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The prevailing description for dissipative quantum dynamics is given by the Lindblad form of a Markovian
master equation, used under the assumption that memory effects are negligible. However, in certain physical
situations, the master equation is essentially of a non-Markovian nature. In this paper we examine master
equations that possess a memory kernel, leading to a replacement of white noise by colored noise. The
conditions under which this leads to a completely positive, trace-preserving map are discussed for an expo-
nential memory kernel.
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The theory of open quantum systems deals with systems
that interact with an environment. This physically realistic
situation is of crucial importance in physics in general. The
overall system-environment state is described by a density
operator that evolves unitarily. Most often, one is interested
in the system alone, which is described by a reduced density
operator obtained by tracing over the environment degrees of
freedom. The exact evolution of the system state is described
by a completely positive map(CPM) [1]. The vast majority
of the theory is built on the Markov approximation. It is
assumed that the correlation time between the system and
environment is infinitely short so that memory effects can be
neglected. This leads to the ubiquitous quantum Markovian
master equation that describes the time evolution of the sys-
tem density operator, and which has a canonical form in
terms of a Lindblad superoperator that generates a com-
pletely positive dynamical semigroup[2–4].

Certainly, physical situations arise where correlations be-
tween the system and environment exist for a small yet finite
period of time. Or the Lindblad superoperator may necessar-
ily be of a more general form that depends on time. This
complicates the theory, which can no longer be presented in
the framework of quantum dynamical semigroups[5]. To
date, a solid theory of system-environment interactions in
which memory effects are incorporated is lacking. In this
paper, we present a model that describes system-environment
interactions with memory, making no use of the Born-
Markov approximation. A widely used model of qubit deco-
herence based on unbiased noise generating bit flip errors
and phase flip errors is given by the CPMFsrd=s1−rd
+sp/3dss1rs1+s2rs2+s3rs3d, where 0øpø1. This CPM
defines a depolarizing channel with white noise, which arises
from a Markovian master equation. We derive a depolarizing
channel with colored noise from a non-Markovian master
equation and study the conditions under which such a chan-
nel can be a CPM. Our results lay to rest the claim that a
Lindblad equation with a memory kernel cannot properly
describe quantum channels.

We first review the canonical form of the generator that
leads to the quantum Markovian master equation for the sys-
tem density operator. The Gorini-Kossakowski-Sudarshan
generator[6] has the form

Lr = − ifH,rg +
1

2 o
i,j=1

n2−1

cijhfFi,rFj
†g + fFir,Fj

†gj, s1d

for rPMn (Mn denotes the set ofn3n complex matrices),
whereH=H†,TrsHd=0,TrhFij=0,TrhFi

†Fjj=di j , and scijd is
a complex positive semidefinite matrix. The first term de-
scribes the unitary evolution while the second term defines
the Lindblad superoperatorL describing the dissipative dy-
namics due to the interaction of the system with the environ-
ment. The solutionrstd=eLtrs0d to Eq. (1) defines a linear
operatorFt :r→rt that maps the system density operator at
some initial time to the system density operator at some time
in the future. The expression in Eq.(1) has been shown to
generate a completely positive dynamical semigroup that has
the following properties:

sid iFtri1 = iri1 ∀ r P V1
+sHd, t ù 0,

sii d Ft ^ In ù 0, ∀ n P Z+,

siii d limt↓0Ft = I ,

sivd FtFs = Ft+s, t, sù 0, s2d

where i ·i1 denotes the trace norm in the space of linear
operators on the Hilbert spaceH andV1

+sHd is the cone of all
positive semidefinite elements in the space[7]. The first
property states that the map is trace-preserving for all density
operators for all times. The second property states that the
map is not only positive, but completely positive, i.e., any
extension to a larger space remains a positive map[8]. The
third property expresses the continuity at the origin and
hence for all time. Finally, 2sivd is the semigroup property.
This property arises when the environment or reservoir is
delta-function correlated in time as is the case for white noise
diffusive processes.

The prevailing description for dissipative dynamics is
given by ṙ=Lr, whereL is given by the second term in Eq.
(1). Instead, we consider dissipative dynamics described by
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ṙ = KLr, s3d

whereK is an integral operator that depends on time of the
form Kf=e0

t kst− t8dfst8ddt8. The kernel functionkst− t8d is a
well-behaved, continuous function that determines the type
of memory in the physical problem. The solution to the mas-
ter equation can be found by taking the Laplace transform

sr̃ssd − rs0d = K̃ssdLr̃ssd, s4d

determining the poles, and inverting the equation in the stan-
dard way. The solution to Eq.(3) defines a linear map
Ft :r→rt that describes the evolution of a system coupled to
an environment provided thatFt satisfies properties 2sid ,sii d,
and siii d. Because the master equation is no longer of the
Lindblad form, the semigroup property is lost. However, this
property is not necessary to describe a physically acceptable
state evolution. All that is required is that the linear map be a
completely positive, trace-preserving map.

The evolution of quantum systems is described by unitary
operators. Therefore,Ft should describe an evolution of the
system that arises from an overall unitary evolution of the
system and environment

Ftsrd = TrGhUsr ^ ug0lkg0udU†j, s5d

whereG denotes the environment degrees of freedom andg0
is some initial state of the environment. It is assumed that the
stater is prepared at some timet=0 and so is initially un-
correlated with the external system. The state and the envi-
ronment evolve unitarily for some time and they become
correlated. One may think of the environment as extracting
information from the system as it will typically map pure
states into mixed states. This noise process is described by a
linear map involving only operators on the system of interest
so that it has a Kraus decomposition,

Ftsrd = o
k

Ak
†rAk, s6d

where the conditionok AkAk
†= I ensures that unit trace is pre-

served for all time[1]. A map has a Kraus decomposition if
and only if it is completely positive. Physically, complete
positivity ensures that the system evolution is compatible
with a unitary evolution on the system-environment Hilbert
space.

In solving Eq.(3) it is advantageous, in practice, to find a
damping basis[9] for the superoperatorL that diagonalizes
the master equation. Solving the eigenvalue equationLr
=lr produces a complete, orthogonal basis with which to
expand the density operator at any time. This results in a set
of eigenvalues hlij and right and left eigenoperators,
hRij ,hLij, that satisfy the duality relation TrhLiRjj=di j . Once
the initial state is knownrs0d=oiTrhLirs0djRi, the state of
the system at any later time can be found throughrstd
=oiTrhLirs0djListdRi =oiTrhRirs0djListdLi. The Listd are
general functions that determine the time evolution. The
damping basis allows for the replacement ofL by the eigen-
valuesli so that Eq.(4) may be written as

r̃ssd = o
i

TrhLirs0dj
1

s− K̃ssdli

Ri . s7d

We now illustrate how a master equation of the form of
Eq. (3) arises. Consider the time-dependent Hamiltonian,

Hstd = "o
i=1

3

Gistdsi , s8d

whereGistd are independent random variables andsi are the
Pauli operators. Each random variable obeys the statistics of
a random telegraph signal, which is defined byGistd
=ais−1dnistd. The random variablenistd has a Poisson distri-
bution with a mean equal tot /2ti, while ai is an independent
coin-flip random variable. By the abuse of notation, the ran-
dom variableai takes the values ±ai. The random telegraph
signal is a wide sense stationary stochastic processf10g with
zero mean. This model is applicable to any two-level quan-
tum system that interacts with an environment possessing
random telegraph signal noise. For example, this could de-
scribe a two-level atom subjected to a fluctuating laser field
that has jump-type random phase noisef11g. In the language
of nuclear magnetic resonance, this model describes a spin-
1/2 particle in the presence of three orthogonal magnetic
fields. Each field has a constant magnitudeai and inverts
randomly in time with a distribution given byni. The
strength of the coupling of the system to the external influ-
ence is given by the parametersai. The flipping or fluctua-
tion rate is inversely given byti.

The equation of motion for the density operator is given
by the von Neumann equation r=−si /"dfH,rg
=−iokGkstdfsk,rg, which has the solution

rstd = rs0d − iE
0

t

o
k

Gkssdfsk,rssdgds. s9d

Upon the substitution of Eq.(9) back into the von Neumann
equation and performing a stochastic average, one obtains

ṙstd = −E
0

t

o
k

e−st−t8d/tkak
2
†sk,fsk,rst8dg‡dt8, s10d

where the correlation functions of the random telegraph sig-
nal kG jstdGkst8dl=ak

2e−ut−t8u/tkd jk have been employed, as well
as the decorrelation of the state from the random variables
[11]. Equation(10) is an equation of motion for the average
density operator using an incoherent sum approximation.
That is, it is the sum of three exact equations of motion, one
for each componentk=1,2,3.After averaging over the res-
ervoir variables, we are left with a homogeneous Volterra
equation for the system density operator that has an expo-
nential memory kernel. The state of the system at timet
depends on its past history. The power spectrum of the envi-
ronment is given by a Fourier transform of the exponential
correlation function, which is an unnormalized Lorentzian
with a maximum of 2a2t and a full width at half maximum
equal to 1/sptd. In the case of white noise, the delta-function
correlation in time leads to a flat power spectrum for the
environment with a strength given by a diffusion constant.
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The system is equally coupled to all frequencies of the ex-
ternal system. In the case of colored noise, the system prefers
certain frequencies. Thus,a is the coupling strength of the
system with the external system whilet determines which
frequencies the system prefers most. Increasing botha and
1/t corresponds to a more noisy environment. Therefore, the
dimensionless productat is the fundamental quantity that
determines the amount of fluctuation.

Having derived a master equation of the form of Eq.(3)
with an exponential kernel function, we now determine the
damping basis and solve the master equation. We assume
that the fluctuation ratesti are equal so that they obey the
same Poisson statistics. This leads to a single kernel operator
acting on the Lindblad superoperator, rather than a linear
superposition of such operations:ṙ=K1L1r+K2L2r+K3L3r.
The damping basis for Eq.(10) is found to be the following
set of eigenvalues and eigenoperators:hl0,l1,l2,l3j=h0,
−4sa2

2+a3
2d ,−4sa1

2+a3
2d ,−4sa1

2+a2
2dj and hR0,R1,R2,R3j

=hL0,L1,L2,L3j=hs0/Î2,s1/Î2,s2/Î2,s3/Î2j which are
self-dual. Using the damping basis, the Laplace transform of
Eq. (10) becomes

r̃ssd = o
i

TrhLirs0dj
s+ 1/t

sss+ 1/td − li
Ri , s11d

with s0= I. This can be inverted to give the solution

rstd = o
i

TrhLirs0djListdRi . s12d

In terms of the dimensionless timen= t /2t, the functions
Lisnd=e−nfcossmind+sinsmind /mig are damped harmonic os-
cillators having frequenciesmi =Îs4kitid2−1 with ki

2=aj
2

+ak
2 for i Þ j Þk. This differs from the Markovian case,

where the functions are purely exponential functions in time
with parameters defining the characteristic lifetimes. A
power series expansion givesLsnd=1−1

2sm2+1dn2+Osn3d,
which shows that the linear term inn is missing. Thus, the
standard white noise diffusion term vanishes. This is a gen-
eral property of the memory kernel and a fundamental dif-
ference between white noise and colored noise.

The functionLsnd has two regimes—pure damping and
damped oscillations. The fluctuation parameter, given by the
productkt, determines the behavior of the solution. When
0økt,1/4 the solution is described by damping. The fre-
quencym is imaginary with magnitude less than unity. When
kt=1/4 thefunction Lsnd=e−ns1−nd is unity at the initial
time and approaches zero as time approaches infinity. In ad-
dition to pure damping, damped harmonic oscillations in the
interval f−1, +1g exist in the regimekt.1/4.

The functionsLisnd determine the evolution of each com-
ponent of the Bloch vector. The bounduLsnduø1 ensures
that the density operator evolves only to states on or inside
the Bloch sphere so thatFt always maps positive operators
to positive operators. For Markovian master equations, the
dissipation results in a contraction of each component, which
is a consequence of the semigroup property. This property is
absent for colored noise, so that the dissipation results in
contractions with oscillations. The information exchange be-
tween the system and the environment leads to an exchange

of entropy between the two. The entropy of the average sys-
tem state can oscillate in time with an overall decay.

The solution to the master equation(12) defines a linear
map Ft :r→rt on M2 that is a generalization of the depo-
larizing channel to the case of colored noise. This map has a
Kraus decompositionFtsrd=okAk

†rAk with Kraus operators
given by A1=Îj1snds1, A2=Îj2snds2, A3=Îj3snds3, and
A4=Îj4sndI, provided the following linear combinations are
non-negative:

4j1snd = 1 +L1 − L2 − L3 ù 0,

4j2snd = 1 −L1 + L2 − L3 ù 0,

4j3snd = 1 −L1 − L2 + L3 ù 0,

4j4snd = 1 +L1 + L2 + L3 ù 0. s13d

We now show which properties(2) hold. Clearly, this map-
ping is trace-preserving and propertys2dsid is satisfied. Prop-
erty s2dsiii d is satisfied because limt↓0Listd=1. The system
evolves continuously in time and the evolution is described
by the identity map at the initial time. The semigroup prop-
erty s2dsivd is lost asListdLissdÞList+sd.

The map is completely positive ifFt ^ Inù0∀nPZ+. It
is sufficient to show that the composite operation on a maxi-
mally entangled state is positive[8]. For a linear map from
M2 to M2, we need only show that the composite mapFt
^ Isub00lkb00ud on M4 is positive semidefinite, whereub00l
=s1/Î2dsu00l+ u11ld is the maximally entangled Bell state.
Hence the map is completely positive if and only if the ei-
genvalues of the composite map are non-negative. The ei-
genvalueshj jj are exactly those given by Eqs.(13). There-
fore, property 2sii d is satisfied for allait and everyn if and
only if

inf
saitd

j jsnd ù 0, j = 1,2,3,4. s14d

This follows from the fact that the existence of a Kraus de-
composition and the composite operation on the maximally
entangled state are both necessary and sufficient to show
complete positivity.

Condition(14) is not satisfied for all values of the param-
eters. A case where it is satisfied occurs when two or more of
theai are zero. For example, if two of theai are zero and one
is nonzero thenFt defines a dephasing channel with colored
noise. Supposea3=a,a1=a2=0. In this case,L1snd=L2snd
=Lsnd andL3snd=1. This map has Kraus operators given by
A1=Îf1+Lsndg /2I and A2=Îf1−Lsndg /2s3. This map is a
completely positive, trace-preserving map for all values of
the fluctuation parameterat becauseuLsnduø1 for all times
n. This is due to the fact that the master equation for this case
is exact, making no use of any approximation. The Hamil-
tonian H="G3s3 implies that thez component of the spin-
1/2 particle is a constant of the motion so that the two states
u± lz are fixed points and do not evolve. As a physical model,
a constant magnitude magnetic field is applied in thez direc-
tion which inverts randomly in time. If the field is unob-
served, the average trajectory for the density operator of the
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spin-1/2 system is dissipative. As time approaches infinity,
there is maximum uncertainty in thex andy components of
the spin system. A steady stateFtsrdss=

1
2sr+s3rs3d is

reached; the entire Bloch sphere evolves to a line connecting
the north and south poles.

We find that if two or more of theai are nonzero then
there are regimes for the fluctuation parameters where com-
plete positivity is lost. This is due to the incoherent sum
approximation. Assume the frequenciesmi are equal. Then
only the last eigenvalue in(13) need be considered. Setting
the time equal ton=p /m we find that if the frequencies are
less than or equal top / lns3d the map defined by Eq.(12) is
completely positive for all time. The case of three equal fre-
quencies sets an upper bound. We have the following suffi-
cient condition for (14) to be satisfied: If m*

=maxhm1,m2,m3jøp / lns3d then the map is completely posi-
tive for all time. Complete positivity is lost as the frequencies
become large. This reflects the fact that the approximate so-
lution deviates from the exact solution(which will always be
completely positive) as the fluctuation parameters become
large. The exact master equation may be obtained by iterat-
ing the steps leading to Eq.(10) with the exception of aver-
aging after a series is generated. The exact master equation
will not have the form of Eq.(3); the incoherent sum ap-
proximation produces this form. When the map is completely
positive, it defines a depolarizing channel with colored noise,
which arises from a non-Markovian master equation.

We recover the Markovian master equation by lettingt
→0 anda→` in such a way that 2a2t becomes a constant.
The random telegraph signal reduces to a Gaussian white

noise in this singular limit and Eq.(10) becomesṙstd=
−e0

t dst− t8dok2ak
2t[sk,fsk,rst8dg]dt8. This master equation is

local in time, leading toListd=exps−gitd in Eq. (12) with
inverse lifetimesgi =4ki

2t. We point out that, even in the case
of white noise, there are examples of maps that are positive
but not completely positive[6,12,13]. For Markovian dy-
namics, the relations(13) are satisfied if and only ifgi øg j

+gk for all permutations of the indices.
By construction of our example, complete positivity holds

in the white noise limit. We conclude that the loss of com-
plete positivity, when the memory kernel is present, is a fea-
ture of the colored noise. The validity of Eq.(3) has been
questioned[14]. In this paper we show conditions under
which an exponential memory kernel, applied to a two-level
system, leads to a CPM and shows that such conditions can
be achieved. We have presented an example of a completely
positive, trace-preserving map that results from a system-
environment coupling that is essentially non-Markovian and
defines a depolarizing channel with colored noise. The re-
sults reveal that interesting features arise from the colored
noise of the environment, which are not present in the limit
of white noise. White noise is an idealization of real noises
and under certain conditions cannot be used. Thus, more
work needs to be done in the study of more general noises
that include memory effects.
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