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a region where the JWKB asymptotic solutions are
no longer valid. 4 However, we believe that this
difficulity can be treated using a modified form of
the Miller-Good method.

III. DISCUSSION

The results of this calculation show that the first
quantum correction for a hard-core-plus-attrac-
tive-well potential is independent of the shape of
the well, and depends only on the value of the po-
tential at the core. Thus for any potential, square
well, triangular well, etc. , which is continuous
near the core, the first quantum correction is given

by the terms

~2 [pv(a)j —
~

s

Hence, classical arguments alone should suffice
in distinguishing which potential-well model best
fits experimental data at high temperatures, at
least to O(X /a ).
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The leading quantum correction to the virial coefficients is calculated for the case where
the intermolecular potential has a hard core. If the potential is bounded and continuous out-
side the core, the leading quantum correction to the second virial coefficient comes entirely
from the region of the hard-core boundary, and depends only on the diameter of the core and
the depth of the potential well at the core boundary. The leading quantum correction to the
higher virial coefficients also involves the value of the classical radial distribution function
at the core boundary. If the potential has discontinuities outside the core, these will give
rise to additional first-order corrections.

We investigate the leading quantum correction
to the virial coefficients for the case where the
intermolecular potential has a hard core. The
standard Wigner-Kirkwood method cannot be used,
since it requires that the potential be differentiable.
Instead we use the method developed in a previous

paper' (hereafter referred to as I) which is valid
for a general potential. The basic quantity is the
thermal Green's function G(r, P; P), and this is
calculated in the approximation where the curva-
ture of the potential boundaries is neglected. This
enables us to obtain the quantum corrections to
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2+ —,v(x)+y
~
u(x)=0,dx'

satisfying the boundary conditions u, (a) =0, u (r)-0
as r - ~; W(u„u2) = u, u2 —u, u2 is their Wronskian.

A solution of (4) valid for large y can be ob-
tained using the %KB method. ~ Since we are work-

ing at large negative energies there are no turning
points, and the solution for x&a is

'r ~\

u(r)=q "2 Aexp ! qdk +Bexp -~ qdr

x I+O —!, (5)

where

q =-q(r) = [y'+ mv, (r)/I']'"
and A and S are arbitrary constants. To the same
order, the derivative is

u (r) =q" Aexp
!

qdr —Bexp —
!

qdr

x 1+0—

If we now require that the potential v(r) be con-
tinuous (as well as bounded) for h & a, then u(r) and

u (r), as given by (5) and (7), are also continuous
for x& a, and can be used to construct the Green's
function. A straightforward calculation gives

G& (r, r; y) = o x&a
~r

G, (r, r;r) = — — 1 —exp —2
~

qdrl!1

2g ~ 8

1x 1+0 —,h&a . (8)
y

the virial coefficients to first order in the thermal
wavelength A.

The intermolecular potential is taken to be of
the form

v(r) =

v (r) = v, (r), r & a

where v, (r) is bounded, and decreases rapidly
enough as ~- ~ for the virial coefficients to exist.
We wish to calculate A3G(r, r; P) correct to first
order in A. [A= (2«h P/m)" where P=1/kT. ]
From Appendix B of I,

&2t,'+f OO

G( r&;P) --
~2 .

!
dPe"G (h, h'y) ~

P2 ~ y foo

where y=p'i and n= X /2«. C, (r, r; y) is the
Green's function for the one-dimensional Schrodinger
equation and can be constructed according to the
formula

G, (r', r; y) = [II'(u„ ~)l-'u (h,)+(h,) .

g,&, gz are solutions of

G(r', r p)=(r
~

e ~- ~r), (i2)

where 0„, is the Hamiltonian for the relative mo-
tion of the two-particle system.

The direct part of the second virial coefficient is
given by

B«,= 2 f d'r[i —23i2~3G(r, r; P)] .
Using (11), we find

where

a

is the usual classical second virial coefficient.
Thus the first-order quantum correction to 8«,
comes entirely from the region near the hard core.
It depends on v(a+), the value of the potential just
outside the core, but is independent of the detailed
nature of the rest of the potential, provided only

that it is bounded and continuous for ~& a. In par-
ticular, the result (14) applies to the hard-core-
plus-attractive-well potential, and is in agreement
with a recent calculation by O'Arruda' for this po-
tential model.

Expressions for the quantum corrections to the
higher virial coefficients can also be found, fol-
lowing the method of I. The quantity ez, defined

by Eq. (19) of I, is found to be

e2 = —2 '"ma 2g(a+) X+ 0(&2),

where g(r) is the classical radial distribution func-
tion. The pressure is now given by (21) of I:

PP= PP' p' ' +o(&')-,
sp

(i7)

where p' is the pressure of the classical gas and

p is the number density. If we expand the pressure
in a virial series,

For y large,

exp(-2 f qdk) -exp[-2q(a+) (h- a)]
- —,'[q(a+)]-'5(r —a+),

where 5(r —a+) is a Dirac 6 function. Thus

G, (r, r; y) = ——,'[q(r)]-'+ —,
' [q(a+)] 2

x5(h —a+)+O(y-3), r &a. (10)

Inserting (10) into (2) and doing the inverse Laplace
transform integral gives

G(r P. P) 2-3i2~-3e Bv&t)-

x[I —2 3"x5(r - a+) + O(&')] . (I I)

Note that the right-hand side of (11) is simply
e ~"'"' times the thermal Green's function for hard
spheres of diameter a. This is a, reasonable re-
sult, as can be seen from the relation
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with a corresponding equation for P', and the radial
distribution function in a density series,

v(r) =0,

the nth virial coefficient is'

(21)

B„=8„'+ (n 1)2-'"v[a'e "y„—, (a)

g(~) = e '"'"'Z p"y. (~),
n=o

then substituting in (17) and equating powers of p
gives

8„=B„'+ (n —l)2-"'va'8 "'"'y (a)&+ 0(A') .
(20)

8„ is the direct part of nth virial coefficient and
8„' is its classical counterpart. y, (x) =1, so for
n=2 (20) reduces to (14). For n&2, y„,(a) depends
on the detailed nature of the potential, so for virial
coefficients higher than the second the leading
quantum correction is not determined solely by the
depth of the potential at the hard core.

If the potential fails to be continuous for x& a,
there will be additional first-order quantum cor-
rections from the neighborhood of the discontinu-
ities. For example, for the square-well potential

v(r) =~, ~ a&

v(r)= —e, a&r& b

+ b'il(Pe)y. (b)I~+0(~'), (22)

where

e(x) =-1+ e" 2-e""I,( ,'x)-. (23)

Comparing (22) with (20) shows that the contribu-
tion from the neighborhood of the hard core is the
same in each case, but we now have an additional
contribution from the discontinuity at x= b.

In the above we have considered only the first-
order quantum correction to the virial coefficients.
Higher-order corrections to the second virial co-
efficient can be obtained using its expression as
the inverse Laplace transform of the logarithmic
derivative of the Jost function, ' and this is the
method employed by D'Arruda in his calculation
for the hard-core-plus-attractive-well potential. 3

Another possible method is the modified Wigner-
Kirkwood expansion given recently by Derderian
and Steele, ' in which hard-sphere basis functions
rather than free-particle functions are used.

For the higher coefficients, the only method avail-
able seems to be that of I. The theory given there
is quite general, and includes all higher correc-
tions. However, even for the second-order term
computational difficulties are severe. Not only
does one require G(r, r; P) to the next order, but
one also needs the leading term in the function
UP(1, 2, 3), and this involves solving a three-body
problem, 6
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It is pointed out that the variation-iteration method offers a fast and accurate means for solving the
variable-phase equation. The method is especially useful for problems involving many partial waves.

In a recent paper by Landman, ' a perturbation-
variation treatment of the variable-phase function
has been proposed. The method consists of two
parts. First, the standard technique of perturba-
tion theory is applied to the variable-phase equa-

tion. A variational principle' is then employed to
optimize the choice for the main part of the poten-
tial.

We wish to point out the limitations of Landman's
method and offer a remedy. We shall adopt Land-


