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We study reliable quantum-information processi@iP) under two different types of environment. The first
type is Markovian exponential decay, and the appropriate elementary strategy of protection of qubit is to apply
fast gates. The second one is strongly non-Markovian and occurs solely during operations on the qubit. The
best strategy is then to work with slow gates. If the two types are both present, one has to optimize the speed
of gate. We show that such a trade-off is present for a single-qubit operation in a semiconductor quantum dot
implementation of QIP, where recombination of excitqabit) is Markovian, while phonon dressing gives rise
to the non-Markovian contribution.

DOI: 10.1103/PhysRevA.70.010501 PACS nuniber03.67.Pp, 03.65.Yz, 03.67.Lx, 78.67.Hc

Already at the early stage of quantum-information theory,state of the dot, operated by resonant coupling to laser light.
the implementation of quantum computing was found to ben such a system, Markovian decoheren@xponential
extremely challenging due to decoherence procefBedt  damping is related to exciton recombination on 1 ns
was claimed, nevertheless, that a quantum computer coulgmescale, while strongly non-Markovian effects result from
reliably perform quantum algorithms once the error per opiattice inertia. The interplay of these two decoherence
eration is below some threshold level whichni$~10"°[2]  mechanisms, favoring opposite strategist versus slow
(for some caveats coming from memory of environment segyateg, leads to a kind of trade-off, resulting in optimal speed
[3]). In any case, minimizing the error per gate is a reasonyy gate for the most reliable operation on the qubit.
able strategy. Usually, one considers the decoherence time of 1, investigate the effect, we analyze decoherence in a
the systenvy and the time of performing operatiequantum  genera| spin-hoson systei®,10], and find decoherence to be
gatg 7g, S that the error is given by the ratit= 7o/ 74 [4].  strongly non-Markovian, fitting into the “minimal decoher-
This suggests a search for systems withs small as pos- ence model.” Assuming additional, Markovian damping, we
sible, and the obvious strategy to diminish the error is toobtain the trade-off formula for the error caused by decoher-
apply fast gates. One then tacitly assumes that the process @fce, averaged over input states of the qubit:
decoherence is independent of running the gate, which
means that it is a Markovian process, where the error, to first
order, grows linearly in time. Gate speed-up may be achieved o= Yom M Ty (1)
by selecting materials to provide favorable spectrum charac- 75
teristics [5] or by applying techniques reducing unwanted
transitions within the register spaf# as well as outside this (actually, in the solid state example, singularity of the first
space(leakage [7]. term is lifted by the presence of the upper cutofthe con-

The assumption of Markovian character of noise is by nostantsyy, , express the strength of the Markovian and non-
means obvious and, indeed, it has recently been fd8hd Markovian decoherence, respectively. We determine their
that due to non-Markovian effects it may prove to be com-yalues for the exciton in a QD with typical parameters and
pletely invalid. The notion ofminimal decoherence model show that the gate duration leading to minimal overall error
was introduced where the error occigslely during gate s of the order of 1 ps. Since level spacing in such a system
operation, and it grows for fast gates as-1/75 (for the  allows even 100 fs gating6] the restrictions imposed by
spectral density of the reservoirw®). An example of such a non-Markovian phonon mechanisms are decisive for the gate
model is a degenerate system interacting with a bosonic fieldpeed. Our result has both practical as well as general impli-
at vacuum via dipole interaction. This kind of error favors cations for QIP:(i) it suggests the proper direction in re-
the counterintuitive strategy slowing dowrthe gate opera- search towards semiconductor implementation of Qipjt
tion. provides a nontrivial dynamical strategy to minimize deco-

In real systems, this type of decoherence competes witherence in quantum systems, for a class of reservoirs.
the Markovian damping, although this effect may be covered

by other errorge.g., leakage In this paper we indicate that

such a competitive effect is essential, e.g., for the solid-stat®INIMAL DECOHERENCE IN THE SPIN-BOSON MODEL

qubit implementation using excitonicharge states in quan-

tum dots(QDs) [8], with computational states defined by the  We consider a qubit described by means of the spin-boson
absence|0)) or presencé|1)) of one exciton in the ground model. The Hamiltoniatd” of the system plus reservoir is
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H” = HZ+ Hg(t) + Hsr+ Hp, 2 h T Lo

where S is our qubit systemR is (bosonig reservoir. H2 0031, £ 3

=(1/2Qo0, is the self Hamiltonian of the qubitH«(t) \ "E " E

=(1/2)e(t) (Mo, +e) is the gate Hamiltoniagin rotat- \ ;6: ) (@)’ e

ing wave approximation (t) being the shape of the pulse. el WA 3 S : p Sl

Hr==w.aaj is the self Hamiltonian of the reservoir, where © &

wy is the boson energy. Finallydgr is the interaction with

reservoir o0
Her=0,® [ fia+H.c), 3

0.00

wheref, is the coupling constant for the modte

In the interaction picture with respect tf.bg we getH’
=&(t)o,+HggtHg. Let us now represeri’ in the basis of
eigenstates of the total systemressed statgsThis is 120 (solid lineg and T=10 K (dashed lines for two dot sizes
achieved by the unitary operatiot=[0X0[® W—[1)X1|  (,=0.8, andl,=0.2,). The Markovian decoherence times are in-
® W', whereW=ex=(f,/w)a—H.c] and|0), |1) are the ferred from the experimental daita4]. Inset: Spectral density of the

eigenvectors ofg,. In this basis, the HamiltoniarH phonon reservoiR(w) at these two temperatures and the gate pro-
=U'H’U up to a constant has the form file S(w) for a=m/2.

1 f
H=Zet)oy cos(ZiE —*al+ H.c.)
2 k Wk

FIG. 1. The total error for ar= /2 rotation on a QD qubit, for
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+ %e(t)oy sin(ziE kaﬁ + H.c.) +Hr. (@) .. .
W) . .
ko Fo=+ f dueiPWe(gel,  g(t) = f due(u).

To the first order inf,/ w, we obtain o

A complete minimization o5 would require full optimi-
zation of the pulse shape. However, in order to demonstrate
the idea of the trade-off in simple terms, we restrict the dis-
We define the qubit in terms of the dressed sté#fie}. cussion to qubit rotations performend by Gaussian pulses,
With such a choice, the reservoir is decoupled and the interg(t):a/(\fﬂrg)e‘l’z(t’fg>2. Here 7, is the gate duration,
action term is present only during gate operation. Thus ouivhile « is the angle determining the gate, e.gs /2 is
system may be reduced to the minimal decoherence mode\kN—m', while a= is oy (bit flip).
decoherence is not present at all, if the qubit is not active. We The functions| Fi—(w)|2 may be written as
now calculate the resulting error and relate it to the speed of

H = e(t)oy + e(t)oy ® (iE Teqr s H.c.) +Hgp. (5
k Wk

gate. Since the regime is strongly non-Markovian we solve IFi(w)>~= QP @l Zmry? (9)
the Master equation in the Born approximation and compute - - .
the fidelity F=1-5 of a single-qubit operatiotsee Ref[3] Although the original minimal decoherence model with
for detalils. its ~w® dependence appears in many physical situations,
The error, averaged over the initial qubit states can bé)ther characteristics are obviously possible. In genergl, as
represented as the overlap of two functions may be seen from Eq&), (7), and(9), for a spectral density
R(w) ~ o" the error scales with the gate duratiom@%+1 and
5= d_wR( )S() ©6) 7-;”2 at low and high temperatures, respectively. Therefore,
T g2 @ for n> 2 (typical, e.g., for various types of phonon reservoirs

[15]) the error grows for faster gates. Assuming the spectral
density of the formR(w)=Ryw® (see the QD example be-

R(w) = [nB(w) + ]_]E [5(‘1’k -w)+ 5(U)k + w)]|fk|21 (7) |0W), we obtain
k

Here,R(w) is the spectral density of the reservoir

: o . Sm=—a’Ryr,> at T=0. 10
whereng(w) is the Bose-Einstein distribution. The function M 3a Rorg” @& (10

S(w) fuIIy' represents the spectral characteristics of the SYSthis leading order formula holds fa@i< 1. Also, if we intro-
tem and is given by

duce the upper cutoff, the error will be finite even for an
S(@) = [Y YT = Y T Y ) e infinitely fast gate{11] (see Fig. 1

1 TRADE-OFF BETWEEN TWO TYPES OF DECOHERENCE
~ §(IF_(w)|2+ Fu(@)?), 8

As we have shown, in our model the error grows as the
where[ ],, denotes averaging over the stateand speed of gate increases. This could result in obtaining arbi-
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trarily low error by choosing suitably low speed of gates.the hole(material parameters are taken ag16]) and 7"
However, if the system is also subject to other types of noisare form factors for the corresponding wave functigap-

this becomes impossible. Indeed, assuming an additiongroximated by Gaussians, on the grounds of numerical di-
contribution growing with ratey,,, the total error per gate is agonalization in parabolic confinemeitl]),

Yo e 2 g ”

1, 1
6_7+7M7gv Yam = 3@ Ro, = (11
g ' wherel,, and |, are the wave function widths in the dot
wherer, is the characteristic time of Markovian decoherenceplane, for electron, and hole, and in the growth direction,
(recombination time in the excitonic casés a result, the respectively, anc, and k, are the corresponding compo-
overall error is unavoidable and optimization is needed. Theents of the phonon wave vector.

above formulas lead to the optimal values of the faifor Note that the most effectively coupled phonon modes cor-
T=0): respond to wavelengths around the dot size. For gapless
3(2a7R, 13 > 13 bosons_with linear d_ispersion, their frequen(_;y determines the

5mm=—( 5 ) for 74= <—02R07r> . (12 reservoir memory tlmes gnd sets up the timescale of non-

2\ 37 3 Markovian effects which, in the case of the QD system, may

be interpreted as “dressing” the localized carriers with coher-
ent lattice deformation fiel¢cf. [10]). This kind of dynamics
has been described in the limit of very rapid gating pulses
[11,19 and has been shown to lower the degree of coherent
control over the system and to destroy the coherence of po-
larization oscillations[13,15. Due to relatively large dot
Let us now estimate the error magnitude for the specifisizes and low sound speed the cutoff frequefref meV) is
semiconductor quantum deD) qubit implementatiorj8]. lower than the transition energy between different carrier
The reservoir is then constituted by phonons, the most imstates in a small, self-assembled dot and the corresponding
portant branch for our present purpose being the longitudinal ps times are experimentally accessible.
acoustical(LA), characterized by linear dispersion,=ck, For large enough gate duration only the low-frequency
coupled via deformation potentidDP) [12]. In fact, the rela-  sector contributes and the coupling Ef3) may be approxi-
tively simple modek2) is very accurate for a description of mated by
the QD system for-1 ps timescales relevant here, as con-

firmed by the excellent agreement between the theoretical 1 k
Y g =507~ )\ 5006 (15)

We will see that the trade-off is also present for finite tem-
peratures.

EXAMPLE: EXCITON IN A QUANTUM DOT

calculationg13] and experimental resulfd4]. This is due to

the fact that neither the high-frequency optical phonons nor )

direct or phonon-induced leakage to higher states contribut€ading, according to Eq7), to
considerably to the decoherence. Also effects related to pi- (0o- 07)2
ezoelectric coupling to LA and TA phonons may be ne- R(w) = Ryw®, RO:e—hs.
glected in weakly piezoelectric systerfesg., GaAs More- 167°gc
over, the qubit control is all-optical, eliminating the need for  Hence, Eqs(12) are applicable and one finds for the spe-
additional noise-inducing device structures. On the othegific material parameters of GaAs:

hand, details of the QD structu¢shape, stress, compositjon

may lead only to quantitative modifications of secondary im- 75= a?1.47 ps, pin = *%0.0035. (17)
poﬁgcﬁbn—Markovian error has a dynamical origin and is The full solution within the propo_sed m_odel, taking into
related to a which path trace left by exciting the phononaccount the phonon cutoff for an anisotropic shépe ),

modes rather than to an influence of noise. The spectral deﬁpcording to Eq_s(14) and(13)_, and allowing finite tempera-
tures by numerically calculating the spectral density &g.

sity is uniquely defined by the lattice response characteris- S . )

tics: the mode-dependent coupling strength and the densit sh_own in Fig. .1' The size-dependent cutoff is rgflec.ted by

of states. Due to fundamental restrictiqgtobal charge neu- shift of the optimal parameters for the two dot sizes: larger
dots admit slightly faster gates and lead to lower error. Inter-

trality, translational invarianggethe frequency dependence is =~
always strongly super-ohmifl5]. On the other hand, the estingly, the tradeoff becomes more apparent at nonzero tem-
' rature.

approximate momentum conservation holding for Weaklype_l_h fth f Id Vi
confined carrier states leads to exponential cutoff of carrierTh de pre;er?c((je of t ?. uppgr tCUtr? cou 1 Sl:gg;.st.a_p[r)]ymg
phonon interaction at high frequencigks]. In the specific e dynamical decouplingdD) technique[17] to diminis

; ; decoherence. However, for high frequencies many other
case of DP coupling, the coupling constants [drg . '
piing piing k mechanisms of decoherence become relevant. On the other

1 k o b hand, combining the bounded-control version of DIB]
szé Pove (07~ on A, (13)  with the optimization proposed here might lead to some re-
pvcC . . . .

duction of the resulting error. Such techniques might also be

wherev is the volume of the unit celp is the crystal density, useful for eliminating other sources of noise, not included in
0. are deformation potential constants for the electron anaur discussion.

(16)
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Another possibility to reduce the decoherence effect in thdimit beyond which any further gate speedup is unfavorable.
QD system might be to encode qubits in decoherence-freEven at this optimal point the trade-off gives rise to a sig-
subspaceq19]. However, the phonon wavelength corre- nificant error. For two qubit gates involving single-qubit ro-
sponding to the optimal range of gating times is comparablé¢ations(as proposed, e.g., if8]), the present result gives a
to the single dot size, precluding the necessary collectiveough lower bound for the error, which is of 1-2 orders of
interaction with the whole QD system. Thus, for decoherencenagnitude higher than that admitted by fault-tolerant
effects which do not involve real transitions and taking intoschemeg2] known so far(=10"°). However, possible im-
account the feasible system geometry and actual nature pkovements of the latter schemes cannot be excluded. It fol-
phonon coupling, only a small decrease of the minimal defows also that diminishing the responsible constaptge.g.,
coherence may be expected. by elimination of radiative lossg20]) and y,, (by optimiz-

In conclusion, we have exhibited the trade-off betweening the system parameters the most important task to-
two opposite types of decoherence: usual Markovian dampwards semiconductor implementation of a quantum com-
ing and dynamically induced non-Markovian decoherenceuter. It is also important to explore whether the same effect
for a realistic super-ohmic reservoir. To protect the qubit,can occur in other implementations, as well as to what extent
opposite elementary strategies are needed: fast and slaWwe error avoiding techniques may be helpful here.
gates, respectively. The minimization of the overall error . ) ]
leads to optimal speed of gate. We have shown that the trade- The authors thank Peter Knight and Martin Plenio for
off is present in a semiconductor imp]ementation ofuseful feedback to the first version of this paper. L.J. and
quantum-information processing_ The Markovian error |SPM are grateful to T. Kuhn and V. M. Axt for discussions.
caused by recombination, while the non-Markovian one ocThis work was supported by EC Grants EQUIBT-1999-
curs if the gate operation is not adiabatic with respect tol1053, RESQ (IST-2002-37559 SQID (IST-1999-1131},
lattice modes. We have evaluated the minimal error in thiQQUPRODIS(IST-2001-3887Y, and by the Polish Govern-
case for a single qubit gate, showing that the two processewent, Grant No. PBZ-MIN-008/P03/2003. P.M. is grateful to
indeed compete. The optimal gating tifftel ps sets up the the Humboldt Foundation for support.
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