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The prevailing description for dissipative quantum dynamics is given by the Lindblad form of a Markovian
master equation, used under the assumption that memory effects are negligible. However, in certain physical
situations, the master equation is essentially of a non-Markovian nature. In this paper we examine master
equations that possess a memory kernel, leading to a replacement of white noise by colored noise. The
conditions under which this leads to a completely positive, trace-preserving map are discussed for an expo-
nential memory kernel.
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The theory of open quantum systems deals with systems 1n2—1
that interact with an environment. This physically realistic Lp=—i[H,p]+= >, Cij{[Fi,pr]+[Fip,F;r]}, (1)
situation is of crucial importance in physics in general. The ij=1

overall system-environment state is described by a density

operator that evolves unitarily. Most often, one is interestedor p e M, (M, denotes the set af X n complex matrices

in the system alone, which is described by a reduced densitwhereH=HT,Tr(H):0,Tr{Fi}=0,Tr{FiTFj}=5,j, and(c;) is
operator obtained by tracing over the environment degrees &f complex positive semidefinite matrix. The first term de-
freedom. The exact evolution of the system state is describestribes the unitary evolution while the second term defines
by a completely positive maCPM) [1]. The vast majority  the Lindblad superoperatat describing the dissipative dy-
of the theory is built on the Markov approximation. It is namics due to the interaction of the system with the environ-
assu_,lmed tha_t t_he_ (_:orrelatlon time between the system andent. The solutiorp(t)=€-p(0) to Eq. (1) defines a linear
environment is infinitely short so that memory effects can beoperator(bt:p—mt that maps the system density operator at

neglected. This leads to the ubiquitous quantum Markoviary, o initial time to the system density operator at some time

master equation that describes the time evolution of the SY$H the future. The expression in Edl) has been shown to

tem density operator, and which has a canonical form in o . .
terms of a Lindblad superoperator that generates a co jenerate acomplete!y positive dynamical semigroup that has
he following properties:

pletely positive dynamical semigroyg—4.
Certainly, physical situations arise where correlations be-

tween the system and environment exist for a small yet finite () [Pl =lpl O p e Vi(H), t=0,
period of time. Or the Lindblad superoperator may necessar-
ily be of a more general form that depends on time. This (i) d®1,=0, OneZ,

complicates the theory, which can no longer be presented in
the framework of quantum dynamical semigroypg. To

date, a solid theory of system-environment interactions in (i) limg e®e =1,
which memory effects are incorporated is lacking. In this
paper, we present a model that describes system-environment (iv) &P =Png t, s=0, 2

interactions with memory, making no use of the Born-
Markov approximation. A widely used model of qubit deco- where ||, denotes the trace norm in the space of linear
herence based on unbiased noise generating bit flip errosperators on the Hilbert spag¢ andV;(H) is the cone of all
and phase flip errors is given by the CP®(p)=(1-p) positive semidefinite elements in the spddg. The first
+(p/3)(o1poy+ oupay+ ospos), Where O<sp<1. This CPM  property states that the map is trace-preserving for all density
defines a depolarizing channel with white noise, which arisesperators for all times. The second property states that the
from a Markovian master equation. We derive a depolarizingnap is not only positive, but completely positive, i.e., any
channel with colored noise from a non-Markovian masterextension to a larger space remains a positive f8apThe
equation and study the conditions under which such a charthird property expresses the continuity at the origin and
nel can be a CPM. Our results lay to rest the claim that énence for all time. Finally, @v) is the semigroup property.
Lindblad equation with a memory kernel cannot properlyThis property arises when the environment or reservoir is
describe quantum channels. delta-function correlated in time as is the case for white noise
We first review the canonical form of the generator thatdiffusive processes.
leads to the quantum Markovian master equation for the sys- The prevailing description for dissipative dynamics is
tem density operator. The Gorini-Kossakowski-Sudarshagiven byp=_Lp, where, is given by the second term in Eg.
generatof6] has the form (1). Instead, we consider dissipative dynamics described by
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whereK is an integral operator that depends on time of the ' s— KN
form Ke=[ok(t—t")¢p(t")dt’. The kernel functiork(t-t") is a We now illustrate how a master equation of the form of
well-behaved, continuous function that determines the typgq. (3) arises. Consider the time-dependent Hamiltonian,
of memory in the physical problem. The solution to the mas- 3
ter equation can be found by taking the Laplace transform HO =43 Ty, ®)
~ i=1
sp(s) = p(0) = K(9) Lp(s), (4) , _
wherel’;(t) are independent random variables andre the

determining the poles, and inverting the equation in the stanPauli operators. Each random variable obeys the statistics of
dard way. The solution to Eq3) defines a linear map a random telegraph signal, which is defined by(t)
d,: p— p; that describes the evolution of a system coupled to=ai(-1)ni(t). The random variable;(t) has a Poisson distri-
an environment provided thdt, satisfies properties(B, (i),  bution with a mean equal t@ 27, while g, is an independent
and (iii ). Because the master equation is no longer of theoin-flip random variable. By the abuse of notation, the ran-
Lindblad form, the semigroup property is lost. However, thisdom variablea; takes the valuesa. The random telegraph
property is not necessary to describe a physically acceptabkignal is a wide sense stationary stochastic procEsswith
state evolution. All that is required is that the linear map be &ero mean. This model is applicable to any two-level quan-
completely positive, trace-preserving map. tum system that interacts with an environment possessing

The evolution of quantum systems is described by unitaryandom telegraph signal noise. For example, this could de-
operators. Thereforab, should describe an evolution of the scribe a two-level atom subjected to a fluctuating laser field
system that arises from an overall unitary evolution of thethat has jump-type random phase ndisg]. In the language

system and environment of nuclear magnetic resonance, this model describes a spin-
1/2 particle in the presence of three orthogonal magnetic
D(p) = Tr{U(p @ | vo) (7)) U™}, (5) fields. Each field has a constant magnitugleand inverts

randomly in time with a distribution given byy. The
wherel" denotes the environment degrees of freedom-and strength of the coupling of the system to the external influ-
is some initial state of the environment. It is assumed that thence is given by the parameteas The flipping or fluctua-
statep is prepared at some tinte=0 and so is initially un-  tion rate is inversely given by,.
correlated with the external system. The state and the envi- The equation of motion for the density operator is given
ronment evolve unitarily for some time and they becomepy the wvon Neumann equation p=—(i/#)[H,p]
correlated. One may think of the environment as extracting=— SkI'k(t)[ ok, p], which has the solution
information from the system as it will typically map pure
states into mixed states. This noise process is described by a
linear map involving only operators on the system of interest
so that it has a Kraus decomposition,

t
p(t) = p(0) —i % (9o, p(9)]ds. (9)
0

Upon the substitution of Eq9) back into the von Neumann
Dy(p) = > AEPAk' (6) equation and performing a stochastic average, one obtains
k

t
. — —(t-t")/ 72 ' ’
where the conditioft, A/Al=1 ensures that unit trace is pre- p(t) . Ek e alowloept)]ldt’,  (10)

served for all timg1]. A map has a Kraus decomposition if
and only if it is completely positive. Physically, complete where the correlation functions of the random telegraph sig-
positivity ensures that the system evolution is compatiblenal (Fj(t)l"k(t’)>:aie‘““"’fkéjk have been employed, as well
with a unitary evolution on the system-environment Hilbertas the decorrelation of the state from the random variables
space. [11]. Equation(10) is an equation of motion for the average
In solving Eq.(3) it is advantageous, in practice, to find a density operator using an incoherent sum approximation.
damping basig9] for the superoperatof that diagonalizes That is, it is the sum of three exact equations of motion, one
the master equation. Solving the eigenvalue equatiph  for each componerit=1,2,3.After averaging over the res-
=Ap produces a complete, orthogonal basis with which toeryoir variables, we are left with a homogeneous Volterra
eXpand the denSity Operator at any time. This results in a S@quaﬂon for the System density operator that has an expo-
of eigenvalues{\;} and right and left eigenoperators, nential memory kernel. The state of the system at time
{Ri}.{Li}, that satisfy the duality relation JI;R;}=3;. Once  depends on its past history. The power spectrum of the envi-
the initial state is knowrp(0)=2;Tr{L;p(0)}R;, the state of ronment is given by a Fourier transform of the exponential
the system at any later time can be found throygh correlation function, which is an unnormalized Lorentzian
=3 Tr{Lip(0) A, (DR =2 Tr{Rp(0)}A;(H)L;. The A;(t) are  with a maximum of 27 and a full width at half maximum
general functions that determine the time evolution. Theequal to 1(=7). In the case of white noise, the delta-function
damping basis allows for the replacementfoby the eigen- correlation in time leads to a flat power spectrum for the
values\; so that Eq(4) may be written as environment with a strength given by a diffusion constant.
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The system is equally coupled to all frequencies of the exeof entropy between the two. The entropy of the average sys-

ternal system. In the case of colored noise, the system prefetsm state can oscillate in time with an overall decay.

certain frequencies. Thus, is the coupling strength of the The solution to the master equati¢i?) defines a linear

system with the external system whitedetermines which map ®;:p— p, on M, that is a generalization of the depo-

frequencies the system prefers most. Increasing bathd  larizing channel to the case of colored noise. This map has a

1/7 corresponds to a more noisy environment. Therefore, th&raus decompcﬂ)mbt(pﬁEkﬁzp_Ak with Kraus operators

dimensionless produar is the fundamental quantity that given by A;=\¢&(v)oy, Ax=1E&(v)or, Ag=\&(v)as, and

determines the amount of fluctuation. A4=1\/&(v)!, provided the following linear combinations are
Having derived a master equation of the form of E8).  npon-negative:

with an exponential kernel function, we now determine the

damping basis and solve the master equation. We assume 46(1)=1+A1- A= A3=0,

that the fluctuation rates are equal so that they obey the

same Poisson statistics. This leads to a single kernel operator 45(v)=1-A1+ A, - A3=0,

acting on the Lindblad superoperator, rather than a linear

superposition of such operations:K,L1p+K,Lop+K3L5p. 4&(1)=1-A - A+ A3=0,

The damping basis for Eq10) is found to be the following

set of eigenvalues and eigenoperatdps;, N1, 2, 3} ={0, A5(1)=1+A;+ Ay + A= 0. (13)

_4(a§+a§)1_4(a§+a§)!_4(a§+§§)} and  {Ry,R;,Ry, R} i ) )
:{Lo,Ll,Lz,Lg}:{(Tol\“‘E,U']_/\“‘sz,0'2/\“"2:0-3/\“‘"2} which are We now show whlch_ propertie®) hold_. (?Iearly, .thIS map-
self-dual. Using the damping basis, the Laplace transform ofing IS trace-preserving and prope(8)(i) is satisfied. Prop-

Eq. (10) becomes erty (2)(iii) is satisfied because lipgAi(t)=1. The system
<+ 1r gvolr\]/es_dcon_tinuously inhtime_ fir;d_ the _er\;]olution_is described
~(Q) = , A y the identity map at the initial time. The semigroup prop-

P 2 Tk Ol g oy -0 QD oy (2)iv) is lost ASA(DA(S) £ A (t+9).
) ) . ) . The map is completely positive ;®1,=00ne Z,. It

with op=I. This can be inverted to give the solution is sufficient to show that the composite operation on a maxi-

o) = S THLp(O)IA (DR, (12) mally entangled state is positii8]. For a linear map from

|

M, to M5, we need only show that the composite mbp
_ _ _ _ ® 1(|BooX{Bod) ON M, is positive semidefinite, wherg8yy)
In termi}of the dimensionless time=t/27, the functions =(1/12)(|00)+|11)) is the maximally entangled Bell state.
A.‘(V):e [CO.S('“‘ V)+S'r('“"f)/'“‘] a%r?ped h'armoznlczos— Hence the map is completely positive if and only if the ei-
CI||<’2:lt0rS having frequenciegs;=\(4x7)°-1 with «'=a]  genvalues of the composite map are non-negative. The ei-
+a for i#j#k. This differs from the Markovian case, genvalueg} are exactly those given by Eq&l3). There-

W_here the functions are purely exponentia_l fl_mct_ion_s in timegg e property 2ii) is satisfied for alla;~ and every if and
with parameters defining the characteristic lifetimes. Aonly if

power series expansion gives(v)=1-3(u?+1)2+0(1d),
which shows that the linear term imis missing. Thus, the infg(») =0, j=1,2,3,4. (14
standard white noise diffusion term vanishes. This is a gen- @7
eral property of the memory kernel and a fundamental dif-This follows from the fact that the existence of a Kraus de-
ference between white noise and colored noise. composition and the composite operation on the maximally
The functionA(v) has two regimes—pure damping and entangled state are both necessary and sufficient to show
damped oscillations. The fluctuation parameter, given by theomplete positivity.
product k7, determines the behavior of the solution. When Condition(14) is not satisfied for all values of the param-
0= x7<1/4 the solution is described by damping. The fre-eters. A case where it is satisfied occurs when two or more of
guencyu is imaginary with magnitude less than unity. When the a; are zero. For example, if two of tte are zero and one
kT=1/4 thefunction A(v)=e”(1-v) is unity at the initial is nonzero thermd, defines a dephasing channel with colored
time and approaches zero as time approaches infinity. In adioise. Supposez=a,a;=a,=0. In this caseA;(v)=A,(v)
dition to pure damping, damped harmonic oscillations in thee A(v) andAz(»)=1. This map has Kraus operators given by
interval[-1, +1] exist in the regimecr>1/4. A=+\[1+A(v)]/2I and A;=\[1-A(v)]/205. This map is a
The functionsA;(v) determine the evolution of each com- completely positive, trace-preserving map for all values of
ponent of the Bloch vector. The bound(v)|<1 ensures the fluctuation parameterr becauseA(v)|<1 for all times
that the density operator evolves only to states on or inside. This is due to the fact that the master equation for this case
the Bloch sphere so thak, always maps positive operators is exact, making no use of any approximation. The Hamil-
to positive operators. For Markovian master equations, théonian H=%AI"305; implies that thez component of the spin-
dissipation results in a contraction of each component, whici/2 particle is a constant of the motion so that the two states
is a consequence of the semigroup property. This property ist ), are fixed points and do not evolve. As a physical model,
absent for colored noise, so that the dissipation results ia constant magnitude magnetic field is applied inZléec-
contractions with oscillations. The information exchange betion which inverts randomly in time. If the field is unob-
tween the system and the environment leads to an exchangerved, the average trajectory for the density operator of the
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spin-1/2 system is dissipative. As time approaches infinitynoise in this singular limit and Eq10) becomesp(t)=

there is maximum uncertainty in theandylcomponents_ of _fgg(t_t')EKZaET[gk,[gk,p(t')]]dt'_ This master equation is

the spin system. A steady statB(p)ss=5(p+03p03) IS |ocal in time, leading toA;(t)=exp—yt) in Eq. (12) with

reached; the entire Bloch sphere evolves to a line connectingerse lifetimesy, = 4«27, We point out that, even in the case
i’ '

the north and south poles. of white noise, there are examples of maps that are positive

We find that if two or more of they are nonzero then ” .
there are regimes for the fluctuation parameters where con?—Ut T‘Ot complete_ly p05|t|ve{6,1_2,1_3. I_:or Markov_lan dy-
namics, the relation€l3) are satisfied if and only ify < v;

plete positivity is lost. This is due to the incoherent sum ) o
approximation. Assume the frequencigsare equal. Then * % for all permutations of the indices. o

only the last eigenvalue ifl3) need be considered. Setting ~ BY construction of our example, complete positivity holds
the time equal tar=7/u we find that if the frequencies are in the white noise limit. We conclude that the loss of com-

less than or equal ta/In(3) the map defined by Eq12) is  plete positivity, when the memory kernel is present, is a fea-
completely positive for all time. The case of three equal fre-ture of the colored noise. The validity of E(B) has been
quencies sets an upper bound. We have the following suffigquestioned[14]. In this paper we show conditions under
cient condition for (14) to be satisfied: If u which an exponential memory kernel, applied to a two-level
=maxX{1, o, uat < /In(3) then the map is completely posi- system, leads to a CPM and shows that such conditions can
tive for all time Complete positivity is lost as the frequencies be achieved. We have presented an example of a completely
become large. This reflects the fact that the approximate sgositive, trace-preserving map that results from a system-
lution deviates from the exact solutigwhich will always be  environment coupling that is essentially non-Markovian and
completely positivg as the fluctuation parameters becomegefines a depolarizing channel with colored noise. The re-
large. The exact master equation may be obtained by iteraky|ts reveal that interesting features arise from the colored
ing the steps leading to EqL0) with the exception of aver- nojse of the environment, which are not present in the limit
aging after a series is generated. The exact master equatigh white noise. White noise is an idealization of real noises
will not have the form of Eq(3); the incoherent sum ap- and under certain conditions cannot be used. Thus, more

proximation produces this form. When the map is completelyyork needs to be done in the study of more general noises
positive, it defines a depolarizing channel with colored noisethat include memory effects.

which arises from a non-Markovian master equation.

We recover the Markovian master equation by letting This work was partially supported by a KBN grant No.
—0 anda— « in such a way that&r becomes a constant. 2PO3B 02123 and the European Commission through the
The random telegraph signal reduces to a Gaussian whitdesearch Training Network QUEST.
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