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Excitation of Faraday patterns in theweakconfinement space of low-dimensional Bose-Einstein condensates
(BEC) by a periodic modulation of the trap frequency,Vtight, in the tight confinement space is shown. For slow
modulation the low-dimensional dynamics of the BEC in the weak confinement space is described by a
Gross-Pitaevskii equation with time modulated nonlinearity coefficient. For increasing modulation frequencies
a noticeable reduction of the pattern formation threshold is observed near 2Vtight, which is related to the
parametric excitation of the internal breathing mode in the tight confinement space. These predictions could be
relevant for the experimental excitation of Faraday patterns in BEC.
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The nonlinear spatiotemporal dynamics of Bose-Einstein
condensates(BECs) is attracting increasing interest in recent
years, with a major focus toward the conservative dynamics
of spatially localized structures like solitons and vortices.
The possibility of controlling the evolution of bright and
dark solitons or of periodic matter waves has been widely
addressed in recent works by exploiting, among others, the
temporal modulation of the atomic scattering length[1]. Less
attention has been devoted so far to the study of the dynam-
ics of dissipative BECs in view of the potential observation
of spatially-extended matter-wave dissipative patterns[2,3]
which are ubiquitous in spatially extended physical systems
driven far from equilibrium[4]. We recently predicted[3] the
spontaneous emergence of patterns and quasipatterns in
BECs when the atomic scattering length is periodically
modulated in time. As these patterns arise due to the modu-
lation of a system parameter(the scattering length), they
show features similar to the parametric Faraday waves ob-
served on the free surface of a fluid subjected to oscillatory
vertical acceleration(see, e.g., Ref.[4]). Indeed, the atomic
density waves excited in this way oscillate at half the modu-
lation frequency, and the selected wave-number depends on
the modulation frequency through a dispersion-induced
mechanism.

Here we show that, in low-dimensional BECs, Faraday
patterns can be excited by modulating the trap frequency in
the tight confinement direction, alternatively to the modula-
tion of the atomic scattering length. This way 2D(1D) Far-
aday patterns can be excited across the extended dimensions
of disk- (cigar-) shaped BECs. We also show that this mecha-
nism introduces new resonance phenomena which yield,
among others, to a noticeable lowering of the pattern forma-
tion threshold. These results are of major interest for an ex-
perimental observation of dissipative patterns in BECs,

where modulation of trap frequencies is usually easier than
modulation of the atomic scattering length.

The starting point of our analysis is the Gross-Pitaevskii
(GP) Eq. (6) for a confined BEC, generalized to include
damping[7]:
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whereC=4p"2Na/m, N is the number of particles,a is the
interatomics-wave scattering length(a.0 for a repulsive
BEC, which we consider), m is the mass of the particles,m̄ is
the chemical potential,Vsr ,td is the trapping potential, andg
is the damping parameter. The phenomenological model of a
dissipative BEC described by Eq.(1) is compatible with ex-
periments for dilute alkali BEC near absolute zero, and it has
been used by several authors to study, e.g., vortex lattice
formation in rotating BECs[8] and splitting of quantized
BEC vortices[9]. Estimated values forg in 87Rb and23Nd
range between 0.005 and 0.03[7–9]. In the absence of damp-
ing the normalization imposeseuCsr ,tdu2d3r =1. Our study
covers both the 1D case of a cigar-shaped BEC extended
along thez direction,Vsr ,td= 1

2mfVtight
2 stdsx2+y2d+Vweak

2 z2g,
and the 2D case of a disk-shaped BEC extended in thesx,yd
plane,Vsr ,td= 1

2mfVtight
2 stdz2+Vweak

2 sx2+y2dg. The condition
Vweak!Vtight is assumed which means thatVweak andVtight
are the frequencies of the trap along the weak and tight con-
finement directions, respectively. We assume thatVtight is

subjected to periodic modulation: Vtightstd=V̄tightf1
+a cossVtdg. In terms of the scaled variablest=V̄tightt, R

;sX,Y,Zd=sx,y,zd /atight, atight=Î" / smV̄tightd, and u
=atight

Î4paNC, and assuming for definiteness a disk-shaped
BEC, Eq.(1) takes the following dimensionless form:
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where
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vtightstd = 1 +a cossvtd, s3d

vweak=Vweak/V̄tight!1, v=V /V̄tight, and m=m̄ / s"V̄tightd.
The dynamical equation for a cigar-shaped BEC is retrieved
from Eq. (2) after interchangingvweak with vtight. In the ab-
sence of damping the normalization condition foru reads
euusR ,tdu2d3R=Q, whereQ=4pNa/atight is an adimensional
parameter characterizing the strength of the nonlinear inter-
action. Below we show that, forv!1 (slow modulation),
Eq. (2) can be reduced to the same GP equation as used in
Ref. [3] to describe Faraday patterns in BECs under scatter-
ing length modulation. The physical reason for the equiva-
lence of modulating the scattering length and the trap fre-
quency corresponding to the tightly confined directionszd
lies in the (periodically forced) breathing dynamics of the
BEC across that direction. This dynamics entails a periodic
change of the BEC density which, in its turn, leads to an
effective modulation of the nonlinear particle interaction in
the weakly confinedsx,yd plane. However, asv is increased,

a resonance phenomenon is observed nearv=2sV=2V̄tightd,
corresponding to the parametric excitation of the BEC
breathing mode in the tight confinement direction[10]. Al-
though close to resonance the dynamics becomes compli-
cated and a reduction to a lower-dimensional GP equation is
not possible, pattern formation is still predicted and occurs at
much lower thresholds, which may be of major interest from
an experimental viewpoint.

We consider first the slow-modulation regime. The reduc-
tion of the BEC 3D dynamics to an effective 2D description
is done through a multiple scale analysis[11]. We assume a
slow modulation,v~Os«d (with «!1), a weak interaction
of particles,uuu2~Os«d, and a largef~Os«−1/2dg characteristic
spatial scale of the BEC wave function variation across the
weak confinement plane. This scaling corresponds toQ
~Os«0d, which is compatible with typical experimental con-
ditions with dilute BECs(see, e.g.,[6]). Under these condi-
tions a weakly nonlinear analysis of Eq.(2), which uses«1/2

as the expansion parameter, leads to the factorization

usX,Y,Z,td = f 1
2vtightstdg1/4expf− 1

2vtightstdZ2gcsX,Y,td,

s4d

where, at the leading order, the reduced amplitudec
~Os«1/2d satisfies
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which is obtained as a solvability condition at order«3/2 in
the asymptotic expansion. The chemical potentialm
=fvtightstd+m1g /2, with m1~Os«d [12]. Note that Eq.(5) is a
damped GP equation with time-varying nonlinear term. Note
also that, for a flat trap in the weakly confined space
svweak=0d and small dissipation coefficient and modulation
depthsg ,a!1d, Eq. (5) becomes
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2 − m1 + ucu2dc + a0cossvtducu2c,

s6d

with a0=a /2 (for cigar-shaped BECs,a0=a). In its present
form Eq.(6) coincides with Eq.(3) in [3], which was shown
to support Faraday-type patterns. The wave-numberk=ksvd
of the excited pattern and the thresholda0,thrskd for pattern
formation at the first parametric resonance tongue follow
from Ref. [3]:

ksvd = Î− m1 + Îm1
2 + v2,

a0,thrskd =
2gÎ2m1 + k2sm1 + k2d

k
. s7d

The behavior predicted by Eqs.(7) was confirmed by a direct
numerical integration of Eq.(2). In order to reduce the com-
putational time the simulations were carried out in 2D space
by assuming a tight(weak) confinement in the vertical(hori-
zontal) direction. Periodic boundary conditions along the
horizontal direction were used, corresponding to the limiting
case of flat potential in the elongated direction. Figure 1
shows an example of quasi-1D Faraday patterns. A sequence
of snapshots of the BEC density in coordinate space is
shown at time intervals equal to half the modulation period
(left), and BEC density in momentum space corresponding to
snapshot(a) is shown on the right. The BEC density pulsates
in the tightly confined(vertical) space at the trap modulation
frequencyv, see Eqs.(3) and (4), whereas the BEC spa-
tiotemporal oscillations along the weakly confined space oc-
cur at half the trap modulation frequency. Note that the val-
ues of the modulation frequencysv=0.62d and of the
reduced chemical potential(m1=2.08, as calculated from the
value m=1.54 used in simulations) are of order of 1. This
means that the mechanism of excitation of Faraday patterns
is efficient even when the parameters of the system are be-
yond the smallness assumptions underlying Eq.(5).

FIG. 1. (a)– (d) Sequence of BEC density as taken at every 1/2
of the trap modulation period(from top to bottom); (e) BEC density
in momentum space(density of the spatial Fourier spectrum of the
BEC wave function) corresponding to snapshot(a). Plots are ob-
tained by numerical integration of Eq.(2) with periodic boundary
conditions in both directions, and with the trapping potential in the
vertical (Y) direction. The trap modulation frequency isv
=0.62svbreath<1.77d. Other parameters area=0.5, g=0.01, andm
=1.54. The spatial grid is 256332 (aspect ratio: 8:1). The size of
integration space along the horizontalsXd coordinate is 176. The
moden=3 of periodic boundaries(along theX axis) is excited.
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The parametric excitation process usually saturates for
sufficiently large dissipation, leading to a stationary pattern
(steadily oscillating with the half of excitation frequency),
whereas for very weak damping the direct parametric process
can be followed by its inverse process, leading to periodical
sequences of revivals similar to those observed in conserva-
tive 1D BECs[13]. We observed periodic revivals typically
for gø0.001, whereas damped periodic revivals are obtained
for more realistic values ofg (we typically usedg~0.01
[7–9].

A key aspect of the modulation frequency value used in
Fig. 1 is that it is far below the natural oscillation frequency
of the BEC breathing mode in the tight confinement direc-
tion, vbreath, which is close to 2. Asv is increased close to
vbreath, the BEC dynamics becomes more involved owing to
the parametric excitation of the internal breathing mode[10].
In the conservative, undriven case such breathing oscillations
are undamped[10], and in an elongated BEC may lead to a
self-parametric instability, i.e., the transfer of the breathing
energy to longitudinal waves in the weak confinement space
[14]. In the presence of damping and trap frequency modu-
lation, an enhancement of the breathing oscillation depth is
expected when the parametric resonance conditionv
=vbreathis attained, with a corresponding threshold lowering
for pattern formation. Numerical simulations of Eq.(2) show
indeed such a characteristic resonance behavior. As an ex-
ample, Fig. 2 shows pattern formation dynamics forv
=1.54, which is close to the expected resonancev=vbreath
,1.77, which has been numerically computed by perturbing
the undriven ground state. The main effect observed, as com-
pared to Fig. 1, is the enhancement of the contrast of the
pattern, as well as a dramatic lowering of the pattern forma-
tion threshold. In fact the numerically found thresholds are
athr=0.149 andathr=0.031 for Figs. 1 and 2, respectively.
Figure 3(a) shows the dependence of the numerically deter-
mined threshold on the modulation frequency(circles), com-
pared with the theoretical prediction valid for slow modula-
tion, Eq. (7) (dashed line); the wave numbers of the
corresponding patterns are shown in Fig. 3(b). Due to peri-
odic boundaries the allowed wave numbers have a discrete
character[the set of spatial(Fourier) modes is discrete]. This
explains the observed periodic-like character of the pattern
formation threshold that lowers for some frequencies(those
resonant with BEC modes in the weakly confined direction).
The theoretical dashed curve, as expected, does not capture
the threshold lowering atv=vbreath, which is due to the en-

hancement of the BEC breathing in the tightly confined di-
rection. To quantitatively evaluate such a resonance in a
simple way, let us assume a BEC with large aspect ratio
(vweak=0) and use a Gaussian-shaped Ansatz to Eq.(2) dis-
regarding the spatial dynamics in the nonconfined space. We
consider a disk-shaped BEC and setu=Astdexpf−bstdZ2g,
whereAstd and bstd are complex-valued functions of time.
After substituting the Ansatz into Eq.(2) and making a para-
bolic approximation inZ of the nonlinear term one obtains:

dA

dt
= − sg + idsb + uAu2 − mdA, s8ad

db

dt
= − sg + idf2b2 + uAu2sb + b*d − 1

2vtight
2 stdg. s8bd

In the absence of modulation[vtight=1, Eq. (3)] the steady-
state solution to Eqs.(8), which corresponds to the BEC

ground state, readsb̄=1/s4md, uĀu2=m−1/s4md, which im-
posesm.1/2. The BEC response for smallv, Eq. (3), is
easily studied in the limitg ,a!1 by standard linearization
of Eqs. (8) around the steady state. The expression for the
amplitudeDuAu2 of the BEC peak density oscillations around

its mean valueuĀu2 is too cumbersome to be given here;
however simple expressions can be provided forg→0. For a
disk-shaped BEC the resonance frequency isvres

2 =3
+1/s4m2d, which compares well with the numerical result
vbreath<1.77 for the parameters used in Figs. 1 and 2. Note

FIG. 2. Same as Fig. 1, except for parameters. The trap modu-
lation frequencyv=1.56 is closer to the frequency of the BEC
breathing mode in the vertical direction:vbreath<1.77;a=0.1. The
moden=6 of periodic boundaries(along theX axis) is excited.

FIG. 3. (a) Pattern formation threshold vs modulation frequency
(neutral stability curve) as obtained by numerical integration of Eq.
(2) (solid circles), by analytical asymptotic analysis[Eqs. (7),
dashed line], and by the analytical model taking into account the
resonant enhancement of BEC pulsation[Eqs. (8), solid line]; (b)
wave number of the pattern as obtained by numerical integration of
Eq. (2) (solid circles), and by the analytical model(line). Param-
eters and conditions are the same as in Fig. 1.
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that vbreath→2 whenm→1/2, i.e., whenuĀu2→0, which is
the noninteraction limit. If we introduce the modulation en-
hancement factord=sDuAu2/ uĀu2d /a, in the limit g→0 one
obtains d=2/uv2−vres

2 u, which for v!vtight gets close to
1/2, i.e., corresponds well to that following from the
asymptotic expansion(6): a0/a=1/2. Analogous calcula-
tions for cigar-shaped BECs lead tovres=2, andd=4/uv2

−vres
2 u independently of the value ofm, which is compatible

with Ref. [10].
The above study has been performed in the zero confine-

ment limit in the weak confinement space. More realistic
configurations were considered by numerically integrating
Eq. (2) with a weak harmonic potential trap in the weakly
confined direction. Figure 4 shows an example. The pattern
formation thresholds as well as the emerging wave numbers
in the presence of weak confining potentials correspond sat-
isfactorily to those previously obtained in the absence of
axial confinement. In the simulations of Fig. 4 the modula-
tion depth parameter was chosen approximately 2 times
above its threshold value, and the patterns depicted appeared
after 50 periods of the radial trap modulation.

The calculation in Fig. 4 is a 2D analog of a cigar-shape
BEC. The parameters used for the calculation, in terms of
real physics units, correspond, e.g., toN=53105 atoms of
87Rb in an elongated trap of axial and radial frequencies of
14 and 112 Hz, respectively, which result in a BEC axial and
radial size of 100 and 12.5mm, respectively. These param-
eters are compatible with Ref.[15]. The corresponding
modulation frequencies used in cases(a), (b), and(c) in Fig.
4 correspond to 190, 257, and 370 Hz.

In conclusion, we demonstrated that low-(one- and two-)
dimensional Faraday patterns can be parametrically excited
in the weak confinement space of BECs by periodic modu-
lation of the trap frequency in the tight confinement space.
The reported mechanism is alternative to the scattering

length modulation studied in Ref.[1]. Since the modulation
of the trap parameter is usually easier than that of the scat-
tering length, and additionally leads to a dramatic threshold
reduction due to the excitation of the BEC internal oscilla-
tion mode, we envisage that our results can have major im-
portance toward an experimental observation of Faraday pat-
terns in BECs.
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