferometer. The interference pattern obtained is not uniquely determined by the completely positive maps
(CPMs that describe how the devices evolve the internal state of a particle. By using the concept of gluing of
CPMs, we investigate the structure of all possible interference patterns obtainable for given trace preserving
internal state CPMs. We discuss what can be inferred about the gluing, given a sufficiently rich set of inter-
ference experiments. It is shown that the standard interferometric setup is limited in its abilities to distinguish
different gluings. A generalized interferometric setup is introduced with the capacity to distinguish all gluings.
We also connect to another approach using the well known fact that channels can be realized using a joint
unitary evolution of the system and an ancillary system. We deduce the set of all such unitary “representations”
and relate the structure of this set to gluings and interference phenomena.
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I. INTRODUCTION capacity to determine the gluing. However, it is shown that it

) ) ) ) is possible to construct a generalized interferometer for
Single-particle interferometry has been widely used tQynich there is a bijective correspondence between gluings

demonstrate quantum mechanical phenomena. The centrghq interference effects. In Rd6] a complete characteriza-
question in his investigation is how interference phenomengon, of all possible trace preserving gluings of given channels
are affected when arbitrary operations are applied to the iny 55 developed. The generalized interferometer provides us
ternal degrees of freedom of the particle. Only quite recentlyyih g way to determine these gluings. As such it opens up
has this question received explicit attention in the literaturgg, experimental investigations of these types of problems.
[1-3]. These types of studies are relevant since the transition Thg strycture of this article is the following. In Sec. Il the
to general operations provides a richer structure in the intefyqde| for the two-path interferometer is introduced. Here we
ference phenomena. Furthermore, general operations Mayso make the basic questions of this investigation more pre-
give more realistic descriptions of interference experimentg;se |n Sec. 1l the interferometer is discussed in terms of the
where noise and decoherence effgcts cannot be neglédted gluing concept. By application of the theory developed in
It has been showipl] that the interference patterns ob- Refs: [5-7], all possible trace preserving gluings are ex-
tained in an interferometer are not uniquely determined by, essed. In Sec. IV we deduce all possible interference ef-
the operations applied. This calls for an investigation of Whafects compatible with given channels. Moreover, we investi-
interference effectls are compatible with a given pair of OPgate what can be inferred about an unknown gluing by
erations. By applying the concept of gluiffg] of completely  yerforming interference experiments. In Sec. V, a generaliza-
positive maps(CPMs), we will see that it is the choice of o of the interferometric setup is introduced. It is shown
gluing that determines the interference effects. We are thug,a¢ this generalized interferometer has the power to deter-
able to describe all the interference effects compatible withyine arbitrary unknown trace preserving gluings of two ar-
given operations. L bitrary known channels. Section VI connects the unitary rep-
We also investigate another intuitively reasonable apyesentation approach with the gluing approach, by translating
proach to implementing operations in an interferometerqgyts from Refs|6,7] to the present context. In Sec. VII all
which has been used in other investigati¢bs3|. This uses  pitary representations of given channels are deduced. The
the well known fact that operations can be realized usingrycture of this set is investigated in terms of gluings, which
joint unitary evolution with the system and an ancillary sys-makes it possible to select arbitrary gluings of a channel and
tem. Here we investigate the relation between this approachy, jgentity channel by a choice of unitary representation. In
and the gluing concept in order to clarify how the choice ofgec vl "the nature of the nonuniqueness of interference

joint unitary evolution affects the interference. _ effects and gluings is discussed. The conclusions are pre-
The above questions treat the problem of what interfergenied in Sec. 1X.

ence patterns are compatible with given channels. We also
turn the question around and ask what information the inter-
ference experiments can reveal about the gluing. It is shown Il. THE TWO-PATH INTERFEROMETER

that the ordinary interferometric setup has only a limited The spatial degree of freedom of the interferometer is

modeled as a two-dimensional Hilbert spd¢g spanned by
|1) and|2), which correspond to the particle being localized
*Electronic address: johan.aaberg@kvac.uu.se in paths 1 and 2, respectively. The internal Hilbert space is
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denotedH, and the total Hilbert space ¥ ® H,. What is the channel describing a phase shifter? Since the
The interferometer consists of three parts: First, a “prepaenly effect of the phase shifter is to add an overall phase, it
ration stage,” consisting of a 50-50 beam splitter that createis the identity CPM. If we prepare particles, let them pass a
a superposition of the particle in the two paths; second, aphase shifter, and then measure the state of the outgoing
“interaction stage,” where the state of the particle is affectedparticles, the phase shifter has no measurable effect. How-
Last, the “measurement stage,” where a variable phasever, when inserted into the interferometer, the effect of the
shifter is inserted into one of the paths, followed by a secongbhase shifter is visible as a constant phase shift in the inter-
beam splitter, and finally a detector that determines the preserence pattern. Hence, the channel describing the phase
ence or nonpresence of the particle in one of the outgoinghifter, regarded as a device on its own, is not a sufficient
paths. description of the phase shifter when acting inside an inter-
We regard the preparation stage of the interferometer onl§jerometer.
as a way to create special types of states on the two paths. If In this investigation, we wish to find all possible interfer-
the particle is initially in path 2 and the internal state isence patterns compatible with given internal state evolution
represented by the density operapgrthe first beam splitter channels. We approach this problem from two different di-
creates a state of the form=|¥)(y{®p, where |)  rections. The first approach is to note that the total channel
=(1/y2)(|1)+]2)). This first beam splitter, as well as the sec- @, can be regarded as a subspace preserving g[&ihgf
ond beam splitter, is modeled by the unitary operatge P acting in path 1 and the identity CPM acting in path 2.
=(1/V2) (|| +]1)(2] - [2)(1] +|2)(2]). We also consider more general situations with a nontrivial
In the interaction stage the total staieof the particle €volution device in each path of the interferometer. These
may change into some new staie This state is thereafter duestions are discussed in Secs. Ill-V, where we also discuss
analyzed in the measurement stage. We return to the interafnat can be inferred about unknown gluings from interfer-
tion stage below and focus for a moment on the measure2NCe €xperiments. _
ment stage. The phase shifter is described by the unitary The second approach is to use the well known fact that
operatorU ,s=|1)(1| +€%2)(2|, wherey is a real number. The channels can be realized using joint unitary evolution of the

probability of finding the particle in path 1, after the secondSYStém and an ancillary systefit0] as
beam-splitter, i48,9] Dy(py) = Tra(Upaps @ [aX(@U), 2)

where’H, is the Hilbert space of the ancillary system dag

_ 3 Tt
pr=Trl(|1X1] ® 1I)UbsUpsprpsUbs] is a normalized state of the ancilla. A reasonable method to

1 create an operatiof,,; would be the following: LeUg,, be
=5 |E|codarg(E) - x1, (1) the unitary operator acting dH<® H, ® H, as
Ugia= |10(1] © U +[2)(2] © 1, ® 1, (3

whereE=(1|Tr,(p)|2), and where Lis the identity operator _ _ _

on H,. Thus, the effect of the measurement stage is to med? vyord_s, this means that if t_he part_|c|e passes path 1 the

sure the off-diagonal element of the reduced density operatd"]'nc'l.Ia interacts with the particle. .If It passes pa_th 2, then

of the spatial degree of freedom, in tha),|2)} basis. The nothing happens. The total evolution of the particle would

absolute valudE| and the argument aff) determine the then be

visibility and the phase shift, respectively, of the interference pi = oo pi) = Tra(Ugapi @ |a)(@Ul,). (4)
attern.

. In the interaction stage some operation acts on the totdf We assume that the initial total state is created with a beam

state of the particle. Here the words “operation” and “chanSPIitter pi=¢)(y© p;, the interference is determined 3]

nel” are synonymous with a trace preserving completely

1
positive map[10]. The operation is described by a channel E(p) = ETr(<a|U|a|a>p,). 5)
d,: that maps the initial total stafe to the final total state
pi=Dipi). E is a function from the set of internal state density operators

Suppose we have a device that can evolve the interngl, to the set of complex numbers. We refer to this function as
state of a particle sent through it. The action of this device ighe interference function
described by the channél,. What is the interference pattern At first sight this procedure may seem as a straightfor-
if this device is inserted into path 1? One may be tempted tovard way to calculate the interference phenomenon caused
answer that the interference pattern should be uniquely désy a given channeb,. However, the operatdd,,, which we
termined by the channeb,. This is, however, not the case use to represent the internal state evolution device, is not
[1]. The channetb, does not provide sufficient information unique. There exist several unitary operators that redbize
to determine the interference pattern. The root of this phevia Eg.(2). The choice olU,, affects the interference effect,
nomenon is that the total chann®l is not uniquely deter- as the following example shows.
mined by @, [5]. One way to put this is to say that the  Suppose we have a chande] and a representatiddy, of
internal state channeb, is not a “complete” description of this channel which gives a nontrivial interference function
the evolution device when it is to act in a path of an inter-Suppose the internal Hilbert space is of dimendibn +c.
ferometer. The following example may clarify the situation. It follows that there exists some Kraus representatiod of
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with at mostN? elementg6]. Hence, there exist operatdvg

2
on’H, such thald)l(p,):EE:1 Vkp|VE. Assume an ancilla sys-

tem with Hilbert spaceX, of dimension N°+1. Let
{la),|ay), ... |an2)} be an orthonormal basis 6, On H,
® H, one can construct the following operator:

N2

Uh=1®1,-1 ®laa - X V| ® [a)a|
jl=1
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the two paths. More precisely, the chandgl; is subspace
preserving if and only if TH1X1|® 1,Dop)]=Tr(|1){1]
® 1|p) for all density operatorp on H ® H,.
The following proposition is a translation of a general
result on SP gluing§5] to the situation considered here.
Proposition 1 Let &, be a channel with linearly indepen-
dent Kraus representaticiV,}., and let®, be a channel
with linearly independent Kraus representat{wn}r"fpl. All

\2 \2 trace preserving gluings @b, and®, can be written

+2 Vi@ |a)al + 2 V] @ [a)a. (6) N .
=i = ’ Dirlp) = [10(1] © X Vi(Lp| Vi 22 @ 2 Wi 2]p|2W],
m=1

One can verify that|, is a unitary operator, and also thhg "
is obtained ifU[, is inserted into Eq(2), instead ofU,.
Hence,U;, andUy, realize the same CPb,. A global uni-
tary operatoiJ , can be constructed, as in @), but with
U/, replaced byJ,,. With U/, a modified global operation
®/,, can be constructed via E@). For this new operation
the interference function satisfies'(p)=0 for every p,. ~ for all density operatorp on Hs® H,, where the matrixC
Hence, there are no interference fringes for any input state=[Cnmlh1me1 Satisfies the condition
In other words, we have constructed two evolution devices l.=ccl 8
which give the same internal state evolution, but which nev- N= '
ertheless give rise to two different interference effects. Thisyvhere I is the NX N identity matrix. Moreover, Eq(7)
example shows that we may choose to set the visibility tajefines a bijection between the set of trace preserving glu-
zero. In Sec. VIl itis shown that the choice df, may affect  ings and the set dfi X M matricesC that satisfy Eq(8).
the interference in more general ways. This may be of rel- We will in the following refer to the matrixC, of the
evance for studies likg2], where the relative phase for above proposition as thgluing matrix Note that the choice
CPMs is defined in terms of unitary representations. of linearly independent Kraus representations does not affect
the set of gluings. The Kraus representations play only the
role of a “reference” in terms of which we can describe the
gluing using the gluing matrix. When changing the linearly
In this section we introduce the main tool, gluing of chan-independent Kraus representations, the new and the old glu-
nels, which we will use to analyze the interferometer. Weing matrices are related & =U,CU}, whereU,; andU, are
here give a brief overview of the concepts developed in Refsunitary matrices relating the old Kraus representations to the

+[12] ® X Co V(L p|2W],
nm

+[2)(1 ® X Cp Wl 2lp| DV} (7)
n,m

Ill. GLUINGS

[5-7], and translate two results from R¢&], which will be
needed in the subsequent analysis.

new oneg6].
It is to be noted that the above proposition is not formu-

A device, whose effect on the internal state of a particldated correctly from a technical point of view. It is stated that

sent through it, is described by a chandgl Likewise, an-

the CPMs®; and®; are glued. To be correct we should first

inserted, one in each path of the interferometer. The questio&H . If the original CPM has Kraus representatiovi }
is, what is the “global” channeb,,, that describes the total — w

operation the single particle has experienced when passintB('}n @, has Krau_s representatio[d11)<1|_®Vn}n._SimiIarIy,
the two devices? The total Hilbert space of the interferometeone can construcb,. To be correct, it isb; and®, that are

can be decomposed into the orthogonal subspacéd)Bp glued. However, since the difference betwakpand ®; is
®H, and S}|2)}® H,, each representing pure states local-purely technical, we do not make any distinction between
ized in one of the pathgSp denotes the linear spaif.the  them here.
particle is localized in path 1, then chanrik] operates on The set of channels given by Proposition 1 is rather “al-
the internal degree of freedom. If the particle is localized inlowing” in the sense that it includes cases where the two
path 2, then channeb, is effected. The set of all trace pre- devices may interact or share correlated resources during the
serving gluings of the two channelg;, and ®, is precisely  operation. If one wishes to model twodependentlevices,
the set of all possible total channabs,; compatible withd®,;  restrictions have to be imposed on the set of gluings. In Ref.
and®d, [5]. The set of trace preserving gluings of two chan-[7] the concept ofsubspace localityhas been introduced.
nels is the same as the setsafbspace preservingP) glu-  Subspace locality is intended to describe a total operation
ings of these two channel§]. ®,; which is composed from two independent operations,
In the present context, the set of SP channels has a ratheach acting on one location, without any need for communi-
simple conceptual interpretation. With respect to the twocation or sharing of correlated resources, and where the two
paths of the interferometer, a global chanig); is SP if and locations are associated with orthogonal subspaces, rather
only if it causes no transport of probability weight betweenthan a tensor product decomposition. The following proposi-
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tion is a translation of a general result on subspace locdbeam splitter, as described in the Introduction.
gluings [5], to the present conditions. The set of subspace Assume channeld; and ®, and consider the possible
local gluings are calletbcal subspace preservin@gSP) glu-  total channelsb,,; given by Proposition 1. One can deduce

ings. the interference functioi to be

Proposition 2 Let @, be a channel with linearly indepen-
dent Kraus representaticfV,}., and let®, be a channel E(p) :lTr(Rp|) (12)
with linearly independent Kraus representatigd . All 2 ’

LSP gluings of®,; and®, can be written

where
N M NM
® =[1X1| ® D V(1lp|DVI+ 22| @ D W (2|p|2)W! ’
1ot(P) | X | gl w |p| Vhn | X | mE:1 i |P| YW R= E Cn,mW;]Vn: (13)
n,m=1

t t
+ 142 @ VK1|p2)W'+ [2)(1] @ WK2lp[ 1)V © with C,, i, as in Proposition 1. In the more restrictive case of

for all density operatorp on H ® H,, where LSP gluings, given by Proposition 2, one obtains
N M N,M
V=2 Vo W= 2 CopWi, (10) R= X Cy0ComWhVa, (14)
n=1 m=1 n,m=1
where the vectors; =[C; pli.; and c,=[C, - satisfy the  with the vectorsc; andc, as in Proposition 2.
conditions We have now found all the possible interference effects
5 5 ) ) compatible with two given channels. As seen, all possible
llegl* = > lcral? <1, [e?= > Coml®=<1. choices of interference effects can be reached by some
n m

choice of gluing matrixC. As seen the interference effects
Moreover, if a total channeb,, can be written as above, are determined by the gluings, not the chanpels se

then it is a LSP gluing ofb; and ®,. Since the gluing determines the interference effect this
Note that the vectors; andc, are not uniquely deter- means that the interference experiment gives us information
mined by the LSP gluing, but the gluing mat|®<=clc£ is. about the gluing at hand. This means that, if we have an

The most simple example of a gluing is the gluing of two unknown gluing, we might possibly use the interferometer to
identity channelgwhich is also an example of an LSP glu- reveal what gluing we have. In the following we investigate

ing). The total CPM is to what extent this is possible.
_ Assuming the internal state channels, and ®, are
Diop) = |11 @ (1p|1) +[2)(2] ® (2|p[2) + re'?1)(2] known, what can be said about the gluing from the interfer-
® (1]p|2) +re 92)(1| ® (2|p|1). (11)  ence experiments? Since the interference fundfiamlinear,

_ _ o _ it follows that E is determined by its values on a set of
In this case the gluing matrix is reduced to a single complednternal states forming a basis 6{H,), where£(H,) denotes
num.berC.:re"/’, with O$I’$1: A|th0Ugh the tWO ChanneI§ the set of all linear operators off,. If {|n>}r’:l:l is an
are identity channels, there is still a freedom in the choicgyy.pasis of 7, then the set of density operators

of gluing. Suppose the input state of chanigl) is p; {0 UL e Xt |

. / n nn’ nn’ vXnn’><Xn_n’|}n,n’:n>n’v where |¢nn’>
_:|‘/’><'p| ®p with |’/’>:(1/V2)(|1>+|2>)' The _.OUtpUt state =(12)(Iny+|n"Y), [xnwy =(1/32)(In)+i|n")), is such a basis.
is pr=|10(1| @ py +[1)(2| @ p, +_re'¢\1)<2| @ ptred2)(1@p. Given such a set of interference experiments, the fundion
The smallerr, the smaller is the “coherence” between the 5 by that the operat®, can be determined. But the task is
two paths. Although we have two identity channels we maynqt 1o find R, but the gluing matrixC. From Eq.(13) it can

nevertheles; completely destroy the cohere_nce. by setting be seen that i{Wﬂjvn M_l is a linearly independent set; then
=0. Hence, in this case the effect of the gluing is a relativee coefficientsC .

are determined byR. Hence, we can
phase shift and some degree of destruction of coherence bggnclude the fO””’m R

owing.
tween the two paths. Proposition 3 Let the CPM®,,, be a trace preserving

gluing of two channels with linearly independent Kraus rep-
resentations{V,}\., and {WJM_,, respectively. If the set
{WLV MM | is linearly independent, then the gluing mat@ix
So far we have considered only the structure of the set ofs uniquely determined by the interference functien
gluings on the two paths of the interferometer. We now turn It is not always necessary to run the experiment over a
to the interference effects caused by these channels. Here Wasis of density operators @f(H,). All information attain-
obtain expressions for all possible interference effects comable is extracted for a set of density operators spanning the
patible with given channels. Moreover, we investigate whasubspace SNV:nVn ,’}'n"{'cl Note also that Proposition 3 is
interference experiments may tell us about unknown gluingsabout the specific type of setup considered here. As is shown
To make the analysis as clear as possible, we assume the Sec. V one can construct generalized interference experi-
input states to be of the formp,=|y)(H®p, with [#)  ments that give more information. One may further note that

=(1/32)(|1)+|2)). This is the type of states created by thethis proposition gives only a sufficient condition. It is an

IV. DETERMINING THE GLUING
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open question whether or not it is also a necessary conditioiphase, because of vanishing visibility when the interfering
The condition(8) may possibly cause some cases to bestates are orthogonal. In Refgl1-13 the concept of an
uniquely determined in spite of a linearly dependent sebff-diagonal geometric phase is introduced, which in some
{WLV Jhne . Additional constraints, such as restriction to sense extracts more phase information. In Sec. V a general-
LSP gluings, may possibly help to determine the gluing. ized interferometer is introduced, which has the ability to

The foIIowing examples illustrate various situations thatcomp|ete|y determine arbitrary g|uings; this seems Vague|y
may arise. If one of the devices to be glued is the identityanalogous to the idea behind the off-diagonal geometric
CPM, thenR=2J, ¢, 1, \W},. Since the sefWilii; is lin- phase. Note, however, that the geometric phase is based on
early independent, it follows that the gluing matwhich  given initial states, while here we consider channels.
now is a IX M matrix) with C; ,,=¢; 1C, ,, is uniquely deter-
mined. Hence, the gluing, in sense of the gluing matrix, is
uniquely determined. We can conclude the following.

Proposition 4 Let &, be a trace preserving gluing of a |t is disturbing that the interferometric setup has only a
channel®; and an identity channel. The gluing mat@of  |imjted capacity to determine the gluing. Here it is shown
Do, With respect to some linearly independent Kraus reprethat there exists a generalization of the interference setup,
sentation of the channeb,, is uniquely determined by the ith the capacity to completely determine any trace preserv-
interference functiore. L . ing gluing of any pair of channels.

Alt'hough' this is a special case itis a rather important one. The standard two-path interferometer determines a detec-
Physically it corresponds to a situation where we have fion probability as a function of a variable phase shift in one

black bpx '”Sefted into ane of the paths of the mterferor_n-of the paths. This variable phase shift can be regarded as a
eter. Using the interferometer we can investigate evolutlorL

. .. . amily of unitary operators acting on the internal state. This
caused. by th.'s black box. What P_ro_posmon 3 tells us is tha uggests a generalization, namely, to find the probability as a
the ordinary interferometer is sufficient to fully explore thISf

black box, with respect to the gluing property. These aspectﬁuorlcgr?lg ?r: ea!uubrrgarrrrryogferﬁtzsrz 2%&9 on one of the paths,
will be discussed further in Sec. VIIl. In very much the same way as described in Sec. Il we

i Asla ;zcond gxamgle consider div';gﬁznd |¢N2 W'ﬂ:j consider a setup with a beam splitter creating an input state
inearly independent Kraus representatidfisXnlip-; an pi=|v)y|®p,, followed by an interaction stage with two

{lg)(mi}ines, respectively. Bothij) and|<(/2> are normalized, o\ o|ution devices acting according to some gluing. Then fol-
and {[m}}-; is some orthonormal basis 6. These two |ows a variable unitary operatdf in one path, acting on the
devices have the effect of taking arbitrary internal states Qotal state as1)(1| ® U+[2)(2| ®i|- Finally, there is the sec-
the pure statesyn)(yu| and [y,)(ys|, respectively. If|ys) ond beam splitter and a measurement c;f location of the par-

- ty - N o
=[1hz) then WoV,=[m)(n|. The set{|m><n|}m’n=1 is linearly ticle. Much as in Sec. Il, one finds that the probability of

independent and the gluing can be completely determined. Ijnqing the particle in path 1, after the final beam splitter, is
on the other hand, the two output statgs) and |») are

V. GENERALIZED INTERFEROMETRY

orthogonal, theW V,,=0, and nothing can be inferred about 1
the gluing. One r%nay note that in this case the interference P1= 2 *+[G(U, p)lcosard G(U, p I}, (15
function E is identically zero and there are no interference
fringes. N,M

There are cases when it is possible to partially infer the G(U,p) _1 > ComTr (W UVop)). (16)
gluing matrix. Let both channel®, and®, have the linearly nmEl

independent Kraus representatic{hn)(n|},’}‘=1. This corre-

sponds to devices that set all off-diagonal elements in thé‘Ithough not needed in principle, it may be convenient to

. : - dd a \variable phase shifter to obtairp =1
~{|n>},’¥:1 basis to zero, but leave the diagonal elements intac® : 172
One finds thatvvﬁqvnzﬁmn|n)<n|. Hence, the diagonal ele- +|G(U , py)lcosard G(U, py)] - x}. This means that for a spe-

mentsC,,, can be determined, but not the off-diagonal ele_cn‘|c choice ofp, andU one performs ordinary interference

ments. This example also demonstrates that it is not alway%)(pe”.mentS 0 determmé(U p1)- We call G the general-
interference function One may note thatE(p))

necessary to run the interference experiments on a basis gfedA
density operators spanning the whole &H,). Here it is  =G(1;,p)).
sufficient to run the experiment for a set spanning the sub- One may wonder if it is not possible to generalize this
space S{in)(nl}w:l. seturo even further. What if another unitary operdtbris _
With these examples we clearly see that this interferom@PPplied to the second path? Moreover, one may apply unitary
eter cannot distinguish all gluings. Moreover, we see that itoperatordJ andU’ to the two pathdeforethe action of the
abilities to recognize the gluings depend on which channeléwo evolution devices. However, this does not provide any
are glued. Although the interferometer is sufficient in themore information than doeS. The generalized interferom-
special case given by Proposition 4, it is problematic as aeter, as described above, has the power to distinguish all
experimental tool if one wishes to investigate what gluingstrace preserving gluings of two known channels.
of general type are present in an evolution mechanism. Lemma 1 and Proposition 5 below are formulated in
In the above examples one may recognize a distant anaslightly more general settings than in the rest of this investi-
ogy with the problem of an undefined noncyclic geometricgation. Here we allow the internal state channels to have
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output on a Hilbert spack- different from the input Hilbert  trary gluings. By using the following lemma, which is stated
spaceHs We say that the channels haseurce spacé{s  without proof, one can show that acceptable initial states
andtarget spaceH [6]. This means that the interferometer have nonsingular density operators.
might start with one type of system on the input side, butend Lemma 2 Let p be a density operator oH. There exists
in another type of system on the output side. Propositions 4 set of unitary operatof&) Ji., such thafU,p}, is a basis
and 2 both remain true under this generalization, with theof £(7) if and only if p is nonsingular.
modification that the total channeb,,; has source space One may note that the maximally mixed state is an ac-
Hs®Hs and target spacg/s® Hy. The variable unitary op- ceptable choice of initial state, while a pure state is not.
erator U in the generalized interferometer, as described Although the functionG or other similar constructions in
above, operates on tEe target space. principle give the same information & there may be other
Lemma 1 Let {Vidi-; and {Wy},,_, be two basesnot  5gpects that may make one preferable compared to the oth-
necessarily orthonormalof L(Hs,Hy). The set of linear grs. Apart from the question of difficulties of experimental
maps {nkk’}:,kf:y where the elements are defined asrealization, there are also questions about statistics and sen-
ﬂkk’(Q):erQka 0O0QeL(Hy), is a basis of sitivity to errors. These questions are not addressed here, but
L(L(HT),L(HY). below we will see another type of consideration where the
In this lemma/L(Hs, H7) denotes the set of all linear choice of setup does matter.
mappings fromHg to H+. The proof of this lemma is very We here relate the material in this and the previous sec-
similar to a proof in Ref[6]. There it is proved that the set tion to some measures introduced in Rgf]. These mea-
{(f’kk’}Ek':r defined by ¢kk’(Q):VkQVlrv is a basis of sures relate, through a certain construction, the visibility in
E(E(?—ZS),E(HT)), if {ViJy is a basis ofC(Hs, Hq). an interferometer to Kraus representations of two given
Proposition 5 Let the CPM®,, be a trace preserving channels inserted into the interferometer. The dependence on
gluing of two channelsb; and ®,. The gluing matrixC of the choice of Kraus representations one can recognize as the
®,,, With respect to some linearly independent Kraus repredifferent choices of LSP gluings of the given channels. That
sentations of the channels; and®,, is uniquely determined the gluings are LSP can be seen by comparing the construc-
by the generalized interference functi@n tion in Ref. [1] with Proposition 7, in the next section. In
The procedure described here can be said to be a proceRef. [1] the coherent fidelityF, between two Kraus repre-
tomography of the channeb,, [14-17, but with somea  sentations is defined as the visibility in the ordinary interfer-
priori information on the process; since we already have the@meter, when the initial internal state is maximally mixed. In
information on which channels are glued, and wish to deterthe language used herg, is the visibility caused by a LSP
mine the gluing. gluing of the two given channels. Hencé&(®,P,,C)

lProof. The function G(U ’n)ll?w can beT writtenG(U, py) =2|E(1/N1,)|, whereC is a LSP gluing matrixC=c,c}, with
=3TMFU)p], with F(U)=2q5, ComWUVn. For each  regnect to some arbitrary choices of linearly independent
fixed U the operatof(U) can be determined, given the val- rays representations. In Réfl] the maximal coherent fi-
ues ofG(U, p;) on a set of density operators forming a basisgelity is defined as the the maximum & over all possible
of L(Hy). pairs of Kraus representations of the two channels. This can

Itis always possible to find a basis 6{}y) consisting of |, recognized as the maximum dERL/N 1|)| over all pos-
uqitary operatolrs{18]. SinceF is a I_inear map, it is deter-  giple LSP gluings ofb, and ®,. In Ref. [1] it is also deter-
mined by how it maps such a basis. HenceGifs known,  ineq what is the closest unitary channel to a given Kraus
the funCt'on,\',: IS known.M _ _ representation of a channel. The closest unitary operator is

Both {Vnin-1 and{Winjn-, are linearly independent. From gefined as the one giving the largest visibility for the maxi-
these we construct two base¥ }K.; and {W}5_, of  mally mixed state as input state, when the operation acts in
L(Hs, H1), by adding linearly independent elements. We addone path and the unitary operator acts in the other path. The
these elements in such a way that the fiét1) elements are  maximal visibility so reached can be recognized as the maxi-
{Valte1 ((Windneg). The unknown matrixC is extended such  mum of 2G(U,1/N 1,)| over all unitaryU, for a fixed LSP
that C,,,=0 if m>M or if n>N. With these extensions all gluing of the channel and the identity channel.
the conditions of Lemma 1 are satisfied. Hence, the m@trix Using the generalized interferometer one might define
is uniquely determined, since it is formed by the expansiorseveral different measures in the same spirit as in [RgfIn
coefficients off, with respect to the bas{mkk,}lf w=1- W doing this, one must be aware that the setup may matter in a

One can note another approach to constructing an intenontrivial way. We have seen that the two setups leading to
ferometer to determine the gluing matrix. In this alter- G andG are equivalent in their abilities to determine gluings.
native setup the initial internal stapg is fixecLand instead However, when defining measures based on max|m|z|ng Vis-
there are two variable local unitary operatotsbefore and  ibilities, these two setups, as well as other constructions, may
U after the evolution devices. This arrangement results irgive different answers. As an example one may consider
another inererencs funciofi,(U,0): If hoth the vari- - L el e
able unitary operators act in path 1, th@pl(U,U) states. If we re);trict to LSP gI)llJings one can deduce that
=>mm Cn,mTr(WLUVnUpQ. With an appropriate choice of the A(<I>1,<I>2,C):%suq¢ﬂ:1||v| MW, with V and W as in
initial internal statep,, the functionG can determine arbi- Proposition 9. One may consider another setup, which is the
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same as the construction Ieadingaowith the only modifi- U=1X1®U;® 132 +[2)}2l @ U, ® 1a1_ (20)
cation that we also admit variations of the initial internal ) N )
state. The corresponding interference function is Comparing Propositions 6 and 7, one can see the differ-

~ _1 + ence. For SP gluings the system of interest interacts with one
G(B’U £ = 2Z0m ComTT(WeUVnUpy). Clearly, knowledge and the same ancilla system, while for the LSP gluings there

of G is sufficient to determine the gluing. In this seneis  are two ancillary systems. If the particle passes path 1, it
equivalent toG. In analogy with the functiorA one may interacts only with ancilla 1, while leaving ancilla 2 un-
considerB(®y, P,,C)=sup, u |G(U,U,p))|. One can show touched, and the other way around if the particle passes path
that, in the case of LSP gluings,B(®,,®,,C) 2. _ _ . _
:%SUFM|:1||V|¢>||SUHX\|:1||W|X>||:%||V||||VV||- There exist LSP In the special case of a gluing of a channel and an identity
gluings for which A(®,,®,,C)# B(®,,®,,C). One ex- channel, Eqs(19) and(20) are unnecessarily complicated. In
ample is if both®,; and ®, have Kraus representation this case all possible gluings, which necessarily are LSP, can
{|1)(1],12)(2|}, where{|1),|2)} is an orthonormal basis of a be reache_d using only one anC|IIary_ system. In th_e next sec-
two-dimensionali,. We assume that the LSP gluing is such tion we w.|II see that every such gluing can be written as in
that V=|1)(1] and W=[2)(2|. In this caseA(tI)l,(Dz,C):i Ed. (4) with a joint unitary operator as in Eq3), for a

and B(CI>1,CI>2,C):%. Hence, for these types of questions theswtably chosen ancillary space.

choice of interference setup matters.
VIl. UNITARY REPRESENTATION OF CHANNELS

As exemplified in the Introduction, one may use a joint
unitary evolution with an ancilla system to implement a
In this section we connect the gluing approach with thechannel in one of the paths of the interferometer. It was also
approach using unitary channels acting on combinations o$hown that the choice of unitary representation may affect
the system and ancillary systems. In Ré¢f57] it has been the interference effects. From Secs. Il and IV we know that
shown that for a special class of CPMs the property of beingt is the gluing that determines the interference effects. More-
SP or LSP can be characterized in terms of unitary actions oaver, from the previous section we know that every gluing
system-ancilla combinations. The present setting of a twoean be expressed through such unitary representations.
path interferometer belongs to this special class of CPMs. Hence, there must exist some connection between the choice
The following proposition is a translation of a proposition of unitary representation and the resulting gluing. The mate-
in Ref. [6] to the specific condition considered here. rial in the previous sections does not provide us with any
Proposition 6 A channel ®,; is SP on (Sg{|1)} explicit relation between the unitary representations and the
®H,,Sp|2)} ® H,) if and only if there exists an ancilla space resulting gluing. Here we establish such a relation, in the
H,, a normalized statén) e H,, and unitary operatort),  SPecial case of gluings of a channel and an identity channel.

VI. UNITARY REPRESENTATION OF GLUINGS

andU, on H, ® H, such that Ultimately we will obtain a strategy to determine which glu-
ing a given unitary representation gives rise to. Vice versa, if
Dyop) = Try(Up ® [a)(a]U") (17 we have a specific gluing of a channel and an identity chan-

nel which we wish to implement, we will have means to
select unitary operators that create precisely this gluing. This
U=1]1X1| ® Uy +[2)2| ® U,. (18)  may be of use in theoretical investigations as well as in de-

. . _sign of actual physical realizations.
Note that every trace preserving gluing of two channels is “\e wish to find the relation between the unitary represen-

_aSP gl_uing. Vice versa, every SP channel is a trace preserysiion of a channeib, and the LSP gluingb,,, which this
ing gluing of two channel$s]. The two channels that are e resentation gives rise to, as described in the Introduction.
glued ared®; and d,, which are obtained from; andU;, 14 (g this we first deduce an expression for the set of all
respectively, through Eq2). To see this, note that if the nitary representations of a given chansigl which then is
particle is localized in path 1 with internal staig then the o516 1o the LSP gluings. The only limiting assumption is
result of the mappingb is again localized in path 1, but ¢ the Hilbert space of the internal degree of freedom and
with the new internal state,(p)). _ the ancillary Hilbert space are finite dimensional. The strat-
The foII_owmg gives a similar constr_u_ct|o_n for LSP chan- egy to be used is that every unitary representatigncan be
nels, and is a translation of a proposition in Ref to the  gecomposed into two complementary partial isometfes
present context. _ andW, whereR, say, contains the “gluing information.” By
Proposition 7 A channel ®,, is LSP on (SE|1)}  ysing this decomposition, an equivalence relation can be de-
®H,,SH|2)} ® H,) if and only if there exist Hilbert spaces fined on the set of unitary representations, which tells if these
Ha1,Hap, Normalized vectorgal) e Hy, [a2) e Hap, @ uni-  can be distinguished or not in the interferometer. The equiva-
tary operatord; on H, ® H,;, and a unitary operatdd, on  |ence classes correspond to the different LSP gluings.
H, ® H,, such that Let @, be a trace preserving CPM. Lét, be finite di-
mensional, and let|a)e be normalized. We let
Dioi(p) = Trar o2(Up @ [al)(al] @ [a2)(a2UT),  (19) U(d,, Ha,|a)) denote |trze 7sieat of all unitary operatol,
for all density operatorp on H ® H,, where which representb, via Eqg. (2).

for all density operatorp on H,® H,, where
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The Kraus number K&,) of a CPM®, is the number of Moreover, one can verify thad,, representsb, via Eq. (2).
operators in a linearly independent Kraus representation dflence,U , e U(®y,H,,[a)).
@, [6]. One can see that/(d,,H,,|a) is empty if It has to be shown that if),, € U(®4,H,,|a)) then there
K(®,)>dim(H,). existae Ax and W e W, which giveU,, via Eq. (24). Let

If an operatorRe £L(H) satisfiesR'R=P; and RR'=P;, {|b|>}|N:l be an arbitrary orthonormal basis #f,. It follows
where P; and Py are projectors onto two subspaces’f  that {W}\, with W;=(b|U,|a) is a Kraus representation of
thenR is apartial isometry[19]. We say that the project®  &,. Let {V,JK, be a linearly independent Kraus representa-
projects onto thenitial spaceof R. Likewise we say thaP;  tjon of ®,. It is well known [20] that any two Kraus repre-
projects onto theinal spaceof R. One may note that the gentations can be connected through a unitary matrix, where
subspaces onto whidR; and P project are of the same di- the Kraus representation with the smaller number of ele-
mension. In the following we le®;" denote the complemen- ments is padded with zero operators in such a way that the
tary projector toP; and similarly withP; andP;. two sets have the same number of elements. Note that the set

Lemma 3 Let {Vi}ic; be a linearly independent Kraus {wN  has at least as many elements{¥g.,, since the
representation of a trace preserving CPMb. Let |astis a linearly independent Kraus representafiin The

{lag), ... [ax)} be an orthonormal set d€ elements in an at  existence of a unitary matrix connecting padded sets of
leastK-dimensional spacé{,. Then the operator Kraus operator is equivalent to the existence of Nk K
K matrix M such that\/\/|:EE:1 MyV,, for all 1=1,... N, and
R=D V, @ |a)al (21)  such thaﬂ\/lTM =ly, wherel},é denotes the(Nx K identity ma-
=1 trix. Define the set{lag}hc, by |a)==1; Mylb) for k

=1, ... K. One can verify tha{|ak>}le is an orthonormal set.
Let P, and P; be defined as in Eq22). Using the fact that
®, is trace preserving, one can verify thHagU,,P;=R, with
P=1®a)a, Pi=> VkVT, ® [ad(ay| (22) R defined as in Eq(?l). Since{|a}c, gnd Va1 sa'Flsfy
KK/ the properties required by Lemma 3, it follows tHatis a

, ) , partial isometry. By Lemma 4 it follows thdt, can be
are projectors. We state without proof the following lemma., ritten as in Eq.(24) with W=P:U,,P.". By Lemma 4 it
. o

Lemma 4LetU be a unitary operator oi. LetP;andPs  fqiows thatW is a partial isometry with the correct initial
be projectors onto two subspaces of equal dimension. If.q final spaces.

P;UP; is a partial isometry, theR; UP;" is a partial isometry Finally, it has to be shown that if two pai@,W) and
and (a’,W) are different, then the corresponding operatds

U=P;UP;+ P;UP/", (23) andUy, are different. Assume these two pairs are mapped to
the sameJ. Then

is a partial isometry.
To prove this lemma one has to show that

Here we introduce some notation. L&, be at leasK

dimensional. LetAx denote the set of all orderdg-tuples K
(Jay), ... ,|ak)) of pairwise orthonormal elements Hi,. Note W-W =V, @ (jay) - |ag)al. (25
that two elements,a’ e A are equal if and only ifia) k=1
=lag), k=1,... K. The operatoWW-W' maps elements i, ® Sp{|a)} to the

Let {Vk}Ez1 be a linearly independent Kraus representatio
of some channel. Giveae Ay, let Ry denote the range of
the operatoR as defined in Eq.21). By Lemma 3, it follows
that R is a partial isometry. The initial space &t is H
® Sp{|a)} and the final space B3 Let W5 denote the set of
partial isometries onH,®H, with initial space (H,
® Spfla)})* and final spac&R;.

Proposition 8 Let {V,}i, with K=K(®,) be a linearly
independent Kraus representation of the chadnellLet H,
be at leastk dimensional and leta) € H, be normalized.

ero element. Similarly=, V@ (|ap)—|a))(al maps ele-
ments inH, ® Sp{|a)}* to the zero element. Hence, from Eq.
(25) it follows that W—-W'=0 and =K, Vi ® (Ja))—|a)(al
=0. Let|y) € H, be arbitrary. By applyingy| “from the left”
and|a) “from the right” onto the last expression, one obtains
S (xlay—(x|a))Vi=0. By linear independence of
{Vi}ie,, and the arbitrariness df) it follows that a’=a.
Hence, no two distinct pairs are mapped to the same unitary
operator. |
Using the interferometric setup, as described in the Intro-

Then duction, two unitary representatiot, and U;, are distin-
K guishable in the interferometer, if and only if the correspond-
Ua =W+ 2 Vi ® [aal (24)  ing interference function& andE’ are different. From Eq.
k=1 (5) and Proposition 8 it follows that the interference function
defines a bijection between the $&tb,,7,,|a)) and the set is E(p) =32/ (a|a)Tr(Vyp). Because of the linear inde-
of all pairs(a,W) with ae Ay andWe W pendence of Vihe,, two unitary representations are distin-

Proof. First it is proved that ifae A, andWe Wy then  guishable if and only if the corresponding vectofa|a))ic,
the operator U, defined by Eq. (24) belongs to and({a;|a)), are different. SincdV,}i_, is a linearly inde-
U(P4,H,,|@)). One can verify that,,, so defined, is unitary pendent Kraus representation ob;, it follows that
since it is a sum of two complementary partial isometries.((ak|a}),*fzl can be identified with the %X K(d,) gluing ma-
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trix C. As shown in Sec. IV, the gluing matrix is uniquely does not have to be maximal, and we can reach all the LSP
determined by the interference functi@h for this type of  gluings. [ ]
gluing. From this it follows that two unitary representations

Ui, andUj, are distinguishable in the interferometer if and VIIl. DISCUSSION

only if they correspond to different LSP gluings of the chan-
nel ®, and the identity channel. Another way to put this is to
say thatU(®4,H,,|a)) can be equipped with an equivalence

relatllor? ~. Two Lémtary ,reprgsentanons are equaldﬂ_{a . pendently of each oth€tLSP gluing, there remains an arbi-
NU!a’ if ((ak|a>)|§:1:.(<ai§|e.1))k:l'. As we have §een, this IS rariness in the interference pattern, which corresponds to the
equivalent to being indistinguishable by the |nterferometernonumqueness of LSP gluings. Here we concentrate on the
which is the same as saying that they correspond to the san@ecial case of gluings of a chande] and an identity chan-
LSP gluing of®; and the identity channel. nel. Such gluings can be described as pélrs, V), whereV
Since the gluing matrixC, in the present case, is only a js as in Eq.(10). One way to understand the nonuniqueness
row (or column matrix, it can be regarded as a vector. If this js to describe the state of the particle in the interferometer in
vectorC satisfieq|C||=1, we say that the LSP gluing isaxi-  terms of an occupation number representation. This describes
mal. the occupation states of the two paths, rather than the loca-
Using Eqgs.(3) and(4), it is possible to define a mapping tion of the particle. It is sufficient to extend the Hilbert space
M from the setlU(®,,H,,|a)) to the set of LSP gluings of of the internal degree of freedom with one additional dimen-

As we have demonstrated it is not the internal state chan-
nelsper sethat determine the interference pattern, but their
gluings. Even if it assumed that the devices are acting inde-

the channetb; and the identity channel. sion spanned by a “vacuum state,” which describes the non-
Proposition 9 Let ®, be a channel. Let{, be finite di-  Presence of the particle in that pdth. The total extended

mensional anda) e H, normalized. Hilbert space is the tensor product of two such extended
(1) If dim(Hy) <K(®,) thenU(®,,H,,[a) is empty. Hilbert spaces. In the case of a trace preserving gluing of a

(2) If dim(H,)=K(®,) then M defines a bijection be- channel and an identity channel, the corresponding channel
tween the set of equivalence classes undeand the set of in the occupation number representation can be written as a

maximal LSP gluings ofP; and the identity channel. product channe®; ® |, wherel, is the identity channel act-
(3) If dim(H,) >K(®,) then M defines a bijection be- ing on operators on the extended Hilbert space of the empty
tween the set of equivalence classes undegind the set of path. The channeb, takes the forn{7]
LSP gluings of®, and the identity channel. -
In essence this proposition says that if the dimension of ®(p) = >, VipVi + Vp|0)(0| + [0)X0[pVT + |0)(0[p|0)0],
the Hilbert space of the ancilla is equal to the Kraus number k
of the channefb,, then we reach precisely the maximal LSP (26)
gluings through the unitary representations. If the dimension -
of the ancillary Hilbert space is strictly larger than the Krauswhere|0) is the vacuum state of the path in whidh acts.
number, then we reach all LSP gluings®f and the identity ~ As seen, the extended chanrd] contains the same infor-
channel. mation as the paif®,,V). To every trace preserving gluing
Proof. The first statement follows sindg®,) is the mini-  of the channeib, and the identity channel, there corresponds

mal number of elements in any Kraus representatiodpf channeﬁ)l. The channeﬁ)l describes not only what the
[6]. machine does with a particle present in the input, but also
For the second statement, assubdg e U(®1,Ha,(8).  \hat is does with superpositions of the particle and the
By using Proposition 8 and Eqe3) and(4), one finds that  yacyum state. For more details concerning this occupation
the gluing matrix isC=[(aa)]ic;. SinceH, is K dimen-  number approach the reader is referred to RES).

sional, it follows that{|ay}c, is an orthonormal basis 6. In Sec. IV (Proposition 4 we saw that the ordinary inter-
Since|a) is normalized 2|, [>=2I ,[(a|@)|?=1. Hence, the  ferometric setup has the power to determine trace preserving
gluing is maximal. One can see that all elements in argluings of a channel and an identity channel. Hence, it can
equivalence class are mapped to the same gluing. Moreovefgtermine the operatov in Eq. (26). In other words, the
two elements from different equivalence classes are mappddterferometer has the capacity to reveal more about the glo-
to different gluings. bal evolution than direct measurements, as pointed out in

It has to be shown that every maximal gluing can beRef. [1]. However, the equivalent description in termsdof
reached viaM. Suppose we have a maximal gluing with suggests that another strategy is possible, at least in prin-
gluing matrixC. If we regard the gluing matrix as a vector, it ciple. If the evolution device is subjected to a process tomog-
f.OIIOWS thatC e C, such th_at|C||:lK. Itis always possible to raphy on theextendedHilbert space, the chann&il would
find an orthonormal basia={[ag}i, ff Ha, such thatCy  po veyealed and hence provide the same information as the
=(ay|a). Let Uj, be defined fron{|ag}j-,, through Ed(24),  interference experiments would. This would correspond to
for some arbitrary choice oV e Wz preparing states including linear combinations of the particle

For the case dilft{,) >K(Py) one can reason very simi- in some internal state and the vacuum state. Similarly, the
larly as above, with the modification thélg)}hc; spans a measurements performed on the output has to be sufficiently
proper subspace dff,. This implies that the gluing matrix rich on the extended state space. Leaving aside the question
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of how such states actually would be produced, and howary evolution is used in interferometers. The choice of joint
such measurements would be performed, this means that thmitary evolution used to realize a given channel is not
interferometer is not really necessary to determine trace praique. Although two such unitary operators realize the same
serving gluings of a channel and the identity channel. Thehannel, they may cause different interference phenomena
same information could, in principle, be obtained with directwhen the machine is inserted into one of the paths of the
measurement on the output states, provided the input statégerferometer. We investigate which gluing each choice of
and the measurements are sufficiently general on the exwitary representation gives rise to, and hence which inter-

tended Hilbert space. ference pattern. Conversely, if one wishes to construct a spe-
cific gluing we determine the possible choices of unitary
IX. CONCLUSIONS representations which give the desired gluing. This may be

) o ] ~of use in the design of actual physical implementations of
Two-path single-particle interferometry of particles with s type of channel.

an internal degree of freedom is investigated. Given internal |, previous work{5] the set of all possible trace preserv-
state evolution devices, whose action is characterized bbhg gluings of given pairs of channels has been deduced.
trace preserving completely positive mapbannels we ask  Here we extend this work by investigating how interferom-
how the interference phenomena are affected when such dgers can be used to analyze which gluing is actually present.
vices are inserted into the paths of the interferometer. We; is shown that the standard interferometer in general has a
investigate the nonuniqueness of the interference patterns fQpited capacity to determine the gluing. Several gluings
given internal state evolution channels. This question is apgjve rise to identical interference phenomena. Due to these
proached from two points of view. The first is to use thejimijtations we here introduce a generalized interferometer. It
concept of gluing of completely positive maps developed injs shown that this setup has the capacity to distinguish all
Ref. [5]. Itis found thqt the possible mterfgrence effects arépossible trace preserving gluings of arbitrary channels. As
determined by the gluings, rather than the internal state chary,ch this provides a tool for experimental investigations of

nels per se Using the gluing approach we deduce all pos-whijch gluings are present in actual evolutions.
sible interference effects compatible with given channels.

In the second approach we make use of the fact that chan-
nels can be realized using joint unitary evolution on a system
and an ancillary system. By this approach we connect to | thank Erik Sjoqvist for many valuable comments and
other investigations in the literatuf@—3] in which joint uni-  discussions.
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