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The results of a close-coupling calculation of the fine-structure transitions (}, m; - i, m ) are presented

for collisions between photons and F(’P

) The theory is formulated in the perturbed- statlonary -state

approximation using accurate molecular wave functions for the ground I and °% states of HF™*.
Comparison is made to the predictions of the Born approximation. The magnetic selection rule
(j,m;~j,-m)) is strongly violated in the j = 3/2 state and less strongly violated in the j=1/2 state. It is
concluded that the important region of interaction for the j=1/2 - j=3/2 transition is at short-to-inter-
mediate distances where accurate molecular potentials are required and close-coupling effects are dominant.

I. INTRODUCTION

In the preceding paper® the theory of fine-struc-
ture transitions in proton-fluorine collisions was
developed using the ground molecular HF *(*II) and
HF*(ZE) electronic states in a perturbed-stationary-
state expansion of the scattering wave functions. At
each total energy E, and for each total angular mo-
mentum state J, with space projection M, there
exists a set of six open molecular channel states
IR, J, M, j, 1) arising from the six substates (j,
m;) of the FCP, ,, ) ground state. .The channel-state
expansion (I-6. 1) defines the radial functions
F:%:7,.(R) which must vanish at R=0, and are

subject to the asymptotic boundary conditions in Eq.
(I-6. 3) which determines the reactance matrix

K] .., and hence, the scattering cross sections.
This expansion results in the coupled differential
equations of Eq. (I-7.1) which may be written in the
following matrix form:

[( 5;% E)1+U (R)]E"'M’E(R):O, (1.1)
where

FJ WMyE {Fj, 'J',zl}
and

1={8,,08:,00 }.



958 F. H. MIES

The interaction matrix U ’(R) is obtained from Egs.
(I-7.2) and (I-7.3), utilizing the result that the
Born-Oppenheimer (BO) terms (I-7.2b) and (I-7. 2¢)
are negligible for HF*,

(1+1
U}’,t;j'.t'(R)z 51,/'6111'<gf+ Wi(R)+ ZuRz) )

+CF e[ Wo®) - Wi(R)],  (1.2)

where the J-dependent coefficients C 7 are defined
in Table I-2. W,(R) is the Il and Wy(R) is the %
molecular potential, as shown in Figs. I-2 and I-3,
and both exhibit the R™® asymptotic dependence
summarized in Eq. (I-8.7). The interaction coeffi-
cients C 7 are partially diagonalized owing to parity
conservation, and the application of the theory re-
duces to solving two sets of three coupled differen-
tial equations of the form (1, 1) for each J. One

set yields the radial functions for the channel states
j=%, 1=J+%, J-3andj=3%, l=J- 3, with parity
(-1) ""1/2, and the other set yxelds solutions for
states j=3, I=J-3%, J+3, andj=3, [=J+3 of op-
posite parity (= 1)7"12 The six resultant regular
solutions define K’ and the transition matrix T
which is combined and summed over J, I, 1’in
Egs. (I-6.10)-(I-6.19) to yield the appropriate
cross sections, This paper will be concerned with
the solution of these equations and the calculation of
the total cross sections over the energy range from
threshold to E~0, 25 eV,

In Sec. II, the numerical procedures that are
used are outlined, and some intermediate results
which demonstrate the utility and accuracy of the
methods are presented. The cross sections are
presented in Sec, III, and the results are discussed
in Sec. IV. Section V contains a comparison be-
tween the exact results and the two-state Born ap-
proximation. Finally, the general conclusions are
summarized in Sec. VI.

II. NUMERICAL PROCEDURE AND ACCURACY OF
CLOSE-COUPLING CALCULATIONS

Equation (1.1) may be simplified with the sub-
stitution,

7R R)=RE T R) 2.1
such that
2

[(zjaR“E)l‘E(R)]E(RFO (2.2)

The superscripts J, M, E, which are constants
will be suppressed and left implicit. Obviously,
since U’ + U’(M) the radial functions are actually
mdependent of M; the entire M dependence of the
total wave function ¥(J, M, E) in Eq. (I-6.1) is
embodied in the channel-state functions.

Equation (2. 2) is solved numerically using the
Gordan algorithm.2'® The method is thoroughly

=3

outlined in Gordan’s lucid papers, and only very
minor variations have been introduced. The major
difference comes in the use of trigonometric func-
tions rather than Airy functions as the reference
solutions, That is, the symmetric matrix U(R,)
evaluated at the midpoint Ry =3(R; +Ry) of each
integration interval R; SR SRy is diagonalized:

URy)=MV’M, (2.3)
and the independent sets of trigonometric functions
A(R), B(R) which are solutions of the uncoupled
equations

(G 2)-v s -

are used as a basis to expand the exact solutions.

M[A'a+B'b]. (2.5)

(2. 4)

G=M[Aa+Bb], G'-M

Coupled first-order equations are developed for
a(R) and b(R) with boundary conditions at R =R de-
termined by the given values of G(R,) and G'(R,).
The equations for a and b are integrated to R =Ry
and used in Eq. (2.5) to determine G(Ry) and G'(Rg).
This procedure is repeated and carried out to some
predetermined distance R,,, at which the calculated
wave functions G(Rp,,) and G'(R,,,) are used to
evaluate the reactance matrix K7 according to the
boundary conditions set in Eq. (I-6.3). A subrou-
tine is used to generate the required spherical
Bessel functions j,(k,R ., ) and n; (%;R ,,,) With an
accuracy of 10”7 or greater.

The over-all philosophy in generating the program
was to sacrifice speed for accuracy and precision,
It is difficult to carry out an analysis of the errors
propagated by the integration techniques (see Gor-
dan®) but all the criteria employed in choosing step
sizes and evaluating integrals, etc., have been ex-
tremely conservative. Four features of the pro-
gram and its accuracy are outlined below.

(i) The leading asymptotic term in Eq. (1.2) is,
of course, the I(l+1)/2uR? centrifugal term, which,
in the absence of Wy(R) and W,(R) would simply
generate the regular spherical Bessel function
ji(k;R), with the result that the K/ matrix, which
is a measure of the irregular component n,(k,R)
should vanish. Since the cross sections must be
summed to values of /2300, the program’s ability
to reproduce the Bessel function solutions when
Wo=W,;=0 was tested. The calculated K matrix for
I values up to 300, and for k; values of the required
range, is of the order 107® or less for the integra-
tion parameters employed in the subsequent calcu-
lations. This suggests that at least the diagonal K
matrix elements generated in the presence of the
interaction potentials are also of this accuracy.

(ii) Each column vector in Gis an independent
solution and is generated by choosing initial values
of G(Ry,) and G'(R,,) at some initial point R=R,,,
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such that the vectors are linearly independent and
satisfy the inner boundary condition that G(R)~

as R—-0. The solutions were initialized by setting
G(Ryy)=0 and G'(R,;) =1, and choosing Ry,; such
that

[ G(R ) |+ | G (Roa) |2 10%2 2.6)

The final results are entirely insensitive to the
choice R,,, as long as (2.6) is satisfied. However,
they are sensitive to the initial choice of step size
h=Rg - Ry , unless this initial value is reduced below
about 102 a.u. A more clever choice would have
been to set G(Ryy)=M(V®~ EYY2M, and G'(Ryy)=1.
However, if the integration is beEun sufficiently
close to the origin, then V°~ e and G~0 and the
initial guess G=0 should be valid, In any case,
after the first few integration steps the solutions
settled down to a very stable independent set of
vectors which are insensitive to wide variations in
the initial conditions, R,,;, and k.

(iii) The integration was carried out to R, 2 Max
X (#/k,, 1000) and generally R, ~5-10x10° a.u.
The resultant K’ matrix is insensitive to this
choice to 107 or less as long as accurate Bessel
function programs are used in the fitting, A maxi-
mum integration step size 4., of 500 a.u. was used
which allowed rapid integration to these large dis-
tances. Variation of 12h,,, £ unlimited produced
negligible changes indicating that a(R) and b(R) in
Eq. (2.5) are very insensitive functions of R at
large distances and are well calculated by the in-
tegration techniques used in the program.

Additional confidence in the numerical results is
obtained from the symmetry of the calculated K
matrix. Note that K; , =K, ; to within one part in
10* even for K, ,=0(10™) and they are generally
symmetric to within one part in 10°-10° for larger
elements,

(iv) The program was tested against the results
of Lester? for a variety of three-coupled-state
calculations in He + H, rotational excitation, and
the calculated S, ; matrix elements agreed to 1/ 10
or better down to [S[=0(107).

IIl. EVALUATION AND PRESENTATION OF CROSS
SECTIONS

At each energy E the reactance matrix Kj,;.;r ;o
was determined as a function of J. This matrix
defines the transition matrix T 7= - 2iK7(1 - iK 7)™
which is used in the evaluation of the total cross
sections

- ™
Ojnml"j',m;=, IZ')M ('k? ) 9,,,;,,,,9 ’*yl',M (3. 1)
and
jeptef T /2
U‘?'ml..j:'m;=l’t’2'l“l 1 (E?>(2l+1)1 (zl"+1)1/2

Xghl'yml g;‘(”.l'.ml ’ (3-2)
where®

91.1',M=E @ i, JIM_mjv my, M)
7

x@, j', J|M=m], m), M)T] 1000

=(j, my, 1, m;|T|j’, m}, U, m})
(3.3)

XGM,m,*mIGM.m;#m; .

The calculated cross sections for E=0.002 a, u.
are presented in Table I. An effective temperature
can be defined by equating kT to the incident kinetic
energy €= (E- §,), where 8,/,=0a, 8;/,=-3a and
a=0,001228 a.u. for FEP). Thus, the tabulated
cross sections pertain to effective temperatures of
~250 and ~ 800 °K for collisions in incident channels
j=%and j=3%, respectively. Theseries are explicit-
ly summed to /=125, The contributions (<10%)
from 1=126 to « are accurately determined by tech-
niques discussed below.

The isotropic cross sections 7 in Table I(a) are
the total cross sections for the transition j, m;~j’,
mj averaged over a random isotropic distribution
of incident wave vectors k,. This cross section is
directly related to the gas-phase rate constants for
the fine-structure transitions, and the numerical
results exhibit the detailed balance, i.e.,
ko Ogymy=g* m} _k,,or,.’m -7,m;» that is required by Eq.
(3.1), and the precepts of’ statistical mechanics.

An alternate expression [Eq. (I-6.19)] derived
from irreducible tensors leads to identical results
indicating that the summations in Eq. (3.1) were
properly (and wastefully) handled,

The zero-angle cross section o° tabulated in
Table I(b) is a specialized total crass section possi-
bly pertinent to a beam experiment where the inci-
dent plane wave propagates along the axis of quan-
tization of the target atomic states, This is the
total cross section normally presented in standard
text books on scattering theory. It has long been
recognized that for this total cross section transi-
tions between degenerate magnetic sublevels (j,
m;=j, mJ) do not of necessity obey detailed bal-
ance, as can be seen in Table I(b). However the
isotropic cross section o, averaged over all inci-
dent wave vectors, including the specialized 13, =
case, does yield the necessary balance, as well it
must, It is apparent on comparing Tables I(a) and
I(b) that measurements of magnetic sublevel transi-
tions in a beam experiment, which selects a given
incident wave vector, can lead to highly deceptive
conclusions concerning the gas-phase rate con-
stants. This is a general phenomenon with spatially
degenerate states. Note that both cross sections
yield identical results, given in Table I(c), when
they are summed and averaged over final and initial
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TABLE I. Total cross sections at E=0,002 a,u.

jtymj

jrmg R 3 -3 3 -3 14 3 -3

(a) Isotropic total cross-sections G;, ,;.; 4mf (@}

Tjmi =~ i*ymi’ (@)

3 8 1021.0 359. 0 346.0 187.3 0.00551 0.01286
3 1 1003.5 204.7 346.0 0. 00796 0.01041
3 -1 1003.5 359.0 0. 01041 0. 00796
3 -3 1021, 0 0. 01286 0. 00551
3 3 0. 0187 0. 0269 0. 0352 0.0435 1991, 3 32,7
3 -3 0. 0435 0. 0352 0.0269 0. 0187 32.7 1991, 3

(b) Zero-angle total cross sections Ug’mj-j,mj’ (@d)
2 2 845.6 90.5 594.5 444.2 0.00068 0.00075
31 100.4 784.2 383.9 582, 3 0. 01395 0. 02136
3 -1 582.3 383.9 784.2 100.4 0. 02136 0.01395
3 -3 444. 2 594.5 90.5 845.6 0. 00075 0. 00068
3 3 0. 0275 0.0291 0.0338 0. 0339 1975.0 49.0
i, -3 0. 0335 0.0338 0. 0291 0. 0275 49.0 1975.0

(c) T;,;» Summed over m; and averaged over m;

i'=% i=%
j=2 1913.0 0.01837
i=% 0.12436  2024.0

magnetic sublevels. This numerical result is also *
an additional check on our manipulation of the scat- U“Eg 03+ 0% (I +1)/(N=-1). 3.4)

tering matrices, etc., in constructing the cross
sections,

The convergence of the partial-wave summations
in Eq. (3.1) and (3. 2) is demonstrated in the follow-

ing graphs. The quantity
E gI.I',M 9 ;k,t',M
1ANY]

is plotted versus the partial-wave quantum number
lin Fig. 1. The dashed line in the upper graph of
Fig. 1 represents the upper bound that this summa-
tion can achieve, i.e., 4(2/+1), when T-2x1. At
large I the T matrix rapidly approaches small quan-
tities which, as we shall see, are in quantitative
agreement with the Born approximation. This is
substantiated by the "3 and 7™ dependence of the
large-! contributions which are consistent with the
R™ and R™ long-range potentials expected in the
j=3% and j =% channels, respectively. The I"7 de-
pendence of the 7,(3, 23, - £) cross section is
explicable in terms of a second Born approximation,
Given the large-/ dependence of the cross sections
to be 7%, the contribution of the infinite series may
be approximated as follows:

The partial-wave contributions to o° also give the
large-! dependence predicted by the Born approxi-
mation., These dependences for the specific mag-
netic transitions are summarized in Table II, and
all the presented data have been adjusted according
to formula (3. 4).

IV. DISCUSSION OF RESULTS

A. Behavior of Cross Sections at a Specific Energy

Table I tabulates cross sections for E=0, 002
a.u, which roughly corresponds to a room-tem-
perature collision. The j=4—j=% cross section
in Table I(c) is of the order of 0.1aZ. Although this
is quite small, it is 102~10° times larger than the
observed cross sections for, say, He+Cs, Rb col-
lisions, which have comparable fine-structure
splittings in the 2P state. However, in F(P) the j
states are inverted and the entire interaction po-
tential behavior will be qualitatively different and
such a comparison does not lead to any particular
insight, On the other hand, the large size of the
magnetic transitions, and elastic cross sections in

‘Tables I(a) and I(b) are expected owing to the long-
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40 60
£

Contribution of individual partial waves to iso-
tropic total cross sections E,,mj_j:,mj'. (a) The dashed
linear curve represents the upper bound when T=2. The
larger solid curve is the total cross reaction in the j=3
state, summed over all m;. The smaller solid curve
shows the substantial contribution (~10%) the ‘“forbidden”
m;= 45— = § transition makes to the total j= §cross section.
The dotted curve is for j=% summed over m;. (b) These
cross sections are plotted on the same relative scale as
(a) and have been magnified by 10% and 10%, The solid

FIG. 1.

curve is the total cross sectionfor the j=% —j= 3 transition.

The dotted curve is the magnetic m;=3% — — } transition in
the j=3% state.

range ion-quadrupole interaction. What is “unex-
pected” is the magnitude of the m; =%~ - £ cross
section in the j =3 state, and the m; =3~ ~ 3 cross
section in both =% and 3. Various “selection
rules ” have been devised for these Zeeman transi-
tions based on two-state perturbation theory and
the Born approximation which predict that these
cross sections should be zero. It is difficult to
generalize, but it would appear doubtful that these
so-called selection rules ever carry much validity,
particularly for the j=3 state. The m;=3~~3
transition in the j = 3 state is forbidden on more
stringent grounds since it can only occur via inter-
mediate coupling to the j=$ state, and a close cor-
relation is expected between the inelastic j=3— 3
cross section and this magnetic transition. Yet
even here, the cross section is rather large (3043)
and some 200 times larger than the inelastic cross
section,

This behavior is shown more explicitly in Fig. 1
where the contribution of each partial wave to the

cross section is plotted versus . Compare the two
curves in Fig. 1(b); the solid curve is for the in-
elastic j =3 — 3 transition, while the dotted curve
is for the m, = 3— - 3 transition in j= 3. Although
it is 100 times larger, the latter transition only
has contributions in the region of strong couplings
and parallels the inelastic cross section. Note
particualrly that these two transitions peak at =10,
and are negligible by I~20, Since ! is a measure
of the classical impact parameter, we conclude
that these cross sections are determined at small
to intermediate distances. An [ value of 10 would
correspond to a critical distance of R~3-10 a. u.
In addition the cross section is determined in the
region of strong coupling® where perturbation and
two-state theories will fail. In terms of the molec-
ular theory this means that the interaction poten-
tials must be determined at short to intermediate
distances where the asymptotic expansion of the
potentials is invalid. Also accurate knowledge of
the R dependence of the coupling matrix elements
must be had, and one cannot generally rely on ap-
proximations such as neglecting the R dependence
of the spin-orbit interaction. Such considerations
should apply to most systems, except, possibly, to
very light atoms where the spin-orbit splittings are
quite small and the critical region of interaction is
probably at large, asymptotically valid, R dis-
tances. A calculation of He+ Na(®P) scattering
will be performed to assess the range over which
accurate molecular potentials are required,.

The top-most solid curve in Fig. 1(a) is for the
total cross section in the j =3 state, while the low-

TABLE II. Large-! dependence of partial cross sec-
tions oy.
Transition o, ~Tr¥ of ~ CO ¥
g 85 ¢ N=3 N=5
5 3-% % 3 7
5 83, -} 3 ’
R 7 7
% -3 3 3 5
§ 44 -4 7 7
% 41— -4 3 3
N 3 3
5 —i—3 -4 3 7
3 3~4 3 3 5
334 3 5 5
3, 5% -3 negligible contributions
3, —3—3%, -3 5 5
3, m;—~3%, mj negligible contributions
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FIG. 2. Energy dependence of isotropic total cross

section, T,y .3/ for j=4— § transition summed and aver-
aged over all m; magnetic sublevels. The arrows along
the abscissa indicate the positions of the j=4% and j=%
thresholds which are separated by 0.00184 a.u. (1.0 a.u.
=27.211 eV=2.194x10° cm™). The total energy E is
scaled to zero at the non relativistic energy of the F(%P)
atom. Note the abrupt rise in cross section above E

=0. 003 which is the height of the repulsive barrier in the
23 potential.

er solid curve represents the contribution of the
m; =% -~ 5 transition to this total. These peak at
1~35, and should be well calculated in terms of the
asymptotic potential. The I™® decay of the upper
curve is quantitatively predicted by the Born ap-
proximation for the long-range R™ ion-quadrupole
potential, Although the lower curve transition is
forbidden in the Born approximation, it yields a
substantial cross section (18742), and as indicated
by the I"" falloff, it is in quantitative agreement
with a “second-order ” version of the Born approxi-
mation. These are discussed in Sec. V. The
dotted curve in Fig. 1(a) pertains to the total cross
section for the j= 3 state, and peaks at 7~15 which
is probably too small to allow an asymptotic ex-
pansion for the potentials. However, at large /
the curve properly decays as /™ as predicted for
an R™ ion-induced-dipole potential.

B. Energy Dependence of Cross Sections

The energy dependence of the inelastic j=3—2

cross section is shown in Fig. 2. In the thermal
region, around E=0,002 a,u. the cross section is
about 0.1a%. However, above E=0.003 a.u. ,
which is approximately the height of the potential
barrier in the 2% potential (see Figs. I-3 and I-4)
the cross section increases rapidly, andby E=0.01
a.u. =0.27 eV, the cross section is 1742. Again
this is an indication that it is the inner portion of
the interaction potentials which play a dominant
role in determining the inelastic cross section.

H. MIES 7

The behavior of the cross section at low energies
is complicated by two effects. First, the threshold
behavior is aggravated by the R™® long-range poten-
tial in the j =% channels for which there is no well-
defined scattering length. Secondly, the > poten-
tial is such that a shape resonance exists owing to
tunneling through the potential barrier. This ener-
gy region is shown in more detail in the semilog
plot of Fig. 3. The structure at E~0, 0015 a.u. is
undoubtedly due to the shape resonance in the )
potential, but is difficult to assess in any simple
way because of the strong three-state couplings.
There is, in fact, experimental evidence of such
a shape resonance in the photoelectron spectrum
of HF *(®%) measured by Berkowitz,” The abrupt
rise in the cross section at £=0.003 a.u. occurs
when the barrier is surmounted,

The energy dependence of the =2 and j= 3 chan-
nel cross sections are shown in Figs. 4 and 5, re-

O
X
0.0l _]
2 = o2 =
4k3s2 O3/2p172 = 2K1201 2 9372
xX,
L i
[ X
X
o.o00ilL— | | |
oool 0.002 0.003 0.004
172 E (a.u.)

FIG. 3. Semilog plot of 4%3,,53,5- 1/2= 2k}, 451 /2 3/2 VS
total energy E. Threshold for the transition j=35—% is
indicated by the arrow at E=0.001228 a,u. The dip at
E=0.0015 is due in a complicated way to the existence
of a shape resonance caused by tunneling through the 23

potential barrier.
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Energy dependence of the total isotropic

cross section & for magnetic transitions n; — m? in the
j=% state. The curve passes through the data points for
the §— % transition; the solid portion of the curve is the
result of three-state couplings while the dashed portion
indicates the energy region when the j=4% channel is closed
and only two-state couplings were considered. The §— 3%
and twice the “forbidden” §— —1 cross sections fall close
to this curve and indicate the constant ratio of these
cross sections as a function of energy. The elastic §—
transition is also in fairly constant ratio particularly at
higher energies.

spectively, and primarily demonstrate the substan-
tial contributions made by the so-called “forbidden ”
Zeeman transitions, The Zeeman transitions in the
j=% state determine the magnitude of various de-
polarization effects which are defined in terms of
two cross reactions; a disorientation cross section
0y:
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Energy dependence of the total isotropic cross
section & for magnetic transitions in the j=% state.

L= 2=
01775 03/2,1/2~3/2-1/2+ 5 03/2,3/2+3/2,1/2
8 = 9 =
+ 5 03/2,3/2~3/2,-1/2 +5 03/2,3/23/2,+3/2 »

and a disalignment cross section o,:

0z = 253/2,3/2~3/z,1/z + 253,2,3/2-3/2'_1/2 .

It can be seen in Fig. 4 that the vatios of these
cross sections are very insensitive to energy;
these ratios are summarized in Fig. 6. o, and o,
are then simply related to the cross section for
the (2, 2~32, %) transition

0,=2.98 63/2.3/2-3/2,1/2 , 03=3.90 63/2.3/2-3/2.1/;‘: ’

and
0'2/0'1—:1.31.

The proportionality of ¢, and o, with respect to the
total cross section is less constant with energy,
but approximately 03/5,3/2+3/2,172 0. 1504,:. These
are to be contrasted, for instance, to the theories
of Wang and Tomlinson® which predict o,

=203/2,3/2~3/2,1/2) O2=403/2,3/2-3/2,1/2, and 05/01=2.

V. BORN APPROXIMATION VERSUS EXACT NUMERICAL
RESULTS
When the Born approximation9 is applied to Eq.
(2.2) and use is made of the boundary conditions

(I-6. 3) the following expression for the reactance
matrix is obtained:

P { iy a0 == Rk ))'? [T AR R, (k)R)jp (R)R)

XM 00 R}, (5.1)

where
2p
M= (8,50 00,00 Wi

+ C,J,l”',ll (Wo— Wl)] .

Since the transition matrix T is related to the
reactance matrix, i.e., T=-2iK(1-iK)™?, an ex-
pansion of T in powers of K yields

3/2 172 —1/2 -3/2

0.52

FIG. 6. Relative transition probabilities between the
magnetic levels of the j= § state normalized to the

63/2,3/2*3/2,1/2 cross section. These ratios are insensitive
to energy.
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Br~-2i°K+2°%K - ’K+ O(°K’). (5.2)

The leading term is just the usual Born approxima-
tion applied to FEg. (2.2) using the T matrix bound-
ary conditions of Eq. (I-6.4).
Let
Dy usye e =), AR Rk ))%5, (kR )j o (R]R)(21/ 1%
X[%(ZWH' Wa)] (5.3)
and
0,150 00 = J; AR R )%, (ke R)jyo (R]R) 211/ 1?)
x(Wo-wy). (5.4)

These integrals are easily evaluated if the asymp-
totic expressions are empioyed (Eqs. (I-8.7) for
the 211 and % HF* potentials designated by W, and
W,, respectively:

2u q
7T W)~ - 75—

(5.5)
2 29 a

72 WolR)™ Ro e

where § = 1078 a.u. and @ = 7840 a.u.% The
quadrupole term g only coutributes to Oy ;;;0,5,

J

G, my, 1, m,|BK|§', m], U, My )= = 0y,5001,100p ,ms0

PV 2 ’
m;,miD].l;j:',l"*‘(] ’ ]9 2|mj)

while the polarization term o only contributes to
D, ;0,0 and, in fact, only influences the diagonal
matrix elements of ?K:

By J _
K000 ==05,5000,00D5,155

- (CJJ,I:J',I' - é(Q’J,J'51,1')01,:;1',1!' . (5.6)
Explicitly these terms are as follows®:
~ Kiam
Dinisi =~ BB DEI-1) (6.7)
3+0;,,,)4ki7
Of.t;f.t'z‘(‘—‘“2+ FOLL (5.8)

(T+0)(1+1"+2)°

An expression involving the hypergeometric series
Fy(a, b; c; (k,/k])) is obtained for j’#j which
rapidly approaches zero for large / and small en-
ergies,

Equation (5.1) and (5. 2) pertain to the total
angular momentum representation |J, M, j, 1)
and are combined in Eq. (3.3) to yield the matrix
G, my, 1, m T3, m{, I', m{) which is more di-
rectly related to the appropriate cross sections.
The Born approximation may be applied directly
to the coupled equations in the |7, m,, I, m;)
representation® required in (3. 3), and one obtains

’
—-my, my—-my)

21+1

1/2 ; 2\
X(Z, ly l’lml_nz;’ my, 7”1')(2, ly l’loy Oy 0)(_z'm) (_ I)MJ"”}(E >OJ,HJ"’" (5'9)

Certain selection rules are obtained from the
Clebsch-Gordan coefficient (5, j, 21m;, —m,,
mj-m;)in Eqg. (5.9). Itis found that the first-
order transition matrix ®T =~ 2i®K, and hence the

cross sections, vanish for the following transitions.

Bo'.fymj"h*mj:o- (5.10)

This result applies to both ¢ and ¢°, and says that
in the Born approximation a change in the sign of
the magnetic quantum number 2, is forbidden.
Note that all such transitions tabulated in Table II
decay as [ and are consistent with this rule, fo
fivst order in PK.

As indicated in Eq. (5.2) terms in ®K+ K may
also contribute to the cross sections. _Alth_ough
such terms predict the quantitatively observed
(#2/1") dependences of the “forbidden ” transitions,
in fact, they do no? contribute to these particular
transitions, It is possible to develop a second
Born approximation to the reaction matrix K, but
unfortunately the necessary integrals cannot be
evaluated analytically. However, various approxi-
mations may be applied to the expression, and each
predicts the (®3/1") dependence and the proper

f
magnitude for the transitions in Eq. (5.10).

The numerical results for the “allowed” transi-
tions are in quantitative agreement with (5.6) and
(5.9), and the functional dependence of these cross
sections on /, for large I, can be utilized to cor-
rect the numerical results for contributions from
I=1*to o, as expressed in Eq. (3.4) and Table II.

For instance, the sum, for m,#m], in Eq. (3.1)
yields

. 2
2 Sie S n=0, 7, 2|m;, -my, mj—my)

[

s 16(21+1) 5
R G EI- 1)) (1*4(1-1)(1+2))

’~ (]y j7 z‘mj,) _mj: m/,"'mj)a

BT o . (5.11)
The ratio of the calculated and Born cross sec~
tions is shown in Fig. 7. As a function of increas-
ing I the ratio for (3, $—3, %) rapidly approaches
1 to within 1% for both E=0.002 and E=0.01 a. u.
The elastic cross section, withj=j"=3, m,=m] is
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FIG. 7. Ratio of the calculated isotropic total cross
sections G, to the first-order Born approximation predic-
tion BE, for magnetic transitions in the j=£ state as a
function of partial wave I. As k%/1— 0 these ratios ap-
proach 1 indicating the validity of the Born approximation
for large . Thesedependences are summarized in Table
II. The deviation of the elastic (%, 23 3, $) cross section
is expected and is quantitatively dueto contributions from
the polarization potential which was not included in 55,

a bit more complicated due to contributions from
both the D, ;., , and the O, ;,,,; terms in Eq. (5.9),
but in the limit, as I~ e, the second term will
dominate and the asymptotic cross section is given
by (5.11). This behavior is demonstrated in Fig.
7 for 53, 3 -3, %) which extrapolates to the Born
result to within about 5%.

The elastic term in the j=j'= % state (m;=m;
sums to the observed (%%/1°) dependence of the
numerical cross sections,

;—)M S uS i uli=i"=3, my=myj)
L0074
I 321°

Y a4 -
1(21+3P @20+ 1)(21- 1) ..
This is demonstrated in Fig. 8.
Similar quantitative agreement is obtained from
the zero-angle cross sections. The interference
terms in Eq. (3.2) lead to an additional first-order
Born selection rule for ¢ which is consistent with
Table II:

k

(5.12)

B 0
03/2,ms=3/2,mg21=0 . (5.13)

The calculated k2/1" dependence of all the “for-
bidden ” transitions is demonstrated by the 5,2,

- %, — %) cross section which is plotted in Fig. 8.

VI. CONCLUSIONS

The H* plus FE P,,m,;) system has many simplify-
ing features® which makes it amenable to a rela-
tively rigorous calculation of the fine-structure
transitions (j, m;~j’, m]). However, many of
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the resultant conclusions concerning these cross
sections should be of general validity., This is
particularly true for systems with a fine-structure
splitting comparable to the 404-cm™ splitting in
F(P).

A. Inelasticj— j' Transitions

The &, my= 3, m}) transition only occurs for
small partial waves and is determined by the po-
tential characteristics at small (3-a.u.) to inter-
mediate (10-a.u.) interatomic distances. For such
small partial waves (/= 0- 20) a close-coupling cal-
culation is required (three channels for a 'S + 2P
system) in order to obtain accurate partial cross
sections. There is a negligible contribution to the
total cross section from larger / waves where the
Born approximation or even the two-state distorted-
wave approximate would apply. These conclusions
are contingent on a moderately large splitting which
requires a close-in collision in order to induce
transitions. The role of close-coupling effects in
systems with small splittings remains to be as-
sessed. A study of He+Na(®P) is being undertaken
for this purpose.

B. Magnetic m;~ mj’ Transitions
1
1. j= 3 state

The conclusion arrived at concerning the impor-
tance of close-in strong—coupling collisions in de-
termining the melasnc j=3%-% transition also ap-
plies to the m ;=3 F=-=3 trans1t1on in the j = 2 state.

1.25 : ; ]

Gy (r2,1/2—1/2,172) 1 85,

0.75
5, (3/2,3/2—3/2-3/2)/ (10" 4 7)

——a—p—o
0.50 w o o -
o025k o8 E:0.0020u. ]

°a E= 00! au.
0 L ! 1
0 I 2 3 4
10° k2742 (au.)

FIG. 8. The I"® dependence of the elasticd, (%, 5 —3, 3)

cross section is quantitatively explained by the first-

Born approximation since the ratio &,/55, approaches unity
as (k2/1 —0. Those transitions, suchas&,(3, §— 3, - 9),
which are “forbidden” by the first-order Born approxi-
mation, all vary as (#%/1"). This can be attributed to the
contributions of the second-order Born approximation.

The magnitude of 5,3, 3—%, — 2 at large  is predicted
to within a factor 2 to 3 by various approximate solutions
to the second-order Born approximation.
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This transition requires an intermediate coupling
to the j =3 channels during the collision, and al-
though the cross section is from 100 to 5 times
larger than the j= %-% cross section, it only occurs
in agsociation with the inelastic partial waves [see
Fig. 1(b)].

The cross section (3, 3= 3, — 3) increases with
energy from 30a2 at E=0.002 a.u., where it is 10
times smaller than the 3 - - 3 magnetic transition
in the j=$ state, to 80a2 at E=0. 01 where it is
comparable to the decreasing j=3 transition. In-
deed this transition has the smallest cross section
of those that are predicted to be zero in the Born
approximation, but it is by no means “forbidden”.
The effect of a decreased spin-orbit splitting on the
(3, 5= %, — 3) transition is difficult to predict at
this time,

3
2. j= 7 state

The “forbidden” m; = — m, transitions in the j =3
state are at most only a factor of 2 smaller than the
“allowed ” magnetic transitions. Their cross sec-
tions decrease with energy and are in approximate
constant ratio (~1: 5) to the elastic cross sections
(see Figs. 4 and 5, Table I). The second-order
Born approximation makes contributions to botz
the off-diagonal K 5 ;.4/5,1.2 and the diagonal
Kg’,a,,;a/z,, reactance matrix which can give rise to
these transitions. No coupling to the j = 3 channel
is required and the general breakdown of the m;

» —my prediction in the j =2 state should be inde-
pendent of the splitting. It is unlikely that this
violation is specific to H* + F(®P) and one must con-
clude that such transitions generally occur.

The m; =3 — 3 transition in ¢° which is also for-
bidden in the Born approximation, is significantly
smaller than the m;— - m; transition. This is
explicable in terms of coupling to a single inter-
mediate state in the |j, m,, I, m,) representation
which can lead to the m; - —m; transition but not to
my=3= 3. Note, however, that this is strictly an
artifact of the interference terms that occur in
Eq. (3.2) for an incident beam parallel to the axis
of quantization. The comparable cross section for
o, which is an average over an isotropic distribu-
tion of incident angles, is “allowed” even in the
first-order Born approximation. This is a general
phenomenon with spatially degenerate transitions,
and one should exercise great caution in inferring
gas-phase rate constants for magnetic transitions
from a beam experiment. The lack of detailed
balance in the ¢® cross sections is expected theo-

H. MIES 7

retically. The significant cross sections for ap-
plication to gas-phase statistical theory are the
isotropic cross sections ¢ which are directly con-
vertible to rate constants and which do obey de--
tailed balance.

C. Molecular Theory

For large partial waves the agreement of the
Born approximation with the exact molecular-theory
results indicates that an expansion in an atomic
basis, which would equally well represent the dom-
inant, long-range R~ quadrupole interaction, is
adequate to determine the off-diagonal transition
matrix. However for small partial waves, which
solely determine the inelastic j= $— 3 transition,
at least for splittings in the range of 404 cm™, the
interaction energy is no longer dominated by the
R™ quadrupole interaction, or even the R™ polar-
ization potential. An atomic basis is useless since
it would require an infinitude of excited atomic
closed-channel states to represent the 2I1 and 2%
electronic wave functions which already properly
incorporate the effects of polarization, exchange,
and chemical binding (e.g., charge transfer) within
an adiabatic, or perturbed-stationary-state, ap-
proximation.

The importance of the molecular states also im-~
plies that the R dependence of the molecular spin-
orbit matrix elements must be determined, and
one cannot generally use the asymptotic atomic
matrix elements, In addition, it may be necessary
to evaluate the BO breakdown terms arising from
the nuclear kinetic-energy operation, and in par-
ticular, the nuclear orbital angular momentum
operation (A-doubling terms). Fortunately, both
these effects can be estimated and are found to be
negligible! for H*+F. However the conclusion ap-
plies to HF* only! 1t is expected that for systems
other than HF* the R dependence of these terms
may substantially influence the couplings. Without
a knowledge of these coupling matrix elements the .
accurate molecular potentials that are becoming
increasingly available are of insufficient use by
themselves to perform quantitative scattering cal- |
culations.
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The lifetime of the 2 3P’. states in singly ionized lithium has been measured using an rf
magnetic-resonance technique; the value is 7==45 + 5 nsec. Neutral lithium was ionized and excited by

a unidirectional beam of electrons which produced an alignment in the excited state. The cross section
for the electron-impact excitation 1s® 25 25— 1s2p 3P near threshold was measured to be 107%**! cm’
Implications for the feasibility of rf resonance spectroscopy on the fine and hyperfine structure of

the 2 3P term will be discussed.!

I. INTRODUCTION

An accurate measurement of the fine and hyper-
fine structure of Li* would be a very important ad-
dition to atomic spectroscopy. Two-electron atom-
ic systems are of considerable theoretical interest
because their relative simplicity allows very accu-
rate calculations, In particular, comparisons of
fine- and hyperfine-structure calculations for such
systems with precision measurements of these
quantities have provided a critical test of quantum
electrodynamics and, until the recent transfer to
the use of the ac Josephson-effect measurements,
the accepted value for the electromagnetic coupling
constant, a=e?/hc.

Probably the most intensively studied two-elec-
tron system has been that of the 23P multiplet in
He. Hughes and his collaborators have used an
atomic-beam double-resonance technique to mea-
sure the fine-structure splittings to ~ 1 ppm.! Re-
cently, new theoretical values for the splittings
have been obtained which give the 2°P,-2°P, sepa-
ration to ~ 6 ppm and the 23P,-23%P, separation to
~ 150 ppm.2 The new level of accuracy achieved in
this calculation is derived mainly from a prelimi-
nary evaluation of newly developed a®mc? terms for
the two-electron Hamiltonian, and an eventual ac-
curacy of better than 1 ppm is expected from the
continued refinement of this approach., Thus, there
is the expectation that the He fine structure will
provide a value for ¢ better than 1 ppm.

Some of the reasons which make the intensive
study of the 23P term in He so valuable also apply
in the case of Li*. The fact that the ratio of natu-
ral linewidth to fine-structure splitting in the 23P
Li* term is about 1.2 X 10™* means that a 1 ppm
accuracy in the fine-structure measurement can be
achieved by measuring the center of the resonance
line to only 7 of its width, Wave functions for this
term in Li* have already been calculated to about
the same accuracy as the He functions and have
been used to provide the fine-structure splittings to
order o* Ry.® The lithium study has two additional
features.

(a) The fine structure of Li* is predominantly
due to the spin-spin term; this fact means that the
results in Li* can provide a more sensitive test for
the correctness of the two-electron, spin-spin
Hamiltonian than those in He, where the spin-orbit
and spin-spin terms contribute about equally.

(o) In the course of the measurements the Li*
hyperfine structure must also be determined to 2
parts in 10%; the comparisons between experiment
and the hfs calculations can advance our under-
standing of nuclear structure effects in hfs.

Our work on singly ionized lithium was initiated
with the hope of eventually measuring the fine
structure of the 23P term. Figure 1 is an energy-
level diagram showing the fine and hyperfine struc-
ture of "Li*. rf or microwave resonance spectro-
scopy of the 23P states can be performed if the
system is prepared having some alignment. Of the



