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Phase Transition in the Dicke Model of Snperradiance*
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A system of X two-level atoms interacting with a quantized field, the so-called Dicke model of
superradiance, is studied. By making use of a set of Glauber's coherent states for the field, the free

energy of the system is calculated exactly in the thermodynamic limit. The results agree precisely with

those obtained by Hepp and Lieb, who studied the same model using a different method. The exhibition
of a phase transition of the system is presented mathematically in an elementary manner in our

approach. The generalization to the case of finitely many radiation modes is also presented.

I. INTRODUCTION

The problem of a system of N two-level atoms
interacting with a radiation field has been studied
by a number of authors. ~ 8 In the so-called Dicke
model, the atoms are considered to be at fixed
positions within a linear cavity of volume V and
the separations between the atoms are assumed to
be large enough so that the direct interaction among
them can be ignored. However, by the fact that the
atoms interact with the same radiation field, the
atoms cannot be treated as independent. The im-
portance of treating the radiating atoms as a single
quantum system was recognized by Dicke' who cor-
rectly described a coherent spontaneous radiation
process of the system. An exact solution for the
Hamiltonian of N identical two-level atoms inter-
acting with a single-mode quantized radiation field
at resonance was given by Tavis and Cummings.
One of the most significant and interesting results
regarding the Dicke model was obtained very re-
cently by Hepp and Lieb. 7 They calculated exactly
the thermodynamic properties of the system, the
free energy in particular, in the thermodynamic
limit that N, V- ~, N/V= finite and showed that for
a sufficiently large value of the coupling constant
between the atoms and the field, the system exhib-
its a second-order phase transition from normal
to superradiance at a certain critical temperature.
The results of Hepp and Lieb are rigorous, but
the mathematics which they used in arriving at
their important results is somewhat abstract.

In this paper, we study the same problem by a

rather different method. Employing a set of co-
herent states of the field defined by Glauber, e we
find that the partition function of the system can
be expressed in terms of an integral which is
readily evaluated in the thermodynamic limit. The
results, which are in exact agreement with those of
Hepp and Lieb, are derived, as will be seen, in a
much more straightforward manner than the meth-
od used by them. The phase-transition property
of the Dicke model is shown, in our approach, to
be closely analogous to that of the Curie-gneiss
model of ferromagnetism given by the mean-field
theory. Other thermodynamic quantities such as
those relevant to the study of the photon statistics
of the system are also given readily by our method.
The generalization to the case in which the field
consists of finitely many radiation modes is
straightforward.

In Sec. II, the Dicke model of superradiance is
briefly reviewed. The free energy of the model is
evaluated exactly and analyzed in detail in Sec. III.
The generalization to the multimode case is pre-
sented in Sec. IV. Finally, a conclusion and a few
remarks on other possible generalizations are
given in Sec. V.

II. DICKE MODEL OF SUPERRADIANCE

First let us briefly review the Dicke model of
superradiance. %e consider a system of N iden-
tical two level atoms, coupled through dipole in-
teractions with an electromagnetic field in a cavity
of volume V'. The atoms are kept at fixed position
and the dimension V is much smaller than the

Copyright 1973 by The American Physical Society.



832 Y, K. WANG AND F. T. HIOE

wavelength of the field so that all atoms see exact-
ly the same field.

The Hamiltonian of the model in the rotating-
wave approximation is (b= c= 1)

0= Ho+ III

where
N

+0 +fjeid++atoms ~ Vs as s+ 2 ~ +j &

s j-1

&&si" "1&~1 ~ '"l~&l» ~ ~ ..&,

(11)
where f d 2n means f) d (Re n) d(Imo ), and the sum

is taken over all the atomic states.
We shall now obtain an explicit expression for the

expectation value with respect to I n & of e 8",

which turns out to be very simple for the Dicke
model. I et us first write the Hamiltonian in the
form

and at and a, are creation and annihilation opera-
tors for the sth mode with frequency v, of the
electromagnetic field, & is the energy difference
between the two levels of the atoms, and X' mea-
sures the coupling between the field and the atoms.
We have also introduced the Pauli spin matrices
o,.'s to describe the two level atoms and

~,. = 0",.+ ZO,'-, 0,-. =(T',. - So',

In the thermodynamic limit that N- ~, V- ~
such that N/V= p=finite, -we have

(4)

For a single radiation mode of frequency v, it is
convenient to measure the energy in units of the
frequency v, and write

H = a'a+ Z [-,'e o',.+ (X/2v N) (ao,' +a'o, )].,

with
e=~/v, X=X'v p/v,

which is the Hamiltonian of the Dicke model.

III. THERMODYNAMIC PROPERTIES

The thermodynamic functions of the Dicke model
described above can be calculated from the canoni-
cal partition function Z(N, T):

Z(N, Z)=Tre '"; p=1/b, r.
A convenient basis to calculate the trace of the
partition function is the Glauber's coherent state

I n), which has the following properties:
(i) I o ) is an eigenstate of the annihilation opera-

tor a,

(9)

(ii) The set of all I o )'s is complete, and

v N MN 2 f 2 MN ~ MN

(»)
It should be noted that H is a function of ¹ In the
following discussion we shall write II„ for II when-

ever we wish to emphasize the dependence of 0 on

H we write b = a /v N and b~ = a~/v N, the com-
mutation relation of the operators b and bf is given
by

[b, b'] = (1/N) [~ a'] = 1/N . (12a)

N

= exP — ~+~+
2

0'&+2 ~ 0' + Qa'
i--=1 2

(12b)
for it is known that the expectation value of any
operator in the antinormal order such as (at)"a'
is simply given by substituting z for a, and z* for
a~, namely,

(nl (a')"«& = (n*)"n' .
Our proof showing that the field operators in

e ~~N can be replaced by the same operators ar-
ranged in the antinormal order which we shall give
in the following is based upon the following two as-
sumptions.

Assumption i: The limits as N- ~ of the field
operators a/v N and at/MN exist.

Assumption ii: The order of the double limit in
the exponential series

lim lim 5 (-PHN)"/~!
N ~ B"~ rO

Using Eg. (12a), we shall show that in the thermo-
dynamic limit the field operators appearing in each
term of the expansion of e ~ can be replaced by the
same operators arranged in the so called antinor-
mal order, in which all the a's occur to the right-
hand side of a~'s. It follows then that the expecta-
tion value (a I e 8"

I a & becomes

2

Using ( I o &] for the photon field, we have

z(N, r)= Z Z
si-+1 sN= +1 „

(1O) can be interchanged. We hope to provide a rigor-
ous justification of the above assumptions in a
future publication.

Consider first the limits of a/MN and at/MN to
be different from zero. Bearing in mind the two
assumptions above, let us consider the exponential
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series

e '"-~ =Z (- pa„)"/~! (12c)

From (14) and (11), we have

Z(N, T)

and suppose that we take sufficiently many but
finite number of terms from the right-hand side of
(12c). The field operators appearing in a typical
term is of the form

Q

$1- ~1 SN- ~1 'i

b bbb . bb

where the number of factors is at most of the order
of the highest power of H in (12c). To see how it
can be arranged into the antinormal order we give
a simple example

where

d nn e- lllul (Tr - gh)N
F

a= (-.'e)o'+ (~/2') (neo-+ no') .

(15)

2 /-8I el I Y7 - ga.=e A@1 e ~ e gN~ j g 2 g1e e ~ 8
/=i

e-Blel D (e I
e-Bhyl

i=1
(14)

b~bb~bb~b = b~b~b" bbb+ (3/N)b~b~bb+ (1/N )b~b .
Each interchange of b and b~ introduces an extra
term with an extra factor 1/N due to the commuta-
tion relation (12a). The number of interchanges
required to put all the field operators into the anti-
normal order is clearly finite. By taking N suf-
ficiently large, all the terms with the extra fac-
tors 1/N, 1/N, etc. , can be made to drop out.
Thus, in effect, the field operators appearing in
each term of the expansion of e 80 in any order can
be replaced by the same operators arranged in the
antinormal order. Therefore, (12b) follows.

On the other hand if b and b~ tend to zero in the
limit N- ~, the Hamiltonian becomes simply

N

@=a'a+ Z —o', .
2

The free energy per atom f(T) of the system is then
given by

—pf(T) = in[2 cosh(-', pe)] .
Thus, the field does not contribute to the free en-
ergy and the ordering of the field operators makes
no difference to the calculation.

We now proceed from Eq. (12b) and define

h, = (-2&)o~+ (il/2~X (n*o~+ ncr,') . (13)

Using Eq. (12) and the property [b, , h~] = 0, we can
reduce the integrand in (11) to

(ex' ' ' eel (nl e
I n) I

et' ' ' eg)

-BIO, l2 /=s lss s„,
l sxp(-p Ahs lss s„)

Writing in the matrix form, the operator h. be-
comes

Xn/v N

&n*/~N — e —p,

or

g =+ (-,'-e) (1+4''I nl '/e'N)"' .
Hence substituting (19) into (15), we get

Z(N T)
n e- sl el (e- ill el + flu l)lwl

2

8- gl e I2

r

xy cosh[(-,'Pe) (1+4~'I nI'/~'N)"']}" .
(20)

We note that the integrand in (20) i.s real and de-
pends only upon I n! and the integral (20) con-
verges as I ~ I

-~. The free energy per atom
f(T) is obtained from Z(N, T) by the usual formula

f(T) =lim[(l/pN) lnZ(iy, T)] . (21)

To evaluate (20), we write

40 0

de XA' e

7r
0

(22)

Equation (20) then becomes

Z(N, T)=2 f rdwe 8"

x(2 cosh[(-,'pe) ( 1&+'4~'/~' )]N}" .
(23)

Let y=r /N, and write

Xn/MN
An*/MN . ——,'e

whose eigenvalues p's satisfy the secular equation

Z(N, T)=N f dye "8'2cosh((-,'pa)[1+(4X/a )y]'i } (24)
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=Nf xyexy N —yysln{scosn{('sss){1+(4l/s)y] l
})j.

By Laplace's method, '0 integral (25) is given by

X(Ny)=, N P. csex exyIN —yy+!n{ecosn{(-',ps){l+(4X'/4')y]"'}) ) .
O 4$ 4&o

(25)

(28)

—Pf (T) = ln [2 cosh( —,
'

P&)] (33)

elf =[1+ (4x'/g')y]'/', 1& q& ~. (so)

We note that in the region 0 & g & ~, the function
tanhg is a monotonically increasing function of x
as z increases and that its slope is a monotonically
decreasing function of g and tanhg &1 for g & ~.
For ]{. &gy E(I. (29) has no solution in the region
1 & g & ~. Thus, for A. «, it is easy to see that the
function

e @2 cosh ((-,'Pe) [1+(4X'/e')y]'/$

is a monotonically decreasing function of y with
the maximum of the function at y = 0 equal to
2 cosh-, Pe. Thus, the free energy per particle
f (T) is given by

—Pf (T) = lim (1/N) InZ(N, T) = ln [2 cosh(-,'Pe)] .
(31)

For X &a, the solution of Eq. (29) depends on the
value of P. For P& P„where P, is given by

(e/z~) = tanh(-,' p, e), (32)

Eq. (29) has no solution in the region 1 & q & ~ and
thus

({))(y)= —py+ In(2 cosh{(-,'pe) [1+(4X'/e )y]'/')),
(27)

then

e'(y) =-P (@'/e) [I (4l'/")yl '"
x tanh/( —,'pe) [1+(4l(. /e ) p] Q ~ (28)

Putting (t)'(y) = 0, we get

(e/l{.')rf = tanh [(-,' pe)q], (29)

where

as in E(l. (31). For P&P, , E(l. (29) has one (and
only one) solution in the region 1 & 7l & ~ given by

(e/X')q, = tanh [(-,'pe)q, ] . (s4)

Writing (e/X )]10= 2o or (e/X ) [1+(4X /a )yo]
=2o, we have

yo=X o —(. /4A.

or
—pf (T) = in[2 cosh(pA)] —pA'+ p~'/4~',

(s8)
where

2o = tanh(p/(. o) 44 0 .
Thus, to summarize, we have, for (i),

no phase transition occurs in the system at any
temperature. For (ii), l). & &, there is a criti. cal
temperature T, given by

e/X =tanh( —,'p, g) 4 p, = 1/kT,

at which the system changes discontinuously from
one state to another. The average number of pho-
tons in the two different states (the states at T
& 7, being called the normal state and the state
T & T, being called the superradiant state) can be
easily computed. More generally, let us consider
the (Iuantities {(a~a/N)" ) defined by

a~a " Tr a a N "e ~"

It follows from our formulation that {(a'a/N)') is
given by

(37)

and

—pf (T) = ln (exp (- pyo) 2 cosh O-,' pe) [1+(4x'/(.")yo]' ']',

(35)

(
ata

y dyexp K — y+ln 2cosh — q 1+ 43. g y

p 40

dy exp N —py+ ln 2 cosh —,'pq 1+ 4&~ q~ y
'~

"0

By Laplace's method, it immediately follows that
for (i) X~&a and (ii) X2&&, p& p,

For (iii), X & e, p& p, , however, ((a~a/N)") is
given by

((a'a/N)" ) = 6„, . (s9) ((ata/N)" ) = y() = (X'o' —e'/4l(. ')", (4o)
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where o is the root of the equation

2O =tanh(pX2O)ss0 . (41)

The above results, which are in exact agree-
ment with those of Hepp and Lieb, are derived, as
we have seen, in a manner which is straightfor-
ward and elementary compared to the method used
by Hepp and Lieb. The close analogy between
the Dicke model of superradiance and the Curie-
Weiss model of ferromagnetism~ is also more ap-
parent from our formulation.

In Sec. IV, we shall deal with the case of finitely
many radiation modes.

IV. GENERALIZATION TO MULTIMODE CASE

The Hamiltonian of the Dicke model, in the case
of I radiation modes of frequencies v1 v2

v, is given by

CO ga=2.,;,.
s=1 )=1

&& A.,a, o(+ z,((t!o, , (42)
s=1 s=1 j

where X„X2, .. . , X are the coupling constants,
In analogy with E(l. (20), the partition function of
the system is now given by

d ~2
m

d +m I 2 2 2" exp(- P! V, (2, + V2(22+ ~ ~ ~ + v (2 ! )

x 2cosh —,
' ~ 1+ 4 m N x1cy1+x2n2+ ~ ~ ~ +x~a~ (48)

where

Vl(21+ V2(22+ ' + VmQm! = (Vi@1+ V2g2+ ' ' ' + VmXm) + (Vl yl+ V2 y2+ ' ' ' + Vm y m)!
2 2 2) 2 2, ~ ~ 2 2 2 2

! Xl(21+%2(22+ ~ ~ ~ +X (2 ! —(X(X1+X2X2+ ~ ~ ~ +X g ) +(Xlyl+A2y2+ ~ ~ ~ +X y )

Q) = dX) Cfgg s
2

(44)

We now define a new set of variables x' ', x' ',
. .. , x' ' inplace of the original variables x1, x2,

by the following relations:

)Lx —X11x1+A, 12x2+ ~ ~ ~ + X1 xm &

(1)

~21X1+~22X2+ ' ' ' + ~2~X~ y

(2)

(45)

1
X1=

-1
X2= ~ &21

A.x ~ ~ A.1
(1)

Xx ~ ~ ~ X2~
(2)

(1) ~ ~,

~22 ~2m
(2)

~mm

, etc.

(4V)

Xx( )=Z,x, +X 2x2+ ~ +~

A new set of y variables is also def ined by the
same set of relations. The elements in the first
row of the determinant

~11 ~12 ~1m

X21 X22 '' 'X2

~.1 ~.2 "
Nm,

(48)

are chosen to be equal to the respective coupling
constants X„A2, . . . , X so that the expression
I Xl(21+ ~ ~ ~ +X„(2„I in E(l. (43) reduces simply to
y2( &1& + (1)2)

We now wish to choose the remaining elements
X,J in such a way that when v1x1+v2x2+ ~ ~ ~ +v x
is expressed in terms of the new set of variables
x' ', x' ', . .. , x' ', the coefficients of the cross-
product terms x x ", j=2, 3, . . . , m vanish.

Consider the solutions of (45). We have

A, =cX, gv„, g=1, 2, . . . , m

k4j

(49)

where c is any arbitrary constant, then (48) be-
comes

(2/+ ) Vlv2 ' ' vmc(~11Ajl+ ~12A(2+ ' ' ' + ~lmA1m)

(50)
because the quantity inside the bracket vanishes
for j4 1. It is interesting to note that the substitu-
tion defined by (49) is all that is needed for our
purpose and it is not necessary for us to determine
the individual X,» because the new variables x(2),

If we substitute (4V) into vlx1+ V2x2+ ~ ~ ~ + v„x„, it
is easy to see that the coefficient of x"'x'J', j41
is given by

(2/4 ) (vlA11AJ1+ V2A12A&2+ ~ ~ ~ + V„A(„A& ),
(48)

where A» is the signed cofactor of A~, in the de-
terminant ~. If we now choose
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x(3) x(m) and y
(2)

y
(3 )

y
(m) occurring

only in the exponential factor in (43) can now be
integrated independently of the variables x(1' and
y' ', giving rise to a constant which is of no physi-
cal interest. Using the substitution (49), v~x~
+ v2x2+ ~ ~ ~ + v x becomes2 2

(1)2 ~

The coefficient of x"' is
2~ V1~»+ V2~12+ + V.~1.

2 . . . 2
~2 &1&2 &m(~1&2&2 ~m+~22'1t 3 &m+ ' ' )

I 2 29.1V2V3 ~ ~ ~ Vm+ &2V1V3 ~ ~ ~ Vm+ ~ ~ ~ I

V1 1 V2X2+ + VmXm
2 2 . . . 2

(1)2
( /+ ) (Vi+11+ VF 22+ ' ' ' + VrA1m)X X

+terms involving x"',x"'x'~', i,jp1.
(5l)

We have similar expression for v, y, +v2y2+ ~ ~ ~ .

—+—+ ~ ~ ~ +—2 1 2 m

V1 V2 vm

Thus if we define

X =X, /P, +@2/P2+ +XJP„,2= 2 2 2

then

(52)

(53)

dX d (g)2 (g)2Z = C ' — exp [-f) (x'" +y" '
)] (2 cosh((—,'P(o) [l + (4X'/(u'N) (x"' + y"' )]'~ ))

=C 8 ' 2cosh —' & 1+ Q. &N ~ ' if we let n= x'",y"'

where C is a constant given by the integrals over
dx("dy ", j=2, . . . , m, times the Jacobian of the
variable transformation. The constant C is of no

physical importance as long as m is finite, for the
free energy per atom f(T) is given by

f(T) = lim [- (i/PN) lnZ, ], (55)

d Q
1

x 2cosh —,
'

& 1+ 4X (dN n . 56

In conclusion, we have outlined an alternative ap-
proach to the thermodynamics of the Dicke model
of superradiance which is considerably simpler

We have reduced the multimode case to the single-
mode case [with X2 in Eq. (56) given by Eq. (53)]
for which the analysis of Sec. III applies.

The generalization to the multimode case was
briefly mentioned by Hepp and I.ieb in their paper
but no explicit formula was given by them.

V. CONCLUSION

than the formulation of Hepp and I,ieb. In our ap-
proach, the phase transition is presented mathe-
matically in an elementary manner. We have also
used the same approach to analyze the phase tran-
sition property of the Dicke model i.n the case of
many radiation modes by reducing the multimode
case to the equivalent single-mode case. Some
further generalizations are under consideration:
(i) to relax the very unrealistic restriction of the
model that the dimension of the cavity is much
smaller than the wavelength of the electromagnetic
field even in the thermodynamic limit, and (ii) to
generalize the model to include the effects due to
the motions of the atoms. These and others will be
published i.n a later paper.
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