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The theory of fine-structure transitions in atom-atom collisions is formulated in terms of the molecular

states of the diatomic collision complex. The Born-Oppenheimer (BO) electronic wave functions are

implicit functions of the interatomic coordinate R, and the molecular theory is analogous to the
"perturbed-stationary-state" method, Expansion in molecular channel states incorporates the effects of
polarization, exchange, and valence forces on the electronic portion of the scattering wave function and

embodies the "adiabatic" contribution of the entire set of closed-channel excited states that are generated in

the more usual asymptotic-atomic-state expansion. The channel states are expressed explicitly in terms of the

body-fixed molecular wave functions, and the resultant interaction matrix elements in the close-coupling

scattering formalism are related to the molecular potentials. The theory is developed specifically for proton
collisions with the fluorine atom in its ground I';

&
state, with explicit account being taken of the spin-

orbit splitting between the j= 3/2 and j= 1/2 multiplet states. Use is made of the accurate HF'('ll) and

HF+(2&) wave functions calculated by W'ahl, Julienne, and Krauss. These molecular states asymptotically
approach H '+ F('P), and accurate quadrupole and induced-dipole interaction parameters which describe the

asymptotic interaction potentials are obtained from the calculations. Estimates are made of the BO
coupling terms and they are found to be negligible compared to the spin-orbit couplings. In the following

paper close-coupling calculations are made of the cross sections for the fine-structure transitions

(j, m j', rn ).

I. INTRODUCTION

The wave functions that describe the scattering
between two atoms A and I3 are equivalent to the
continuum wave functions of the diatomic molecule
AB, and it is well recognized' that the adiabatic
electronic states of the molecule form a useful
basis with which to formulate the low-energy scat-
tering problem. This is known as the perturbed-
stationary-state (pss) method and is expected to be
superior (i. e. , more rapidly convergent) to the
usual expansion in asymptotic atomic states since
the molecular Born-Oppenheimer (BO) states are
implicit functions of the interatomic distance R

and incorporate the effects of polarization, elec-
tron exchange, and valence forces. The theory has
been apylied extensively' 3 but has suffered from
lack of accurate molecular potentials, and jor use
of approximate techniques in treating the coupling
between the adiabatic states. It is only recently
that some of these limitations have been removed
and the increasing availability of accurate molecu-
lar wave functions suggests the need to approach
the molecular theory of atomic collisions with in-
creased rigor. To this end it is advantageous to treat
the collisions between aproton H' and a ground-state
fluorine atom F('P). This is one case which goes
beyond simple elastic scattering that can be treated
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with great rigor, primarily because the electrons
are asymptotically situated on one center.

In the case of low-energy collisions between two
ground-state 'So atoms, only elastic scattering oc-
curs, the system is usually well described by a
single adiabatic state, and there is a one-to-one
correspondence between the 'Z state potential cal-
culated by the quantum chemist and the scattering
potential extracted from the elastic cross sections.
In actual fact the pss theory is the only justification
for using the concept of a local, energy-independent
scattering "potential" to describe the elastic scat-
tering between two composite systems. However,
this simple relationship breaks down if the asymp-
totic atomic states are, say, n-fold degenerate,
since there are now n molecular states which adia-
batically dissociate into the atomic products, and
the question arises, what is the relationship be-
tween the adiabatic potential curves that are calcu-
lated in the BO approximation and the required in-
put to the scattering theory' The process is no
longer elastic since the collision can change the
magnetic sublevels within a given multiplet state,
or produce transitions between the various multiplet
levels which become nondegenerate owing to spin-
orbit interactions. In the molecular theory the in-
elastic behavior is caused by the nonadiabatic cou-
plings between the molecular states arising from
the kinetic-energy operator of the relative motion,
and the relativistic terms such as the spin-orbit
operator which are generally ignored in the BQ
approximation. '0 These matrix elements lead to
coupled differential equations in the scattering
formalism and must be carefully evaluated.

In this paper the theory for collisions between a
proton H' and a fluorine atom in the sixfold degen-
erate ground state F( P&) is formulated in terms of
the diatomic HF'( II) and HF'( Z) molecular states
that characterize the collision complex and asymp-
totically dissociate to H'+ F( P). The effect of
spin-orbit interaction, which splits the P3~~ and

P,&2 multiplet states by 404 cm ', is incorporated
into the theory. Expressions are derived for the
cross sections between the multiplet states (-', - —,')
and for transitions amongst the degenerate magnet-
ic sublevels (j, m~ j, m&)-which give rise to
spatial reorientations or depolarization. It will
be seen that the off-diagonal interaction matrix
elements depend on the splitting between the II
and Z interaction potential, while the diagonal
terms are weighted averages of these two poten-
tials. The theory is utilized in the following paper
to obtain the cross sections in a quantum-mechan-
ical close- coupling calculation.

The FH' system is particularly favorable to
study for many reasons:

(i) For incident kinetic energies less than 3. 825
eV the only accessible channels are the P3~~ and

Py]p states of F, which lead to six coupled-differ-
ential equations in the scattering theory. For
thermal kinetic energies coupling to the higher
closed channels probably can and will be ignored.
Above 3. 825 eV the channel F'+ H(1s) becomes
open, and greatly complicates the scattering theory
since this essentially introduces a rearrangement
process that is not well understood.

(ii) For scattering by a proton the difficulty of
antisymmetrizing the total scattering wave function
is avoided since all the electrons are left in the
target atom state which is properly symmetrized.
In principle antisymmetrizing the wave function
for scattering by two atoms can be handled, but
great case must be taken not to introduce spurious
asymptotic terms owing to the so-called mass
polarization which can greatly complicate the scat-
tering boundary conditions.

(iii) Very accurate Hartree-Fock self-consistent-
field (HF-SCF) calculations of the II and 'Z states of
FH' have been carried out by Wahl, Julienne, and
Krauss" and the determination of the angular BOcou-
pling terms using only slightly less accurate func-
tions for these states have been made by Julienne,
Krauss, and Neumann. ' In addition, one has the
added feature that the HF-SCF wave function goes
accurately to the proper asymptotic atomic state
F( P) and that correlation effects in the intermo-
lecular potential should be negligible.

(iv) The atomic spin-orbit coupling constant for
F( P) can be used in determining the spin-orbit
constant for the molecular states due to the negli-
gible contribution of the proton compared to F in
the spin-orbit term, and the small perturbation of
the electron distribution.

(v) Finally, HF' has a simple form for the
asymptotic interaction potential which is due only
to charge-quadrupole and charge-induced-dipole
interaction, and is not complicated by dispersion
forces.

The remainder of the paper is organized as fol-
lows. In Sec. II the atomic states of fluorine are
considered, while in Sec. III the interaction of the
proton with F is considered and related to the
molecular states of HF'. The molecular spin-
orbit interaction is discussed in Sec. IV. The
total angular momentum channel states are con-
structed in Sec. V in terms of the molecular elec-
tronic states, and the relation of the scattering
amplitudes and the cross sections to the molecular
channel states is considered in Sec. VI. The cou-
pled-differential equations are developed in Sec.
VII, and the coupling terms are derived. Section
VIII considers the asymptotic structure of the in-
teraction potentials and estimates of the BQ cou-
pling terms. Section IX summarizes the conclu-
sions thus far. The actual calculation of the cross
sections is presented in the following paper.
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II. ATOMIC HAMILTONIAN AND ATOMIC
WAVE FUNCTIONS

Hp i (0, I, S)mz, mz& = Hp—im~, mz) = 0. (2. 7)

The Hamiltonian for the fluorine atom in space-
fixed electron r,' and nuclear RF coordinates is,
in atomic units (e~/ao)

~] -1
RF —- mFRF+ ~ r ] MF,

f =1,9
(2. 1)

where MF=mF+9, and letting r, =r, —RF, one ob-
tains

1
Va +Hp(r)+ VJ.p(r) .

F
(2. 2)

The electron Hamiltonian Hp(r) is independent of
both RF and the electron spin S„

Hp(F)=- —Q vp, '- '
+ Vp(r). (2.3)

2 f 1 2mF

The electron linear-momentum operator P = —Q; V;,.
occurs in the mass polarization, or isotopic, term
in HF, and VF takes the form,

V, =—Z
i r, —r, i-'- 9& r, +Z r,mp'

+ V„(ir,'- R,'i),
where VF represents the Coulombic potential
terms, and V~s is the relativistic spin-orbit op-
erator. It is convenient to refer all coordinates to
the center-of-mass (c.m. ) of the atom, i. e. ,
letting

Since L~. and S~. do not commute with the spin-
orbit operator, it is necessary to construct atomic
states which are diagonal in the total electron an-

~ 2gular momentum j and j~., where j =L+S, and
which do commute with L ~ S:

l
(n I, S)j, m&& = Z (L, S, f imz mz, m&)'

mi, mS

xi (n, L, S)m, m ) . (2. 8)

(L, S,j (mr, m~, m&) is the Clebsch-Gordan
coefficient and is defined such that

j i j, mg ) =j(j+1)ij, mg ),
jz lj, m, &=m)lj, m, &,

(2. 9)

and the stepping operator j, yields

j, i j, m, &=[(jam, )(j+m&+1)]'~
i j, m&+]&.

For the ground state P one has the six states,
j= ~, with m&=+ —„+~ and j= 2, with m&=+ —,'.

The e~ti~e set of atomic states may be used as a
basis for solving the total Hamiltonian HF+ V~s.
However, since the excited states n &0 have ener-
gies orders of magnitude greater than the spin-
orbit splitting, we need only include the ground P
states in our expansion, and the energy matrix is
essentially diagonalized by the I j, m~& states,

(2 mJIHp+ Vrsl2 mJ& ~
y ~J( ~2+)

(—', mj iHp+ V~pl 2, m) &= 5 (a), (2. 10)

(2. 4)

The spin-orbit operator is also independent of
RF, and is approximated as follows:

rr
~=Sf ( r,. Zrrrr '

)L,.

where —,a =404 cm is the spin-orbit splitting of
the F( P). The structure of the F('P„)states
is shown in Fig. 1. Now consider the interaction
of F with a proton.

III. INTERACTION OF H+ + F: MOLECULAR WAVE
FUNCTIONS

=Z f, (~, )f s, . (2. 5) If one refers the proton coordinate R „'to the
fluorine center of mass Rp in (2. 1),

The electron Hamiltonian HF commutes with the
electron orbital angular momentum, L and L~. ,
and the electron-spin angular momentum, S and
Spr; and the atomic wave functions ( (n, I, , S)mz, mz&

are eigenfunctions of these five operators, with
eigenvalues h"'~'P, L(L+1), mz, S(s+1), and mz,
respectively. ' The ground state of fluorine, n -=0,
is a P state with S= —,

' and L= 1, and the total ener-
gy will be defined such that 8 "' '=-0. This state
is sixfold degenerate, and will be designated simply
in terms of the magnetic quantum numbers mI =0,
+1, and ms=+ 2:

H, l(n, I, , S)m„m,&=8" ' 'l(n, I„S)m„m,)
(2. 6)

and, in particular,

p
~ ~

~
~ f ~ ~

p ~]R=R„-RF —R„-RF —~ r &mF, (3. 1)

and eliminates the center of mass C of the entire
H'+ F system from the total Hamiltonian of the in-
teracting system,

C = (mpR p+ mzR z+ Qr,')/(m„+mp + 9)

the following Hamiltonian in space-oriented coor-
dinates moving with the F c.m. is obtained:

H= —(&-„/2P, )+Hp(F)+ V(r, R)+ V~~(r, R),
(3.2)

where p, =msMp/(mz+Mp), and Vis the Coulombic
interaction between the proton and the fluorine,
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&+a

L= I, rnL = 0+ ~--0
S= I/2, ms=+ ~/2—

iI, m;) = 2 (I, I/2, j)mL, mS, mII imL mS)

j=y2, m)
=+ i/2

404 crn

The total Hamiltonian can be represented in
molecule-fixed coordinates by rotating the space-
fixed axis through the Eulerian angles (P, 8, 0),
where P and 8 are the polar coordinates of R. The
new vector components are represented by the un-
primed variables X, F, Z=-R. Since HA~ is in-
variant to these rotations, the only complication
occurs in rotating the V"„operator. The trans-
formed Hamiltonian (3.2) becomes

ir —fl/2 j=3/2, m =+Irr'2 + 3/2 rr

(3.3)

The electron terms H~+ V define the electronic
Hamiltonian for the HF' molecule in the adiabatic
Born (AB) approximation, and closely approximates
the more usual BO Hamiltonian where the mass-
polarization terms P ~ P, and the electron c.m.
terms gI rI mr' are neglected by referring the elec-
tron coordinates to the nuclear centers rather than
the atom c.m. However, in this form one gains
the important advantage that asymptotically, as8- ~ and V-O, the molecular Hamiltonian ap-
proaches the exact atomic Hamiltonian Hs(r), and
is rigorously independent of R, and the remainder
of the Hamiltonian in (3. 2) does not contain any
spurious cross terms VR V;, which complicate the
asymptotic boundary conditions':

H„,(R, r)-=H, (r)+V(r, H) - H, (r). (3.4)

In practice the BO solutions will be used, but since
the mass-polarization terms in BF contribute both
to the molecular and the asymptotic atomic states
it would seem reasonable to ignore their effects
and assume their contribution is independent of R.
Also the effect of approximating the nuclear repul-
sion terms in (3.3) by 9/R should be insignificant,
although the effect could be tested by perturbation
theory. These approximations seem particularly
valid for HF' since asymptotically the electrons
ar~ all located on one center. The role of the
various mass-polarization terms which can arise
in other systems, particularly when electron ex-
change can occur, remains to be considered.

FIG. 1. Energy levels of F{P). On the left the eigen-
values of the nonrelativistic atomic Hamiltonian are six-
fold degenerate with wave functions (mz, , ~z~), designated
by the electron spin projection nzs =+ 2, and electron or-
bital angular momentum projection nz&= 0, + 1. The spin-
orbit operator Vl & is diagonalized by the total angular
momentum states )j, rug&) which for F are well represented
by the combination of )m&, m~) states determined by the
Clebsch —Gordan coefficients (1, 2, j lml, , mg, m~). The
j= y state is twofoM degenerate and 404 cm above the four-
fold degenerate, j= 2 ground state.

1 8' 2 8 L„'(8,y)
2 BR' R 8R 2pR'

+H„,(R, r)+ V„(r,R), (3. 5)

such that

iR, (n, I., s)A, m, ) -
i (n, I., s)A, m, ) (3.a)

and the R-dependent eigenvalue (molecular poten-
tial t ) approaches 8 "'~' s:

Wn, I„s(R) gnrIrs (3.9)
g«oO

Since H» is independent of S, the quantum num-
bers 8 and m~ are valid for all R and the molecular
functions are eigenfunctions of S and S~.. Similar-
ly, since II„~is invarient to a coordinate rotation
about the Z=—A axis in molecule-fixed coordinates,
the Z component of the electronic orbital angular
momentum will be quantized:

L= —1+ rIXV
r& y

(H l./R)iR, (n, z, s)A, m, ) (3. 10)

=AiR, (n, I,, s)A, m, ).
A is used to represent the molecule-fixed projec-

where L~ is the nuclear angular momentum in
body-fixed coordinates,

L„=-iBxVR= J- j =J- L- S (3.6)

and is a function of 8, P. Since the total angular
momentum J is the sum of the nuclear L„andelec-
tronic j angular momentum, it proves convenient
to express L~ = J- j, and treat J as a formal op-
erator (see Appendix B). Note, by definition
L~ R =0.

The molecular wave functions are solutions of
H»(R, r) and are implicit functions of R. Since
H„s-.HF(r) as R- ~, each eigenfunction can be
associated with the particular atomic state to which
it dissociates adiabatically. The molecular states
are represented by introducing the variable R into
the atomic notation, i. e. , IR, (n, L, S) A, Ins)„
mhere

H„,(R, r)iR, (n, f, , S)A, m, )

=wI,", (R)iR, (n, z„s)A,m, ) {3.'7)
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FIG. 5. Calculated interaction potentials W& ~&~(R) for
HF'. Both the electronic Hamiltonian HAp, and the spin-
orbit interaction Vs~have been diagonalized. The dashed
curves are the W~z~(R) interaction potentials for the II

and the Z states which diagonalize IIA~. At distances
shorter than -5.0 a.u. , Wf/2 f/2 W{) W3/2 f/2 Wf+ 2Q,

1
W3/2 3/2= W) —2g.

5Jsf 5A, Q'Wj, lol (R) .

Asymptotically, the coefficients approach the
Clebsch-Gordan coefficients in (4. 2),

A~ .~,„(R)- (I., 8, g~A, mq, Q).
g ~ oo

(R, —.', +-.'~H„,+V„~R,—.', +-.'&= l(W, +2W, )+

(R, —', + —'
~
H~ + Vz q ~

R, —,a —' ) = a —' v 2 (W, —Wo),
(4. 8b)

and, of course, reduces to the atomic values (2.10)
as R- ~ and Wp Wy 0, By arbit~a~ily choosing
the linear combination of molecular states in Eq.
(4. 2), one ensures that the I R, j, 0& states
asymptotically yield accurate atomic wave functions
which are eigenvalues of the exact fluorine atom
Hamiltonian (HF + V»), but as evidenced by the off-
diagonal element in (4. 8) these states no longer
diagonalize H» at finite R. It is this off-diagonal
term which is mainly responsible for the j= —,'-j=2
coupling in the scattering theory, while the differ-
ences in the diagonal matrix elements for j = ~ in
the various Q states eventually lead to the transi-
tions among the magnetic substates.

One could, of course, use the entire set of molecu-
lar states [in either the (A, mz) or (j, 0) representa-
tion] to generate spin-orbit molecular wave func-
tions lR, j, 0, L ~ S) which diagonalize the (H»
+ Vz~) Hamiltonian. If, as in the atomic case,
only the ground molecular states (R, A, m~ ) are in-
cluded, one would obtain an expansion similar to
(4. 2), but with R-dependent coefficients,

~R, j, n, I, S)= Z A. ..,, „(R)~R,X, m, &,

where A(R) are the eigenvectors of (4. 8),

(R, j, 0, L SIH~s+ Vz, slR j O', L ~ S)

The spin-orbit interaction potentials W&, ~„~(R)ob-
tained from diagonalizing (4. 8) are plotted in Fig.
5. At small R, where )W, - Wol»a, the j= —,

' eigen-
value approaches the "pure" Wo(R) state, and the

j= 2 eigenvalues approach W, (R)+ —,
' a as expected

for a II state [Hund's case (a)].
It might appear that using such an expansion in

place of (4. 2) would eliminate the j = —,'-j= —,
' spin-

orbit coupling; however, upon using these diago-
nalized states in the total Hamiltonian (3. 5) com-
plicated V"„coupling terms are introduced owing to
the action of '7"„~on the expansion coefficients A(R),
and it can be shown that both approaches lead to
identica/ results. This is not surprising since no

new "physics" is introduced unless additional ex-
cited molecular states are included in the expan-
sion. This is very similar to the relationship
between the adiabatic and diabatic representations
discussed by Smith'; both representations are con-
nected by a unitary transformation, and as long as
all the off-diagonal terms are properly included,
and the resultant coupled equations are solved
exactly the results will be identical. We shall use
(4. 2) and leave (4. 8) in the nondiagonal form. Since
it is very cumbersome, and often expensive, to
extract V'"„matrix elements from numerically de-
rived electronic wave functions there would seldom
appear to be any advantage in including the V~8
operator directly in the calculation of molecular
states.

The molecular states 1R, j, 0) are defined in
molecule-fixed coordinates, and if all the excited
molecular states are included, they form a com-
plete set which spans the entire domain of the elec-
tron coordinate space. The scattering events oc-
cur, and are measured, in space-fixed coordinates
and are defined by the transitions between the
space-fixed atomic states [ j, m& &. The entire set
of molecular states may be used to define the entire
set of atomic states.

One may construct space-fixed molecular states
by the following coordinate rotation:

~R, j, m&)=ED~ „(P,8, 0)~R, j, 0&, (4. 9)

where D~* is the Wigner rotation matrix, "and P, 8
are the polar coordinates of the interatomic axis H.
In the limit, as R

~p7, j, m, &
- ~j, m, &. (4. 10)

These space-fixed molecular states are eigenfunc-
tions of the total angular momentum J= L~+j, i. e. ,

T'~R, j, m,.&=j(j+I)~R,f, m, &,

z„~p7,f, m, &=m, ~Ã, j, m, &.

In the limit, R = ~, both j and L~ commute with the
total Hamiltonian (3. 5), and the IR, j, m&& states
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The asymptotic wave function may be expanded in
. the complete set of eigenfunctions of H(R = ~) in the
limit where the interaction V(R, r) = 0. In this,
limit the three terms in (5. 1) become separable,
and the set of asymptotic solutions is infinitely
degenerate and can be represented by products of
the individual eigenfunctions of these terms, or
combinations of these terms, such that their eigen-
values sum to E. It is usual to refer to the eigen-
states of the latter two terms in (5. 1) (the nuclear
angular momentum and the target atom Hamiltonian)
as the channel states The .channel states i o) form
a complete set which spans the nuclear angular
coordinates (8, Q) and the electron coordinates r,
and will be characterized by a set of quantum num-
bers n and eigenvalues S~. ' The asymptotic wave
function can be expanded in this set,

~(E) ~ F (R)l o.), (5. 2)

where the "radial" functions F (R) can be ex-
pressed as a linear combination of, say, the regu-
lar j~(k, R) and irregular n (k R) independent solu-
tions of the radial terms in (5. 1),

F,(R)-A,j,(k R)+B n, (k R), (5.2)

where

2+——+ S~ - E F„(R) 0 (5. 4)
1 8 2 8

2p, 8R R 8R

k =2iJ(E —8 )l„„. (5. 5)

The channels are referred to as closed, or open,
depending on whether k is negative or positive.
The scattering is completely determined by the as-
yet-undetermined coefficients A and B which

become diagonalized eigenstates of j, with L„=O.
In the terminology of scattering theory the molec-

ular states iR, j, Q) or (R, j, m~) are perturbed
stationary states, and may be used as a basis set
to expand the total wave function.

In Sec. V the molecular channel states are con-
structed, i. e. , total angular momentum states,
which are required in the subsequent scattering
theory.

V. ATOMIC AND MOLECULAR CHANNEL STATES

The scattering "event" is measured at R- ~,
and is described by the asymptotic behavior of the
total wave function 4(E) which is a particular solu-
tion of total Hamiltonian at total energy E, i. e. ,
(H- E)4(E)= 0, where

8 2 8 L„
H(K, r, )=-

2P. 8R R 8R 2pR

+[HF y V~~+ V(R, r)] . (5. 1)

yield the scattering matrix S ~ in the n representa-
tion (see Sec. VI).

The choice of representation is arbitrary since
the operators L„and (Hv+ Vzz+ V), which define
the channel states, may be expanded in various
complete sets, and their products collected in a
variety of ways such that they form eigenfunctions
of other operators which commute with H(R = ~).
Obviously, one wants the channel states to be, or
asymptotically approach, eigenfunctions of the
target atom (HF + V~~) and the total angular momen-
tum of the electrons j, since these are the "ob-
servables" in the scattering experiment. (The en-
tire set of atomic quantum numbers [(n, S, L)j,mj ]
will be abbreviated by [j, mj ] with eigenvalue 8&,
since ultimately we will only be considering the
ground state i j, m&). } For example to this end
one can use either the atomic functions l j, m&) or
the molecular functions iR, j, 0) which approach

i j, 0). Beyond this requirement the choice of
channel states is arbitrary and dictated by mathe-
matical convenience.

Since H commutes with the total angular momen-
+

turn of the H + F system, J = L~+ j, it is most ex-
pedient to construct channel states that are eigen-
functions of P and Zz. , with eigenvalues J'(J+ 1)
and space-fixed projection M: such channel states
will diagonalize H for all R. As seen in Eq.
(5. 1), the asymptotic H commutes with the nuclear
angular momentum L„,and it is advantageous to
have channel states which are eigenfunctions of L~
with eigenvalues l(l+ 1). ' This is known as the
partial-wave expansion, and the channel states are
designated as io, ) =-

i 8, M, j, l ). The choice of
basis functions is still arbitrary.

The simplest choice of basis functions are the
spherical harmonics V, , (8, P), which are eigen-
functions of Ls, and the atomic states i j, mj).
These may be combined in the following way to fore
what may be called the "atomic" channel states:

I ~, M, j, I) = ~ (I, j, ~ 1m„m„M)
m ) ~ iffy

(8 4)l j ). (5.5)

(l, j, Jim, , mj, M) is the Clebsch-Gordan coef-
ficient which constructs the total angular momenturr.

state J, M. These states are orthonormal, and
have the eigenvalue 8, = S~+ f(l+ 1)/2pR'. The re-
quired solutions of the radial Eq. (5.4) are thus
the spherical Bessel functions j, (kj R) and n, (k&R)
(Rose, Ref. 17, p. 132) or j, (k, R) and h, (k&R).

Alternatively, one may construct molecular
channel states with the eigenfunctions of (Hv + V»
+ V) in molecule-fixed coordinates IR, j, 0).
Owing to the axial symmetry of the molecular
Hamiltonian, it is advantageous to expand the an-
gular dependence (8, P) in terms of normalized
symmetric-top wave functions:
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(5. 7)

rather than the spherical harmonics Y, , , The
total angular momentum states J, M are then
simply constructed as products of Q~~ & and tR, j,
0). A linear combination of these states is chosen
such that asymptotically, as [ R,j,Q) approaches
Ij, 0) and becomes an eigenfunction of j3 and j~,
the sum becomes an eigenfunction of L„.This
yields the molecular channel states, which are, of
course, implicit functions of R, i. e. ,

IR, z, M, j, I)=Z (- I)'"(z, j, II n, n-, 0)

xn~ „IR,j, n) (5. 8)

and in the limit are equivalent to the atomic channel
states,

IR, ~, M, j, I) -
I

&, M, j, I). (5.9)

This result can be derived in various ways, but is
probably arrived at in the simplest manner by re-
placing the space-fixed atomic states in E(I. (5. 6)
with the space-fixed molecular states ) R, j, m/)
defined in E(I. (4. 9), and using the product rules
for rotation matrices (Rose, Ref. 17). The molec-
ular channel states are of course analogous to the
rotational states in molecular spectroscopy, and
the pair of terms for a given ) Q) define a rotation-
al-electronic molecular state coupled according to
Hund's case (d). ' ' These pairs are combined in
(5. 8) such that as R ~ they form an eigenstate of
I z, [according to Hund's case (e)] and the channel-
state eigenvalue approaches l(i+ I)l2yR + (3'/. The
asymptotic form of the radial function in (5.3) thus
will be identical to that of the atomic channel states,
with j and n being spherical Bessel functions.

It can be shown that the channel states in both
bases form acomplete orthonormal set,

(R, ~, M, j, «I»~' M' j', I')

= 5 .5„,.5/, / 5...~ . (5. Io)

They have a definite parity with respect to inver-
sion of the space-fixed coordinates, 9. In partic-
ular, for the ground-state channels of F(3P), the
molecular and atomic states have the parity p tR,
j, m, ) = —(R,j, m/), and therefore (see Appendix A)

3IR, J; M, j, I) =(- I)'"IR, &, M, j, I& (5 II)
It can be seen from the Clebsch-Gordan coeffi-

cients in (5. 6) or (5. 8) that in the ground atomic
state only six channel states exist for a given J,M.
However, since H commutes with the parity oper-
ato», channel states of opposite parity will be
uncoupled and the channels may be grouped as in
Table I.

Certainly, in view of E(I. (5. 9), no advantage is

derived in using the molecular channel states to
describe the asymptotic scattering conditions,
given the scattering amplitudes in E(I. (5. 3). But,
of course, the advantage comes in developing
means of obtaining these radial functions. In the
close-coupling approximation the total wave func-
tion is expanded in the channel states for all R,
i. e. , E(I. (5. 3) is made an identity. Again if the
enfire set of states ( n) is retained and solved
exactly, no advantage is gained, but as usual this
expansion will be truncated; in the present case to
include only the open channels. In this instance,
the molecular channel states correspond to per-
turbed-stationary states, and it would appear that
such a truncated expansion should be superior to
the atomic channel-state expansion which does not
allow for effects such as the polarization of the
fluorine atom. The resultant coupled equations for
F (R) are derived in Sec. VII. In Sec. VI the scat-
tering matrix and cross sections are derived in
terms of the molecular channel states.

k3/3 2)/(E + 3 a ), v3. /3 k3/3 l p
2

kg/3 P2(Es) 'v$/3 k$/3 li
(6. 2)

asymptotically take the form of Eg. (5. 3) where j,
and e are the regular and irregular solutions of
(5. 4); the coefficients then define the scattering
cross sections. For convenience these degenerate
solutions may be combined in a variety of pre-
scribed ways to exhibit desirable asymptotic prop-
erties.

TABLE I. Channel states for a particular J.

Parity (-1) ' ~ Par;t ( ~)z-u2

23

23

J 23

J+ 3

/= J-2
l= J-21

23
'=3
'=3

2 ~

2t

l= J'—
2

&= J+-,'
l= J+2

VI. SCATTERING AMPLITUDE AND CROSS SECTIONS

There are six independent regular solutions of
H for a given total energy E(3.825 eV, and total
angular momentum state J, M, corresponding to
the six open channels in Table I. The entire wave
function can be expanded in the complete set of
molecular channel states (5. 8) which span the
domain of the scattering angles (8, ()))) and the elec-
tron coordinates r„
4/, (Z, M, E) = Q F~~'~3s/, (R)IR, J, M, j ', l ') .

(6. I)
Asymptotically the radial functions F(R) must
vanish for the subset of closed channels with k'„(0.
The radial functions for the six open channels with
wave numbers k& & 0 which are independent of J and

/, i. e. ,
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The most useful form for numerical solution of
Eq. (6. 1) is a combination of solutions such that
the radial functions are real functions of R. This
is accomplished by employing the spherical Bessel
functions j,(k&R) and the spherical Neumann func-
tions n, (k&R) as the pair of independent solutions
of Eq. (5.4), and requiring the radial functions to
approach the following form:

1/2

Ey', t';J, i(R) 1/2 j (ky R)5y, t'6r, &
~

t&tn, l
n~ ~ (k J» (6 3)

Vy

. E&. r. .& r is the 6 x6 reactance matrix which is real
and symmetric, and independent of the magnetic
quantum number M. Asymptotically j, (X)- [sin(X
—2 lv)]/X nadn, (X) —[-cos(X- 2 vl)]/X.

The scattering amplitude is best defined in terms
of an alternate set of solutions which can be formed
from (6. 3) and expressed in terms of the spherical
Hankel functions of the first kind h, (k&R), where

h, (X) =j, (X)+in, (X)-—ie' ( —i)'/X.

These solutions define the transition matrix
~ J'
& y', r', y, »

~,~g
isa l

jr(kP)6y, s ~ ~i, rR~ Ii Vg )
y r )1/2

——,
' Tf....,, , , „'I,) h, .(k,R). (6.4)

The 7.' matrix is related to the scattering matrix 8
in the following way:

(6. 5)

where S is unitary and symmetric, i. e. , S ~ S = 1,
S =S; the two sets of solutions (6.3) and (6.4) are
related as follows:

x(l j, J'lM —m&, m&, M),

where k& -=(8„,P~ ) denotes the polar angles of the
incident wave vector k&. Using Eqs. (6.4), (6. 8),
(5. 9), and (5.6) the scattering amplitude can be ex-
pressed as follows:

where

xI',M-,'(R)(i)' ' 9 . ~ . . (6. 10)

g. .. M=+ (l, j, J lM —m~, m), M)

x(l', j', J lM —m&, m&, M) T&~„&

k& is the unit vector of the incoming plane wave
incident on state j, m& and R = (8, &f&) is the unit
vector of the waves scattered off state j', m&. In
this form detailed balance is easily seen to exist,
given T= T. Making use of the parity condition in
(5. 11), which implies that T vanishes unless
l '= l, i + 2, the following properties for f are ob-
tained:

fj,„.q.„.(k), R)=f),„u., ~ (- k), —R), (6. 11a)

(E) can be expressed as a linear combination
of the total angular momentum solutions (6. 1);

kt, ~ (E)= Z C~~,'MI) @t ((J, M, E). (6.9)
ggNgr

The coefficients C are chosen to ensure the asymp-
totic conditions in (6. 7) Using the expression for
E(R) in Eq. (6. 4), Eq. (6. 9) is satisfied by the con-
dition

1/2

CJ„P.i =4&(i)'

or

S= (1+iK)(1—iK) '

T= - 2iK(I - iK)-'.

(6. &a)

(6.6b)

k) fq,„,).,„.(kq, R)

= (- I)"'~&' &k,'f, , „(R,k, ), (6. 11b)

The scattering cross sections are obtained from
six Particular solutions of Eq. (5. 1) at total energy
E which asymptotically consist of a plane wave in-
cident on an atom in state i j, m& ) plus scattered
radial waves off the six atomic states, i. e. ,

(E) - e'"&'"
l j, m~)+ Q f, ,~. J(8, y)

8

e)rt~R (v 1/2

(6.~)
v,'

The differential scattering cross section for the
transition (j, m~ -j ', m

& ) is then given by the
scattering amplitude functions f:

(6. 8)

k~f)„.~, „)(kt,R)= kjf)*, „eu (R, k)). (6. 11c)

Thus, Eq. (6.8) will yield detailed balancing for
these differential cross sections, i. e. ,

k (k R)=k ~
~ ™~t~~(R k )

=k e
~~ ™~t~~ . (6, 12)

dA

If Eq. (6. &) is integrated over all final scattering
angles the total cross section is obtained from
(6. 10):

4m' 2

og, ~~ J~„~(k~)= Z k2 I l,M-m~(kg)I l ~ e M~ (k~)
r, l', r",N
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1sl yM I 'y! iN' (6. 13) , „;(k„R)
This is the general expression for the total cross
section when the initial and final states are quan-
tized along the space-fixed axis Z ', a~d the initial
plane wave is incident from the direction $&. Now

define two specialized total cross sections.
The first is the conventionally defined cross sec-

tion, a& &. , ~ =
a&,-„~~, )(k& =0), where the inci-0

dent wave parallels the axis of quantization, i. e. ,
k,. =0. In this case, since Y, , (0)=[(21+1)/
4mj '~35

0 the following result is obtained from
(6. 13):

Q (j, j ', X
~
m„—m „m~—m, )

xQ g,';;,~ &(k„R)a„(j,l; j', l'),

where P is an irreducible tensor of order X,

~=/ Y, ((ky)Y, . ( ~ (R)

x(l, l ', ~Imp —$, $ —m~, mq —mj)

aq, , „,= 2 (2l+I)'i'(2l "+I)'i'
i r'i"

&«~, i ~, m, 9 ~*",i ~ .m, (6 14)

It must be emphasized that this is a very special-
ized situation, and in this form the total cross sec-
tion does not in fact obey detailed balance, i. e. ,
in some instances one finds

s.~
"goy, m& -g', m&

~"g'&y', ~& -g, m&
~

An averaged total cross section 0 may be defined
which is required to describe gas-phase processes
rather than a specialized beam experiment. In this
situation the target atom is quantized, or oriented
in space, as in Eqs. (6. 13) and (6. 14), but is sub-
jected to a random isotropic distribution of incident
wave vector collisions. The ensemble averaged
rate will be given in terms of a cross section
averaged over all initial impact orientations;

d(~, )
aJpmg Jt my

~

2 aJmy g', m~(kg)

~R +l( g l s
y N +'1, l ~,& ~

l pl ~N

(6. 15)

In this case it is evident that 0 does exhibit detailed
balance.

Finally, the usual total cross section 0.
& & is de-

fined as the sum over all final magnetic quantum
states mj' ~ and average over all initial m& values;

aJ, my J~ym)

(2j+ 1)

( v (2J+1)
( ~ (2

, , „~,P, (2j+I) ~ ~':~' ~ '~ (6. 16)

This result may be obtained from any of the defined
total cross sections (6. 13)—(6. 15), and, of course,
one finds the usual result,

(2j+ 1)k& a& &. = (2j '+ 1)k&.a&. & . (6. 17)

The dependence of the cross sections on the mag-
netic quantum numbers m& and m&. is presented in
its simplest form if one writes (6. 10) explicitly in
terms of irreducible tensors of order X=o, 1, 2,
and 3, i. e. ,

n~=Q (2 J+1)(i)' ~ ~
Wz ~(j, l, j', l'; J, A)

J
x T)~, .). , a, (6. 16)

where W is the Racah coefficient. Equation (6. 15)
then can be expressed as follows:

with,

xE~(j, j') (6. 19)

& (j, j ') = ~ ~ (j, l; j', l') o'*(j, l; j', I').

This useful result was first derived by Grawert
and expresses the m&, mj. dependence of the cross
sections in its most irreducible form; the 36 cross
sections are dependent on 8 positive 8, coefficients
which can greatly assist the reduction of experi-
mental or theoretical data.

VII. COUPLED EQUATIONS

If one substitutes the expansion (6. 1) into the
Schrodinger equation (H E)4z","=0, and o-per-
ates from the left-hand side with the molecular
channel states (R, J, M, j, I) coupled equations
for the radial functions E(R) are generated. Since
II is diagonal in J and J~. I shall suppress the
J, M indices and the dependence on 8 will be left
understood,

Q (j, l(H- E)g', l') E). g. .) ~ g" =0. (7. 1)

Only the six open-channel states tabulated in Table
I will be included. The parity conservation (5. 11)
corresponds to the fact that (j, l (H Ei j', l') =0-
unless l ' = I, 1 + 2 and Eq. (7. 1) generates two sets
of three coupled equations for each J, M. These
elements are also independent of M, implying that
the resultant K ~ and T matrices in (6. 3) and (6.4)
are independent of M. Consider three separate
terms which originate from the Hamiltonian (3. 5):
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e' s l(l+ I)

2psR' pRsR
+ 2pR' )

+&j, IIH„,+v„lj',I'& (7. 2a)

fl
L~-'('+ I)

I2p,R'

82

(7. 2b)

+&j, II-
I
j, I &

—+— . (7. 2.)
e, , 1 a

P. 8R ' R eR

The first line, Eq. (7. 2a), gives the elements
which originate from the BO approximation, includ-
ing the spin-orbit interaction. Actually some cog-
nizance of the angular ('7. 2b) and radial (V. 2c) BO
coupling terms has been made in choosing the form
of ('7. 2a). It will be recalled that the channel
states asymptotically become eigenfunctions of

L„/2pR and the asymptotic eigenvalue l(l+ I)/2pRP
has been included in (V. 2a) and subtracted from
('7, 2b) such that both (V. 2b) and (7. 2c) vanish iden-
tically as R -~.

Explicit expressions are derived for the angular
BO matrix (V. 2b) and the radial BO matrix (V. 2c)
in Appendix B. However it will be shown in Sec.
VIII that, for the long-range interaction, the BO
terms (7. 2b) and (7.2c) are quite negligible and
vary as R vs R for the terms in (7.2a), and the
matrix elements in Eq. (7. 1) will be well approxi-
mated by (V. 2a, ). It is not clear that this situation
will prevail for systems other than H'+ F and as
discussed in Sec. IV if the molecular states are
prediagonalized with respect to (H„s+Vzz) then
the BO terms cannot be ignored.

The matrix &j, I tH»+ V~z I j', l'& can be evalu-
ated in terms of the molecular integrals (4. 8) using
Eq. (5. 8):

&j, IIH„,+v»lq', I'&=2(-I)''(z, j, fl-n, n, 0)(z, q' I'I-» n, o)&R, j, nlH~s+&islR, j', n&

= 5&,&.5. ..[b&+ W (R)] + Cg, &;g', r'[Wp(R) —Wl(R)].

with C J defined as follows,

c~, ;y, ~
=~(-I)''(& j fl —n» 0)(& j' I'I —n n, o)(1, ' jlo, n, n)(1 ' j'Io» n).

(V. 8)

The atomic eigenvalues are 8,/a=a, and $3/p — Qo,
and the coupling coefficients C J are explicitly
tabulated in Table II.

One may define an interaction matrix U (R),

U~, ,~. ,..(R)=5),~ 5, ,.[ )6+WE(R)+l(l+ )/2pR]

+ C) ~, .~. , ,r[Wp(R) Wg(R)], (V. 5)—
and the coupled equations (7. 1) take the following
matrix form,

F =(&&,i:&~, i ~ (R8 1=(5&,& ~ 5i, i'] .

VIII. ASYMPTOTIC INTERACTIONS AND BO MATRIX
ELEMENTS

One may use perturbation theory to obtain the
molecular wave function (R, A, m~&, and its eigen-
value W~ ~ ~ (R) in the asymptotic regions. Using
the atomic functions (2. 6) as a basis one obtains to
first order

8'R
2

—E
I
1+U ~(R) F (R ) = 0,

where

(7.6)
IR, x, m, &=la, m, &- 2 a'„,"

n &OUI

xl(n, I., s)A, m, &,

TABLE II. Coefficients C~&, .&. &. of electronic matrix elements for given J.

pa, rj.ty (-1) +~/

—J+—3 3 3 1
2$ 2

—J-—
2% 2

—J-—1 1
2% 2

—J——3 3
2t 2

parity ( 1)J-1/2
—J+—3 1
2p 2 J+—1 1

2s 2

J'+—3 3
29 2

3 1

J+ 3

+2(J+1)
M+-'.) M--.') "'
12(J+1)s

J' ——1
6(J+1)

6(J+ 1)
f/2

18(J+1)

J'-—3 3
2j 2

—J+—3 1
2p 2

—J+—1 1
29 2

J'-—1
2

2J'
(J+-'.)(J- —.') "'

12J
J+ 3

+ 2

6J

+—13
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where

a„',"$=&(n, l., S)A, m$~ V~A, m, )/h"' ~ ' (S. l)
and the interaction potential V is given in Eq. (3.3).
The molecular potential, to second order, is then

Wt~t(R) = &A, m$
~

V~ A, m$)

&(n, I., S)A, m, t VIA, m, )'
( 2)

g n$L$8
n 40$L

The asymptotic expansion of V yields
9

v ~ i t t$t+ $t2 2 2 3

R2 2R3 8R4

The leading diagonal term in the V matrix comes
from the atomic quadrupole &3z —r ). For the Z
state, A = 0, one obtains

- &O, m$ ~Z (3$', -r', )/2R'~O, m, ) =-', &2)/2R',
(S.4a)

&r2) is the expectation value of g, r', , which is posi-
tive, and the long-range Wtot(R) potential will thus
be repulsive. For the II states, 6=+1, an attrac-
tive matrix element is obtained:

—&+I, m$~Z (3$', —r', )/2R'~+I, m$)

= ——, &r )/2R'. (8. 4b)

The molecular data of Wahl, Julienne, and Krauss-'
yields &r ') = 1.545ao.

Carrying the analysis to the next order, the lead-
ing off-diagonal term will be the dipole matrix

((n, I., S)A, m,
~

V~A, m, )
=- &(n, f, , S)A, m, ~+$,/R'~A, m, )=-&$)"'/R'

(s. 5)
and the matrix element &$)"' is independent of m$.
Again using data from Wahl et al. the asymptotic
molecular potentials are analyzed in terms of the
expansion (8. 2) and one finds that for both t:he II
and Z state the following sum has the indicated
value:

Z «'„"';&'=2. 28,'. (s. 6)
n 80$L

This quantity is equal to ~ the fluorine atom polar-
izability and is determined from the HF' dipole
moment data in a manner identical to that used in a
recent study of carbon by Billingsley and Krauss.
The asymptotic interaction energies are to this ap-
proximation of the following form, in atomic units

1.236 4. 55
( )-

(8.7)

(
0. 618 4. 55

2R' 2R4 '

Note that the first excited state of F is about
0. 4V a. u. above the ground state, and from (8. 6)

one can estimate that
n, L 2

Z
(g )

4 9a
n 40$L

(8. 8)

This estimate is useful in determining the magnitude
of the asymptotic BO terms (V. 2b) and (V. 2c). Sub-
stituting (8. 5) into (8. 1) the following expectation
values for the radial BO terms are obtained (Lt,

= 1745):

8
&R, A, m$~ ——

$ ~R, A, m$),

~ -4. 9&3/R' (s. 1o)

2

i

I L(L+1) i, )

[ v 2 ( I)J-J'tt ]

[ —v 2 ( —1)~ ~ tt]. (8. 11)
2p.R'

As J increases the coefficient 8 becomes propor-
tional to J [see Eq. (B6)], and the angular BO
term becomes increasingly important. Unlike t;he
radial term, Eq. (8.11)contributes to the off-diagonal
couplings, andthus, itis important to have reliable
estimates of 6 at small distances where the perturba-
tion theory is invalid. Using accurate molecular wave
functions for HF' at R=2. 2 a. u. , Julienne, Krauss,
and Neumann' calculated (1—6) = 0. 96 and b. = 0. 04,

=--,'&R, A, m$~ — „'„~R,A, m, &

pR 8R

3 + «z)"']' s. 3 xlo-'
~R6 (gal yL)$ RS

These primitive integrals enter into Eq. (B7) of
Appendix B, and it is found to first order that (8.9)
only contributes to the diagonaL elements in (Bs)
and the off-diagonal radial BO terms vanish iden-
tically. Since the diagonal contributions are neg-
ligible compared to (V. 2a) and (7.3) the radial I3O
terms will be completely ignored, and even in the
region of strong interaction where perturbation the-
ory becomes invalid this approximation will be
made since the spin-orbit terms undoubtedly domi-
nate.

The angular BO term, as expressed by (B4), is
proportional to b/2pR, where 6 is obtained from
Eq. (B5). The perturbation theory predicts

Ql. +1) )'"
ng0, L 2

Utilizing Eq. (8. 8) to impose an upper bound, and
a number of reasonable assumptions about the
fluorine atom wave function and the matrix elements
in (8. 5), one obtains the following estimate for 6:
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from Eq. (B5). This is consistent with the upper
boundin (8.10) whichpredicts6 &0. 36. Using 6=0.04
in (8. 11) the matrix element at large J is of the
order O(4x10 J'a. u. ). This is negligible com-
pared to the centrifugal barrier terms that con-
tribute to the diagonal matrix elements in Eq. (7.2a)
and which are of the order O(6 x10 'J' a. u. ). The
off-diagonal terms in (7. 2a) are proportional to
(WD —W, ) =0. 1 a. u. and will dominate the BO angu-
lar term for J& 300. However, at these small dis-
tances only J& O(30) can penetrate, and the angular
BO terms are completely negligible. At larger R
the perturbation result (8. 11)predicts a rapid R 6

falloff compared to the R ' falloff of S'0 —8'„andthe
angular BO matrix elements are insignificant and
can be neglected at all distances.

IX. SUMMARY AND CONCLUSIONS

The cross sections for the fine-structure transi-
tions in H'+ F( P) collisions have been formulated
in terms of the ground molecular states HF '( II) and
HF '( Z). The long-ranged interactions between H'

and F vary as R and R which suggest that the
cross sections will be large and difficult to predict
using perturbation theory. The close-coupling ap-
proximation ha, s been developed, using a molecular
"perturbed- stationary- state " representation of the
six open-channel states, and the pertinent coupling
matrix elements have been carefully evaluated.

One finds that the coupling is dominated by the
spin-orbit matrix elements which are dependent on
the splitting W, (R) —Wa(R) between the molecular
II and 'Z interaction potentials [Eq. (7.3)]. For

HF' the molecular spin-orbit matrix elements are
well represented by their asymptotic atomic
values, ' but, in general, it will be necessary to
make explicit evaluation of the R dependence of
these terms. The BO matrix elements that are
generated by the kinetic-energy operator vary
asymptotically as R and are negligible compared
to the R dependence of the spin-orbit terms.
Again this conclusion is only relevant to HF' which
has been chosen for its simplifying features, and it
is important to assess this result for other sys-
tems. In particular, it is important to evaluate the
angular BO terms [Eq. (7. 2b)] since these will give
rise to second-order off-diagonal terms while the
radial BO terms (7. 2c) vanish to this order. It
must be emphasized that these conclusions only ap-
ply to the nonrelativistic molecular states. If the
molecular states are prediagonalized with respect
to the spin-orbit operator, then the BO terms are
tremendously modified due to the R dependence of
the expansion coefficients and the couplings are
caused en' ely by the BO terms. If the coupled
equations are solved exactly this leads to identical
results, and we conclude there is seldom any ad-
vantage, and generally a great deal of disadvantage,

The author is grateful to Dr. A. C. Wahl and
Dr. M. Krauss for the molecular calculations of
HF' that were provided for this study, and to
Professor L. Krause for his stimulating discus-
sions.

APPENDIX A: PARITY

The Hamiltonian II is invarient to inversion 8 of
the space-fixed coordinates 8 (r„R)- (-r„—8).
This inversion does not operate on the electron-spin
"coordinates "S(a) (o). In polar coordinates the
nuclear R components transform as follows: 8 (R,
8, $)- (R, w- 8, v+P). If the space-fixed compo-
nents of the electron coordinate vector r, are de-
noted with primes, the transformation yields s(r&)- ( —x,', -y,', —zf) How. ever the molecule-fixed
components of r&, denoted by umprimed variables,
are subjected to the following transformation: S(r&)- ( —x„y„z,)-(x„&„v-P, ). The electron
spin o components are not invarient in molecule-
fixed space, and one finds the I + —,') components
transform as follows:

s (l+ -'&)-e'~ l+ l & . (A1)

The phase has been chosen by adopting the following
convention for the inversion of the Wigner rotation
matrices for —,

' integer values of j,
s(~Ps ) e-3&ID Jw (A2)

By this definition the spherical harmonics trans-
form as usual,

s(Y, .(~))- (- I)'Y, .(~). (A

Both the atomic and molecular functions ~mz, mz)
and ~R, A, mz) are assumed to be constructed such
that

lR, A, m, )*=(-1)'lR, —A, m, )

and

(v-y, ), R, A, m, &= l(y, ), R, -A, m, &.

The parity of the space-fixed atomic states )j,m&)
is determined by s (Yz „),where L is the total
orbital angular momentum of the electrons. For
the ground ~P state, since L =1, we obtain

s(l j, m, &)--
l j, m, &. (A4)

The molecular functions [R, A, mz) subjected to
inversion yield

s(IR, A, mz))-"'"IR, —A, -mz&, (A6)

and the Q states defined in Eq. (4. 2) transform as

in employing relativistic molecular wave functions.
In the accompanying paper the coupled equations

are solved and the cross sections are evaluated for
this system.

ACKNOWLEDGMENTS
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follows:

s(IR, j, n))--e"~IR, j, —n). (A6)

The nuclear angular momentum operator L~ in

Eg. (7. 2b) is defined by Etl. (3. 6) and must be
represented in molecule-fixed coordinates. Noting

that the electronic momentum j =j+j-+jz- jz and
that in molecule-fixed space jz-=Jz, we can express
L„asa function of j and the total angular momen-
tum operator J:

Ls= J +j+j--j+J j-J Jz(Jz+1) (Bl)

The stepping operators are "normal" for j, i. e. ,
acting on the atom functions in Eq. (2. 9), and the
molecular functions in Eq. (4. 2) one obtains,

j, lj, n)=[(j~n)(j n 1)]'"lj, n 1),
j„lR,q, n)=p(R, j, n+llq, IR, q, n,

Finally, the rotated space-fixed molecular states
defined in Eg. (4. 9) behave as do the atomic states
in (A4), i. e. ,

s(IR, j, m, ))-- IR, q, m, ). (A7)

Therefore, the parity expressed in Eq. (5. 11) for
the channel states (5. 6) or (5. 8) is obtained,

s(IR, J, ~, j, f))-(-»'"IR, I, ~, j, f& (A8)

APPENDIX 8:80 MATRIX ELEMENTS

XIR, j'', n+1). (B2)

However, as implied by the superscript notation,
for J' in molecule-fixed space the commutation
rules are reversed, i. e. , [J», J„]=—iJz, [J„,J'z]
= —iJ», [Jz, J'»]= —iJr, and one finds for J' oper-
ating on the Wigner functions in (5. 7):

J"n„',„=[(J+n)(J+ n+1) ] "'n,',„„.
These transformations are discussed by Van Vleck,
Kolos and Wolniewicz, and Pack and Hirsch-
felder.

Applying these equations to (7. 2b), (5. 8), and

(4. 2) one finds that the angular BO term is propor-
tional to 6:

(L„—/(1+1) ) .i, , H2h( —1)~ ~
~ (B4)

where 4 is a measure of the "distortion" of the
fluorine atom charge density owing to molecular
formation,

(R, A, m, I I„IR, A+1, m, ) = &2(l —a). (B5)

As R- ~ the atomic expectation value W2 is ob-
tained for the electron orbital angular momentum
operator in (B5); hence 4-0 and (B4) vanishes.
The coefficient Ct is J dependent, and for large J
is proportional to J;

d, = ~ (J, z, fl-n, n, o)(1, 2 &I&, n- &, n)&n. ~(J, i'» f )~ (B6)

where

&o,~(J j', f')=(J j', f'I-n n, 0)[(1, -' j'IA-1 n-A+1 n)+(1, ' j'IA+1 n-A-1 n)]

+(J, j', f'I- n+1, n- 1, 0)[(J+n)(J- n+1)]'"(1, -', j'I A-1~ n- A, n-1)

+(J, j', &'I-n-l, n+1, 0)[(J-n)(J+n+1)]'"(1, 2, j'IA+1, n-A, n+1)

Similarly for the radial matrix (7.2c} an expression is obtained which vanishes at large R, where I 8, A,

mz )- I &, mz ) and the molecular wave function becomes independent of R.
Define the molecular integral @~~~ (R):

(B7)

then theradial BO term can be expressed as follows:

6, , 6. ..6t, + (6t, —6t, )(a,

where the coefficient S is

o3=Q (- l)~' ~(J, j, ll —mz, mz, 0)(J, j', f'I —mz, mz, 0)(1, —'. , jl0, mz, mz)(1, —,', j'I0, mz, mz).

Note that the off-diagonal matrix element is proportional to and this leads to our conclusion from
Eq. (8.9}that to first order the off-diagonal radial BO term vanishes.
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The results of a close-couPling calculation of the fine-structure transitions (j, mj j', m,
'. ) are Presented

for collisions between photons and F(~P .) The theory is formulated in the perturbed-stationary-statej, rn&

approximation using accurate molecular wave functions for the ground 'II and 'X states of HF+.
Comparison is made to the predictions of the Born approximation. The magnetic selection rule

(j, m. j, -m,.) is strongly violated in the j= 3/2 state and less strongly violated in the j= 1/2 state. It is
concluded that the important region of interaction for the j= 1/2 j= 3/2 transition is at short-to-inter-
mediate distances where accurate molecular potentials are required and close-coupling effects are dominant.

I. INTRODUCTION

In the preceding paper' the theory of fine-struc-
ture transitions in proton-fluorine collisions was
developed using the ground molecular HF '( lI) and
HF '( Z) electronic states in a perturbed-stationary-
state expansion of the scattering wave functions. At
each total energy E, and for each total angular mo-
mentum state t, with space projection M, there
exists a set of six open molecular channel states
)R, Z, M, j, I) arising from the six substates (j,

m&) of the F( P& ) ground state . The chan. nel-state
expansion (I-6. 1) defines the radial functions

F&,'i.,),.(R) which must vanish at R = 0, and are

subject to the asymptotic boundary conditions in Eq.
(I-6. 3) which determines the reactance matrix
E&,, &,. and hence, the scattering cross sections.
This expansion results in the coupled differential
equations of Eq. (1-7.1) which may be written in the
following matrix form:

~A
a

—E 1+U (R) F ' ' (R)=0, (1 1)

where

F J,sr&z (FJyMpi''

and

1=(ti, , ti. ..).


