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with a corresponding equation for P', and the radial
distribution function in a density series,

v(r) =0,

the nth virial coefficient is'

(21)

B„=8„'+ (n 1)2-'"v[a'e "y„—, (a)

g(~) = e '"'"'Z p"y. (~),
n=o

then substituting in (17) and equating powers of p
gives

8„=B„'+ (n —l)2-"'va'8 "'"'y (a)&+ 0(A') .
(20)

8„ is the direct part of nth virial coefficient and
8„' is its classical counterpart. y, (x) =1, so for
n=2 (20) reduces to (14). For n&2, y„,(a) depends
on the detailed nature of the potential, so for virial
coefficients higher than the second the leading
quantum correction is not determined solely by the
depth of the potential at the hard core.

If the potential fails to be continuous for x& a,
there will be additional first-order quantum cor-
rections from the neighborhood of the discontinu-
ities. For example, for the square-well potential

v(r) =~, ~ a&

v(r)= —e, a&r& b

+ b'il(Pe)y. (b)I~+0(~'), (22)

where

e(x) =-1+ e" 2-e""I,( ,'x)-. (23)

Comparing (22) with (20) shows that the contribu-
tion from the neighborhood of the hard core is the
same in each case, but we now have an additional
contribution from the discontinuity at x= b.

In the above we have considered only the first-
order quantum correction to the virial coefficients.
Higher-order corrections to the second virial co-
efficient can be obtained using its expression as
the inverse Laplace transform of the logarithmic
derivative of the Jost function, ' and this is the
method employed by D'Arruda in his calculation
for the hard-core-plus-attractive-well potential. 3

Another possible method is the modified Wigner-
Kirkwood expansion given recently by Derderian
and Steele, ' in which hard-sphere basis functions
rather than free-particle functions are used.

For the higher coefficients, the only method avail-
able seems to be that of I. The theory given there
is quite general, and includes all higher correc-
tions. However, even for the second-order term
computational difficulties are severe. Not only
does one require G(r, r; P) to the next order, but
one also needs the leading term in the function
UP(1, 2, 3), and this involves solving a three-body
problem, 6
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It is pointed out that the variation-iteration method offers a fast and accurate means for solving the
variable-phase equation. The method is especially useful for problems involving many partial waves.

In a recent paper by Landman, ' a perturbation-
variation treatment of the variable-phase function
has been proposed. The method consists of two
parts. First, the standard technique of perturba-
tion theory is applied to the variable-phase equa-

tion. A variational principle' is then employed to
optimize the choice for the main part of the poten-
tial.

We wish to point out the limitations of Landman's
method and offer a remedy. We shall adopt Land-
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man's notation and refer to equations in his paper
as (L. 1), (L. 2), etc.

The procedure for optimizing V,(); c) relies on
the maximum-minimum property of the functional

T,[t,(x);r]-=—k ' f dx U(x)[j~) —t2)(x)n~)(kx)]

xexp(2k ' f dy U(y)A, (ky)

R(1) l(I) R(2) l(2) R (3& l(3)

0 —0. 221 78
1 —0, 206 41
2 —0.202 56
3 —0.220 07

0.471 98
0.455 95
0. 431 10
0. 40836

—0. 271 38
—0.263 87
—0.24818
—0.21962

0. 629 33
0.640 33
0.660 57
0.68818

—0.271 28
—0.263 61
—0. 247 65
—0.218 87

0.629 51
0.640 60
0. 66068
0. 68860

TABLE I. Successive iterations for the first fourpar-
tial scattering amplitudes c&. The third iteration coin-
cides with the exact results.

t, (r) = r, [t,(x);r],
t, (r) = T, [F,(x);r]+ O((t, —t, )') .

(2)

(3)

Here t, (y) is the true tangent function for the po-
tential U(r) Usin.g this fact, Eq. (1) can be ap-
plied to calculate the tangent function iteratively:

t ((+))( ) T [t(()( ).~]

As an initial guess, one can choose, for example,
the exact solution t&

' for an approximate potential
Vo(r), i. e. ,

t(0) ( )
t(0) (&) (5)

This is, in fact, Landman's choice. 1 As explained,
one can not in general optimize the initial choice.

.If t,' ' is chosen "close enough" to the true t„ the
process (4) converges rapidly (in a quadratic man-
ner). (It also diverges rapidly for a wrong initial
guess!) In fact, iterating (5) once gives t, (r) cor-
rectly up to order X. A second iteration gives t, (x)
correctly to order X3, etc. This should be con-
trasted with the perturbation equations (L. 19) and

(L. 20), where the same numerical effort —in fact,
the same machinery-is exercised. By definition,
perturbation calculations give t,(r) to order X, X2,

X', etc. The fast convergence achieved by Land-
man is, of course, due to his optimization proce-
dure for the zeroth-order potential.

The iterative process (4) has been applieds di-

x [j,(ky)- t, (y)n)(ky)]). (1)

[Note that the corresponding expression, Eq.
(L. 31), contains a misprint. ] This property, how-

ever, is known to hold only for a special class of
potentials U(r), namely, real potentials which do

not change sign. '
For a general complex potential, Eq. (1) pro-

vides a variational principle with the following prop-
erties3:

rectly to the partial scattering amplitudes

C)—:
exp(2i6, ) —1

2i

where the appropriate variational principle reads

C[c,(x);r]=-- k' f"dx U(x)[j', (kx)- c', (x)ha)(kx)]

x exp(- 2k ' f"dy U(y)h, (ky)[j, (ky) + c, (y)k, (ky) j},
(6)

with h, ( kr) =-- n, (kr)+ij, (kx) Tab.le I gives succes-
sive iterations of the first four partial amplitudes
for the scattering of a 100-MeV neutron by Ca
The optical potential employed is

4WD
~ c (r-s) /a (I + e(r-s) /s)21+e

with R = r& A.', y0 = 1.25F, a = 0. 65F, V0 = 50 MeV,
and WD = 10 MeV. The initial guess was taken as
c,' '(x) -=0. R"' and I"' stand for Reel('(~) and

Imc,"'(~). In this numerical example, the third
iteration coincides with the exact results. The sec-
ond iteration is already adequate for most practical
calculations.

Using Eq. (6), a variety of scattering problems
with complex potentials have been successfully
solved. The iterative procedure is especially- use-
ful for problems involving many partial waves. The
fact that in these problems the partial amplitudes
c, (x) vary slowly and smoothly as a function of I

allows one to use the result c, (r) as an input for
calculating c„,(r) Thus, "un.related" problems
for different partial waves become related. In fact,
the same procedure, namely, using the output of
one problem as an input for another (similar) prob-
lem, can be applied whenever a survey is needed.
This may be helpful for, e. g. , scanning bombard-
ing energies or solving the scattering problem for
a family of potentials.
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