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The high-energy Glauber, or eikonal, approximation is used to derive formulas for the scattering
amplitude and cross section for the ionization of atomic hydrogen by electron impact. The scattering
amplitude is expressed in terms of a double infinite sum of hypergeometric functions which may be t

evaluated on a computer. Total cross sections may be obtained by squaring the scattering amplitude and
integrating over five final-state variables. Three integrals are trival and two must be done numerically. At
sufficiently high energies, the Glauber result reduces to the expressions found in the simpler, but more
restrictive, Coulomb-Born approximation.

I. INTRODUCTION

In recent years there has been success in apply-
ing the Glauber approximation' to atomic physics.
In 1S6& Franco computed cross sections for the
elastic scattering of electrons from hydrogen. In-
elastic electron-hydrogen scattering was done' in
1S70 by Tai, Bassel, Gerjuoy, and Franco. Fol-
lowing the mathematical technique4 of Thomas and

Gerjuoy, Franco developed5 a procedure for doing
elastic and inelastic electron-atom cross sections,
which has been worked out for different cases by
various authors. ' A method similar to Glauber's
is now being used' by Kohl et al. to work out elas-
tic electron- molecule scattering. Somewhat
earlier, Cheshire had used a similar method to
calculate charge exchange in proton-hydrogen
scattering. Exchange contributions have been com-
puted numerically by Byron, and Reading' has
derived some intermediate- energy corrections.
In most instances, of course, the calculations may
be readily modified to handle beam particles other
than electrons, e.g. , protons of fully stripped ions.

Ionization cross sections are now generally
worked out in either the classical binary-encounter
model~' or a Born approximation, usually a
Coulomb- Born approximation, where the
three-body asymptotic final state of the system in-
cludes a Coulomb wave function. Exact calcula-
tions for ionization, even in the case of electron-
hydrogen scattering, have yet to be done. Conse-
quently, there is strong motivation to consider a
Glauber calculation of electron-hydrogen ioniza-
tion with the hope that the techniques developed

may be applied to other atomic systems.
Generally speaking, the Glauber approximation

includes some multiple scattering and is unitary in
the high-energy limit. Since Born calculations in-
clude neither of these effects, the Glauber cross
sections are often accurate over a larger energy
range. For example, at 30 eV the experimental
total cross section for excitation of 1s hydrogen
to the n = 2 level by electron impact is within-5/q
of the Glauber prediction' but is about half as large
as the Born prediction. At very high energies,
the Glauber amplitude should reduce to the Born
amplitude. One of the main strengths of the
Glauber approximation in atomic physics is the
ease with which it may be computed. In the scat-
tering of electrons from hydrogen, elastic and in-
elastic scattering amplitudes may be found in terms
of a few hypergeometric functions multiplied by
simple factors. The corresponding Born calcula-
tion gives an only slightly simpler algebraic ex-
pression.

There is yet another motivation for this type of
computation: namely, that it may provide an ac-
curate source of high-partial-wave contributions
to complement more exact computations of lower-
partial-wave scattering amplitudes. While one of
the strengths of the Glauber approximation is that
a partial-wave decomposition is unnecessary, such
a partial-wave decomposition in the Glauber ap-
proximation may nonetheless be useful.

II. DERIVATION

In this section we derive a Glauber amplitude for
electron-hydrogen ionization. The Schrodinger
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I/ri+ I/I ri (6)

We apply the eikonal approximation, i.e. , as-
sume that (t varies slowly over a distance of one
wavelength, and drop the V& term, giving

ik0 = (k+ V) P . (6)

In order to find P, we have chosen to ignore the re-
coil energy of struck particles represented by h.
This approximation is standard in elastic and in-
elastic Glauber calculations. In the case of ioniza-
tion, however, it requires some justification since
it limits the energy which the ejected electron may
carry off. Fortunately, at the high energies where
the Glauber approximation may be applied, experi-
ments' on a number of atomic systems indicated
that the energy distributions are strongly peaked
at low ejected-electron energies. In the case of
hydrogen ionization no such data exist, but the
Born-Coulomb calculations of Omidivar'7 show
that the energy distributions are strongly peaked
about an energy equal to —,

' the binding energy of
the ejected electron. Ignoring the recoil energy
corresponding to k in Eq. (6), the Glauber wave
function may be expressed as

y (r„r,)=u, (r,) e"&~

(xexp
I

——
( V(r2, b+k0e )de, (7)

&o

where u&(r2) is the wave function for the initial state
of the hydrogen atom itself.

In an exact formalism, ' '9 we could calculate

equation for this three-body atomic system may
be written (in units of I= m = e = I) as

1 1 1—2Vg —2V2 ————+ $= E$
&2 lr)- r2l

where the mass of the proton is much greater than
the electron mass nz. We rewrite Eq. (1) as

(
j. 2 1 1——,V~ +k(r2) ——+ $=E(I)

l rg —r2l

where

k(r) = —,'V—' —1/r W. -
In this case, k(r) is the two-body Coulomb Ham-
iltonian with two-body energy W. The eigenstates
of k(r) are well-known Coulomb wave functions,
(I),(r), for W &0, and the bound states of the hydrogen
atom, u;(r), for W&0.

We now try a solution of the form P = e'~0'P,
where & k&=E, which leads to

—-V, -ikr rk(rr)r V)k=0
dz

where

the scattering amplitude for ionization according to

f= — (E—P) P~(r„r,) iC), (r„r,) d'r, d'r, , (8)2'

where the exact wave function (If, (r„r2) satisfies
(E —H)(i), = 0 with the usual boundary conditions as
r, - ~. The asymptotic wave function Qf(r„r, )

may be represented by a product of Coulomb wave
functions, (t)',~ (r, ) (I)',2 (r0), with partially screened
charges z~ and z2 as prescribed by Rudge and
Seaton based, in part, on the work2P of Peterkop.
In this case,

(Z-a)y, = Vg,
where

1 % 1 gj, 1 82 1
V~rj, r2j = +

I'r, —r2I
(10)

f( k)= '-'- y+- (r )(1-e' "")=2~

where
00

X=——
kp

~ a 00

xu, (x,) e' ' bdrd, ,

V(r, rr)dr, = —)r '" ") . ((k)1 2

The configuration, shown in Fig. 1, defines the
two impact parameters b and s; i(,(r2) is the two-
body Coulomb wave function, and u, (r2) is the wave
function of the initial state of the hydrogen atom.

The expression for the scattering amplitude thus
prescribed is nonsingular.

Now we shall apply the full-screening approxi-
mation already implicit in our derivation. The
idea is that the ejected electron goes off with a
velocity that is small compared to that of the in-
cident electron. This corresponds to our dropping
the k(r, ) term in Eq. (6). The projectile electron
in the final state thus is screened from the nucleus
by the ejected electron, corresponding to zz = 1 and
z2= 0. Our Glauber scattering amplitude may now

be expressed as

fr = — jr+ (rrrr) V(rrr, r) (r„drr )d, ' rd'rr,

.(11)
where P& is a product of a Coulomb wave, repre-
senting the projectile electron. V(r„r0) is given
by Eq. (5) ~ Our approximate expression for the
scattering amplitude f is also nonsingular. Fur-
thermore, the screening approximation itself is
exactly that used to determine (t)& in the standard
Coulomb-Born approximation.

Using Eq. (I) for $0 in Eq. (11), we may integrate
Eq. (11) in the standard way to obtain an expression
for the Glauber scattering amplitude for ionization,
namely,
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e'ea(eal +(+(, 2(eR, 2((e)

+ Az(k) (kr)r ' i (20
K~ l+1

where

FIG. 1. Projection of the collision onto the x, y plane.
The heavy nuclear mass is at the origin, 6 is the pro-
jection of the projectile onto the x, y plane, and s is the
projection of the atomic electron. The momentum trans-
fer q is perpendicular to the 0 axis.

III. CALCULATION OF SCATTERING AMPLITUDE

A. Formulation

xIIs(r) e'~'d'bd'r . (14)

Here ko is the momentum of the incident electron,
q=ks -k/ is the momentum transfer, and k is the
momentum of the ejected electron. The ground-
state wave function of hydrogen is given by

t(s(r) =2e" rso(r) =e "/v n (i5)

We expand the Coulomb wave function (, (r)
in two-body partial waves in order to use the meth-
ods of Thomas and Gerjuoy to evaluate the inte-
grals. Specifically we expand g, (r) usingsi

In this section we compute the scattering ampli-
tude for the ionization of hydrogen in the ground
state by electron impact. We write the scattering
amplitude as

2fkp

f(q, k) =+
2 g,*(r) 1—

(K+ f) (K- f —1) AxI(k) = —(2/k) As i(k) —A2„2(k)

(21)
Collecting terms, we may write

AI (k) k/I-I +-I (22)
K=l+i

As we shall see, we will be able to setup a sim-
ple recursion scheme for computing the sum over
K. The sum over l (and m) cannot be handled quite
so easily. In the case of electron-hydrogen ioniza-
tion, Peach has shown that a few two-body par-
tial waves are sufficient for the Coulomb-Born ap-
proximation at energies in the vicinity of a few
hundred electron volts or less. Since our Glauber
calculation is, in a sense, a correction to the Cou-
lomb-Born approximation, we might expect (and
indeed have found") that several partial waves suf-
fice for convergence.

B. Technique

Since the technique for each / is the same, we
shall work out the dominant /= 1 case and simply
quote the results for /= 0, 2, and 3.

In the /= 1 case we have

g, (r) = Z i' (2l+1) e ' 'A„, (r) PI(k ~ r) . (18)
4@k l.0

Here

~2I (r) =
(2 f + 1) I

~1Fi —+/+1, 2/+2, 2ikr, 1V

xZ As(k) k (23)
K"- 2

Substituting into Eq. (14), the l = 1 contribution
to the scattering amplitude is given by

&-$61
fI(q, k)= — cst 8 2/2 + Az(k) k + 1' (k)

7l K P m=-1

b, = argr (l+1 —i/k), (18)
()b s (

4/Ng:

rearm

(r) —d'r' e"b 1-~
1m

=
(

- II(*+(/a) (=&"II=()2 2 I/'2
1 e )--

(19)
The confluent hypergeometric function may be
evaluated 1 according to

Defining

II(&, q)=
(2 „l bdb s ds ds

(S +8)
0 0 "0

(24)
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" Sr
5 (qb cosg-mg) l

~g e
m 0 + 0

b + s —2bscosg,2 2 0

Q2

'mos

1t

p(l, k) =
g( o+ 1/ko)&/o

. i~1,

(2O)

The coefficients p(l, k) and AI,.„(k) are given by

we have
3 k oc)8f,(j, k) = — ' —~ 2(2v)'

00 dK 1
x Q Agk)k -'( 1) -'

& 1,(y, q)
K= 2

and

AI, i(k) =1, AI,Q(k) = —1/k(l+1),

(If+ l) (K- I —1)A~~(k) = —(2/k) A„' ~(k) —A„' o(k).

The terms I, are defined by

(30)

x[Y, , (k)e "~—Y»(k) e" ]

The integral I~(X, q) is given' by Thomas and

Gerjuoy, who found that

. (26) e
lm

where

Y,„(r)e'~ "I'(b, s) d'rd'b, (31)

I,(&, q) = —(4/ko) (1—i/ko)
I

1"(1—i/ko)
I

& ""'q"'" '

x [(1+i/k, ),F,(2 —i/k„ 1 —i/k„2; —~'/q')

x,E, (2 —i/k„ 1 —i/k„ 1; —X'/q')] . '(2~)

C. Results

Following the techniques described above, the
scattering amplitude for ionization of hydrogen by
electron impact may be expressed in the Glauber
approximation as

—ikp 1 1
f(q.& ) ~k ~3/o 1 oe/.

xP g —', »(I k) Y,* N)
t.o m. -t (21+1)

xZ A', ,„„(k)(—k) ~~,~ I, (28)
K~P &~1

The I, integrals are given by

I„=[(27/) /r4. ] I, ,

I„=—(3/Sw)'/' e"&2(2o)' I, ,

1$ g-(3/$7f) / e-&oq 2(2p) I =

ioo—- 4 (15/27))~/ e"oq2(27)) Io

I„=—,
' (5/47/)'" 2(2v)'(21,' - I,),

I2 2=e 'I22-4f y

io, = ——,
' (35/4o')'/'e"'~ 2(2v)'I,

ioq= ——,'(21/47/) / e'o~ 2 (2w)o (41o -io)

Is 1 = - e q Is1
-2$ y,

(32)

(33)

In this expression kp is the momentum of the inci-
dent electron, k the momentum of the ejected elec-
tron, and q is the momentum transfered to the
hydrogen atom.

Is-s = e -' Iss
-B~y .

The I„and I„' are given in terms of hypergeometric
functions, namely,

Io= —(4i/ko)
I
&(1 —i/kQ) I'~ ""/' '

q "'/&, F,(l —i/k„ 1 —i/k„ 1; —y'/q'),

I, = —(4/k, ) (1 -i/k, ) I
r(1 —i/k, )l'~ """"o'

q
"""o

x[(l+ i/ko) QFg (2 —i/ko& 1 —i/ko, 2; —X /'q ) —QF, (2 —i/ko, 1 —i/ko& 1; —~ /qo)]

io = —(4i/ko) (1 —i/ko) (2 —i/k ) I
1"(1—i/k, ) I

' V'""/'o' q-'"«

[(2+i/ko)QF, (3 —i/ko, 2 —i/ko, '3; —X/q) —2QF)(3 —i/ko, 2 —i/ko, ' 2; —~/q )]

Io= (4i/ko)11" (1 i/ko) I'& "'"""
q

""/ o [2QF~(1 -i/ko 1 i/koi li 1/q )
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—(I —i/k, ),F,(2 —i/k„ 1 —i/k, ; I; —Xs/qs)],

is = «/3ko) (I - i/k. )'(2 - i/ko)'(3 —iiko) II'(I -s/ko) I

s ~ """~'
q ""'~

&&[(3+ilko) sF)(4-s/ko, 3-ilko,' 4; -&'/q') —32FJ(4-ilko, 3-ilko; 3,' -&'/q')],

I,'= - (8/k, ) (I - i/k, ) l
r(1 - i/ko) l'~-""""o'q-'""o[2,F,(2 —i/k, 1 —i/k, ; 2; —~ /q')

+ (2 —i/ko) (1 —i/ko) sFs(3 —i/ko, 2 —i/ko, ' 2; —A. /q ) —4(1 —i/ko) sFg (2 —i/ko', 2; —X /qs)] . (34)

In order to evaluate the derivatives of the I, 's in
Eg. (28), a recurrence relation for the derivatives
of the zF&'s is helpful. Noting that

—sF, (a, b; c; z) = —sFq(a+ 1, b+1; c+1:g), (35)
d ab

and defining

f0= 2F1 (a b c z) go = 2F1(a b' c+ 1' 8)

"&max

k dk dk dII~
—lf(k, q)l

eJ kp
(40)

where

kp -I= kg+ k2 8 2

integrate over the remaining final-state variables,
namely,

it may be quickly established from the Gauss rela-
tions that" km~= kp —I, I=27. 2 eV (41)

f„,s = [(1—z) (a+n) (5+ n)] [(a+ b —c+n)f„

(c+n+ I) (c+n)
(

+ (c —a) (c —b)g„] ,

(37)

The two 2F&'s needed initially may be computed
numerically from convergent-series expansions,

IV. CROSS SECTIONS

The ionization cross section may be evaluated by
considering inelastic scattering of an electron of
incident momentum Q to a final momentum Q. In
the inelastic case the differential cross section is
given (in units of ao, where ao = 0. 529 x10 s cm) by

(38)

where j=+ —k . In ionization there is an extra
vector variable in the final state, namely, the mo-
mentum k of the ejected electron. Consequently,
the differential cross section may be expressed~~
as

(39)

In measurements with azimuthal symmetry (where
the final-state magnetic quantum numbers are
summed over), dsa is independent of P and re-
duces to 2m'd o'.

In order to evaluate total cross sections one must

Note that the integrals over dk are trivial: The only
dependence of f(q, k) on Js in Eg. (28) is through
F,„(k), and the F,„'s, of course, are orthonormal.
Hence, there are two integrations to be done nu-
merically in order to evaluate total ionization
cross sections.

It must be noted, at this point, that the power-
series expansion in k of f(k, j) will not converge
numerica. lly to a well-defined result for k&0. Vlk„„,
where k„„is the momentum of the orbiting elec-
tron. This divergence is not so serious as it
might at first appear, since the cross sections peak
near k= —,'k„„and rapidly faQ off with increasing k.
Furthermore, the series appears to be the sort
which may be summed with Pads approximants
[i.e. , it behaves something like g„"o (- k/v 2 )"].
A Pads approximant of the series would also be
likely to improve the convergence rate in k for
k& 0.VQ„„. A less elegant procedure for finding
total cross sections would be to fit do/dk to the
shape of the Born cross section for k&0, Vlk„b,
since the shapes of both approximations are re-
markably similar for k & 0.Vlk „. In any event,
we expect our scattering amplitude to be accurate
only in the region where k& k b owing to approxi-
mations in the derivation.

V. DISCUSSION

While the choice of the direction of the z axis is
not specified in our derivation, we have found that
it must be taken perpendicular to the direction of
the momentum transfer q in order to give agree-
ment with the results of the Coulomb-Born approxi-



978 MC GUIRE, HIDALGO, DOOLEN, AND NUTTALL

z q=(k, +o.k, ) —(k, -k, )=0, (48)

which leads immediately to

o. = (ko Q —ko)/(ko ky —k~) . (44)

In integrating over A the dependence of the cross
sections on o disappears [cf. Eq. (28)]. Hence
the choice of the direction of the z axis is irrele-
vant in computing d v/dkdq, for example.

Exchange contributions to the cross section are
ignored in our calculation. A straightforward
calculation of the exchange amplitude in Glauber
approximation could be time consuming. Budge
and Seaton have shown that the exact exchange
scattering amplitude g(Q, k) is simply related to
the exact direct amplitude f(k&, k) by g(k, k)
=f(k, k). Here kz is the final velocity of the incident
electron and k the final velocity of the atomic elec-
tron. Our direct scattering amplitude was derived
under conditions corresponding to k& «4, so that
it is not useful to employ the relation of Rudge and
Seaton where g(kz, k) is large. An easy approxi-
mation~9 which may be used to include exchange
contributions approximately is to replace k in
Eq. (40) by k /M2. In the case of the ionization

mation. As Gerjuoy has emphasized the Coulomb-
Born approximation may be recovered from Eq.
(10) by keeping the first nonzero term of an expan-
sion of (1 —e'") in powers of y only if z is perpen-
dicular to q. If another choice is made (such as
taking z parallel to ko) the angular distributions for
the ejected electrons differ substantially with the
predictions of the Coulomb-Born approximations
at beam energies as large as 500 eV or more.
Choosing z perpendicular to q is easy,
Defining

z=k + o, k& and q=k0 —k (42)

we require that

of hydrogen by electrons, exchange contributions
are expected to be a small fraction of the total
cross section, however.

Some numerical calculations~3 have been done on
the IBM 860/66 at Texas ASM University. Dif-
ferential cross sections consume a few seconds
while total cross sections require a few minutes
on the computer. In the Coulomb-Born approxi-
mation, the differential cross section may be ex-
pressed as a relatively simple algebraic expres-
sion. About 1 sec of computer time was used in
doing the two numerical integrals required to eval-
uate a total Coulomb-Born cross section. Macek
has suggested~ that by working in hyperbolic coor-
dinates one may be able to avoid the expansion in

I, and thus save both programming time and run
time. The technique has not yet been tried.

Unitarity may in general be used to relate the
ionization scattering amplitudes for elastic and in-
elastic scattering. While we have not explicitly
demonstrated this relationship, it is interesting
to note that the Glauber ionization amplitude goes
to infinity as q goes to zero, as does the elastic
scattering amplitude. For ionization, however,
q= 0 violates the constraints of energy momentum
conservation.

Finally, let us point out that the dependence of
our Glauber cross section on projectile charge
z differs from the simple z dependence of the
Born calculation, and the classical binary-encoun-
ter~ calculations. In the limit as z/ko- 0, of
course, our Glauber calculation goes over to the
Born result.
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Using an accurate numerical solution of the Thomas-Fermi model with quantum-mechanical
corrections, the author obtains a description of coherent and incoherent scattering of x rays
by the inert gases, which is in excellent agreement with detailed Hartree-Fock calculations.
The results are somewhat better than those given by the Thomas-Fermi-Dirac model, and

are a substantial improvement over those given by the Thomas-Fermi model alone.

I. INTRODUCTION

Recently, a new integration technique' was used
. to obtain an accurate solution to the differential
equation which determines the first-order quantum-
mechanical corrections of exchange, inhomogeneity,
and correlation '3 to the semiclassical Thomas-
Fermi model of the atom, ' and this gives a new

potential field to describe the electron density about
an atom. This improvement has been shown to
lead to total energies of neutral atoms, ' and dia-
magnetic susceptibilities and atomic polarizabilities
of the inert gases, ' among other properties, which

are in substantially better agreement with experi-
ment than are the similar values calculated by the
exact Thomas-Fermi model. The purpose of this
paper is to show that the improved Thomas-Fermi

model also gives an excellent descriytion of the
coherent (elastic) and incoherent (inelastic) scatter-
ing of x rays by the inert gases.

According to the Thomas-Fermi model of the
atom, including the quantum-mechanical correc-
tions, the Coulomb potential about a spherically
symmetric neutral atom of atomic number Z,
namely, V(r)=- Ze /r, is replaced by the modified
potential

V(~) = (- Zs'/f x)[y(x)+ ay(x)],

where r = bx, a= 8(6mZ) '~', 5= (6m)2~'as/8Z'~~

=0. 88534asZ, and as=5 /me is the Bohr radius
for hydrogen. g(x) is the well-known solution of
the Thomas-Fermi equation and is given approxi-
mately by

~~ ~~ ~~ ~~

1+1.81061x + 0. 60112x
1 1.81061x"'+1.39515x+0. 77112x + 0, 21465xa+ 0.04793x

with a maximum error of 5$«1.2x10 5. y(x) is the
solution to the equation owing to Kompaneets and

Pavlovskii, ' which gives the quantum-mechanical

corrections. This solution has been discussed in
detail previously' and can be represented approxi-
mately by the following power series:


