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The saddle-point analysis of the transition amplitude shows that the quantum interference effect does not
occur in the direct process of photodetachment by a circularly polarized laser field. This fact is interpreted in
terms of classical electron trajectories. Comparison between the length and velocity gauges is performed by
simulating spectra of photoelectrons produced in a focus of a laser pulse. A substantial discrepancy is found in
the kinetic energy distribution of photoelectrons. At low energies, only the predictions in the length gauge are
consistent with the Wigner threshold law.
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Ionization of an atomic system in a strong laser field re-
ceived great interest during past decades. Numerous nonper-
turbative methods have been developed to treat the problem.
Among these are the Keldysh-Faisal-Reiss(KFR) theory
[1–3] and its various modifications[4,5], the R-matrix Flo-
quet theory[6–8], the Floquet close-coupling method[9], the
non-Hermitian Floquet Hamiltonian method[10], the quasis-
tationary quasienergy states(QQES) approach[11], and di-
rect numerical integration methods[12,13].

The analytical KFR theory is a most fascinating approach.
Despite to the fact that it was first proposed by Keldysh 40
years ago and since that time has been under intensive dis-
cussion, a deeper analysis of its results still continues to give
insight into the physics of photoionization. A great advantage
of the KFR theory is its analyticity. It enables us to describe
the phenomenon of ionization on a more fundamental level,
relating it to a coherent superposition of electron trajectories
in the continuum. In particular, the effect of quantum inter-
ference in the direct process of ionization is intrinsically in-
cluded in the final expression describing the ionization rate.
Only recently this matter came into discussion, after experi-
ments on strong-field photodetachment of negative ions in a
linearly polarized laser field revealed an interference struc-
ture in photoelectron spectra[14,15].

Theoretically, the interference effect arises due to a super-
position of saddle-point contributions in the complex time
plane. Within the oscillation period of a linearly polarized
field, there are two such points contributing to the amplitude
of electron emission with a given momentum vector. The
saddle points are attributed to two spatially separated elec-
tron emitters aligned along the polarization axis of the field.
Such a semiclassical description of ionization reflects the
fact that in a harmonic field, the bound electron can be re-
leased at either side from the core along the external force
direction. The two emitters are coherent, and thus, their su-
perposition gives rise to the interference structure in the
angle-resolved momentum distribution of photoelectrons. In
the limit of small photoelectron momenta the effect reduces
to a simple picture of a two-slit interference[14,16]. Quan-
tum interference is not restricted, however, to low kinetic
energies, rather this effect is ubiquitous in the emission spec-
trum of photoelectrons[15].

The quantum interference effect is also predicted by the
QQES method[11] and by non-perturbative Floquet method

[17]. Their results are in accord with the KFR theory and
with the recent experimental observations. Developed to de-
scribe photodetachment from a short-range potential, the
QQES method provides an exact solution for the detachment
rate[18]. Though the direct relation of results by this method
to the quantum interference effect is masked by the numeri-
cal routine, it does predict the interference structure similar
to the one predicted by the Keldysh-like theory.

To date, the quantum interference has been considered
only for the case of linearly polarized laser field. In the
present work we investigate its role in the process of ioniza-
tion by a circularly polarized field. Our approach is analo-
gous to the one developed by Gribakin and Kuchiev[4], and
it employs the saddle-point analysis of contributions to the
multiphoton transition amplitude. The method is based on
the strong field approximation, which neglects the core po-
tential in the description of the final electron state. This ap-
proximation is justified when the electron is initially bound
by short-range forces. Thus, the method is suited for the
description of the process of photodetachment of negative
ions, where the asymptotic Coulomb potential of the core is
absent. In our calculations we use the length gauge to de-
scribe the field interaction. Though the velocity gauge sim-
plifies the consideration for circular polarization[3], it was
argued, however, that the length gauge should be used to
obtain correct results for the photodetachment rate[4]. We
show below that the two approaches substantially differ in
their predictions. We also discuss the origin of this difference
and provide a judgment on the proper gauge to use in the
KFR theory.

Let us consider the process of photodetachment in a cir-
cularly polarized laser fieldFstd=F(cossvtd ,sinsvtd ,0),
whereF andv are the field strength and frequency, respec-
tively. The polarization plane is assumed to coincide with the
sx,yd coordinate plane and the polarization direction is coun-
terclockwise. Following the adiabatic approximation of Grib-
akin and Kuchiev[4], the n-photon differential detachment
rate has the form(atomic units "=e=me=1 are used
throughout)

dwn = 2puApnu2dSp2

2
+

F2

2v2 − E0 − nvD d3p

s2pd3 . s1d

HereE0=−k2/2 is the energy of the initial bound state,p is
the momentum of the outgoing electron, andApn represents

PHYSICAL REVIEW A 70, 011402(R) (2004)

RAPID COMMUNICATIONS

1050-2947/2004/70(1)/011402(4)/$22.50 ©2004 The American Physical Society70 011402-1



the amplitude of the transition to the final state. The energy
of the final state is determined by the energy conservation
rule represented by thed function in Eq.(1), where the term
F2/2v2 corresponds to the ponderomotive shift of the de-
tachment threshold. Neglecting the core potential in the de-
scription of the final state, the wave function of the outgoing
electron is represented by the Volkov function. In the length
gauge, the transition amplitude acquires the form

Apn =
v

2p
E

0

2p/v SE0 −
sp + k td2

2
Df̃0sp + k td

3expH i

2
Et

fsp + k t8d
2 − 2E0gdt8Jdt, s2d

wherek t=etdt8Fst8d is the classical electron momentum due

to the field andf̃0sqd is the Fourier transform of the initial
electron wave function. More details on derivation of Eq.(2)
can be found in Ref.[4].

The integrand function of Eq.(2) contains a rapidly oscil-
lating exponent expfiSsvtdg, where Ssvtd represents the
coordinate-independent classical action. Thus, the integral
over time can be calculated analytically by using the method
of steepest descents. In the case of circularly polarized field,
the explicit form of the action is

Ssvtd = nvt −
F

v2pi cossvt − wd, s3d

where pi=p cosu is the component of the momentump
parallel to the polarization plane,u is the angle of electron
emission with respect to the polarization plane, and
w=arccosspx/pid represents the azimuthal angle in this plane.
The saddle-point condition is defined byS8svtsd=0 and has a
pair of complex conjugate roots. According to the theory of
adiabatic transitions, only the root with a positive imaginary
part is of physical meaning. It has the following form

vts =
3

2
p + w + i lnSnv2

Fpi

+În2v4

F2pi
2 − 1D . s4d

Thus, only one saddle point contributes to the transition
amplitude. This is in contrast to the case of linearly polarized
laser field, where contributions from two saddle points define
a coherent superposition of two emitted matter waves, giving
rise to an interference pattern in the photoelectron spectrum.
The quantum interference in the process of photodetachment
by circularly polarized field does not exist. This fact can be
illustrated by considering classical electron trajectories. Dis-
regarding the core potential, the electron in a circularly po-
larized field moves on a circular orbit established during the
adiabatic switching on the field. In this adiabatic case, the
coordinate phase of the circular motion in thesx,yd polariza-
tion plane matches the rotational phase of the field strength
vector. The instant of electron emission with a given momen-
tum p is determined by the saddle pointts. It should be
understood that the real part of the complex timets corre-
sponds to the real time scale. It follows from Eq.(4) that the
electron emission at a given azimuthal anglew occurs when
the phase associated with the circular motion acquires the

value w+3p /2. This value corresponds to the tangential
emission from the orbit, as depicted in Fig. 1(a). The origin
of the tangential trajectory is uniquely defined by the emis-
sion angle, and no such trajectories that are parallel or that
intersect each other exist. Therefore, the interference effect is
absent.

It is easy to perform similar calculations for a clockwise
circularly polarized field. In this case the electron is released
when the phase of circular motion isw−3p /2, which also
results in the tangential emission[Fig. 1(b)]. The classical
consideration of electron trajectories provides a simple quali-
tative interpretation of the interference effect in photodetach-
ment by a linearly polarized field. Linear polarization can be
represented by a superposition of clockwise and counter-
clockwise circular polarizations. Consequently, the electron
emission into a given angle undergoes two paths, corre-
sponding to the two different trajectories shown in Fig. 1. A
coherent superposition of these paths, as appropriate for lin-
ear polarization, gives rise to interference analogous to two-
slit interference.

The rest of the calculations represent a straightforward
routine. As it was discussed in[4], in the length gauge the
transition amplitude is determined by the contribution from
large distances. Then, it is sufficient to describe the initial
state by its asymptotic wave function. For a negative ion it
has the formf0sr d=Ar−1 exps−krdYlmsr̂ d, where A is the
normalization coefficient,Ylm is a spherical harmonic, and
l ,m are the angular momentum quantum numbers of the
electron in the initial state. The quantization axis of the an-
gular momentum coincides with thez axis. The Fourier
transform off0 calculated at the saddle point is given by
f̃0sqd=4pAsq2+k2d−1Ylmsq̂d, where q→ ik, and the argu-
ment of Ylm is a complex vector. The complex spherical
anglesuq ,wq can be expressed by using a formal definition:
cosuq=q ·ẑ/Îq2, coswq=qi ·x̂ /Îqi

2, whereqi=pi+k ts
is the

component of the complex momentumq parallel to the po-
larization plane. Evaluating the integrand of Eq.(2) at the
saddle point, substitutingApn into Eq.(1), and integrating the
latter over the coordinatep of the momentum space, for the
differential n-photon detachment rate we obtain

dwn

dV
=

A2v2

8p2 s2l + 1d
sl − umud!
sl + umud!

UPl
umuSi

p

k
sinuDU2

3
sh − Îh2 − 1d2n

Îh2 − 1F cosu 3 Îk2 + p2sin2u

F

v
sh + Îh2 − 1d − p cosu4

2m

3 expf2Fp cosuÎh2 − 1/v2g, s5d

FIG. 1. Electron emission from a circular orbit at the azimuthal
anglew in the plane of circular polarization.(a) and (b) show tan-
gential trajectories of the ejected electron for the counterclockwise
and clockwise polarization of the field, respectively. Origins of
these trajectories are located at opposite sides from the core.
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where h=nv2/ sFp cosud, Pl
umusZd is the Legendre polyno-

mial, andp=s2nv−F2/v2+2E0d1/2 is the electron momen-
tum determined by the energy conservation rule.

Equation(5) is used to simulate a spectrum of photoelec-
trons produced by photodetachment in a laser pulse of high
intensity. The simulation is performed for realistic experi-
mental conditions where F− ions interact with a focused laser
beam of 1400 nm wavelength andI0=231013 W/cm2 peak
intensity. The initialp statesl =1d of F− has the binding en-
ergy E0=−3.401 188 7 eV[19]. The calculation routine is
analogous to the one described in Ref.[15]. It involves sum-
mation of photodetachment rates for different valuesm
=0, ±1 of the projection of the initial angular momentum,
the statistical averaging of detachment channels associated
with the two spin-orbit sublevels,2P1/2

o andP3/2
o , of the final

atomic state, and integration of the electron yield over the
intensity distribution in the laser focus. The result of simula-
tion is presented in Fig. 2. The figure shows the electron
distribution over the momentum scale and the emission angle
with respect to the plane of circular polarization. The spec-
trum consists of contributions from a series of excess photon
detachment peaks withnù4. The peaks are ponderomo-
tively shifted and broadened and overlapping each other, giv-
ing rise to the regular structure along the momentum axis.
The spectrum, however, does not exhibit any structure asso-
ciated with the quantum interference effect.

In the following we compare these results with predic-
tions obtained by using the velocity gauge. The differential
n-photon detachment rate in the velocity gauge has the form
[3]

dwn

dV
=

v2p

s2pd2Sn −
F2

2v3D2

uf̃0spdu2Jn
2S n

h
D , s6d

whereh is introduced in Eq.(5), Jn is the Bessel function,
and f̃0spd is the Fourier transform of the initial wave func-
tion calculated at the momentump of the outgoing electron.
The presentation of the initial wave function by its
asymptotic form is not justified in the velocity gauge. There-
fore, here we use the Hartree-Fock wave function of the

valence electron in F−. This function is given in Ref.[20] in
a parametrized analytical form, and its Fourier transform can
be calculated analytically

f̃0spd = − 32piY1msp̂do
i=1

4

CiNi
jip

sp2 + ji
2d3 , s7d

where numerical parametersCi ,Ni ,ji are given in[20].
Equations(6) and(7) are used in a simulation of the pho-

toelectron spectrum of F− at the same laser parameters as
described above. The shape of the spectrum is similar to the
one shown in Fig. 2. For a quantitative comparison, we
present in Fig. 3 the kinetic energy distribution of electrons
emitted in the plane of circular polarization. The solid and
dashed curves correspond to calculations in the length and in
the velocity gauge, respectively. The figure shows a substan-
tial discrepancy between the two predictions. In particular,
the relative yield of electrons with low kinetic energies is
considerably enhanced in the length gauge compared to the
velocity gauge. The maxima of the two distributions appear
at different kinetic energies, separated by approximately
twice the photon energy. Such a difference can be easily
resolved experimentally.

The discrepancy found here arises from the fact that the
photodetachment rate in the length gauge is dependent on the
value m of the projection of the initial angular momentum
[see Eq.(5)]. In contrast, predictions in the velocity gauge
are dependent on its absolute valueumu. In order to explore
this fact deeper, let us consider the threshold limitp→0. In
this limit the detachment process should obey the Wigner
threshold law[21]. Its validity under strong laser field con-
ditions has been discussed in Ref.[22]. The law predicts the
detachment rate to be proportional top2,f+1, where, f is the
angular momentum of the electron in the final continuum
state. In the case ofF− considered heresl =1,nù4d, the low-
est final-state angular momentum according to the selection
rules is, f =n−1 for the initial state withm=−1, and, f =n
+1 for m=0, +1. Expanding Eq.(5) over p in the limit of
low momenta and taking the first significant term into ac-
count, we find that then-photon detachment rate is propor-

FIG. 2. The spectrum of photoelectrons produced by photode-
tachment of F− in a laser pulse of 1400 nm wavelength and 2
31013 W/cm2 peak intensity.

FIG. 3. Electron distribution over the kinetic energy in the plane
of circular polarization. Solid and dashed curves correspond to pre-
dictions in the length and in the velocity gauge, respectively. The
curves are normalized to each other at the maximum yield.
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tional to p2sn−1d+1 when m=−1, and it is proportional to
p2sn+1d+1 whenm=0, +1. This result is absolutely consistent
with the Wigner law[23]. In contrast, predictions in the ve-
locity gauge fail to reproduce the threshold law. Indeed, ex-
panding Eqs.(6) and (7) in the limit p→0, we find that the
detachment rate is proportional top2sn+1d+1, independent on
the valuem of the projection of the initial angular momen-
tum. As a consequence, the detachment yield near threshold
from the m=−1 initial state is lower in the velocity gauge.
For example, in the lowest order detachment channel consid-
ered here,n=4, it is proportional top11 instead ofp7. This
explains the discrepancy at low kinetic energies shown in
Fig. 3.

In conclusion, it has been shown that the quantum inter-
ference effect is absent in photodetachment by circularly po-
larized laser radiation. A substantial and experimentally ob-
servable discrepancy is found between kinetic energy

distributions of photoelectrons calculated in the length and in
the velocity gauge, respectively. The discrepancy arises from
the fundamentally different character of contributions from
initial states with positive and negative values of the angular
momentum quantum numberm, as predicted in this work. In
the limit of low electron energies, only the calculations in the
length gauge are consistent with the Wigner threshold law.
Thus, the length gauge is proper to use in the Keldysh ap-
proximation. This result represents an important cornerstone
in the years-long discussion on the appropriate gauge to use
in the KFR theory.
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