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We study reliable quantum-information processing(QIP) under two different types of environment. The first
type is Markovian exponential decay, and the appropriate elementary strategy of protection of qubit is to apply
fast gates. The second one is strongly non-Markovian and occurs solely during operations on the qubit. The
best strategy is then to work with slow gates. If the two types are both present, one has to optimize the speed
of gate. We show that such a trade-off is present for a single-qubit operation in a semiconductor quantum dot
implementation of QIP, where recombination of exciton(qubit) is Markovian, while phonon dressing gives rise
to the non-Markovian contribution.
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Already at the early stage of quantum-information theory,
the implementation of quantum computing was found to be
extremely challenging due to decoherence processes[1]. It
was claimed, nevertheless, that a quantum computer could
reliably perform quantum algorithms once the error per op-
eration is below some threshold level which is,d<10−5 [2]
(for some caveats coming from memory of environment see
[3]). In any case, minimizing the error per gate is a reason-
able strategy. Usually, one considers the decoherence time of
the systemtd and the time of performing operation(quantum

gate) tg, so that the error is given by the ratiod̃=tg/td [4].
This suggests a search for systems withd̃ as small as pos-
sible, and the obvious strategy to diminish the error is to
apply fast gates. One then tacitly assumes that the process of
decoherence is independent of running the gate, which
means that it is a Markovian process, where the error, to first
order, grows linearly in time. Gate speed-up may be achieved
by selecting materials to provide favorable spectrum charac-
teristics [5] or by applying techniques reducing unwanted
transitions within the register space[6] as well as outside this
space(leakage) [7].

The assumption of Markovian character of noise is by no
means obvious and, indeed, it has recently been found[3]
that due to non-Markovian effects it may prove to be com-
pletely invalid. The notion ofminimal decoherence model
was introduced where the error occurssolely during gate
operation, and it grows for fast gates asd,1/tg

2 (for the
spectral density of the reservoir,v3). An example of such a
model is a degenerate system interacting with a bosonic field
at vacuum via dipole interaction. This kind of error favors
the counterintuitive strategy ofslowing downthe gate opera-
tion.

In real systems, this type of decoherence competes with
the Markovian damping, although this effect may be covered
by other errors(e.g., leakage). In this paper we indicate that
such a competitive effect is essential, e.g., for the solid-state
qubit implementation using excitonic(charge) states in quan-
tum dots(QDs) [8], with computational states defined by the
absencesu0ld or presencesu1ld of one exciton in the ground

state of the dot, operated by resonant coupling to laser light.
In such a system, Markovian decoherence(exponential
damping) is related to exciton recombination on 1 ns
timescale, while strongly non-Markovian effects result from
lattice inertia. The interplay of these two decoherence
mechanisms, favoring opposite strategies(fast versus slow
gates), leads to a kind of trade-off, resulting in optimal speed
of gate for the most reliable operation on the qubit.

To investigate the effect, we analyze decoherence in a
general spin-boson system[9,10], and find decoherence to be
strongly non-Markovian, fitting into the “minimal decoher-
ence model.” Assuming additional, Markovian damping, we
obtain the trade-off formula for the error caused by decoher-
ence, averaged over input states of the qubit:

d =
gnM

tg
2 + gMtg s1d

(actually, in the solid state example, singularity of the first
term is lifted by the presence of the upper cutoff). The con-
stantsgM,nM express the strength of the Markovian and non-
Markovian decoherence, respectively. We determine their
values for the exciton in a QD with typical parameters and
show that the gate duration leading to minimal overall error
is of the order of 1 ps. Since level spacing in such a system
allows even 100 fs gating[6] the restrictions imposed by
non-Markovian phonon mechanisms are decisive for the gate
speed. Our result has both practical as well as general impli-
cations for QIP:(i) it suggests the proper direction in re-
search towards semiconductor implementation of QIP,(ii ) it
provides a nontrivial dynamical strategy to minimize deco-
herence in quantum systems, for a class of reservoirs.

MINIMAL DECOHERENCE IN THE SPIN-BOSON MODEL

We consider a qubit described by means of the spin-boson
model. The HamiltonianH9 of the system plus reservoir is
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H9 = HS
0 + HSstd + HSR+ HR, s2d

where S is our qubit system,R is (bosonic) reservoir.HS
0

=s1/2dVsz is the self Hamiltonian of the qubit,HSstd
=s1/2d«stdseiVts++e−iVts−d is the gate Hamiltonian(in rotat-
ing wave approximation), «std being the shape of the pulse.
HR=ovkakak

† is the self Hamiltonian of the reservoir, where
vk is the boson energy. Finally,HSR is the interaction with
reservoir

HSR= sz ^ fo fk
*ak + H.c.g , s3d

where fk is the coupling constant for the modek.
In the interaction picture with respect toHS

0 we get H8
=«stdsx+HSR+HR. Let us now representH8 in the basis of
eigenstates of the total system(dressed states). This is
achieved by the unitary operationU= u0lk0u ^ W− u1lk1u
^ W†, whereW=expfosfk

* /vkdak−H.c.g and u0l, u1l are the
eigenvectors ofsz. In this basis, the HamiltonianH
=U†H8U up to a constant has the form

H =
1

2
estdsx cosS2io

k

fk

vk
ak

† + H.c.D
+

1

2
estdsy sinS2io

k

fk

vk
ak

† + H.c.D + HR. s4d

To the first order infk/vk we obtain

H . estdsx + estdsy ^ Sio
k

fk

vk
a† + H.c.D + HR. s5d

We define the qubit in terms of the dressed states[10].
With such a choice, the reservoir is decoupled and the inter-
action term is present only during gate operation. Thus our
system may be reduced to the minimal decoherence model:
decoherence is not present at all, if the qubit is not active. We
now calculate the resulting error and relate it to the speed of
gate. Since the regime is strongly non-Markovian we solve
the Master equation in the Born approximation and compute
the fidelity F=1−d of a single-qubit operation(see Ref.[3]
for details).

The error, averaged over the initial qubit states can be
represented as the overlap of two functions

d =E dv

v2 RsvdSsvd. s6d

Here,Rsvd is the spectral density of the reservoir

Rsvd = fnBsvd + 1go
k

fdsvk − vd + dsvk + vdgufku2, s7d

wherenBsvd is the Bose-Einstein distribution. The function
Ssvd fully represents the spectral characteristics of the sys-
tem and is given by

Ssvd = fkcuYY†ucl − kcuY†uclkcuYuclgav

<
1

3
suF−svdu2 + uF+svdu2d, s8d

wheref gav denotes averaging over the statesc and

Y = isF+u + lk− u + F−u− lk+ ud, u ± l =
u0l ± u1l

Î2
,

F± = ±E
−`

+`

due±ifsudesudeivu, fstd =E
−`

t

duesud.

A complete minimization ofd would require full optimi-
zation of the pulse shape. However, in order to demonstrate
the idea of the trade-off in simple terms, we restrict the dis-
cussion to qubit rotations performend by Gaussian pulses,
«std=a / sÎ2ptgde−1/2st / tgd2. Here tg is the gate duration,
while a is the angle determining the gate, e.g.,a=p /2 is
ÎNOT, while a=p is sx (bit flip).

The functionsuF±svdu2 may be written as

uF±svdu2 < a2e−tg
2sv ± a ”

Î2ptgd2. s9d

Although the original minimal decoherence model with
its ,v3 dependence appears in many physical situations,
other characteristics are obviously possible. In general, as
may be seen from Eqs.(6), (7), and(9), for a spectral density
Rsvd,vn the error scales with the gate duration astg

−n+1 and
tg

−n+2 at low and high temperatures, respectively. Therefore,
for n.2 (typical, e.g., for various types of phonon reservoirs
[15]) the error grows for faster gates. Assuming the spectral
density of the formRsvd=R0v3 (see the QD example be-
low), we obtain

dnM =
1

3
a2R0tg

−2 at T = 0. s10d

This leading order formula holds ford!1. Also, if we intro-
duce the upper cutoff, the error will be finite even for an
infinitely fast gate[11] (see Fig. 1).

TRADE-OFF BETWEEN TWO TYPES OF DECOHERENCE

As we have shown, in our model the error grows as the
speed of gate increases. This could result in obtaining arbi-

FIG. 1. The total error for ana=p /2 rotation on a QD qubit, for
T=0 (solid lines) and T=10 K (dashed lines), for two dot sizes
(lh=0.8le and lz=0.2le). The Markovian decoherence times are in-
ferred from the experimental data[14]. Inset: Spectral density of the
phonon reservoirRsvd at these two temperatures and the gate pro-
file Ssvd for a=p /2.
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trarily low error by choosing suitably low speed of gates.
However, if the system is also subject to other types of noise
this becomes impossible. Indeed, assuming an additional
contribution growing with rategM, the total error per gate is

d =
gnM

tg
2 + gMtg, gnM =

1

3
a2R0, gM =

1

tr
, s11d

wheretr is the characteristic time of Markovian decoherence
(recombination time in the excitonic case). As a result, the
overall error is unavoidable and optimization is needed. The
above formulas lead to the optimal values of the form(for
T=0):

dmin =
3

2
S2a2R0

3tr
2 D1/3

for tg = S2

3
a2R0trD1/3

. s12d

We will see that the trade-off is also present for finite tem-
peratures.

EXAMPLE: EXCITON IN A QUANTUM DOT

Let us now estimate the error magnitude for the specific
semiconductor quantum dot(QD) qubit implementation[8].
The reservoir is then constituted by phonons, the most im-
portant branch for our present purpose being the longitudinal
acoustical(LA ), characterized by linear dispersion,vk=ck,
coupled via deformation potential(DP) [12]. In fact, the rela-
tively simple model(2) is very accurate for a description of
the QD system for,1 ps timescales relevant here, as con-
firmed by the excellent agreement between the theoretical
calculations[13] and experimental results[14]. This is due to
the fact that neither the high-frequency optical phonons nor
direct or phonon-induced leakage to higher states contribute
considerably to the decoherence. Also effects related to pi-
ezoelectric coupling to LA and TA phonons may be ne-
glected in weakly piezoelectric systems(e.g., GaAs). More-
over, the qubit control is all-optical, eliminating the need for
additional noise-inducing device structures. On the other
hand, details of the QD structure(shape, stress, composition)
may lead only to quantitative modifications of secondary im-
portance.

The non-Markovian error has a dynamical origin and is
related to a which path trace left by exciting the phonon
modes rather than to an influence of noise. The spectral den-
sity is uniquely defined by the lattice response characteris-
tics: the mode-dependent coupling strength and the density
of states. Due to fundamental restrictions(global charge neu-
trality, translational invariance), the frequency dependence is
always strongly super-ohmic[15]. On the other hand, the
approximate momentum conservation holding for weakly
confined carrier states leads to exponential cutoff of carrier–
phonon interaction at high frequencies[16]. In the specific
case of DP coupling, the coupling constants are[12]

fk =
1

2
Î k

2%vc
sseFk

sed − shFk
shdd, s13d

wherev is the volume of the unit cell,r is the crystal density,
se,h are deformation potential constants for the electron and

the hole(material parameters are taken as in[15]) andFk
se,hd

are form factors for the corresponding wave functions(ap-
proximated by Gaussians, on the grounds of numerical di-
agonalization in parabolic confinement[11]),

Fk
se,hd = e−1/4sk'

2 le,h
2 +kz

2lz
2d, s14d

where le,h and lz are the wave function widths in the dot
plane, for electron, and hole, and in the growth direction,
respectively, andk' and kz are the corresponding compo-
nents of the phonon wave vector.

Note that the most effectively coupled phonon modes cor-
respond to wavelengths around the dot size. For gapless
bosons with linear dispersion, their frequency determines the
reservoir memory times and sets up the timescale of non-
Markovian effects which, in the case of the QD system, may
be interpreted as “dressing” the localized carriers with coher-
ent lattice deformation field(cf. [10]). This kind of dynamics
has been described in the limit of very rapid gating pulses
[11,15] and has been shown to lower the degree of coherent
control over the system and to destroy the coherence of po-
larization oscillations[13,15]. Due to relatively large dot
sizes and low sound speed the cutoff frequencys,1 meVd is
lower than the transition energy between different carrier
states in a small, self-assembled dot and the corresponding
1 ps times are experimentally accessible.

For large enough gate duration only the low-frequency
sector contributes and the coupling Eq.(13) may be approxi-
mated by

fk <
1

2
sse − shdÎ k

2%vc
, s15d

leading, according to Eq.(7), to

Rsvd . R0v3, R0 =
sse − shd2

16p2%c5 . s16d

Hence, Eqs.(12) are applicable and one finds for the spe-
cific material parameters of GaAs:

tg = a2/31.47 ps, dmin = a2/30.0035. s17d

The full solution within the proposed model, taking into
account the phonon cutoff for an anisotropic shapeslz, le,hd,
according to Eqs.(14) and(13), and allowing finite tempera-
tures by numerically calculating the spectral density Eq.(7),
is shown in Fig. 1. The size-dependent cutoff is reflected by
a shift of the optimal parameters for the two dot sizes: larger
dots admit slightly faster gates and lead to lower error. Inter-
estingly, the tradeoff becomes more apparent at nonzero tem-
perature.

The presence of the upper cutoff could suggest applying
the dynamical decoupling(DD) technique[17] to diminish
decoherence. However, for high frequencies many other
mechanisms of decoherence become relevant. On the other
hand, combining the bounded-control version of DD[18]
with the optimization proposed here might lead to some re-
duction of the resulting error. Such techniques might also be
useful for eliminating other sources of noise, not included in
our discussion.
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Another possibility to reduce the decoherence effect in the
QD system might be to encode qubits in decoherence-free
subspaces[19]. However, the phonon wavelength corre-
sponding to the optimal range of gating times is comparable
to the single dot size, precluding the necessary collective
interaction with the whole QD system. Thus, for decoherence
effects which do not involve real transitions and taking into
account the feasible system geometry and actual nature of
phonon coupling, only a small decrease of the minimal de-
coherence may be expected.

In conclusion, we have exhibited the trade-off between
two opposite types of decoherence: usual Markovian damp-
ing and dynamically induced non-Markovian decoherence
for a realistic super-ohmic reservoir. To protect the qubit,
opposite elementary strategies are needed: fast and slow
gates, respectively. The minimization of the overall error
leads to optimal speed of gate. We have shown that the trade-
off is present in a semiconductor implementation of
quantum-information processing. The Markovian error is
caused by recombination, while the non-Markovian one oc-
curs if the gate operation is not adiabatic with respect to
lattice modes. We have evaluated the minimal error in this
case for a single qubit gate, showing that the two processes
indeed compete. The optimal gating times,1 psd sets up the

limit beyond which any further gate speedup is unfavorable.
Even at this optimal point the trade-off gives rise to a sig-
nificant error. For two qubit gates involving single-qubit ro-
tations(as proposed, e.g., in[8]), the present result gives a
rough lower bound for the error, which is of 1–2 orders of
magnitude higher than that admitted by fault-tolerant
schemes[2] known so fars.10−5d. However, possible im-
provements of the latter schemes cannot be excluded. It fol-
lows also that diminishing the responsible constantsgM (e.g.,
by elimination of radiative losses[20]) andgnM (by optimiz-
ing the system parameters) is the most important task to-
wards semiconductor implementation of a quantum com-
puter. It is also important to explore whether the same effect
can occur in other implementations, as well as to what extent
the error avoiding techniques may be helpful here.

The authors thank Peter Knight and Martin Plenio for
useful feedback to the first version of this paper. L.J. and
P.M. are grateful to T. Kuhn and V. M. Axt for discussions.
This work was supported by EC Grants EQUIP(IST-1999-
11053), RESQ (IST-2002-37559), SQID (IST-1999-11311),
QUPRODIS(IST-2001-38877); and by the Polish Govern-
ment, Grant No. PBZ-MIN-008/P03/2003. P.M. is grateful to
the Humboldt Foundation for support.

[1] W. G. Unruh, Phys. Rev. A51, 992 (1995).
[2] D. Aharonov and M. Ben-Or, Phys. Rev. A62, 062311(2004);

A. Y. Kitayev, Ann. Phys.(N.Y.) 303, 2 (2003); E. Knill, R.
Laflamme, and W. H. Zurek, Science279, 342 (1998).

[3] R. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki,
Phys. Rev. A65, 062101(2002).

[4] D. DiVincenzo, Science270, 255 (1995).
[5] S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingo-

lani, and F. Rossi, Phys. Rev. B65, 081309(2002).
[6] P. Chen, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett.87,

067401(2001); C. Piermarocchi, P. Chen, Y. S. Dale, and L. J.
Sham, Phys. Rev. B65, 075307(2002).

[7] L. Tian and S. Lloyd, Phys. Rev. A62, 050301(2000); L. A.
Wu, M. S. Byrd, and D. A. Lidar, Phys. Rev. Lett.89, 127901
(2002).

[8] E. Biolatti, R. C. Iotti, P. Zanardi, and F. Rossi, Phys. Rev.
Lett. 85, 5647(2000).

[9] L. van Hove, Physica(Amsterdam) 18, 145 (1952).
[10] R. Alicki, Open Syst. Inf. Dyn.11, 53 (2004).
[11] L. Jacak, P. Machnikowski, J. Krasnyj, and P. Zoller, Eur.

Phys. J. D22, 319 (2003).

[12] G. D. Mahan,Many-Particle Physics(Kluwer, New York,
2000).

[13] A. Vagov, V. M. Axt, and T. Kuhn, Phys. Rev. B66, 165312
(2002); 67, 115338(2002).

[14] P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin,
D. Ouyang, and D. Bimberg, Phys. Rev. Lett.87, 157401
(2001).

[15] B. Krummheuer, V. M. Axt, and T. Kuhn, Phys. Rev. B65,
195313(2002).

[16] L. Jacak, J. Krasnyj, D. Jacak, and P. Machnikowski, Phys.
Rev. B 65, 113305(2002); 67, 035303(2003).

[17] L. Viola and S. Lloyd, Phys. Rev. A58, 2733 (1998); M. S.
Byrd and D. A. Lidar, Phys. Rev. Lett.89, 047901(2002).

[18] L. Viola and E. Knill, Phys. Rev. Lett.90, 037901(2003).
[19] P. Zanardi and F. Rossi, Phys. Rev. Lett.81, 4752 (1998);

Phys. Rev. B59, 8170 (1999); D. Bacon, J. Kempe, D. A.
Lidar, and K. B. Whaley, Phys. Rev. Lett.85, 1758(2000); D.
A. Lidar, D. Bacon, J. Kempe, and K. B. Whaley, Phys. Rev. A
63, 022306(2001).

[20] F. Troiani, E. Molinari, and U. Hohenester, Phys. Rev. Lett.
90, 206802(2003).

ALICKI et al. PHYSICAL REVIEW A 70, 010501(R) (2004)

RAPID COMMUNICATIONS

010501-4


