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X (nsec) '
t (nsec) =1/A.

20

0.02674 0.04398
1,825 2.229
0. 548 0.449

—0, 3428 —0.4225

0.04836
2.3963
0.417

—0.4596

0.04943
2.459
0.407

—0, 4766

0.0497
2.496
0.401

—0.491

than those reported previously' as far as the energy
is concerned. Nevertheless, the cusp value v

seems better; perhaps the annihilation rate is also.
The values of P„are qualitatively in agreement

TABLE II. Convergence, for the open-shell wave func-
tion, of various properties of PsH. The nonlinear param-
eters are v=0. 56, P=-0. 1917, g&=0. 7054, g2-—1.163.

with the corrected values of Ref. 2, which used a
very simple trial function.

The open-shell results in Table II give an im-
provement in the dissociation energy of 2/q for the
56-term function, as well as a good value for v.
(With this type of trial function the evaluation of
P„would be rather time consuming, and we did

' not carry it out; we do not expect the results to
differ too much from those in Table f. ) The ex-
trapolated values represent estimates based only
on the limited type of trial function used here.
Further work using more general functional forms
is presently under way.
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High-temperature asymptotic expansions of Bdi for a hard-core —plus —attractive-well poten-
tial are calculated using a method developed by Hill and reformulated by D'Arruda and Hill.
To lowest order, we find the first quantum correction from the well to be independent of the
shape of the well and to depend only on the value of the potential at the core.

I. GENERAL FORMULATION

We begin with the formulation of Boyd, Larsen,
and Kilpatrick and write the second virial coeffi-
cient 8 in the form

allowed to come closer to each other than the ther-
mal wavelength. If this is not possible because of
the presence of the repulsive forces, the exchange
is negligible. G is the thermal Green's function
for the relative motion:

&= &d&. + &e,oh ~

where

B«, =)(2M. f dr[2 X
3 —G(r, r; p)]

and

(2)

G(r', r; P) = (r'
~

e-('"~
~

r ),
where

H„= — —v + V(z)

(4)

B,„,h =+ ~2M. (2S+ 1) ' f drG(r, —r; P) .

The minus (upper) sign in B,„,„ is associated with

Bose statistics and the plus sign with Fermi statis-
tics Here S .is the spin, X=(2vhP/m)~~2 is the
thermal de Broglie wavelength, and P = (kT) '.

Since it has already been shown that the repulsive
core present in realistic two-body potentials and
in hard spheres leads to a rapid suppression of the
exchange piece at high temperature, we shall focus
our efforts only on B«, Qualitativel. y, the ex-
change piece is nontrivial only if the particles are

is the Hamiltonian for the relative motion of a pair
of particles of mass m.

Following the general procedure as given in
earlier work, ' we may write

ee= 2 (u+ () ((2e() '
l~0

( Wo+&

&0- '"
e f'(wid ),)e(7)

where the integration contour in the complex R'

plane lies to the right of all singularities and where



HIGH- TEMPERATURE QUANTUM CORRECTIONS. . . 821

j.

f'(W)= lnA, (W)+

f '(W) =f„',(W)+ +'(W),

where

d )+f,', (w) = »&, ,«2(ra)+ 2W-

(io)

Here A, (W) is determined up to a multiplicative
constant i;adependent of R' by matching solutions
of the negative-energy-5' Schrodinger equation in-
side the attractive well, with the free-particle
solutions outside the well, and demanding that
f'(W) have the form given in Eq. (8). The details
are given in Ref. 3.

This formulation may be further extended by
noting that for the hard-sphere case

A", '(W) = K„ / (ya), (9)

where a is the radius of the core, y = mw/8'2 and

K„«s (ya) is the modified Bessel function of the
third kind. Equation (8) may then be put in the
form

V(r)=~, r&a.
Only the solutions of the radial Schrodinger

equation, which obeys the inner boundary condi-
tions and satisfies the conditions imposed on f '(W),

are needed for the computation of A, (W). Such so-
lutions are obtained, inside the well, from

2 d f(I+-', ) mw mV(r)
dr x dh x h

(19)
with

( )
me(r)Ux =

y„p mR'
1/2 ~ Y g2

Equation (19) may be cast into the form

d 1 d & +yr -r U(r)
dt'

Furthermore, introducing the ordering parameter
(, with the prescription to set g = 1 at the end of the
calculation, Eq. (20) becomes

(( )
d A, (W)

dw If(„i~2(ra)&
(i2)

A similar decomposition of Eqs. (6) and (7) gives

& = &hc+&

B«r = Bhc+ B»
where

La (pl ~ () ((pei)
'

t=p

f Wp+$

(13)

(i4)

e f'„,(w)dw)

(i6)

p Wp +f
ee N'(W)dW) .6 = Z (2f+ i) (2~f) '

L= 0 ~p

Wp f00

(16)
The contribution of 6„, to B«, has already been
eva.luated as2 3

pe, = —ewae I( d
—

(
—
)

+— — + — + 0 — . 1'7

The task now remains to calculate B, , which is

a, =-&2m'6 . (18)

II. ATTRACTIVE-WELL POTENTIAL

We now assume a general attractive-well poten-
tial of the form

v(r)=o,
V(r)= —U(r), a&r& b

where
(d +y r —r U(r)

n. (r) =
r2

Asymptotic solutions of Eq. (21) can be con-
structed with the Jeffreys-Wenzel-Kramers-
Brillouin (JWKB) ar(sate

y„-e"ZC g

(22)

(23)

p~p (PO(a)) (
—)+ O(N') . (Pd)

This result is valid to the stated order in (X/a) for
b —a/a and m'0(a)a /2mb fixed. It is not uniform-

ly valid for m'U(a)a2/2vt'3 large. For helium both

b —a/a and m'U(a)a'/27)h ~ are near 1, so that

po(.) =,",.'' ('-)' = o ('-. ',
)'

Equation (24) reduces to the hard-sphere case in

the limit v(a)- 0, but not in the limit b- a. The
nonuniformity in this latter limit can be traced to
a rapidly changing potential as b- a, and hence to

Substituting (23) into (21) and collecting terms in

the usual fashion generates the desired solutions.
Then, following the procedure as given in Ref. 3
and using (13), (14), (17), and (18), we find

"=-:""'
('-) -'(-')

+ ~ — —3a ' r'dr(e'"" —1)
16m 2 a
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a region where the JWKB asymptotic solutions are
no longer valid. 4 However, we believe that this
difficulity can be treated using a modified form of
the Miller-Good method.

III. DISCUSSION

The results of this calculation show that the first
quantum correction for a hard-core-plus-attrac-
tive-well potential is independent of the shape of
the well, and depends only on the value of the po-
tential at the core. Thus for any potential, square
well, triangular well, etc. , which is continuous
near the core, the first quantum correction is given

by the terms

~2 [pv(a)j —
~

s

Hence, classical arguments alone should suffice
in distinguishing which potential-well model best
fits experimental data at high temperatures, at
least to O(X /a ).
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The leading quantum correction to the virial coefficients is calculated for the case where
the intermolecular potential has a hard core. If the potential is bounded and continuous out-
side the core, the leading quantum correction to the second virial coefficient comes entirely
from the region of the hard-core boundary, and depends only on the diameter of the core and
the depth of the potential well at the core boundary. The leading quantum correction to the
higher virial coefficients also involves the value of the classical radial distribution function
at the core boundary. If the potential has discontinuities outside the core, these will give
rise to additional first-order corrections.

We investigate the leading quantum correction
to the virial coefficients for the case where the
intermolecular potential has a hard core. The
standard Wigner-Kirkwood method cannot be used,
since it requires that the potential be differentiable.
Instead we use the method developed in a previous

paper' (hereafter referred to as I) which is valid
for a general potential. The basic quantity is the
thermal Green's function G(r, P; P), and this is
calculated in the approximation where the curva-
ture of the potential boundaries is neglected. This
enables us to obtain the quantum corrections to


