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also been extensively employed by the author"
in the calculation of the ionic antishielding factors
y„and the atomic shielding or antishielding factors
A, both pertaining to the perturbation by the nu-
clear quadrupole moment Q. It has also been
shown that the expression for Ra [Eq. (18)j ap-
proaches the usual formula for y„(for a single n s
electron), in the limit in which the radial spread
of the np-vacancy wave function is very small com-
pared to the radial extent of the n s-electron wave
function.
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The object of the paper is to obtain a perturbation expansion of the wave function which
satisfies arbitrary initial conditions. For periodic perturbations, a method is developed to ob-
tain the solution without any secular terms. It maintains the normalization condition for all
times, which assures the unitarity of the transition amplitudes.

I. INTRODUCTION

In recent years, there has been revival of in-
terest in. the time-dependent-perturbation theory
and, in particular, in the periodic perturbation in
quantum mechanics. In the time-dependent-per-
turbation theory, following the conventional method
for obtaining the perturbation expansion, one en-
counters serious difficulty due to the occurrence
of secular terms, i. e. , terms of the type P(t)T(t),
where P(t) is a polynomial and T(t) is a trigono-
metric function of time t, in the coefficients of the
series. They arise when one takes the perturba-
tion expansion as a Taylor series in the perturba-
tion parameter and integrates successively to ob-
tain the coefficients (see Sommerfeld' and Schiff').
Following the methods of perturbation theory in

celestial mechanics, Kramers suggested a pro-
cedure for eliminating the secular terms which
arise from the constant term in the perturbation.
But even in absence of the constant term in the
perturbation, there appear secular terms in the
usual perturbation expansion, both in the presence
and absence of resonance. This is clearly shown
in Sec. IV, Eqs. (50) and (52), for the simplest
case of periodic perturbation. As a consequence
of this, the unitarity of the transition amplitudes
is apparently lost. This has attracted the atten-
tion of various authors in recent years. Wallace
has been able to bypass this difficulty by developing
a method in which the transition amplitudes are
directly calculated. But it may not be irrelevant to
point out that, so long as the perturbation. Hamil-
tonian and the total Hamiltonian are bounded for
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all times, the Schrodinger equation should admit
of solutions which are bounded for all times. As
a matter of fact, Schrodinger' noted in his early
papers on the time-dependent-perturbation theory
that secular terms should not appear in the solu-
tions of the wave equations with periodic coeffi-
cients.

Hence it seems that the usual perturbation ex-
pansions which are simply Taylor expansions in
terms of the perturbation parameter are inadequate.
As a matter of fact, the present author ' has been
able to obtain a class of solutions which have no

secular terms of the Schrodinger equation with a
time-dependent-perturbation Hamiltonian by intro-
ducing a more general type of expansion in terms
of the perturbation parameter. This class of so-
lutions is characteristic of the perturbation Hamil-
tonian and is not related to the initial-value prob-
lem.

The object of this paper is to obtain a perturbation
solution without any secular term, which evolves
from an arbitrary initial state and remains bounded
for all times. For simplicity, we will consider
only periodic perturbation —the method can be
easily generalized to other cases. In Sec. II the
solution is obtained for a system in the absence
of resonance. The case of resonance, which needs
special attention, is considered in Sec. III. The
difference between the perturbation expansion ac-
cording to the conventional method and that sug-
gested in this paper is shown clearly, with the
help of a very common physical problem. Section
V is devoted to discussion on. the nature of the so-
lutions.

Let the Schrodinger equation be given by

Orh
iK "- .= [Ho+ H'(t)](;

H' is the periodic perturbing part of the Hamiltonian,
such that

H'(t+ 2ll/ld) =H'(t) .
It can be expressed in terms of a small parameter
6' and expanded in a Fourier series as

Hl (t) Q (~ (««) & 2H (««)
) e l«««««l

Further let the normalized eigenfunctions and
eigenvalues (which are assumed to be discrete) of
the unperturbed Hamiltonian Ho be p& and E& (j = 1,

«)« i. e
«

{p&) are assumed to form a complete set.

II. SOLUTION IN ABSENCE OF RESONANCE

By the absence of resonance we mean that the
difference of none of the pairs of eigenvalues is
an integral multiple of hm. Thus

for any j or 0, and n is an integer. Obviously, by
this we exclude degenerate cases which, according
to our method, should be considered as special
cases of resonance. %e propose to find the solu-
tion lt«(t) of Eq. (1) which, at an initial instant t„
ls given by

(6)

But for the above normalization conditions b& are
arbitrary constants. It is well known that Ell. (1)
with subsidiary conditions (2) and (3) has solutions
of the form 4(t)e' where X is a constant and C (t)
is periodic. Hence, we can write the most general
solution,

g(t) = Z «tl Q, (t) W, (t) 'g (t) . . . )

p[- (& +eE'" 'E"'- " )(t —to)/~]
(&)

&N,»(t) are bounded for all times and are periodic
with period 2ll/ld:

N«jk(t+ 2~/+) +N«gk(t) «

„,„(t)= Z ANl", ',.„e'" '.
They do not contain any secular term in t. Sub-
stituting this expression for p(t) in Ell. (1) one ob-
tains

&k —&l+&tt
&&

+ &&k + & Ek Qo, sk+ eAl, yk+e+a, lk+' ' ')(&) 2 (2) 2

2 2= + (eHl«gl + e Ho ll + ) 8o«lk+ ~l«lk+ e +l«» + ' ' '
& «

In writing this, we have used the following re-
sults: If X& —Xk 0 nod (n is any integer} and P&(t)
=P, (t + 2ll/ol), then

Next, we equate to zero coefficients of same pow-
er of 6' on both sides and integrate to obtain suc-
cessively higher-order terms. Thus

Z P&(t) e'k&' = 0 implies P&(t) = 0 . Eg, —E) + iS—A. o)~ ——0,
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(g)Ek Ej + zS leg)) + [) Aoeg)) = 5Hied/Aoe ll) e

l

(12)

(E~ —E~ + &5 —A2, gg+ E~ A(spy + E„AP~gq(~) (2)

= ~ (&4g[Az, [)) + & zg Azo, [[))~ (13)
l

We do not dwell upon the convergence of the series
here. But, noting the fact that H'(t) is bounded
and noting the consequent restrictions on its Fou-
rier components, one may expect that it may be
possible to establish the convergence of the series.
The solution thus obtained remains normalized for
all times since it follows from Eq. (1) that

From Eq. (11) it follows by virtue of Eqs. (6) and

(8) and expression (5) that
~[[)(t)

~

= const, ~[j)(to)
~

= 1 . (21)

Ap. gn
= &pa&y . (14)

(1) (p)Ek +]yak ~

Finally, integrating Eq. (12) we get

(15)

In order that A, „„beperiodic [Eq. (12)] for j = Iz,

we are obliged to choose

This is essentially due to the Hermiticity of the
Hamiltonian. The latter property also asserts that
E&+) for all j and N must be real, which is shown
directly in our calculation. As a matter of fact,
we write Eq. (7) as

4(t) = ~~b~(t) &J bd(to)=bJ, (22)
j

(m)

A (m) H&,zn&n
1e)&

E& —EI, + mhco
(16)

so that

(23)
for j & k and nz 4 0. The only nonvanishing constant
of integration is

A, )) = —Z ZA~~)„e ~"'o (1 —6„~) .

It is chosen to satisfy the initial condition (6). We
next proceed with the second-order terms in Eq.
(13) in exactly the same way. Thus

which assures the unitarity of the transition am-
plitudes for all times. This is tantamount to the
statement that the time-dependent perturbation has
induced a unitary transformation of the amplitudes
b&(t) from the initial value b& at f = to.

III. SOLUTION IN PRESENCE OF RESONANCE

Ezz) ff(o) g g t&~~ l (1 —&~[b~o)
2ykk + (18)

Let us denote the levels which are in resonance
by Greek subscripts, so that

A2, yx
= E~ Ay, gn +2,gn &n

(m) (g) (m) (m)

A,",', = —Z Z A,",', e'"'o (1-6,„) .
moo

Similarly, one can find higher-order terms.

(20)

—r Z a[', ;pe)[;[,) (z, -z, me)e)',
g mao

(19)
for j 4 k and m 4 0. Again, this is the only non-

vanishing constant of integration. A2", &&
is to be

obtained from the initial condition; hence,

E[)-E = n(p) hv, n(p) —n(y)=n(p, y) (24)

(E is any arbitrary fixed reference in the set).
m's are integers, and the second equation is only
a notation. All other levels not in resonance are
denoted by capital latin subscripts. If we try to
proceed exactly in the same manner as in Sec. II,
we note that we cannot obtain equations like those
in (9) for all j, b because of relations (24), but we
can still arrive at equations similar to Eq. (9) for
the subscripts J corresponding to the nonresonating
levels. Hence, we proceed by breaking up the sum-
mation in expression (7) in two parts:

( (e) = r e, (Z (Ae„„aA,, „ee(, ,„)
x exp[ z(+ + &E + e E + ' ' )(t t )/o]bQ+(A()~ ))~ + eAz

~ ))~ + e Az ~ )e~+ ' ' )
J

xe e[-((e, ez,"'~ eez,"'~. . . )(e —e )/)e[). (ee)

Summation in k is over all the levels, that in p, is over the resonating levels only, and that in J is over the
remaining nonresonating levels. Substituting for [I)(t) from Eq. (25) in Eq. (1), we obtain

E~ —E[, +zh —+ eE~ + eE~ +. . . (A()„J+ eA, ,.„~+ eAz, „~+ ~ ~ . )
(I) 2 (2) 2
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1~ )&)+ znl ''') (AQ )Z+ F1, 1&»+ e Az, lJ +''') (26)
l

for all 0, J, and

E„—En+ zh —+ eEn + e En + ' '
.. ~ (AQ, an +&A,e» +& Aze»+. . . )(

(1) 2 (2) 2

+ ( 1 )&1 + e'Hz, , 1 ) (AQ, , l» + EA1, , i» + f Az ~ ln + . . ~ ) (27)
l

The most general solution of Eq. (28), subject to
the condition (8), is

fn(y)~ t
Ao ~ —a„„e AO, J~= 0.

a» are constants. They are determined from first-
order terms and the initial condition (6), which
leads to

e in(v)&v)Q» (30)

From Eq. (27) the first-order terms for k be-
longing to the resonating set are given by

(1)E EB+zS A1 Bn + En AQ Bv Z Hl B)AQ li»

(31)
The periodicity condition on A, ,z„ immediately
leads to

(32)

This is an eigenvalue problem. Since the matrix
H, ",zyy'~ j is Hermitian the eigenvalues E„are real
and there are as many eigenvectors as the number
of resonating levels. Let the orthonormal eigen-
vector of the secular equation (32), corresponding
to the eigenvalue be E„, be v~; so that

for all 0 and }z. In writing Eq. (2V) we assumed
that E( ), which are yet to be determined, are dis-
tinct. In case they are not, one has to proceed
a little carefully by maintaining suitable linear
combinations. From Eq. (26) we can determine
EJ, A ~.„„Jwo rking exactly in the same manne r
as in Sec. II; hence, we do not repeat the calcula-
tion. But the method for determining E„"
A„,»(t) is quite different and reminiscent of those
in the time-independent-perturbation theory. For
the zeroth order (correspondirig to the unperturbed
solution)

d
~ EN —EB + i K—A QQ„= 0 .

8g„, = Z G„z)„,
8

(38)

so that Eq. (36), with the help of Eqs. (32) and (34),
takes the form

(
Z» v" »"'v" Zi" » e&"v&"e)Syy —

y, Bee

Finally, one obtains from this

00 ~ (m)
1~ Bvavn

&
it&n-nZV) l&ui

[I + n(P, y)] 8'Q)

&& (1 —5„n(n))) + gBn e "~)"' . (35)

gz„are constants of integration. They are to be
determined from second- order terms and the initial
condition. The remaining quantities, namely
A. 1 J„, can be determined directly from Eq. (2V)
without any difficulty. Proceeding similarly we
can obtain higher-order terms. Since they do not
need any new method and are very involved, we
do not continue further. On the other hand, it is
to be noted that once the secular equation (32) is
solved the rest of the work is simple computation.
In order to emphasize this point we will show here
how to obtain Enzz) and gB„. From Eq. (27) it is
easy to write the equation for second-order terms.
Now, in order that A2, „„beperiodic we are obliged
to choose E„,g„„such that

Q FBva» En aB„=~ (Ev 5Bv Hl&Bv
(1) Y' (1) ln(yeI3) 3

(36)
where

+fn(y, g)-m )+~)
Hah'eB)) Q Q 1~ BJ' 1&J'v

EJ —E„+mh(d

~ In (ee8)-m)~ Og)
—Z Z

)
'

(e )]'~" (1—5„„„,,) . (37)

Let

a» v„.oc (33)
Bey

(40)

& v&n ein(B)&viQ
aye —

g Q y
8

(34)

Finally, integrating Eq. (31) one gets

Equations (30) and (33) determine a» completely:
G (E0) E ZZ)) g ZlvF 1»

n QZ) n 5 &in(B)&»ZQ
V I 8 By y

(41)
for p, & v. 6» is to be determined from the initial
condition
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+A„„„(to)= O.

In order to show the basic differences between
perturbation expansions according to the conven-
tional time-dependent- perturbation theory and that
following the method suggested above, we take up
in this section the simplest example of periodic
perturbation, such that

H'(t) = sH cosset .
This encompasses a wide class of physical phenom-
ena, e. g. , the action of a monochromatic beam of
radiation on atomic or molecular systems. Follow-
ing the conventional method, let us expand the wave
function in the form

g(t) = Z (Arr '(t) + sArr"(t)+s Arr r(t)+ ~ ~ ~ ) rtrr .
(44)

Substituting this in Eq. (1}with the expression (43)
for H'(t), we get

dA "'
N ' -Z &"'=0

dt
(45)

It can be easily checked that Elr are real (due to
the Hermiticity of the Hamiltonian). Further, E~r~»

are independent of initial conditions. They are the
characteristics of the perturbation and are deter-
mined by the perturbation Hamiltonian.

IV. SPECIAL CASE

Qr)
ii „' —ErArrN' —ZH»A, '""cos&dt (N&1) .

dt
(46)

We solve these equations with the initial condition
given by Eq. (6) so that

Arr r (t) = br exp[- iEr (t —t0)/I] .
The nature of the coefficients for higher-order
terms is quite different in the absence and in pres-
ence of resonance.

A. Absence of Resonance

A (r) g Hrrr5rr exp[- iEa (t —to)lfr]
I rrra - (Er - Er,)

x [(Er —E„)Crr(l, t}—ikrdSr„(l, t)], (48)

where

C»(n, t) = cosrr&ot

—cosrr&utoexp[i(E r,
—Er )(t —t,)/tf]

(49}
S»(n, t) = sinrr&rrt

—sinrr&oto exp[i(Err- Er)(t —to)/1r]

In this case the first-order coefficients are the
same as in Sec. III, due to the particular choice of
the perturbation as H&~&~= 0. It has been noted in
Sec. II [Eq.(15)] that the only difference is due to
Hrrro'. However, even with this choice (i.e. , Hrrr)
the difference manifests itself in the second-order
terms. For rr=2, from Eqs. (46), (48), and (49)

Ara) g Hrr Hrr5rexp[-iEr(t- to)/@] ( 5 (E E )(t t )/~2[tr2~2 (E E )2] rr rr r 0

+ (5rr —I) (Ea-Er)(Er-4'r)'(I —exp[r(E -E )(t-to)/&])+ [4)f'&'- (Er-E )'] '

x [((Er - Er) (Er Er ) + 2K rd —)C» (2, t) r@u (Er +E—
r
—2Err) Sr r(2, t)]

+ 2[(Er —E~)'- I'~'] 'exp[i(Er —E~)(t - to)/tt] [(Ea-Er) co»to

—iS&o sin&rrto] [(Er —Er) Cr„(1, t)-i' Srr, (1, t)]]' . (5O)

The first term in the above expression increases
linearly with time. This is an undeserving feature,
in the conventional perturbation theory. Jf the
process is continued to further higher orders,
terms with increasingly higher powers of time t
will appear. But each term in the perturbation ex-
pansion as developed above [Eqs. (16) and (19)]
remains bounded for all times. This is also ex-
pected from the theory of differential equations of
the type we are discussing, namely, Eqs. (1) and
(2)

B. Presence of Resonance

In order to avoid unnecessary complications, we

consider that only two levels, p& and p„are
resonating. In this case, if one proceeds with the
perturbation expansion according to the conven-
tional method, secular terms appear even in the
first-order coefficients. Let the resonance con-
dition be expressed by

E~-E~ = h(o . (51)

As noted above, the expression for Arr r(t) is the
same as before [Eq. (4'I)]. Again, the expressions
for Ar ' (j & 2) are the same as in the previous
case [Eq. (48)]. But the expression for A, (s = 1, 2)
is found to be
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2,"' = —i(h(u) 'H„.b, exp[-iE, .(t -to)/h] {(u(t—to) exp[i(s' —s)(ut]

+ exp[i(s —s') ~to] sine(t —to)j+Z [k ur (—E& —E~) ] '

x H,„b,exp[- iE~(t —to)/@] [(E,—E„)C,„(1, t) —i k(u S,~(1, t)] . (52)

The prime in the summation means that k = s is
to be excluded, and ~'= 2 or 1 when s = 1 or 2. In
this case the secular terms which increase linearly
with time appear even in the first-order coefficients,
so that they become unbounded with time. This
severely restricts the application of the expansion
by the conventional method. But the perturbation
expansions developed in this paper are free from
this shortcoming.

V. DISCUSSION

The most important point of difference of the so-
lution obtained in this paper and the solution ob-
tained from the conventional perturbation theory
is that the indices of the exponential coefficients
in expressions (7) and (25) are power series in e
Hence, if one expands them directly then each term
increases indefinitely with time, which leads to
secular terms in the usual perturbation theory, as
shown in Eqs. (50) and (52). These indices are
related to the mass renormalization in quantum

electrodynamics. Eberly and Frank and Eberly
and Reiss ' have obtained them in some special
cases by summing exactly Feynman-Dyson per-
turbation series. These indices do not contribute
when one is confined to first-order terms, as in
many physical problems &&~= 0, but they manifest
themselves in second- and higher-order terms in
the perturbation parameters. The other point of
interest to be noted is that in the case of resonance
the solution g(t) in Eqs. (25) and (29) does not coin-
cide with any of the p, exp(-iE, t/8) (s = 1, 2) as

0 for all times; they may be made to do so only
at some suitable instants, as has been noted in Sec.
IV. The appearance of secular terms owing to the
vanishing of denominators, in the usual perturba-
tion theory in case of resonance, is due to the
tacit assumption that g(t) as e- 0 tends to p&
xexp(iE&t/I) for some j. Finally, the solutions
obtained here remain normalized for all times if
the initial solution is normalized; hence the uni-
tarity of the transition amplitudes is assured at
each instant, as noted before.
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