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A new, more accurate calculation of the ground-state wave function of positronium hydride
has been carried out. The method is variational and is similar to that reported by Lebeda and
Schrader. The '"molecule" is found to be stable against separation into positronium and
hydrogen by at least 0. 672 eV, an increase of 2% above the best previous value. The mean life-
time against two-photon annihilation is 0. 407 nsec, as obtained from the energy-minimizing
wave function. The "cusp value" of -0.477 is close to the exact value —&, giving an indic-
ation of the quality of the trial function.

Two recent papers" have put the description of
the ground-state properties of the positronium hy-
dride "molecule" (PsH) on a good quantitative
footing. In particular, the first of these' used a
fairly realistic trial function to obtain a binding

energy against dissociation into positronium and

hydrogen of 0.0484 Ry. Since we had completed a
calculation of the very similar s-wave positron-
helium scattering wave function, it seemed worth-
while to adapt our method to the problem of PsH.

The PsH system consists of a proton fixed at the
origin of coordinates, two electrons (r, and r~),
and a positron (x). The nonrelativistic Hamiltonian
1S

)(1 1 1 1 1 1H= —V —V' —V +2' —————+=- ————
@ 1 2 ~a &12 P1 Pa

(I)
where x» ——j r1 —ra 1, P&

=—Ix —r~ l, lengths are in
units of ao, and energies in rydbergs. Using a trial
function 4(r„rz, x) one first calculates the ground-
state energy

E,=(@IHI@)/(@I%)

and the dissociation energy E~ = —,
' —Eo. Various

other properties of the ground state may also be
evaluated. These are (a) the two-photon annihila-
tion rate in nsec '.
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(b) the cusp value, emphasized by Schrader:

f dxl f dr/„*(r) 0 (r, x, x) I'
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The trial functions we used were of the following
form:

C, „e "x'(e "'Hp", +e "~,p",) y(y,r,).
lymph

Two different forms for P were tested:
e-~(~,~~)

A, —g 1 ] 2 2 +g 2Y'0

(these are referred to as "closed-shell" and "open-
shell" functions by analogy with the standard two-
electron-atom terminology; we are not implying
that the ground state of H is the dominant con-
figuration in PsH). Only five of the six coordinates
expressing the general form of the s-wave function
are included; we omitted the variable ~» so that
all integrals could be performed analytically. (In
Ref. I the coordinate x was omitted instead. ) In
Tables I and II we present results for the two func-
tions. The nonlinear parameters are approximately
optimized during the variational energy calculation,
and the conventional reporting values of N are
chosen to show the convergence rates.

The closed-sheQ results in TaMe I are worse

TABLE I. Convergence, for the closed-shell wave
function, of various properties of PsH. The nonlinear
parameters are & =0.5279, P=-0.3760, g=1.032.

&+15(r, -x) (5/5 p, ) I +)
(e I 5(r, - x)14')

This quantity probes the accuracy of the trial func-
tion near the point of coalescence between positron
and electron, and should equal —&.

(c) The probability P„of finding the residual hy-
drogen atom in state n following annihilation of
PsH
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0.04102
2. 148
0.466
0. 9852
0.0017
0. 00035
0.0035
0. 00054

—0.4092

~Reference 1.

0.04612
2. 322
0.431
0.9865
0.0015
0.00014
0.0033
0. 00046

—0.4511

56

0.04761
2. 390
0.418
0.9869
0.0014
O. 00018
0.0032
0.00046

—0.4718

Reference 2.

Previous work
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X (nsec) '
t (nsec) =1/A.

20

0.02674 0.04398
1,825 2.229
0. 548 0.449

—0, 3428 —0.4225

0.04836
2.3963
0.417

—0.4596

0.04943
2.459
0.407

—0, 4766

0.0497
2.496
0.401

—0.491

than those reported previously' as far as the energy
is concerned. Nevertheless, the cusp value v

seems better; perhaps the annihilation rate is also.
The values of P„are qualitatively in agreement

TABLE II. Convergence, for the open-shell wave func-
tion, of various properties of PsH. The nonlinear param-
eters are v=0. 56, P=-0. 1917, g&=0. 7054, g2-—1.163.

with the corrected values of Ref. 2, which used a
very simple trial function.

The open-shell results in Table II give an im-
provement in the dissociation energy of 2/q for the
56-term function, as well as a good value for v.
(With this type of trial function the evaluation of
P„would be rather time consuming, and we did

' not carry it out; we do not expect the results to
differ too much from those in Table f. ) The ex-
trapolated values represent estimates based only
on the limited type of trial function used here.
Further work using more general functional forms
is presently under way.
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High-temperature asymptotic expansions of Bdi for a hard-core —plus —attractive-well poten-
tial are calculated using a method developed by Hill and reformulated by D'Arruda and Hill.
To lowest order, we find the first quantum correction from the well to be independent of the
shape of the well and to depend only on the value of the potential at the core.

I. GENERAL FORMULATION

We begin with the formulation of Boyd, Larsen,
and Kilpatrick and write the second virial coeffi-
cient 8 in the form

allowed to come closer to each other than the ther-
mal wavelength. If this is not possible because of
the presence of the repulsive forces, the exchange
is negligible. G is the thermal Green's function
for the relative motion:

&= &d&. + &e,oh ~

where

B«, =)(2M. f dr[2 X
3 —G(r, r; p)]

and

(2)

G(r', r; P) = (r'
~

e-('"~
~

r ),
where

H„= — —v + V(z)

(4)

B,„,h =+ ~2M. (2S+ 1) ' f drG(r, —r; P) .

The minus (upper) sign in B,„,„ is associated with

Bose statistics and the plus sign with Fermi statis-
tics Here S .is the spin, X=(2vhP/m)~~2 is the
thermal de Broglie wavelength, and P = (kT) '.

Since it has already been shown that the repulsive
core present in realistic two-body potentials and
in hard spheres leads to a rapid suppression of the
exchange piece at high temperature, we shall focus
our efforts only on B«, Qualitativel. y, the ex-
change piece is nontrivial only if the particles are

is the Hamiltonian for the relative motion of a pair
of particles of mass m.

Following the general procedure as given in
earlier work, ' we may write

ee= 2 (u+ () ((2e() '
l~0

( Wo+&

&0- '"
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where the integration contour in the complex R'

plane lies to the right of all singularities and where


